1
|
Yan GQ, McLaughlin N, Yamamoto T, Li S, Nozaki T, Yuasa S, Du CR, Wang H. Coherent Driving of a Single Nitrogen Vacancy Center by a Resonant Magnetic Tunnel Junction. NANO LETTERS 2024; 24:14273-14278. [PMID: 39475046 DOI: 10.1021/acs.nanolett.4c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Nitrogen vacancy (NV) centers, atomic spin defects in diamond, represent an active contender for advancing transformative quantum information science (QIS) and innovations. One of the major challenges for designing NV-based hybrid systems for QIS applications results from the difficulty of realizing local control of individual NV spin qubits in a scalable and energy-efficient way. To address this bottleneck, we introduce magnetic tunnel junction (MTJ) devices to establish coherent driving of an NV center by a resonant MTJ with voltage controlled magnetic anisotropy. We show that the oscillating magnetic stray field produced by a resonant micromagnet can be utilized to effectively modify and drive NV spin rotations when the NV frequency matches the corresponding resonance conditions of the MTJ. Our results present a new pathway to achieve all-electric control of an NV spin qubit with reduced power consumption and improved solid-state scalability for implementing cutting-edge QIS technological applications.
Collapse
Affiliation(s)
- Gerald Q Yan
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Nathan McLaughlin
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Tatsuya Yamamoto
- National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, Ibaraki 305-8568, Japan
| | - Senlei Li
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Takayuki Nozaki
- National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, Ibaraki 305-8568, Japan
| | - Shinji Yuasa
- National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Emerging Computing Technologies, Tsukuba, Ibaraki 305-8568, Japan
| | - Chunhui Rita Du
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Hailong Wang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Erickson A, Zhang Q, Vakili H, Li C, Sarin S, Lamichhane S, Jia L, Fescenko I, Schwartz E, Liou SH, Shield JE, Chai G, Kovalev AA, Chen J, Laraoui A. Room Temperature Magnetic Skyrmions in Gradient-Composition Engineered CoPt Single Layers. ACS NANO 2024; 18:31261-31273. [PMID: 39471305 DOI: 10.1021/acsnano.4c10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii-Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT). Here, we demonstrate the observation of RT skyrmions stabilized by gradient DMI (g-DMI) in composition gradient-engineered CoPt single-layer films by employing the topological Hall effect, magnetic force microscopy, and nitrogen-vacancy scanning magnetometry. Skyrmions remain stable over a wide range of applied magnetic fields and are confirmed to be nearly Bloch-type from micromagnetic simulation and analytical magnetization reconstruction. Furthermore, we observe skyrmion pairs, which may be explained by skyrmion-antiskyrmion interactions. Our findings expand the family of magnetic materials hosting RT magnetic skyrmions by tuning g-DMI via gradient polarity and a choice of magnetic elements.
Collapse
Affiliation(s)
- Adam Erickson
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Qihan Zhang
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
| | - Hamed Vakili
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Chaozhong Li
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Suchit Sarin
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Suvechhya Lamichhane
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Lanxin Jia
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
| | - Ilja Fescenko
- Laser Center, University of Latvia, Jelgavas St 3, Riga LV-1004, Latvia
| | - Edward Schwartz
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Sy-Hwang Liou
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Jeffrey E Shield
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Guozhi Chai
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Alexey A Kovalev
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Abdelghani Laraoui
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| |
Collapse
|
3
|
Fang HH, Wang XJ, Marie X, Sun HB. Quantum sensing with optically accessible spin defects in van der Waals layered materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:303. [PMID: 39496613 PMCID: PMC11535532 DOI: 10.1038/s41377-024-01630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 11/06/2024]
Abstract
Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.
Collapse
Affiliation(s)
- Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077, Toulouse, France
- Institut Universitaire de France, 75231, Paris, France
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
4
|
Path MP, McCord J. Quantitative magnetooptical analysis using indicator films for the detection of magnetic field distributions, temperature, and electrical currents. Sci Rep 2024; 14:25459. [PMID: 39461971 PMCID: PMC11513121 DOI: 10.1038/s41598-024-74684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The accurate characterization of local magnetic fields and temperature is vital for the design of electronic systems. To meet this imperative, we present a novel non-contact approach for simultaneous quantitative magnetic field imaging and temperature sensing using magnetooptics and a bismuth-doped yttrium iron garnet film with out-of-plane anisotropy. For the direct signal quantification, a Stokes polarization camera is employed in a conventional magnetooptical microscope. The magnetization in the garnet is modulated with an external magnetic field to continuously image the Faraday rotation at four distinct points along the saturating magnetization loop. The method enables sensing of the magnetooptical signal in saturation, the magnetooptical susceptibility, the temperature, and self-calibrated driftfree imaging of the out-of-plane magnetic field component. A spatial resolution of magnetic field in the micrometer range with millisecond exposure time is demonstrated. The method is verified by analyzing the stray magnetic field distribution of electrical current in a wire simultaneously to the Joule heating induced by the applied current.
Collapse
Affiliation(s)
- Michael P Path
- Nanoscale Magnetic Materials - Magnetic Domains, Department of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany.
| | - Jeffrey McCord
- Nanoscale Magnetic Materials - Magnetic Domains, Department of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118, Kiel, Germany
| |
Collapse
|
5
|
Zhang Y, Sigaeva A, Elías-Llumbet A, Fan S, Woudstra W, de Boer R, Escobar E, Reyes-San-Martin C, Kisabacak R, Oosterhuis D, Gorter AR, Coenen B, Perona Martinez FP, van den Bogaart G, Olinga P, Schirhagl R. Free radical detection in precision-cut mouse liver slices with diamond-based quantum sensing. Proc Natl Acad Sci U S A 2024; 121:e2317921121. [PMID: 39401360 PMCID: PMC11513939 DOI: 10.1073/pnas.2317921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Free radical generation plays a key role in many biological processes including cell communication, maturation, and aging. In addition, free radical generation is usually elevated in cells under stress as is the case for many different pathological conditions. In liver tissue, cells produce radicals when exposed to toxic substances but also, for instance, in cancer, alcoholic liver disease and liver cirrhosis. However, free radicals are small, short-lived, and occur in low abundance making them challenging to detect and especially to time resolve, leading to a lack of nanoscale information. Recently, our group has demonstrated that diamond-based quantum sensing offers a solution to measure free radical generation in single living cells. The method is based on defects in diamonds, the so-called nitrogen-vacancy centers, which change their optical properties based on their magnetic surrounding. As a result, this technique reveals magnetic resonance signals by optical means offering high sensitivity. However, compared to cells, there are several challenges that we resolved here: Tissues are more fragile, have a higher background fluorescence, have less particle uptake, and do not adhere to microscopy slides. Here, we overcame those challenges and adapted the method to perform measurements in living tissues. More specifically, we used precision-cut liver slices and were able to detect free radical generation during a stress response to ethanol, as well as the reduction in the radical load after adding an antioxidant.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Alina Sigaeva
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Arturo Elías-Llumbet
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia Santiago1027, Chile
| | - Siyu Fan
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Willem Woudstra
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Elkin Escobar
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Molecular Genetics Group, Max Planck Tandem Group in Nanobioengineering, Faculty of Natural and Exacts Sciences, University of Antioquia, Medellin1226, Colombia
| | - Claudia Reyes-San-Martin
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Robin Kisabacak
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Dorenda Oosterhuis
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Alan R. Gorter
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Britt Coenen
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Felipe P. Perona Martinez
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Peter Olinga
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials and Biotechnology, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| |
Collapse
|
6
|
Mayner E, Ronceray N, Lihter M, Chen TH, Watanabe K, Taniguchi T, Radenovic A. Monitoring Electrochemical Dynamics through Single-Molecule Imaging of hBN Surface Emitters in Organic Solvents. ACS NANO 2024; 18:27401-27410. [PMID: 39321411 PMCID: PMC11468151 DOI: 10.1021/acsnano.4c07189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Electrochemical techniques conventionally lack spatial resolution and average local information over an entire electrode. While advancements in spatial resolution have been made through scanning probe methods, monitoring dynamics over large areas is still challenging, and it would be beneficial to be able to decouple the probe from the electrode itself. In this work, we leverage single molecule microscopy to spatiotemporally monitor analyte surface concentrations over a wide area using unmodified hexagonal boron nitride (hBN) in organic solvents. Through a sensing scheme based on redox-active species interactions with fluorescent emitters at the surface of hBN, we observe a region of a linear decrease in the number of emitters against increasingly positive potentials applied to a nearby electrode. We find consistent trends in electrode reaction kinetics vs overpotentials between potentiostat-reported currents and optically read emitter dynamics, showing Tafel slopes greater than 290 mV·decade-1. Finally, we draw on the capabilities of spectral single-molecule localization microscopy (SMLM) to monitor the fluorescent species' identity, enabling multiplexed readout. Overall, we show dynamic measurements of analyte concentration gradients on a micrometer-length scale with nanometer-scale depth and precision. Considering the many scalable options for engineering fluorescent emitters with two-dimensional (2D) materials, our method holds promise for optically detecting a range of interacting species with exceptional localization precision.
Collapse
Affiliation(s)
- Eveline Mayner
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Nathan Ronceray
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Martina Lihter
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
- Institute
of Physics, Bijenicka
46, Zagreb HR-10000, Croatia
| | - Tzu-Heng Chen
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| |
Collapse
|
7
|
Gupta S, Wakizaka M, Yamane T, Sato K, Ishikawa R, Funakoshi N, Yamashita M. Spin coherence and magnetization dynamics of TMA 2[KCo 1-xFe x(CN) 6] toward coordination-framework spin qubits. Phys Chem Chem Phys 2024; 26:24924-24930. [PMID: 39295502 DOI: 10.1039/d4cp02263g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal compounds with S = 1/2 coordination-frameworks have been emerging as new powerful qubit candidates. In this study, we have reported the CN-based coordination framework TMA2[KCo1-xFex(CN)6] to be a qubit. We explored the magnetization dynamics and spin coherence of the magnetic dilution of the S = 1/2 Fe(III) complex TMA2[KFe(CN)6] (TMA = tetramethylammonium) in its Co(III)-based diamagnetic analogue TMA2[KCo(CN)6]. Alternating-current (AC) susceptibility data illustrate a slow magnetic relaxation upon applying a field of 0.1 T, which follows the phonon-bottleneck relaxation mechanism along with the Raman process. A magnetic relaxation time (τ) of 0.3 s (2% Fe) was realized at 1.8 K. Moreover, pulsed EPR data reveal a coherence duration of 1 μs (0.1% Fe) at 4 K with successful observation of Rabi oscillation at 4 K and 13 K (2% Fe) using MW pulses with variable irradiation-field strengths. The overall results indicate that TMA2[KCo1-xFex(CN)6] represents a promising qubit candidate, as it is capable of being placed in any superposition of the two distinct Ms states (Ms = +1/2 and Ms = -1/2).
