1
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
2
|
Abrantes M, Rodrigues D, Domingues T, Nemala SS, Monteiro P, Borme J, Alpuim P, Jacinto L. Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays. J Nanobiotechnology 2022; 20:495. [DOI: 10.1186/s12951-022-01695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
AbstractDetecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10–18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10–8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Collapse
|
3
|
Sengupta J, Hussain CM. Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3146. [PMID: 36144934 PMCID: PMC9503183 DOI: 10.3390/nano12183146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Graphene achieved a peerless level among nanomaterials in terms of its application in electronic devices, owing to its fascinating and novel properties. Its large surface area and high electrical conductivity combine to create high-power batteries. In addition, because of its high optical transmittance, low sheet resistance, and the possibility of transferring it onto plastic substrates, graphene is also employed as a replacement for indium tin oxide (ITO) in making electrodes for touch screens. Moreover, it was observed that graphene enhances the performance of transparent flexible electronic modules due to its higher mobility, minimal light absorbance, and superior mechanical properties. Graphene is even considered a potential substitute for the post-Si electronics era, where a high-performance graphene-based field-effect transistor (GFET) can be fabricated to detect the lethal SARS-CoV-2. Hence, graphene incorporation in electronic devices can facilitate immense device structure/performance advancements. In the light of the aforementioned facts, this review critically debates graphene as a prime candidate for the fabrication and performance enhancement of electronic devices, and its future applicability in various potential applications.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Kumar N, Rana M, Geiwitz M, Khan NI, Catalano M, Ortiz-Marquez JC, Kitadai H, Weber A, Dweik B, Ling X, van Opijnen T, Argun AA, Burch KS. Rapid, Multianalyte Detection of Opioid Metabolites in Wastewater. ACS NANO 2022; 16:3704-3714. [PMID: 35201755 PMCID: PMC9949512 DOI: 10.1021/acsnano.1c07094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
By monitoring opioid metabolites, wastewater-based epidemiology (WBE) could be an excellent tool for real-time information on the consumption of illicit drugs. A key limitation of WBE is the reliance on costly laboratory-based techniques that require substantial infrastructure and trained personnel, resulting in long turnaround times. Here, we present an aptamer-based graphene field effect transistor (AptG-FET) platform for simultaneous detection of three different opioid metabolites. This platform provides a reliable, rapid, and inexpensive method for quantitative analysis of opioid metabolites in wastewater. The platform delivers a limit of detection 2-3 orders of magnitude lower than previous reports, but in line with the concentration range (pg/mL to ng/mL) of these opioid metabolites present in real samples. To enable multianalyte detection, we developed a facile, reproducible, and high-yield fabrication process producing 20 G-FETs with integrated side gate platinum (Pt) electrodes on a single chip. Our devices achieved the selective multianalyte detection of three different metabolites: noroxycodone (NX), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), and norfentanyl (NF) in wastewater diluted 20× in buffer.
Collapse
Affiliation(s)
- Narendra Kumar
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muhit Rana
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Michael Geiwitz
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Matthew Catalano
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Juan C Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hikari Kitadai
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Andrew Weber
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Badawi Dweik
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Avni A Argun
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
5
|
Mattioli IA, Castro KR, Macedo LJA, Sedenho GC, Oliveira MN, Todeschini I, Vitale PM, Ferreira SC, Manuli ER, Pereira GM, Sabino EC, Crespilho FN. Graphene-based hybrid electrical-electrochemical point-of-care device for serologic COVID-19 diagnosis. Biosens Bioelectron 2022; 199:113866. [PMID: 34915214 PMCID: PMC8648586 DOI: 10.1016/j.bios.2021.113866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
The outbreak of COVID-19 pandemics highlighted the need of sensitive, selective, and easy-to-handle biosensing devices. In the contemporary scenario, point-of-care devices for mass testing and infection mapping within a population have proven themselves as of primordial importance. Here, we introduce a graphene-based Electrical-Electrochemical Vertical Device (EEVD) point-of-care biosensor, strategically engineered for serologic COVID-19 diagnosis. EEVD uses serologic IgG quantifications on SARS-CoV-2 Receptor Binding Domain (RBD) bioconjugate immobilized onto device surface. EEVD combines graphene basal plane with high charge carrier mobility, high conductivity, low intrinsic resistance, and interfacial sensitivity to capacitance alterations. EEVD application was carried out in real human serum samples. Since EEVD is a miniaturized device, it requires just 40 μL of sample for a point-of-care COVID-19 infections detection. When compared to serologic assays such ELISA and other immunochromatographic methods, EEVD presents some advantages such as time of analyses (15 min), sample preparation, and a LOD of 1.0 pg mL-1. We glimpse that EEVD meets the principles of robustness and accuracy, desirable analytic parameters for assays destined to pandemics control strategies.