Collapse
Affiliation(s)
- Shraddha Gupta
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masanori Wakizaka
- Department of Applied Chemistry and Bioscience, Faculty of Science and Technology, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan.
| | - Takeshi Yamane
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan.
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan.
| | - Ryuta Ishikawa
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| | - Nobuto Funakoshi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Clua-Provost T, Durand A, Fraunié J, Robert C, Marie X, Li J, Edgar JH, Gil B, Gérard JM, Cassabois G, Jacques V. Impact of Thickness-Dependent Nanophotonic Effects on the Optical Response of Color Centers in Hexagonal Boron Nitride. NANO LETTERS 2024. [PMID: 39353565 DOI: 10.1021/acs.nanolett.4c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Among a broad diversity of color centers hosted in layered van der Waals materials, the negatively charged boron vacancy (VB-) center in hexagonal boron nitride (hBN) is garnering considerable attention for the development of quantum sensing units on a two-dimensional platform. In this work, we investigate how the optical response of an ensemble of VB- centers evolves with the hBN thickness in a range of a few to hundreds of nanometers. We show that the photoluminescence intensity features a nontrivial evolution with thickness, which is quantitatively reproduced by numerical calculations taking into account thickness-dependent variations of the absorption, radiative lifetime, and radiation pattern of VB- centers. Besides providing an important resource to optimize the performances of quantum sensing units based on VB- centers in hBN, the thickness-dependent nanophotonic effects discussed in this work generally apply to any type of color center embedded in a van der Waals material.
Collapse
Affiliation(s)
- Tristan Clua-Provost
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Alrik Durand
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Jules Fraunié
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France
| | - Cédric Robert
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France
| | - Jiahan Li
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Bernard Gil
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Jean-Michel Gérard
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, 38000 Grenoble, France
| | - Guillaume Cassabois
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
- Institut Universitaire de France, 75231 Paris, France
| | - Vincent Jacques
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| |
Collapse
|
9
|
Rezinkin O, Rezinkina M, Kitamura T, Paul R, Jelezko F. Uniform microwave field formation for control of ensembles of negatively charged nitrogen vacancy in diamond. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:104706. [PMID: 39377671 DOI: 10.1063/5.0203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The homogeneity of the microwave magnetic field is essential in controlling a large volume of ensemble spins, for example, in the case of sensitive magnetometry with nitrogen-vacancy (NV) centers in diamond. This is particularly important for pulsed measurement, where the fidelity of control pulses plays a crucial role in its sensitivity. So far, several magnetic field-forming systems have been proposed, but no detailed comparison has been made. Here, we numerically study the homogeneity of five different systems, including a planar antenna, a dielectric resonator, a cylindrical inductor, a barrel-shaped coil, and a nested barrel-shaped coil. The results of the simulation allowed us to optimize the design parameters of the barrel-shaped field-forming system, which led to significantly improved magnetic field uniformity. To measure this effect, we experimentally compared the homogeneity of a field-forming system having a barrel shape with that of a planar field-forming system by measuring Rabi oscillations of an ensemble of NV centers with them. Significant improvements in inhomogeneity were confirmed in the barrel-shaped coil.
Collapse
Affiliation(s)
- Oleg Rezinkin
- Ulm University, Ulm 89081, Germany
- National Technical University "Kharkiv Polytechnic Institute", Kharkiv 61002, Ukraine
| | - Marina Rezinkina
- Ulm University, Ulm 89081, Germany
- National Technical University "Kharkiv Polytechnic Institute", Kharkiv 61002, Ukraine
| | | | | | | |
Collapse
|
10
|
Esat T, Borodin D, Oh J, Heinrich AJ, Tautz FS, Bae Y, Temirov R. A quantum sensor for atomic-scale electric and magnetic fields. NATURE NANOTECHNOLOGY 2024; 19:1466-1471. [PMID: 39054385 PMCID: PMC11486657 DOI: 10.1038/s41565-024-01724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The detection of faint magnetic fields from single-electron and nuclear spins at the atomic scale is a long-standing challenge in physics. While current mobile quantum sensors achieve single-electron spin sensitivity, atomic spatial resolution remains elusive for existing techniques. Here we fabricate a single-molecule quantum sensor at the apex of the metallic tip of a scanning tunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex. We address the molecular spin by electron spin resonance and achieve ~100 neV resolution in energy. In a proof-of-principle experiment, we measure the magnetic and electric dipole fields emanating from a single Fe atom and an Ag dimer on an Ag(111) surface with sub-angstrom spatial resolution. Our method enables atomic-scale quantum sensing experiments of electric and magnetic fields on conducting surfaces and may find applications in the sensing of spin-labelled biomolecules and of spin textures in quantum materials.
Collapse
Affiliation(s)
- Taner Esat
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany.
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany.
| | - Dmitriy Borodin
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea.
- Department of Physics, Ewha Womans University, Seoul, South Korea.
| | - F Stefan Tautz
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea.
- Department of Physics, Ewha Womans University, Seoul, South Korea.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, Switzerland.
| | - Ruslan Temirov
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Institute of Physics II, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Celano U, Rickhaus P, Bran C, Marqués-Marchán J, Borràs VJ, Korytov M, Asenjo A, Vazquez M. Probing geometry-induced magnetic defects in cylindrical modulated nanowires with optically detected spin resonance in nitrogen-vacancy center in diamond. NANOSCALE 2024; 16:16838-16843. [PMID: 39189396 DOI: 10.1039/d4nr01064g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Cylindrical magnetic nanowires (NWs) have gained significant interest as building-blocks of spintronics devices and magnetic sensors thanks to their geometry-tunable magnetic properties and anisotropy. While the synthesis and compositional control of NWs have seen major improvements in recent years, considerable challenges remain for the characterization of local magnetic features at the nanoscale. Here, we demonstrate non-perturbative field distribution mapping and minimally invasive magnetic imaging with scanning nitrogen-vacancy magnetometry. This enables a sensitivity down to 3 μT Hz-1/2 used to localize ultra-scaled magnetic defects with lateral dimensions below 50 nm. The imaging reveals the presence of magnetic inhomogeneities in correspondence of periodical geometrical modulations/anti-notches in axial magnetized nanowires that are largely undetectable with standard metrology. The features induce local fluctuations of the NWs' magnetization orientation that are sensed by SNVM and compared with magnetic force microscopy. Finally, the strong magnetic field confinement in the nanowires is leveraged to study the interaction between the stray magnetic field and the fluorescence generated by two nitrogen-vacancies contained in the probe sensor, thus clarifying the contrast formation mechanisms.
Collapse
Affiliation(s)
- Umberto Celano
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA.
- Imec, Kapeldreef 75, 3001, Leuven, Belgium
| | - Peter Rickhaus
- Qnami AG, Hofackerstrasse 40B, CH-4321 Muttenz, Swizterland
| | - Cristina Bran
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, 28049, Spain
- National Institute of Materials, Physics, Atomistilor 405A, 077125, Bucharest, Magurele, Romania
| | | | | | | | - Agustina Asenjo
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, 28049, Spain
| | - Manuel Vazquez
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, 28049, Spain
| |
Collapse
|
12
|
Zhai Y, Cheng L, Song Y, Li J, Yu Z, Tian Y, Xu N. Concurrent sensing of vector magnetic field based on diamond nitrogen-vacancy ensemble using a time-divided hardware-synchronized protocol. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:095001. [PMID: 39240153 DOI: 10.1063/5.0217402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
A diamond nitrogen-vacancy (NV) ensemble has been developed as a vector magnetometry platform for sensing external time-varying magnetic fields. However, due to the complexity of manipulating electron spins along different directions, a current vector NV magnetometer often needs a large amount of supporting equipment, preventing its applications in a compact circumstance. Here, we develop a hardware-level protocol to realize a multi-axis NV magnetometer using only a single channel of microwave generation and signal detection resources. This mechanism is to monitor each resonance serialized in a sequence and measure the electron-spin frequency shifts concurrently in real time. The functionality is realized by a home-made control system with an on-chip direct digital synthesis generator and signal processor. We finally achieve a vector sensitivity of around 14 nT/Hz on four different axes at the same time. We also analyze the phase delay of the sensing signal between different axes induced by the protocol. This protocol is compatible with other schemes to further improve the performance, such as hyperfine driving, balanced detection, and high-efficiency photon collection methods.
Collapse
Affiliation(s)
- Yunpeng Zhai
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Luheng Cheng
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yumeng Song
- College of Metrology Measurement and Instrumentation, China Jiliang University, Hangzhou 310018, China
| | - Jiajun Li
- College of Metrology Measurement and Instrumentation, China Jiliang University, Hangzhou 310018, China
| | - Zhiyang Yu
- College of Agriculture and Biotechnology, Institute of Nuclear-Agricultural Science Accelerator Center of Zhejiang University, Zhejiang University, Hangzhou 310027, China
| | - Yu Tian
- College of Metrology Measurement and Instrumentation, China Jiliang University, Hangzhou 310018, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Zhang Y, Sigaeva A, Fan S, Norouzi N, Zheng X, Heijink IH, Slebos DJ, Pouwels SD, Schirhagl R. Dynamics for High-Sensitivity Detection of Free Radicals in Primary Bronchial Epithelial Cells upon Stimulation with Cigarette Smoke Extract. NANO LETTERS 2024; 24:9650-9657. [PMID: 39012318 PMCID: PMC11311533 DOI: 10.1021/acs.nanolett.4c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is caused by chronic exposure to toxic particles and gases, such as cigarette smoke. Free radicals, which are produced during a stress response to toxic particles, play a crucial role in disease progression. Measuring these radicals is difficult since the complex mixture of chemicals within cigarette smoke interferes with radical detection. We used a new quantum sensing technique called relaxometry to measure free radicals with nanoscale resolution on cells from COPD patients and healthy controls exposed to cigarette smoke extract (CSE) or control medium. Epithelial cells from COPD patients display a higher free radical load than those from healthy donors and are more vulnerable to CSE. We show that epithelial cells of COPD patients are more susceptible to the damaging effects of cigarette smoke, leading to increased release of free radicals.
Collapse
Affiliation(s)
- Y. Zhang
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - A. Sigaeva
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - S. Fan
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - N. Norouzi
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - X. Zheng
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - I. H. Heijink
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - D. J. Slebos
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - S. D. Pouwels
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - R. Schirhagl
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
14
|
Masuyama Y, Shinei C, Ishii S, Abe H, Taniguchi T, Teraji T, Ohshima T. Columnar excitation fluorescence microscope for accurate evaluation of quantum properties of color centers in bulk materials. Sci Rep 2024; 14:18135. [PMID: 39103449 DOI: 10.1038/s41598-024-68610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Color centers in wide band-gap semiconductors, which have superior quantum properties even at room temperature and atmospheric pressure, have been actively applied to quantum sensing devices. Characterizing the quantum properties of the color centers in the semiconductor materials and ensuring that these properties are uniform over a wide area are key issues for developing quantum sensing devices based on color centers. In this article, we have developed an optics design protocol optimized for evaluating the quantum properties of color centers and have used this design approach to develop a new microscopy system called columnar excitation fluorescence microscope (CEFM). The essence of this system is to maximize the amount of fluorescence detection of polarized color centers, which is achieved by large-volume and uniform laser excitation along the sample thickness with sufficient laser power density. This laser excitation technique prevents undesirable transitions to undesirable charge states and undesirable light, such as unpolarized color center fluorescence, while significantly increasing the color center fluorescence. This feature enables fast measurements with a high signal-to-noise ratio, making it possible to evaluate the spatial distribution of quantum properties across an entire mm-size sample without using a darkroom, which is difficult with typical confocal microscope systems.
Collapse
Grants
- JPMXS0118067395 Ministry of Education, Culture, Sports, Science and Technology
- JPMXS0118068379 Ministry of Education, Culture, Sports, Science and Technology
- JPMXS0118067395 Ministry of Education, Culture, Sports, Science and Technology
- JPMXS0118067395 Ministry of Education, Culture, Sports, Science and Technology
- JPMXS0118068379 Ministry of Education, Culture, Sports, Science and Technology
- JPMXS0118068379 Ministry of Education, Culture, Sports, Science and Technology
- JPMXS0118067395 Ministry of Education, Culture, Sports, Science and Technology
- 20K14392 Japan Society for the Promotion of Science
- 20H02187 Japan Society for the Promotion of Science
- JPMJMS2062 Japan Science and Technology Agency
- JPMI00316 Ministry of Internal Affairs and Communications
Collapse
Affiliation(s)
- Yuta Masuyama
- National Institutes for Quantum Science and Technology, Takasaki, Gunma, 370-1292, Japan.
| | - Chikara Shinei
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shuya Ishii
- National Institutes for Quantum Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tokuyuki Teraji
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology, Takasaki, Gunma, 370-1292, Japan
| |
Collapse
|
15
|
Almutlaq J, Liu Y, Mir WJ, Sabatini RP, Englund D, Bakr OM, Sargent EH. Engineering colloidal semiconductor nanocrystals for quantum information processing. NATURE NANOTECHNOLOGY 2024; 19:1091-1100. [PMID: 38514820 DOI: 10.1038/s41565-024-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.
Collapse
Affiliation(s)
- Jawaher Almutlaq
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Wasim J Mir
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Puthirath Balan A, Kumar A, Reiser P, Vimal Vas J, Denneulin T, Lee KD, Saunderson TG, Tschudin M, Pellet-Mary C, Dutta D, Schrader C, Scholz T, Geuchies J, Fu S, Wang H, Bonanni A, Lotsch BV, Nowak U, Jakob G, Gayles J, Kovacs A, Dunin-Borkowski RE, Maletinsky P, Kläui M. Identifying the Origin of Thermal Modulation of Exchange Bias in MnPS 3/Fe 3GeTe 2 van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403685. [PMID: 38994679 DOI: 10.1002/adma.202403685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The exchange bias phenomenon, inherent in exchange-coupled ferromagnetic and antiferromagnetic systems, has intrigued researchers for decades. Van der Waals materials, with their layered structures, offer an ideal platform for exploring exchange bias. However, effectively manipulating exchange bias in van der Waals heterostructures remains challenging. This study investigates the origin of exchange bias in MnPS3/Fe3GeTe2 van der Waals heterostructures, demonstrating a method to modulate nearly 1000% variation in magnitude through simple thermal cycling. Despite the compensated interfacial spin configuration of MnPS3, a substantial 170 mT exchange bias is observed at 5 K, one of the largest observed in van der Waals heterostructures. This significant exchange bias is linked to anomalous weak ferromagnetic ordering in MnPS3 below 40 K. The tunability of exchange bias during thermal cycling is attributed to the amorphization and changes in the van der Waals gap during field cooling. The findings highlight a robust and adjustable exchange bias in van der Waals heterostructures, presenting a straightforward method to enhance other interface-related spintronic phenomena for practical applications. Detailed interface analysis reveals atom migration between layers, forming amorphous regions on either side of the van der Waals gap, emphasizing the importance of precise interface characterization in these heterostructures.
Collapse
Affiliation(s)
- Aravind Puthirath Balan
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128, Mainz, Germany
| | - Aditya Kumar
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128, Mainz, Germany
| | - Patrick Reiser
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| | - Joseph Vimal Vas
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Thibaud Denneulin
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Khoa Dang Lee
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Tom G Saunderson
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128, Mainz, Germany
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Märta Tschudin
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| | - Clement Pellet-Mary
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| | - Debarghya Dutta
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| | - Carolin Schrader
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| | - Tanja Scholz
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Jaco Geuchies
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128, Mainz, Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128, Mainz, Germany
| | - Hai Wang
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128, Mainz, Germany
| | - Alberta Bonanni
- Institute of Semiconductor and Solid-State Physics, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Ulrich Nowak
- Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464, Konstanz, Germany
| | - Gerhard Jakob
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128, Mainz, Germany
| | - Jacob Gayles
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Andras Kovacs
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Patrick Maletinsky
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128, Mainz, Germany
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| |
Collapse
|
17
|
Tschudin MA, Broadway DA, Siegwolf P, Schrader C, Telford EJ, Gross B, Cox J, Dubois AEE, Chica DG, Rama-Eiroa R, J G Santos E, Poggio M, Ziebel ME, Dean CR, Roy X, Maletinsky P. Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nat Commun 2024; 15:6005. [PMID: 39019853 PMCID: PMC11255258 DOI: 10.1038/s41467-024-49717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
Since their first observation in 2017, atomically thin van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention. However, their low ordering temperatures, Tc, sensitivity to atmospheric conditions and difficulties in preparing clean large-area samples still present major limitations to further progress, especially amongst van der Waals magnetic semiconductors. The remarkably stable, high-Tc vdW magnet CrSBr has the potential to overcome these key shortcomings, but its nanoscale properties and rich magnetic phase diagram remain poorly understood. Here we use single spin magnetometry to quantitatively characterise saturation magnetization, magnetic anisotropy constants, and magnetic phase transitions in few-layer CrSBr by direct magnetic imaging. We show pristine magnetic phases, devoid of defects on micron length-scales, and demonstrate remarkable air-stability down the monolayer limit. We furthermore address the spin-flip transition in bilayer CrSBr by imaging the phase-coexistence of regions of antiferromagnetically (AFM) ordered and fully aligned spins. Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realization of novel nanomagnetic devices based on this highly promising vdW magnet.
Collapse
Affiliation(s)
| | | | | | | | - Evan J Telford
- Department of Physics, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Boris Gross
- Department of Physics, University of Basel, Basel, Switzerland
| | - Jordan Cox
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Adrien E E Dubois
- Department of Physics, University of Basel, Basel, Switzerland
- QNAMI AG, Hofackerstrasse 40 B, Muttenz, CH-4132, Switzerland
| | - Daniel G Chica
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Ricardo Rama-Eiroa
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Basque Country, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Elton J G Santos
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Basque Country, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Martino Poggio
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | | | - Cory R Dean
- Department of Physics, Columbia University, New York, NY, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, NY, USA
| | | |
Collapse
|
18
|
Li S, Sun Z, McLaughlin NJ, Sharmin A, Agarwal N, Huang M, Sung SH, Lu H, Yan S, Lei H, Hovden R, Wang H, Chen H, Zhao L, Du CR. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat Commun 2024; 15:5712. [PMID: 38977692 PMCID: PMC11231268 DOI: 10.1038/s41467-024-49942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Recent demonstrations of moiré magnetism, featuring exotic phases with noncollinear spin order in the twisted van der Waals (vdW) magnet chromium triiodide CrI3, have highlighted the potential of twist engineering of magnetic (vdW) materials. However, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moiré supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moiré supercell of small-angle twisted double trilayer CrI3. By measuring temperature-dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the Néel temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of moiré superlattices.