Collapse
Affiliation(s)
- Isabela A Mattioli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Karla R Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Graziela C Sedenho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Mona N Oliveira
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Iris Todeschini
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Phelipe M Vitale
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Suzete Cleusa Ferreira
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Clinical Hospital HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, 01246903, Brazil; Division of Research and Transfusion Medicine, São Paulo Hemocentre Pro-Blood Foundation, São Paulo, 05403000, Brazil
| | - Erika R Manuli
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil; LIM-46 HC-FMUSP - Laboratory of Medical Investigation, Clinical Hospital, Faculty of Medicine, University of São Paulo, 01246903, Brazil
| | - Geovana M Pereira
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil
| | - Ester C Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil; LIM-46 HC-FMUSP - Laboratory of Medical Investigation, Clinical Hospital, Faculty of Medicine, University of São Paulo, 01246903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
6
|
Printable graphene BioFETs for DNA quantification in Lab-on-PCB microsystems. Sci Rep 2021; 11:9815. [PMID: 33972649 PMCID: PMC8111018 DOI: 10.1038/s41598-021-89367-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/26/2021] [Indexed: 01/09/2023] Open
Abstract
Lab-on-Chip is a technology that aims to transform the Point-of-Care (PoC) diagnostics field; nonetheless a commercial production compatible technology is yet to be established. Lab-on-Printed Circuit Board (Lab-on-PCB) is currently considered as a promising candidate technology for cost-aware but simultaneously high specification applications, requiring multi-component microsystem implementations, due to its inherent compatibility with electronics and the long-standing industrial manufacturing basis. In this work, we demonstrate the first electrolyte gated field-effect transistor (FET) DNA biosensor implemented on commercially fabricated PCB in a planar layout. Graphene ink was drop-casted to form the transistor channel and PNA probes were immobilized on the graphene channel, enabling label-free DNA detection. It is shown that the sensor can selectively detect the complementary DNA sequence, following a fully inkjet-printing compatible manufacturing process. The results demonstrate the potential for the effortless integration of FET sensors into Lab-on-PCB diagnostic platforms, paving the way for even higher sensitivity quantification than the current Lab-on-PCB state-of-the-art of passive electrode electrochemical sensing. The substitution of such biosensors with our presented FET structures, promises further reduction of the time-to-result in microsystems combining sequential DNA amplification and detection modules to few minutes, since much fewer amplification cycles are required even for low-abundance nucleic acid targets.
Collapse
|
7
|
Conductive Nanofilms with Oppositely Charged Reduced Graphene Oxides as a Base for Electroactive Coatings and Sensors. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We demonstrate a method for the formation of multilayers composed of reduced graphene oxide (rGO), which can be used for transparent, conducting thin films. Using the layer-by-layer (LbL) assembly of positively and negatively charged GO sheets, we could obtain thin films with highly controllable sheet resistance. The natural negative charge of graphene oxide was turned to positive by the amidation reaction. After forming the multilayer films, the graphene oxide underwent thermal reduction at temperatures above 150 °C. The (rGO+/rGO−) films were characterized by UV-Vis and scanning electron microscopy (SEM), and their conductivity was measured by the four-point method. We found that after deposition of five (rGO+/rGO−), the coating structure reached the percolation limit, and the film resistance decreased more gradually to around 20 kΩ/sq for the films obtained by eleven deposition cycles with graphene oxide reduced at 250 °C. The formation of thin films on polyimide allows the forming of new flexible conductive materials, which can find applications, e.g., in biomedicine as new electroactive, low-cost, disposable sensors.