Collapse
Affiliation(s)
- Senlei Li
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zeliang Sun
- Department of Physics, the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nathan J McLaughlin
- Department of Physics, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Afsana Sharmin
- Department of Physics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Nishkarsh Agarwal
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mengqi Huang
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk Hyun Sung
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hanyi Lu
- Department of Physics, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Shaohua Yan
- Department of Physics, Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Renmin University of China, Beijing, 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Hechang Lei
- Department of Physics, Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Renmin University of China, Beijing, 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hailong Wang
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hua Chen
- Department of Physics, Colorado State University, Fort Collins, CO, 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, 80523, USA
| | - Liuyan Zhao
- Department of Physics, the University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Chunhui Rita Du
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Physics, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
19
|
Kumar H, Dasika S, Mangat M, Tallur S, Saha K. High dynamic-range and portable magnetometer using ensemble nitrogen-vacancy centers in diamond. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:075002. [PMID: 38995153 DOI: 10.1063/5.0205105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Nitrogen vacancy (NV) centers in diamonds have been explored for a wide range of sensing applications in the last decade due to their unique quantum properties. In this work, we report a compact and portable magnetometer with an ensemble of NV centers, which we call the Quantum MagPI (Quantum Magnetometer with Proportional Integral control). Our fully integrated compact sensor assembly and control electronics fit inside a 10 × 10 × 7 cm3 box and a 30 × 25 × 5 cm3 rack-mountable box, respectively. We achieve a bandwidth normalized sensitivity of ∼10 nT/Hz. Using closed-loop feedback for locking to the resonance frequency, we extend the linear dynamic range to 200 μT (20× improvement compared to the intrinsic dynamic range) without compromising the sensitivity. We report a detailed performance analysis of the magnetometer through measurements of noise spectra, Allan deviation, and tracking of nT-level magnetic fields in real-time. In addition, we demonstrate the utility of such a magnetometer by real-time tracking of the movement of an elevator car and door opening events by measuring the projection of the magnetic field along one of the NV-axes under ambient temperature and humidity conditions.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Shishir Dasika
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Maheshwar Mangat
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Siddharth Tallur
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Center of Excellence Semiconductor Technologies (SemiX), Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Kasturi Saha
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Center of Excellence Semiconductor Technologies (SemiX), Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Center of Excellence in Quantum Information, Computing Science and Technology, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
20
|
Dolgirev PE, Esterlis I, Zibrov AA, Lukin MD, Giamarchi T, Demler E. Local Noise Spectroscopy of Wigner Crystals in Two-Dimensional Materials. PHYSICAL REVIEW LETTERS 2024; 132:246504. [PMID: 38949333 DOI: 10.1103/physrevlett.132.246504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/10/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
We propose local electromagnetic noise spectroscopy as a versatile and noninvasive tool to study Wigner crystal phases of strongly interacting two-dimensional electronic systems. In-plane imaging of the local noise is predicted to enable single-site resolution of the electron crystal when the sample-probe distance is less than the interelectron separation. At larger sample-probe distances, noise spectroscopy encodes information about the low-energy Wigner crystal phonons, including the dispersion of the transverse shear mode, the pinning resonance due to disorder, and optical modes emerging, for instance, in bilayer crystals. We discuss the potential utility of local noise probes in analyzing the rich set of phenomena expected to occur in the vicinity of the melting transition.
Collapse
|
21
|
Flebus B, Grundler D, Rana B, Otani Y, Barsukov I, Barman A, Gubbiotti G, Landeros P, Akerman J, Ebels U, Pirro P, Demidov VE, Schultheiss K, Csaba G, Wang Q, Ciubotaru F, Nikonov DE, Che P, Hertel R, Ono T, Afanasiev D, Mentink J, Rasing T, Hillebrands B, Kusminskiy SV, Zhang W, Du CR, Finco A, van der Sar T, Luo YK, Shiota Y, Sklenar J, Yu T, Rao J. The 2024 magnonics roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:363501. [PMID: 38565125 DOI: 10.1088/1361-648x/ad399c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.
Collapse
Affiliation(s)
- Benedetta Flebus
- Department of Physics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States of America
| | - Dirk Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Institute of Electrical and Micro Engineering (IEM), EPFL, Lausanne 1015, Switzerland
| | - Bivas Rana
- Institute of Spintronics and Quantum Information (ISQI), Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - YoshiChika Otani
- Center for Emergent Matter Science, RIKEN, Wako, Japan
- Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa, Japan
| | - Igor Barsukov
- Department of Physics and Astronomy, University of California, Riverside, United States of America
| | - Anjan Barman
- S N Bose National Centre for Basic Sciences, Salt Lake, Sector III, Kolkata, India
| | | | - Pedro Landeros
- Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Johan Akerman
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ursula Ebels
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble-INP, SPINTEC, Grenoble 38000, France
| | - Philipp Pirro
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | | | | | - Gyorgy Csaba
- Pázmány Péter Catholic University, Budapest, Hungary
| | - Qi Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | - Dmitri E Nikonov
- Components Research, Intel Corp., Hillsboro, OR 97124, United States of America
| | - Ping Che
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau 91767, France
| | - Riccardo Hertel
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, Strasbourg 67000, France
| | - Teruo Ono
- Institute for Chemical Research, Kyoto University, Center for Spintronics Research Network, Kyoto University, Uji, Japan
| | - Dmytro Afanasiev
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Johan Mentink
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Theo Rasing
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Burkard Hillebrands
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Silvia Viola Kusminskiy
- RWTH Aachen University, Aachen and Max Planck Institute for the Physics of Light, Erlangen, Germany
| | - Wei Zhang
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Chunhui Rita Du
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Aurore Finco
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Toeno van der Sar
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands
| | - Yunqiu Kelly Luo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, United States of America
- Kavli Institute at Cornell, Ithaca, NY 14853, United States of America
| | - Yoichi Shiota
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Joseph Sklenar
- Wayne State University, Detroit, MI, United States of America
| | - Tao Yu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jinwei Rao
- ShanghaiTech University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Arnold C, Temgoua S, Barjon J. Impurity characterization in diamond for quantum and electronic applications: advances with time-resolved cathodoluminescence. NANOTECHNOLOGY 2024; 35:355705. [PMID: 38781947 DOI: 10.1088/1361-6528/ad4f94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The ultimate purity of synthetic diamond crystals is currently limited by traces of boron and nitrogen. Here we study diamond crystals grown at high-pressure high-temperature, which are made of 3D growth sectors with variable residual impurity contents. The boron concentration is found in the 0.5-6.4 ppb range thanks to continuous cathodoluminescence analysis. Time-resolved cathodoluminescence experiments complete the impurity analysis with measurements of free exciton lifetimes. From them, we deduced an estimate of the nitrogen concentration at the ppb level, from 0.6 to 30 ppb depending on the growth sectors. We identified n-type, p-type and highly compensated regions, which illustrates the potential of cathodoluminescence as a local characterization tool for qualifying diamond for electronic and quantum applications.
Collapse
Affiliation(s)
- C Arnold
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, 78000 Versailles, France
| | - S Temgoua
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, 78000 Versailles, France
| | - J Barjon
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, 78000 Versailles, France
| |
Collapse
|
23
|
Borràs VJ, Carpenter R, Žaper L, Rao S, Couet S, Munsch M, Maletinsky P, Rickhaus P. A quantum sensing metrology for magnetic memories. NPJ SPINTRONICS 2024; 2:14. [PMID: 38883426 PMCID: PMC11177792 DOI: 10.1038/s44306-024-00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/26/2024] [Indexed: 06/18/2024]
Abstract
Magnetic random access memory (MRAM) is a leading emergent memory technology that is poised to replace current non-volatile memory technologies such as eFlash. However, controlling and improving distributions of device properties becomes a key enabler of new applications at this stage of technology development. Here, we introduce a non-contact metrology technique deploying scanning NV magnetometry (SNVM) to investigate MRAM performance at the individual bit level. We demonstrate magnetic reversal characterization in individual, <60 nm-sized bits, to extract key magnetic properties, thermal stability, and switching statistics, and thereby gauge bit-to-bit uniformity. We showcase the performance of our method by benchmarking two distinct bit etching processes immediately after pattern formation. In contrast to ensemble averaging methods such as perpendicular magneto-optical Kerr effect, we show that it is possible to identify out of distribution (tail-bits) bits that seem associated to the edges of the array, enabling failure analysis of tail bits. Our findings highlight the potential of nanoscale quantum sensing of MRAM devices for early-stage screening in the processing line, paving the way for future incorporation of this nanoscale characterization tool in the semiconductor industry.
Collapse
Affiliation(s)
| | | | - Liza Žaper
- Qnami AG, Muttenz, Switzerland
- Department of Physics, University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Kollarics S, Márkus BG, Kucsera R, Thiering G, Gali Á, Németh G, Kamarás K, Forró L, Simon F. Terahertz emission from diamond nitrogen-vacancy centers. SCIENCE ADVANCES 2024; 10:eadn0616. [PMID: 38809991 PMCID: PMC11135399 DOI: 10.1126/sciadv.adn0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy centers in a diamond single crystal. Population inversion is achieved through the Zeeman splitting of the S = 1 state in 15 tesla, resulting in a splitting of 0.42 terahertz, where the middle Sz = 0 sublevel is selectively pumped by visible light. To detect the terahertz radiation, we use a phase-sensitive terahertz setup, optimized for electron spin resonance (ESR) measurements. We determine the spin-lattice relaxation time up to 15 tesla using the light-induced ESR measurement, which shows the dominance of phonon-mediated relaxation and the high efficacy of the population inversion. The terahertz radiation is tunable by the magnetic field, thus these findings may lead to the next generation of tunable coherent terahertz sources.
Collapse
Affiliation(s)
- Sándor Kollarics
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp.3, H-1111 Budapest, Hungary
- ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, PO. Box 49, H-1525 Budapest, Hungary
| | - Bence Gábor Márkus
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, PO. Box 49, H-1525 Budapest, Hungary
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Robin Kucsera
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp.3, H-1111 Budapest, Hungary
- ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gergő Thiering
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, PO. Box 49, H-1525 Budapest, Hungary
| | - Ádám Gali
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, PO. Box 49, H-1525 Budapest, Hungary
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-WFK “Lendület” Momentum Semiconductor Nanostructures Research Group, PO. Box 49, H-1525 Budapest, Hungary
| | - Gergely Németh
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, PO. Box 49, H-1525 Budapest, Hungary
| | - Katalin Kamarás
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, PO. Box 49, H-1525 Budapest, Hungary
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| | - László Forró
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Ferenc Simon
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp.3, H-1111 Budapest, Hungary
- ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, PO. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
25
|
Saavedra E, Tejo F, Vidal-Silva N, Escrig J. Symmetry Breaking-Induced Resonance Dynamics in Bloch Point Nanospheres: Unveiling Magnetic Volume Effects and Geometric Parameters for Advanced Applications in Magnetic Sensing and Spintronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27605-27613. [PMID: 38754391 DOI: 10.1021/acsami.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study explores the impact of symmetry breaking on the ferromagnetic resonance of Bloch point (BP) nanospheres. Through standard Fourier analysis, we unveil two distinct oscillation mode groups characterized by low and high frequencies, respectively. Our findings emphasize the pivotal role of magnetic volume in shaping resonance amplitudes, providing new insights into the intricate dynamics of BP states. The investigation of geometric parameters reveals a quasi-monotonic decrease in resonance frequencies as a function of the asymmetry degree attributed to symmetry-breaking induced by geometric modifications. Spatial distribution analysis showcases unique resonance frequencies for the upper and lower BP hemispheres, highlighting the nuanced impact of the geometry on mode excitation. As the radius increases, additional modes emerge, demonstrating a compelling relationship between the magnetic volume and frequency. Phase analysis unveils coherent oscillations within each BP hemisphere, offering valuable insights into the rotational directions of the excitation poles. Beyond fundamental understanding, our study opens avenues for innovative applications, suggesting the potential use of nanospheres in advanced magnetic sensing, data storage, and nanoscale spintronic devices.
Collapse
Affiliation(s)
- Eduardo Saavedra
- Departamento de Física, Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Felipe Tejo
- Escuela de Ingenieria, Universidad Central de Chile, Santiago 8330601, Chile
| | - Nicolas Vidal-Silva
- Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco 4811186, Chile
| | - Juan Escrig
- Departamento de Física, Universidad de Santiago de Chile, Santiago 9170124, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| |
Collapse
|
26
|
Magaletti S, Mayer L, Le XP, Debuisschert T. Magnetic sensitivity enhancement via polarimetric excitation and detection of an ensemble of NV centers. Sci Rep 2024; 14:11793. [PMID: 38782955 PMCID: PMC11116463 DOI: 10.1038/s41598-024-60199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
The negatively charged nitrogen-vacancy center (NV) presents remarkable spin-dependent optical properties that make it an interesting tool for magnetic field sensing. In this paper we exploit the polarization properties of the NV center absorption and emission processes to improve the magnetic sensitivity of an ensemble of NV centers. By simply equipping the experimental set-up of a half-wave plate in the excitation path and a polarizer in the detection path we demonstrate an improvement larger than a factor of two on the NV center magnetic sensitivity.
Collapse
Affiliation(s)
| | - Ludovic Mayer
- Thales Research and Technology, 91767, Palaiseau Cedex, France
| | - Xuan Phuc Le
- Thales Research and Technology, 91767, Palaiseau Cedex, France
| | | |
Collapse
|
27
|
Stiegekötter D, Pogorzelski J, Horsthemke L, Hoffmann F, Gregor M, Glösekötter P. Microcontroller-Optimized Measurement Electronics for Coherent Control Applications of NV Centers. SENSORS (BASEL, SWITZERLAND) 2024; 24:3138. [PMID: 38793993 PMCID: PMC11124872 DOI: 10.3390/s24103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Long coherence times at room temperature make the NV center a promising candidate for quantum sensors and quantum computers. The necessary coherent control of the electron spin triplet in the ground state requires microwave π pulses in the nanosecond range, obtained from the Rabi oscillation of the mS spin states of the magnetic resonances of the NV centers. Laboratory equipment has a high temporal resolution for these measurements but is expensive and, therefore, uninteresting for fields such as education. In this work, we present measurement electronics for NV centers that are optimized for microcontrollers. It is shown that the Rabi frequency is linear to the output of the digital-to-analog converter (DAC) and is used to adapt the time length π of the electron spin flip, to the limited pulse width resolution of the microcontroller. This was achieved by breaking down the most relevant functions of conventional laboratory devices and replacing them with commercially available integrated components. The result is a cost-effective handheld setup for coherent control applications of NV centers.
Collapse
Affiliation(s)
- Dennis Stiegekötter
- Department of Electrical Engineering and Computer Science, FH Münster—University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany (L.H.)
| | - Jens Pogorzelski
- Department of Electrical Engineering and Computer Science, FH Münster—University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany (L.H.)
| | - Ludwig Horsthemke
- Department of Electrical Engineering and Computer Science, FH Münster—University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany (L.H.)
| | - Frederik Hoffmann
- Department of Electrical Engineering and Computer Science, FH Münster—University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany (L.H.)
| | - Markus Gregor
- Department of Engineering Physics, FH Münster—University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| | - Peter Glösekötter
- Department of Electrical Engineering and Computer Science, FH Münster—University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany (L.H.)
| |
Collapse
|
28
|
Wang C, Wan S, Wang Y, Shi F, Gong M, Zeng H. Imaging the Magnetic Anisotropy in Ultrathin Fe 4GeTe 2 with a Nitrogen-Vacancy Magnetometer. NANO LETTERS 2024; 24:5754-5760. [PMID: 38708987 DOI: 10.1021/acs.nanolett.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Two-dimensional (2D) FenGeTe2, with n = 3, 4, and 5, has been realized in experiments, showing strong magnetic anisotropy with enhanced critical temperature (Tc). The understanding of its magnetic anisotropy is crucial for the exploration of more stable 2D magnets and its spintronic applications. Here, we report a quantitative reconstruction of the magnetization magnitude and its direction in ultrathin Fe4GeTe2 using nitrogen vacancy centers. Through imaging stray magnetic fields, we identified the spin-flop transition at approximately 80 K, resulting in a change of the easy axis from the out-of-plane direction to the in-plane direction. Moreover, by analyzing the thermally activated escape behavior of the magnetization near Tc in terms of the Ginzburg-Landau model, we observed the in-plane magnetic anisotropy effect and the formation capability of magnetic domains at ∼0.4 μm2 μT-1. Our findings contribute to the quantitative understanding of the magnetic anisotropy effect in a vast range of 2D van der Waals magnets.
Collapse
Affiliation(s)
- Chen Wang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, People's Republic of China
| | - Siyuan Wan
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ya Wang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, People's Republic of China
| | - Fazhan Shi
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, People's Republic of China
| | - Ming Gong
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, People's Republic of China
| | - Hualing Zeng
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, People's Republic of China
| |
Collapse
|
29
|
Zhou J, Lu H, Chen D, Huang M, Yan GQ, Al-matouq F, Chang J, Djugba D, Jiang Z, Wang H, Du CR. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. SCIENCE ADVANCES 2024; 10:eadk8495. [PMID: 38691598 PMCID: PMC11062567 DOI: 10.1126/sciadv.adk8495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Optically active spin defects in wide bandgap semiconductors serve as a local sensor of multiple degrees of freedom in a variety of "hard" and "soft" condensed matter systems. Taking advantage of the recent progress on quantum sensing using van der Waals (vdW) quantum materials, here we report direct measurements of spin waves excited in magnetic insulator Y3Fe5O12 (YIG) by boron vacancy [Formula: see text] spin defects contained in few-layer-thick hexagonal boron nitride nanoflakes. We show that the ferromagnetic resonance and parametric spin excitations can be effectively detected by [Formula: see text] spin defects under various experimental conditions through optically detected magnetic resonance measurements. The off-resonant dipole interaction between YIG magnons and [Formula: see text] spin defects is mediated by multi-magnon scattering processes, which may find relevant applications in a range of emerging quantum sensing, computing, and metrology technologies. Our results also highlight the opportunities offered by quantum spin defects in layered two-dimensional vdW materials for investigating local spin dynamic behaviors in magnetic solid-state matters.
Collapse
Affiliation(s)
- Jingcheng Zhou
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hanyi Lu
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Di Chen
- Department of Physics, University of Houston, Houston, TX 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Mengqi Huang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gerald Q. Yan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Faris Al-matouq
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jiu Chang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Dziga Djugba
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zhigang Jiang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hailong Wang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chunhui Rita Du
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Shi Z, Jin H, Zhang H, Li Z, Wen H, Guo H, Ma Z, Tang J, Liu J. Measurements of Spatial Angles Using Diamond Nitrogen-Vacancy Center Optical Detection Magnetic Resonance. SENSORS (BASEL, SWITZERLAND) 2024; 24:2613. [PMID: 38676230 PMCID: PMC11054285 DOI: 10.3390/s24082613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
This article introduces a spatial angle measuring device based on ensemble diamond nitrogen-vacancy (NV) center optical detection magnetic resonance (ODMR). This device realizes solid-state all-optical wide-field vector magnetic field measurements for solving the angles of magnetic components in space. The system uses diamond NV center magnetic microscope imaging to obtain magnetic vector distribution and calculates the spatial angles of magnetic components based on the magnetic vector distribution. Utilizing magnetism for angle measuring enables non-contact measuring, reduces the impact on the object being measured, and ensures measurement precision and accuracy. Finally, the accuracy of the system is verified by comparing the measurement results with the set values of the angle displacement platform. The results show that the measurement error of the yaw angle of the system is 1°, and the pitch angle and roll angle are 1.5°. The experimental results are in good agreement with the expected results.
Collapse
Affiliation(s)
- Zhenrong Shi
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China; (Z.S.); (H.G.)
| | - Haodong Jin
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China; (H.J.)
| | - Hao Zhang
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China; (H.J.)
| | - Zhonghao Li
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China; (Z.S.); (H.G.)
| | - Huanfei Wen
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China; (Z.S.); (H.G.)
| | - Hao Guo
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China; (Z.S.); (H.G.)
| | - Zongmin Ma
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China; (H.J.)
| | - Jun Tang
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China; (H.J.)
| | - Jun Liu
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China; (Z.S.); (H.G.)
| |
Collapse
|
31
|
Kumar J, Yudilevich D, Smooha A, Zohar I, Pariari AK, Stöhr R, Denisenko A, Hücker M, Finkler A. Room Temperature Relaxometry of Single Nitrogen Vacancy Centers in Proximity to α-RuCl 3 Nanoflakes. NANO LETTERS 2024; 24. [PMID: 38588382 PMCID: PMC11057446 DOI: 10.1021/acs.nanolett.3c05090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Nitrogen vacancy (NV) center-based magnetometry has been proven to be a versatile sensor for various classes of magnetic materials in broad temperature and frequency ranges. Here, we use the longitudinal relaxation time T1 of single NV centers to investigate the spin dynamics of nanometer-thin flakes of α-RuCl3 at room temperature. We observe a significant reduction in the T1 in the presence of α-RuCl3 in the proximity of NVs, which we attribute to paramagnetic spin noise confined in the 2D hexagonal planes. Furthermore, the T1 time exhibits a monotonic increase with an applied magnetic field. We associate this trend with the alteration of the spin and charge noise in α-RuCl3 under an external magnetic field. These findings suggest that the influence of the spin dynamics of α-RuCl3 on the T1 of the NV center can be used to gain information about the material itself and the technique to be used on other 2D materials.