Collapse
|
8
|
Hassan A, Macedo LJ, Mattioli IA, Rubira RJ, Constantino CJ, Amorim RG, Lima FC, Crespilho FN. A three component-based van der Waals surface vertically designed for biomolecular recognition enhancement. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Mattioli IA, Hassan A, Sanches NM, Vieira NC, Crespilho FN. Highly sensitive interfaces of graphene electrical-electrochemical vertical devices for on drop atto-molar DNA detection. Biosens Bioelectron 2021; 175:112851. [DOI: 10.1016/j.bios.2020.112851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
|
10
|
Purwidyantri A, Domingues T, Borme J, Guerreiro JR, Ipatov A, Abreu CM, Martins M, Alpuim P, Prado M. Influence of the Electrolyte Salt Concentration on DNA Detection with Graphene Transistors. BIOSENSORS 2021; 11:bios11010024. [PMID: 33477344 PMCID: PMC7830926 DOI: 10.3390/bios11010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Liquid-gated Graphene Field-Effect Transistors (GFET) are ultrasensitive bio-detection platforms carrying out the graphene's exceptional intrinsic functionalities. Buffer and dilution factor are prevalent strategies towards the optimum performance of the GFETs. However, beyond the Debye length (λD), the role of the graphene-electrolytes' ionic species interactions on the DNA behavior at the nanoscale interface is complicated. We studied the characteristics of the GFETs under different ionic strength, pH, and electrolyte type, e.g., phosphate buffer (PB), and phosphate buffer saline (PBS), in an automatic portable built-in system. The electrostatic gating and charge transfer phenomena were inferred from the field-effect measurements of the Dirac point position in single-layer graphene (SLG) transistors transfer curves. Results denote that λD is not the main factor governing the effective nanoscale screening environment. We observed that the longer λD was not the determining characteristic for sensitivity increment and limit of detection (LoD) as demonstrated by different types and ionic strengths of measuring buffers. In the DNA hybridization study, our findings show the role of the additional salts present in PBS, as compared to PB, in increasing graphene electron mobility, electrostatic shielding, intermolecular forces and DNA adsorption kinetics leading to an improved sensitivity.
Collapse
Affiliation(s)
- Agnes Purwidyantri
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.R.G.); (A.I.); (M.P.)
| | - Telma Domingues
- 2D Materials and Devices Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (T.D.); (J.B.)
| | - Jérôme Borme
- 2D Materials and Devices Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (T.D.); (J.B.)
| | - Joana Rafaela Guerreiro
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.R.G.); (A.I.); (M.P.)
| | - Andrey Ipatov
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.R.G.); (A.I.); (M.P.)
| | - Catarina M. Abreu
- Nanomedicine Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal;
| | - Marco Martins
- Nano-ICs Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal;
| | - Pedro Alpuim
- 2D Materials and Devices Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (T.D.); (J.B.)
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Marta Prado
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.R.G.); (A.I.); (M.P.)
| |
Collapse
|
11
|
Cabral PD, Domingues T, Machado G, Chicharo A, Cerqueira F, Fernandes E, Athayde E, Alpuim P, Borme J. Clean-Room Lithographical Processes for the Fabrication of Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5728. [PMID: 33334060 PMCID: PMC7765539 DOI: 10.3390/ma13245728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
This work is on developing clean-room processes for the fabrication of electrolyte-gate graphene field-effect transistors at the wafer scale for biosensing applications. Our fabrication process overcomes two main issues: removing surface residues after graphene patterning and the dielectric passivation of metallic contacts. A graphene residue-free transfer process is achieved by using a pre-transfer, sacrificial metallic mask that protects the entire wafer except the areas around the channel, source, and drain, onto which the graphene film is transferred and later patterned. After the dissolution of the mask, clean gate electrodes are obtained. The multilayer SiO2/SiNx dielectric passivation takes advantage of the excellent adhesion of SiO2 to graphene and the substrate materials and the superior impermeability of SiNx. It hinders native nucleation centers and breaks the propagation of defects through the layers, protecting from prolonged exposition to all common solvents found in biochemistry work, contrary to commonly used polymeric passivation. Since wet etch does not allow the required level of control over the lithographic process, a reactive ion etching process using a sacrificial metallic stopping layer is developed and used for patterning the passivation layer. The process achieves devices with high reproducibility at the wafer scale.
Collapse
Affiliation(s)
- Patrícia D. Cabral
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.D.C.); (T.D.); (G.M.J.); (A.C.); (F.C.); (E.F.); (J.B.)
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Telma Domingues
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.D.C.); (T.D.); (G.M.J.); (A.C.); (F.C.); (E.F.); (J.B.)
| | - George Machado
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.D.C.); (T.D.); (G.M.J.); (A.C.); (F.C.); (E.F.); (J.B.)
| | - Alexandre Chicharo
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.D.C.); (T.D.); (G.M.J.); (A.C.); (F.C.); (E.F.); (J.B.)
| | - Fátima Cerqueira
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.D.C.); (T.D.); (G.M.J.); (A.C.); (F.C.); (E.F.); (J.B.)