Collapse
Affiliation(s)
- Jitender Kumar
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| | - Dan Yudilevich
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| | - Ariel Smooha
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| | - Inbar Zohar
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| | - Arnab K. Pariari
- Department
of Condensed Matter Physics, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Rainer Stöhr
- 3rd
Institute of Physics, IQST and ZAQuant, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andrej Denisenko
- 3rd
Institute of Physics, IQST and ZAQuant, University of Stuttgart, 70569 Stuttgart, Germany
| | - Markus Hücker
- Department
of Condensed Matter Physics, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Amit Finkler
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
32
|
Luo J, Geng Y, Rana F, Fuchs GD. Room temperature optically detected magnetic resonance of single spins in GaN. NATURE MATERIALS 2024; 23:512-518. [PMID: 38347119 DOI: 10.1038/s41563-024-01803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024]
Abstract
High-contrast optically detected magnetic resonance is a valuable property for reading out the spin of isolated defect colour centres at room temperature. Spin-active single defect centres have been studied in wide bandgap materials including diamond, SiC and hexagonal boron nitride, each with associated advantages for applications. We report the discovery of optically detected magnetic resonance in two distinct species of bright, isolated defect centres hosted in GaN. In one group, we find negative optically detected magnetic resonance of a few percent associated with a metastable electronic state, whereas in the other, we find positive optically detected magnetic resonance of up to 30% associated with the ground and optically excited electronic states. We examine the spin symmetry axis of each defect species and establish coherent control over a single defect's ground-state spin. Given the maturity of the semiconductor host, these results are promising for scalable and integrated quantum sensing applications.
Collapse
Affiliation(s)
- Jialun Luo
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Yifei Geng
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Farhan Rana
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Gregory D Fuchs
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
33
|
Bok I, Ashtiani A, Gokhale Y, Phillips J, Zhu T, Hai A. Nanofabricated high turn-density spiral coils for on-chip electromagneto-optical conversion. MICROSYSTEMS & NANOENGINEERING 2024; 10:44. [PMID: 38529010 PMCID: PMC10961313 DOI: 10.1038/s41378-024-00674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 03/27/2024]
Abstract
Circuit-integrated electromagnets are fundamental building blocks for on-chip signal transduction, modulation, and tunability, with specific applications in environmental and biomedical micromagnetometry. A primary challenge for improving performance is pushing quality limitations while minimizing size and fabrication complexity and retaining spatial capabilities. Recent efforts have exploited highly involved three-dimensional synthesis, advanced insulation, and exotic material compositions. Here, we present a rapid nanofabrication process that employs electron beam dose control for high-turn-density diamond-embedded flat spiral coils; these coils achieve efficient on-chip electromagnetic-to-optical signal conversion. Our fabrication process relies on fast 12.3 s direct writing on standard poly(methyl methacrylate) as a basis for the metal lift-off process. Prototypes with 70 micrometer overall diameters and 49-470 nm interturn spacings with corresponding inductances of 12.3-12.8 nH are developed. We utilize optical micromagnetometry to demonstrate that magnetic field generation at the center of the structure effectively correlates with finite element modeling predictions. Further designs based on our process can be integrated with photolithography to broadly enable optical magnetic sensing and spin-based computation.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI USA
- Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin–Madison, Madison, WI USA
| | - Alireza Ashtiani
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI USA
| | - Yash Gokhale
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI USA
| | - Jack Phillips
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI USA
| | - Tianxiang Zhu
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI USA
- Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin–Madison, Madison, WI USA
| |
Collapse
|
34
|
Kumar R, Mahajan S, Donaldson F, Dhomkar S, Lancaster HJ, Kalha C, Riaz AA, Zhu Y, Howard CA, Regoutz A, Morton JJL. Stability of Near-Surface Nitrogen Vacancy Centers Using Dielectric Surface Passivation. ACS PHOTONICS 2024; 11:1244-1251. [PMID: 38523744 PMCID: PMC10958592 DOI: 10.1021/acsphotonics.3c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 03/26/2024]
Abstract
We study the photophysical stability of ensemble near-surface nitrogen vacancy (NV) centers in diamond under vacuum and air. The optically detected magnetic resonance contrast of the NV centers was measured following exposure to laser illumination, showing opposing trends in air compared to vacuum (increasing by up to 9% and dropping by up to 25%, respectively). Characterization using X-ray photoelectron spectroscopy (XPS) suggests a surface reconstruction: In air, atmospheric oxygen adsorption on a surface leads to an increase in NV- fraction, whereas in vacuum, net oxygen desorption increases the NV0 fraction. NV charge state switching is confirmed by photoluminescence spectroscopy. Deposition of ∼2 nm alumina (Al2O3) over the diamond surface was shown to stabilize the NV charge state under illumination in either environment, attributed to a more stable surface electronegativity. The use of an alumina coating on diamond is therefore a promising approach to improve the resilience of NV sensors.
Collapse
Affiliation(s)
- Ravi Kumar
- London
Centre for Nanotechnology, UCL, London WC1H 0AH, U.K.
| | - Saksham Mahajan
- Department
of Electronic & Electrical Engineering, UCL, London WC1E 7JE, U.K.
| | - Felix Donaldson
- London
Centre for Nanotechnology, UCL, London WC1H 0AH, U.K.
| | - Siddharth Dhomkar
- London
Centre for Nanotechnology, UCL, London WC1H 0AH, U.K.
- Department
of Physics, IIT Madras, Chennai 600036, India
- Center for
Quantum Information, Communication and Computing, IIT Madras, Chennai 600036, India
| | | | - Curran Kalha
- Department
of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Aysha A. Riaz
- Department
of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Yujiang Zhu
- Department
of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, U.K.
| | | | - Anna Regoutz
- Department
of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - John J. L. Morton
- London
Centre for Nanotechnology, UCL, London WC1H 0AH, U.K.
- Department
of Electronic & Electrical Engineering, UCL, London WC1E 7JE, U.K.
| |
Collapse
|
35
|
Žaper L, Rickhaus P, Wyss M, Gross B, Wagner K, Poggio M, Braakman F. Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets. ACS APPLIED NANO MATERIALS 2024; 7:3854-3860. [PMID: 38420184 PMCID: PMC10897878 DOI: 10.1021/acsanm.3c05470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/02/2024]
Abstract
Focused-electron-beam-induced deposition is a promising technique for patterning nanomagnets in a single step. We fabricate cobalt nanomagnets in such a process and characterize their content, saturation magnetization, and stray magnetic field profiles by using a combination of transmission electron microscopy and scanning nitrogen-vacancy (NV) magnetometry. We find agreement between the measured stray field profiles and saturation magnetization with micromagnetic simulations. We further characterize magnetic domains and grainy stray magnetic fields in the nanomagnets and their halo side-deposits. This work may aid in the evaluation of Co nanomagnets produced through focused electron-beam-induced deposition for applications in spin qubits, magnetic field sensing, and magnetic logic.
Collapse
Affiliation(s)
- Liza Žaper
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
- Qnami
AG, 4132 Muttenz, Switzerland
| | | | - Marcus Wyss
- Swiss
Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Boris Gross
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
| | - Kai Wagner
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
| | - Martino Poggio
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
- Swiss
Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Floris Braakman
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
- Swiss
Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
36
|
Fu M, Xu S, Zhang S, Ruta FL, Pack J, Mayer RA, Chen X, Moore SL, Rizzo DJ, Jessen BS, Cothrine M, Mandrus DG, Watanabe K, Taniguchi T, Dean CR, Pasupathy AN, Bisogni V, Schuck PJ, Millis AJ, Liu M, Basov DN. Accelerated Nano-Optical Imaging through Sparse Sampling. NANO LETTERS 2024; 24:2149-2156. [PMID: 38329715 DOI: 10.1021/acs.nanolett.3c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.
Collapse
Affiliation(s)
- Matthew Fu
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Suheng Xu
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Shuai Zhang
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Francesco L Ruta
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Jordan Pack
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Rafael A Mayer
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Xinzhong Chen
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Samuel L Moore
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Daniel J Rizzo
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Bjarke S Jessen
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Matthew Cothrine
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - David G Mandrus
- Material Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Valentina Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
37
|
Tan AKC, Jani H, Högen M, Stefan L, Castelnovo C, Braund D, Geim A, Mechnich A, Feuer MSG, Knowles HS, Ariando A, Radaelli PG, Atatüre M. Revealing emergent magnetic charge in an antiferromagnet with diamond quantum magnetometry. NATURE MATERIALS 2024; 23:205-211. [PMID: 38052937 PMCID: PMC10837077 DOI: 10.1038/s41563-023-01737-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023]
Abstract
Whirling topological textures play a key role in exotic phases of magnetic materials and are promising for logic and memory applications. In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to their ferromagnetic counterparts, but they are also difficult to study due to their vanishing net magnetic moment. One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry. Here we show that an archetypal antiferromagnet-haematite-hosts a rich tapestry of monopolar, dipolar and quadrupolar emergent magnetic charge distributions. The direct read-out of the previously inaccessible vorticity of an antiferromagnetic spin texture provides the crucial connection to its magnetic charge through a duality relation. Our work defines a paradigmatic class of magnetic systems to explore two-dimensional monopolar physics, and highlights the transformative role that diamond quantum magnetometry could play in exploring emergent phenomena in quantum materials.
Collapse
Affiliation(s)
- Anthony K C Tan
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Hariom Jani
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Michael Högen
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Lucio Stefan
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Daniel Braund
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Alexandra Geim
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Annika Mechnich
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | | | - Ariando Ariando
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Paolo G Radaelli
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Wang B, Shen Y, Ke D, Li Z, Wen HF, Guo H, Tang J, Li YJ, Ma Z, Liu J. Simultaneous detection of multi-channel signals in MHz bandwidth using nitrogen-vacancy centers in a diamond. OPTICS EXPRESS 2024; 32:3184-3193. [PMID: 38297545 DOI: 10.1364/oe.511283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024]
Abstract
In this paper, we propose a method for simultaneously recovering multiple radio wave signals based on nitrogen-vacancy (NV) centers in diamond combining optically detected magnetic resonance (ODMR) spectrum. A controlled magnetic field gradient applied to the laser excitation area on the surface of diamond widens the detectable ODMR bandwidth to 200 MHz. Three different frequency-modulated (FM) signals with distinct carrier frequencies falling within the resonance frequency range are received and demodulated in real-time. Subsequently, the FM signal reception capability of this system is further investigated by measuring baseband signal frequencies ranging from 0.1 Hz to 200 Hz and adjusting the carrier power within a dynamic range from -10 dBm to 30 dBm. This proposal, which accomplishes multi-channel demodulation using a compact and single device, has potential applications in fields such as wireless communication, radar and navigation.
Collapse
|
39
|
Xu F, Zhang S, Ma L, Hou Y, Li J, Denisenko A, Li Z, Spatz J, Wrachtrup J, Lei H, Cao Y, Wei Q, Chu Z. Quantum-enhanced diamond molecular tension microscopy for quantifying cellular forces. SCIENCE ADVANCES 2024; 10:eadi5300. [PMID: 38266085 PMCID: PMC10807811 DOI: 10.1126/sciadv.adi5300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The constant interplay and information exchange between cells and the microenvironment are essential to their survival and ability to execute biological functions. To date, a few leading technologies such as traction force microscopy, optical/magnetic tweezers, and molecular tension-based fluorescence microscopy are broadly used in measuring cellular forces. However, the considerable limitations, regarding the sensitivity and ambiguities in data interpretation, are hindering our thorough understanding of mechanobiology. Here, we propose an innovative approach, namely, quantum-enhanced diamond molecular tension microscopy (QDMTM), to precisely quantify the integrin-based cell adhesive forces. Specifically, we construct a force-sensing platform by conjugating the magnetic nanotags labeled, force-responsive polymer to the surface of a diamond membrane containing nitrogen-vacancy centers. Notably, the cellular forces will be converted into detectable magnetic variations in QDMTM. After careful validation, we achieved the quantitative cellular force mapping by correlating measurement with the established theoretical model. We anticipate our method can be routinely used in studies like cell-cell or cell-material interactions and mechanotransduction.
Collapse
Affiliation(s)
- Feng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shuxiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jie Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Andrej Denisenko
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joachim Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hai Lei
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
40
|
Smith JA, Zhang D, Balram KC. Robotic Vectorial Field Alignment for Spin-Based Quantum Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304449. [PMID: 37974523 PMCID: PMC10787065 DOI: 10.1002/advs.202304449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Developing practical quantum technologies will require the exquisite manipulation of fragile systems in a robust and repeatable way. As quantum technologies move toward real world applications, from biological sensing to communication in space, increasing experimental complexity introduces constraints that can be alleviated by the introduction of new technologies. Robotics has shown tremendous progress in realizing increasingly smart, autonomous, and highly dexterous machines. Here, a robotic arm equipped with a magnet is demonstrated to sensitize an NV center quantum magnetometer in challenging conditions unachievable with standard techniques. Vector magnetic fields are generated with 1° angular and 0.1 mT amplitude accuracy and determine the orientation of a single stochastically-aligned spin-based sensor in a constrained physical environment. This work opens up the prospect of integrating robotics across many quantum degrees of freedom in constrained settings, allowing for increased prototyping speed, control, and robustness in quantum technology applications.
Collapse
Affiliation(s)
- Joe A Smith
- Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1FD, UK
| | - Dandan Zhang
- Bristol Robotics Laboratory and Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TW, UK
| | - Krishna C Balram
- Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1FD, UK
| |
Collapse
|
41
|
Du Z, Gupta M, Xu F, Zhang K, Zhang J, Zhou Y, Liu Y, Wang Z, Wrachtrup J, Wong N, Li C, Chu Z. Widefield Diamond Quantum Sensing with Neuromorphic Vision Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304355. [PMID: 37939304 PMCID: PMC10787069 DOI: 10.1002/advs.202304355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Indexed: 11/10/2023]
Abstract
Despite increasing interest in developing ultrasensitive widefield diamond magnetometry for various applications, achieving high temporal resolution and sensitivity simultaneously remains a key challenge. This is largely due to the transfer and processing of massive amounts of data from the frame-based sensor to capture the widefield fluorescence intensity of spin defects in diamonds. In this study, a neuromorphic vision sensor to encode the changes of fluorescence intensity into spikes in the optically detected magnetic resonance (ODMR) measurements is adopted, closely resembling the operation of the human vision system, which leads to highly compressed data volume and reduced latency. It also results in a vast dynamic range, high temporal resolution, and exceptional signal-to-background ratio. After a thorough theoretical evaluation, the experiment with an off-the-shelf event camera demonstrated a 13× improvement in temporal resolution with comparable precision of detecting ODMR resonance frequencies compared with the state-of-the-art highly specialized frame-based approach. It is successfully deploy this technology in monitoring dynamically modulated laser heating of gold nanoparticles coated on a diamond surface, a recognizably difficult task using existing approaches. The current development provides new insights for high-precision and low-latency widefield quantum sensing, with possibilities for integration with emerging memory devices to realize more intelligent quantum sensors.
Collapse
Affiliation(s)
- Zhiyuan Du
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Madhav Gupta
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Jiahua Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Yiyao Liu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhenyu Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Ngai Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Can Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, 999077, P. R. China
| |
Collapse
|
42
|
Zhu T, Zeng J, Wen F, Wang H. Determining the Dependence of Single Nitrogen-Vacancy Center Light Extraction in Diamond Nanostructures on Emitter Positions with Finite-Difference Time-Domain Simulations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:99. [PMID: 38202554 PMCID: PMC10780712 DOI: 10.3390/nano14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
In this study, we obtained a diamond nanocone structure using the thermal annealing method, which was proposed in our previous work. Using finite-difference time-domain (FDTD) simulations, we demonstrate that the extraction efficiencies of nitrogen-vacancy (NV) center emitters in nanostructures are dependent on the geometries of the nanocone/nanopillar, emitter polarizations and axis depths. Our results show that nanocones and nanopillars have advantages in extraction from emitter dipoles with s- and p-polarizations, respectively. In our simulations, the best results of collection efficiency were achieved from the emitter in a nanocone with s-polarization (57.96%) and the emitter in a nanopillar with p-polarization (38.40%). Compared with the nanopillar, the photon extraction efficiency of the emitters in the nanocone is more sensitive to the depth and polarization angle. The coupling differences between emitters and the nanocone/nanopillar are explained by the evolution of photon propagation modes and the internal reflection effects in diamond nanostructures. Our results could have positive impacts on the design and fabrication of NV center-based micro- and nano-optics in the future.
Collapse
Affiliation(s)
- Tianfei Zhu
- Key Lab for Physical Electronics and Devices of the Ministry of Education, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (F.W.); (H.W.)
- Institute of Wide Bandgap Semiconductors, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jia Zeng
- Key Lab for Physical Electronics and Devices of the Ministry of Education, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (F.W.); (H.W.)
- Institute of Wide Bandgap Semiconductors, Xi’an Jiaotong University, Xi’an 710049, China
| | - Feng Wen
- Key Lab for Physical Electronics and Devices of the Ministry of Education, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (F.W.); (H.W.)
- Institute of Wide Bandgap Semiconductors, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hongxing Wang
- Key Lab for Physical Electronics and Devices of the Ministry of Education, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (F.W.); (H.W.)
- Institute of Wide Bandgap Semiconductors, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
43
|
McLaughlin N, Li S, Brock JA, Zhang S, Lu H, Huang M, Xiao Y, Zhou J, Tserkovnyak Y, Fullerton EE, Wang H, Du CR. Local Control of a Single Nitrogen-Vacancy Center by Nanoscale Engineered Magnetic Domain Wall Motion. ACS NANO 2023; 17:25689-25696. [PMID: 38050827 PMCID: PMC10753891 DOI: 10.1021/acsnano.3c10633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Effective control and readout of qubits form the technical foundation of next-generation, transformative quantum information sciences and technologies. The nitrogen-vacancy (NV) center, an intrinsic three-level spin system, is naturally relevant in this context due to its excellent quantum coherence, high fidelity of operations, and remarkable functionality over a broad range of experimental conditions. It is an active contender for the development and implementation of cutting-edge quantum technologies. Here, we report magnetic domain wall motion driven local control and measurements of the NV spin properties. By engineering the local magnetic field environment of an NV center via nanoscale reconfigurable domain wall motion, we show that NV photoluminescence, spin level energies, and coherence time can be reliably controlled and correlated to the magneto-transport response of a magnetic device. Our results highlight the electrically tunable dipole interaction between NV centers and nanoscale magnetic structures, providing an attractive platform to realize interactive information transfer between spin qubits and nonvolatile magnetic memory in hybrid quantum spintronic systems.
Collapse
Affiliation(s)
- Nathan
J. McLaughlin
- Department
of Physics, University of California, San
Diego, La Jolla, California 92093, United States
| | - Senlei Li
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeffrey A. Brock
- Center
for
Memory and Recording Research, University
of California, San Diego, La Jolla, California 92093-0401, United States
| | - Shu Zhang
- Max Planck
Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hanyi Lu
- Department
of Physics, University of California, San
Diego, La Jolla, California 92093, United States
| | - Mengqi Huang
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yuxuan Xiao
- Center
for
Memory and Recording Research, University
of California, San Diego, La Jolla, California 92093-0401, United States
| | - Jingcheng Zhou
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yaroslav Tserkovnyak
- Department
of Physics and Astronomy, University of
California, Los Angeles, California 90095, United States
| | - Eric E. Fullerton
- Center
for
Memory and Recording Research, University
of California, San Diego, La Jolla, California 92093-0401, United States
| | - Hailong Wang
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chunhui Rita Du
- Department
of Physics, University of California, San
Diego, La Jolla, California 92093, United States
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
44
|
Mathes N, Comas M, Bleul R, Everaert K, Hermle T, Wiekhorst F, Knittel P, Sperling RA, Vidal X. Nitrogen-vacancy center magnetic imaging of Fe 3O 4 nanoparticles inside the gastrointestinal tract of Drosophila melanogaster. NANOSCALE ADVANCES 2023; 6:247-255. [PMID: 38125606 PMCID: PMC10729879 DOI: 10.1039/d3na00684k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
Widefield magnetometry based on nitrogen-vacancy centers enables high spatial resolution imaging of magnetic field distributions without a need for spatial scanning. In this work, we show nitrogen-vacancy center magnetic imaging of Fe3O4 nanoparticles within the gastrointestinal tract of Drosophila melanogaster larvae. Vector magnetic field imaging based on optically detected magnetic resonance is carried out on dissected larvae intestine organs containing accumulations of externally loaded magnetic nanoparticles. The distribution of the magnetic nanoparticles within the tissue can be clearly deduced from the magnetic stray field measurements. Spatially resolved magnetic imaging requires the nitrogen-vacancy centers to be very close to the sample making the technique particularly interesting for thin tissue samples. This study is a proof of principle showing the capability of nitrogen-vacancy center magnetometry as a technique to detect magnetic nanoparticle distributions in Drosophila melanogaster larvae that can be extended to other biological systems.