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Elisabete Fernandes
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.D.C.); (T.D.); (G.M.J.); (A.C.); (F.C.); (E.F.); (J.B.)
| | - Emília Athayde
- Center of Mathematics, University of Minho, 4710-057 Braga, Portugal;
| | - Pedro Alpuim
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.D.C.); (T.D.); (G.M.J.); (A.C.); (F.C.); (E.F.); (J.B.)
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Jérôme Borme
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.D.C.); (T.D.); (G.M.J.); (A.C.); (F.C.); (E.F.); (J.B.)
| |
Collapse
|
12
|
Bourrier A, Szarpak-Jankowska A, Veliev F, Olarte-Hernandez R, Shkorbatova P, Bonizzato M, Rey E, Barraud Q, Briançon-Marjollet A, Auzely R, Courtine G, Bouchiat V, Delacour C. Introducing a biomimetic coating for graphene neuroelectronics: toward in-vivoapplications. Biomed Phys Eng Express 2020; 7. [PMID: 35125348 DOI: 10.1088/2057-1976/ab42d6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/09/2019] [Indexed: 11/12/2022]
Abstract
Electronic micro and nano-devices are suitable tools to monitor the activity of many individual neurons over mesoscale networks. However the inorganic materials currently used in microelectronics are barely accepted by neural cells and tissues, thus limiting both the sensor lifetime and efficiency. In particular, penetrating intracortical probes face high failure rate because of a wide immune response of cells and tissues. This adverse reaction called gliosis leads to the rejection of the implanted probe after few weeks and prevent long-lasting recordings of cortical neurons. Such acceptance issue impedes the realization of many neuro-rehabilitation projects. To overcome this, graphene and related carbon-based materials have attracted a lot of interest regarding their positive impact on the adhesion and regeneration of neurons, and their ability to provide high-sensitive electronic devices, such as graphene field effect transistor (G-FET). Such devices can also be implemented on numerous suitable substrates including soft substrates to match the mechanical compliance of cells and tissues, improving further the biocompatibility of the implants. Thus, using graphene as a coating and sensing device material could significantly enhance the acceptance of intracortical probes. However, such a thin monolayer of carbon atoms could be teared off during manipulation and insertion within the brain, and could also display degradation over time. In this work, we have investigated the ability to protect graphene with a natural, biocompatible and degradable polymeric film derivated from hyaluronic acid (HA). We demonstrate that HA-based coatings can be deposited over a wide range of substrates, including intracortical probes and graphene FET arrays without altering the underlying device material, its biocompatibility and sensitivity. Moreover, we show that this coating can be monitoredin situby quantifying the number of deposited charges with the G-FET arrays. The reported graphene functionalization offers promising alternatives for improving the acceptance of various neural interfaces.
Collapse
Affiliation(s)
- Antoine Bourrier
- Institut Néel, CNRS & Université Grenoble Alpes, 38042 Grenoble, France
| | | | - Farida Veliev
- Institut Néel, CNRS & Université Grenoble Alpes, 38042 Grenoble, France
| | | | - Polina Shkorbatova
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Marco Bonizzato
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Elodie Rey
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Anne Briançon-Marjollet
- Grenoble Alpes, HP2 Laboratory, Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Rachel Auzely
- University Grenoble Alpes, CERMAV-CNRS, 38000 Grenoble, France
| | - Gregoire Courtine
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Vincent Bouchiat
- Institut Néel, CNRS & Université Grenoble Alpes, 38042 Grenoble, France
| | - Cécile Delacour
- Institut Néel, CNRS & Université Grenoble Alpes, 38042 Grenoble, France
| |
Collapse
|
13
|
Bartošík M, Mach J, Piastek J, Nezval D, Konečný M, Švarc V, Ensslin K, Šikola T. Mechanism and Suppression of Physisorbed-Water-Caused Hysteresis in Graphene FET Sensors. ACS Sens 2020; 5:2940-2949. [PMID: 32872770 DOI: 10.1021/acssensors.0c01441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hysteresis is a problem in field-effect transistors (FETs) often caused by defects and charge traps inside a gate isolating (e.g., SiO2) layer. This work shows that graphene-based FETs also exhibit hysteresis due to water physisorbed on top of graphene determined by the relative humidity level, which naturally happens in biosensors and ambient operating sensors. The hysteresis effect is explained by trapping of electrons by physisorbed water, and it is shown that this hysteresis can be suppressed using short pulses of alternating gate voltages.