Collapse
Affiliation(s)
- Niklas Mathes
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
| | - Maria Comas
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg Hugstetter Straße 55 79106 Freiburg Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Katrijn Everaert
- Physikalisch-Technische Bundesanstalt Abbestraße 2-12 Berlin Germany
- Department of Solid State Sciences, Ghent University Krijgslaan 281/S1 Ghent Belgium
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg Hugstetter Straße 55 79106 Freiburg Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt Abbestraße 2-12 Berlin Germany
| | - Peter Knittel
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
| | - Ralph A Sperling
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Xavier Vidal
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
- TECNALIA, Basque Research and Technology Alliance (BRTA) Derio 48160 Spain
| |
Collapse
|
45
|
Zuber JA, Li M, Grimau Puigibert M, Happacher J, Reiser P, Shields BJ, Maletinsky P. Shallow Silicon Vacancy Centers with Lifetime-Limited Optical Linewidths in Diamond Nanostructures. NANO LETTERS 2023; 23:10901-10907. [PMID: 37989272 PMCID: PMC10722541 DOI: 10.1021/acs.nanolett.3c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
The negatively charged silicon vacancy center (SiV-) in diamond is a promising, yet underexplored candidate for single-spin quantum sensing at sub-kelvin temperatures and tesla-range magnetic fields. A key ingredient for such applications is the ability to perform all-optical, coherent addressing of the electronic spin of near-surface SiV- centers. We present a robust and scalable approach for creating individual, ∼50 nm deep SiV- with lifetime-limited optical linewidths in diamond nanopillars through an easy-to-realize and persistent optical charge-stabilization scheme. The latter is based on single, prolonged 445 nm laser illumination that enables continuous photoluminescence excitation spectroscopy without the need for any further charge stabilization or repumping. Our results constitute a key step toward the use of near-surface, optically coherent SiV- for sensing under extreme conditions, and offer a powerful approach for stabilizing the charge-environment of diamond color centers for quantum technology applications.
Collapse
Affiliation(s)
- Josh A. Zuber
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
- Swiss
Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| | - Minghao Li
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
| | | | - Jodok Happacher
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
| | - Patrick Reiser
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
| | | | - Patrick Maletinsky
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
- Swiss
Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
46
|
Zhou H, Martin LS, Tyler M, Makarova O, Leitao N, Park H, Lukin MD. Robust Higher-Order Hamiltonian Engineering for Quantum Sensing with Strongly Interacting Systems. PHYSICAL REVIEW LETTERS 2023; 131:220803. [PMID: 38101374 DOI: 10.1103/physrevlett.131.220803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023]
Abstract
Dynamical decoupling techniques constitute an integral part of many quantum sensing platforms, often leading to orders-of-magnitude improvements in coherence time and sensitivity. Most ac sensing sequences involve a periodic echolike structure, in which the target signal is synchronized with the echo period. We show that for strongly interacting systems, this construction leads to a fundamental sensitivity limit associated with imperfect interaction decoupling. We present a simple physical picture demonstrating the origin of this limitation, and further formalize these considerations in terms of concise higher-order decoupling rules. We then show how these limitations can be surpassed by identifying a novel sequence building block, in which the signal period matches twice the echo period. Using these decoupling rules and the resulting sequence building block, we experimentally demonstrate significant improvements in dynamical decoupling timescales and magnetic field sensitivity, opening the door for new applications in quantum sensing and quantum many-body physics.
Collapse
Affiliation(s)
- Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leigh S Martin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Matthew Tyler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Oksana Makarova
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Nathaniel Leitao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
47
|
Li X, Wang Z, Lei Z, Ding W, Shi X, Yan J, Ku J. Magnetic characterization techniques and micromagnetic simulations of magnetic nanostructures: from zero to three dimensions. NANOSCALE 2023. [PMID: 37981862 DOI: 10.1039/d3nr04493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The investigation of the magnetic characteristics of magnetic nanostructures (MNs) in various dimensions is a crucial direction of research in nanomagnetism, with MNs belonging to various dimensions exhibiting magnetic properties related to their geometry. A better understanding of these magnetic properties is required for MN manipulation. The primary tools for researching MNs are magnetic characterisation techniques with great spatial resolution and spin sensitivity. Micromagnetic simulation is another technique that minimises experimental costs, while providing information on the magnetic structure and magnetic behaviour, and has enormous potential for predicting, validating, and extending the magnetic characterisation results. This review first looks at the progress of research into quantitatively characterising the magnetic properties of low-dimensional (including 0D, 1D, and 2D) and 3D MNs in two directions: magnetic characterisation techniques and micromagnetic simulations, with a particular emphasis on the potential for future applications of these techniques. Single magnetic characterization techniques, single micromagnetic simulations, or a mix of both are utilised in these research studies to investigate MNs in a variety of dimensions. How the magnetic characterisation techniques and micromagnetic simulations can be better applied to MNs in various dimensions is then outlined. This discussion has significant application potential for low-dimensional and 3D MNs.
Collapse
Affiliation(s)
- Xin Li
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
- Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou 350116, China
| | - Zhaolian Wang
- Shandong Huate Magnet Technology Co., Ltd, Weifang 261000, China
| | - Zhongyun Lei
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Wei Ding
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Xiao Shi
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Jujian Yan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Jiangang Ku
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
- Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou 350116, China
| |
Collapse
|
48
|
Borst M, Vree PH, Lowther A, Teepe A, Kurdi S, Bertelli I, Simon BG, Blanter YM, van der Sar T. Observation and control of hybrid spin-wave-Meissner-current transport modes. Science 2023; 382:430-434. [PMID: 37883534 DOI: 10.1126/science.adj7576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Superconductors are materials with zero electrical resistivity and the ability to expel magnetic fields, which is known as the Meissner effect. Their dissipationless diamagnetic response is central to magnetic levitation and circuits such as quantum interference devices. In this work, we used superconducting diamagnetism to shape the magnetic environment governing the transport of spin waves-collective spin excitations in magnets that are promising on-chip signal carriers-in a thin-film magnet. Using diamond-based magnetic imaging, we observed hybridized spin-wave-Meissner-current transport modes with strongly altered, temperature-tunable wavelengths and then demonstrated local control of spin-wave refraction using a focused laser. Our results demonstrate the versatility of superconductor-manipulated spin-wave transport and have potential applications in spin-wave gratings, filters, crystals, and cavities.
Collapse
Affiliation(s)
- M Borst
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - P H Vree
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - A Lowther
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - A Teepe
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - S Kurdi
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - I Bertelli
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - B G Simon
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Y M Blanter
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - T van der Sar
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| |
Collapse
|
49
|
Pillai A, Elanchezhian M, Virtanen T, Conti S, Ajoy A. Electron-to-nuclear spectral mapping via dynamic nuclear polarization. J Chem Phys 2023; 159:154201. [PMID: 37843056 DOI: 10.1063/5.0157954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
We report on a strategy to indirectly read out the spectrum of an electronic spin via polarization transfer to nuclear spins in its local environment. The nuclear spins are far more abundant and have longer lifetimes, allowing for repeated polarization accumulation in them. Subsequent nuclear interrogation can reveal information about the electronic spectral density of states. We experimentally demonstrate the method by reading out the ESR spectrum of nitrogen vacancy center electrons in diamond via readout of lattice 13C nuclei. Spin-lock control on the 13C nuclei yields a significantly enhanced signal-to-noise ratio for the nuclear readout. Spectrally mapped readout presents operational advantages in being background-free and immune to crystal orientation and optical scattering. We harness these advantages to demonstrate applications in underwater magnetometry. The physical basis for the "one-to-many" spectral map is itself intriguing. To uncover its origin, we develop a theoretical model that maps the system dynamics, involving traversal of a cascaded structure of Landau-Zener anti-crossings, to the operation of a tilted "Galton board." This work points to new opportunities for "ESR-via-NMR" in dilute electronic systems and in hybrid electron-nuclear quantum memories and sensors.
Collapse
Affiliation(s)
- Arjun Pillai
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Moniish Elanchezhian
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Teemu Virtanen
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Sophie Conti
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Ashok Ajoy
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
- CIFAR Azrieli Global Scholars Program, 661 University Ave, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
50
|
Chen G, Wu D, Xue Y, Ma W, He F, Du G, Zhou L. Diamond nitrogen-vacancy color-centered thermometer for integrated circuit application. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:104901. [PMID: 37782216 DOI: 10.1063/5.0146076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
With the advancement of the chip industry, accurate temperature measurement and thermal management have become crucial. Traditional infrared temperature imaging has limitations in terms of resolution and accuracy. ln recent years, quantum diamond nitrogen-vacancy centers have emerged as a promising option for temperature sensing, but separating temperature from magnetic field effects remains a challenge. This paper presents a numerical approach to decouple temperature and magnetic fields using an ensemble Hamiltonian in high-current density Integrated Circuit (IC) applications. The proposed method demonstrates a temperature sensitivity of 22.9 mK/Hz1/2 and the ability to perform scanning temperature imaging with a spatial resolution of 20 µm on a typical IC.
Collapse
Affiliation(s)
- Guobin Chen
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
- School of Mechanical and Electrical Engineering, Suqian College, Suqian 223800, China
| | - Di Wu
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Yawen Xue
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Wenhao Ma
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Feiyue He
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Guanxiang Du
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Li Zhou
- College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| |
Collapse
|