Collapse
Affiliation(s)
- Miroslav Bartošík
- Central European Institute of Technology - Brno University of Technology (CEITEC BUT), Purkyňova 123, 612 00 Brno, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Jindřich Mach
- Central European Institute of Technology - Brno University of Technology (CEITEC BUT), Purkyňova 123, 612 00 Brno, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Jakub Piastek
- Central European Institute of Technology - Brno University of Technology (CEITEC BUT), Purkyňova 123, 612 00 Brno, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - David Nezval
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Martin Konečný
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Vojtěch Švarc
- Central European Institute of Technology - Brno University of Technology (CEITEC BUT), Purkyňova 123, 612 00 Brno, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Klaus Ensslin
- Solid State Physics Laboratory, ETH Zürich, CH 8093 Zürich, Switzerland
| | - Tomáš Šikola
- Central European Institute of Technology - Brno University of Technology (CEITEC BUT), Purkyňova 123, 612 00 Brno, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| |
Collapse
|
14
|
Zhang X, Jing Q, Ao S, Schneider GF, Kireev D, Zhang Z, Fu W. Ultrasensitive Field-Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902820. [PMID: 31592577 DOI: 10.1002/smll.201902820] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/08/2019] [Indexed: 05/20/2023]
Abstract
This review provides a critical overview of current developments on nanoelectronic biochemical sensors based on graphene. Composed of a single layer of conjugated carbon atoms, graphene has outstanding high carrier mobility and low intrinsic electrical noise, but a chemically inert surface. Surface functionalization is therefore crucial to unravel graphene sensitivity and selectivity for the detection of targeted analytes. To achieve optimal performance of graphene transistors for biochemical sensing, the tuning of the graphene surface properties via surface functionalization and passivation is highlighted, as well as the tuning of its electrical operation by utilizing multifrequency ambipolar configuration and a high frequency measurement scheme to overcome the Debye screening to achieve low noise and highly sensitive detection. Potential applications and prospectives of ultrasensitive graphene electronic biochemical sensors ranging from environmental monitoring and food safety, healthcare and medical diagnosis, to life science research, are presented as well.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Qiushi Jing
- School of Materials Science and Engineering, Tsinghua University, Shaw Technical Science Building, Haidian District, Beijing, 100084, P. R. China
| | - Shen Ao
- School of Materials Science and Engineering, Tsinghua University, Shaw Technical Science Building, Haidian District, Beijing, 100084, P. R. China
| | - Grégory F Schneider
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78757, USA
| | - Zhengjun Zhang
- School of Materials Science and Engineering, Tsinghua University, Shaw Technical Science Building, Haidian District, Beijing, 100084, P. R. China
| | - Wangyang Fu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
15
|
Campos R, Borme J, Guerreiro JR, Machado G, Cerqueira MF, Petrovykh DY, Alpuim P. Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors. ACS Sens 2019; 4:286-293. [PMID: 30672282 DOI: 10.1021/acssensors.8b00344] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we develop a field-effect transistor with a two-dimensional channel made of a single graphene layer to achieve label-free detection of DNA hybridization down to attomolar concentration, while being able to discriminate a single nucleotide polymorphism (SNP). The SNP-level target specificity is achieved by immobilization of probe DNA on the graphene surface through a pyrene-derivative heterobifunctional linker. Biorecognition events result in a positive gate voltage shift of the graphene charge neutrality point. The graphene transistor biosensor displays a sensitivity of 24 mV/dec with a detection limit of 25 aM: the lowest target DNA concentration for which the sensor can discriminate between a perfect-match target sequence and SNP-containing one.
Collapse
Affiliation(s)
- Rui Campos
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Jérôme Borme
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Joana Rafaela Guerreiro
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - George Machado
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Maria Fátima Cerqueira
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Dmitri Y. Petrovykh
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Pedro Alpuim
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Prasad B, Pfanzelt G, Fillis-Tsirakis E, Zachman MJ, Kourkoutis LF, Mannhart J. Integrated Circuits Comprising Patterned Functional Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802598. [PMID: 30015987 DOI: 10.1002/adma.201802598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Solid-state heterostructures are the cornerstone of modern electronics. To enhance the functionality and performance of integrated circuits, the spectrum of materials used in the heterostructures is being expanded by an increasing number of compounds and elements of the periodic table. While the integration of liquids and solid-liquid interfaces into such systems would allow unique and advanced functional properties and would enable integrated nanoionic circuits, solid-state heterostructures that incorporate liquids have not been considered thus far. Here solid-state heterostructures with integrated liquids are proposed, realized, and characterized, thereby opening a vast, new phase space of materials and interfaces for integrated circuits. Devices containing tens of microscopic capacitors and field-effect transistors are fabricated by using integrated patterned NaCl aqueous solutions. This work paves the way to integrated electronic circuits that include highly integrated liquids, thus yielding a wide array of novel research and application opportunities based on microscopic solid/liquid systems.
Collapse
Affiliation(s)
- Bhagwati Prasad
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Georg Pfanzelt
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | | | - Michael J Zachman
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jochen Mannhart
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| |
Collapse
|
17
|
Fu W, Feng L, Panaitov G, Kireev D, Mayer D, Offenhäusser A, Krause HJ. Biosensing near the neutrality point of graphene. SCIENCE ADVANCES 2017; 3:e1701247. [PMID: 29075669 PMCID: PMC5656418 DOI: 10.1126/sciadv.1701247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/26/2017] [Indexed: 05/05/2023]
Abstract
Over the past decade, the richness of electronic properties of graphene has attracted enormous interest for electrically detecting chemical and biological species using this two-dimensional material. However, the creation of practical graphene electronic sensors greatly depends on our ability to understand and maintain a low level of electronic noise, the fundamental reason limiting the sensor resolution. Conventionally, to reach the largest sensing response, graphene transistors are operated at the point of maximum transconductance, where 1/f noise is found to be unfavorably high and poses a major limitation in any attempt to further improve the device sensitivity. We show that operating a graphene transistor in an ambipolar mode near its neutrality point can markedly reduce the 1/f noise in graphene. Remarkably, our data reveal that this reduction in the electronic noise is achieved with uncompromised sensing response of the graphene chips and thus significantly improving the signal-to-noise ratio-compared to that of a conventionally operated graphene transistor for conductance measurement. As a proof-of-concept demonstration of the usage of the aforementioned new sensing scheme to a broader range of biochemical sensing applications, we selected an HIV-related DNA hybridization as the test bed and achieved detections at picomolar concentrations.
Collapse
Affiliation(s)
- Wangyang Fu
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, 2333CC Leiden, Netherlands
- Corresponding author.
| | - Lingyan Feng
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Gregory Panaitov
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dmitry Kireev
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dirk Mayer
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Hans-Joachim Krause
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
18
|
Wu G, Dai Z, Tang X, Lin Z, Lo PK, Meyyappan M, Lai KWC. Graphene Field-Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene-Tagged DNA Aptamer. Adv Healthc Mater 2017; 6. [PMID: 28795534 DOI: 10.1002/adhm.201700736] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/08/2017] [Indexed: 11/06/2022]
Abstract
This study reports biosensing using graphene field-effect transistors with the aid of pyrene-tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe-modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG-FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Mechanical and Biomedical Engineering; Centre for Robotics and Automation; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR, P. R. China
| | - Ziwen Dai
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR, P. R. China
| | - Xin Tang
- Department of Mechanical and Biomedical Engineering; Centre for Robotics and Automation; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR, P. R. China
| | - Zihong Lin
- Department of Mechanical and Biomedical Engineering; Centre for Robotics and Automation; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR, P. R. China
| | - Pik Kwan Lo
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR, P. R. China
| | - M. Meyyappan
- NASA Ames Research Center; Moffett Field CA 94035 USA
| | - King Wai Chiu Lai
- Department of Mechanical and Biomedical Engineering; Centre for Robotics and Automation; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR, P. R. China
| |
Collapse
|
19
|
Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity. Sci Rep 2017; 7:6658. [PMID: 28751775 PMCID: PMC5532278 DOI: 10.1038/s41598-017-06906-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022] Open
Abstract
This work is focused on the fabrication and analysis of graphene-based, solution-gated field effect transistor arrays (GFETs) on a large scale for bioelectronic measurements. The GFETs fabricated on different substrates, with a variety of gate geometries (width/length) of the graphene channel, reveal a linear relation between the transconductance and the width/length ratio. The area normalised electrolyte-gated transconductance is in the range of 1–2 mS·V−1·□ and does not strongly depend on the substrate. Influence of the ionic strength on the transistor performance is also investigated. Double contacts are found to decrease the effective resistance and the transfer length, but do not improve the transconductance. An electrochemical annealing/cleaning effect is investigated and proposed to originate from the out-of-plane gate leakage current. The devices are used as a proof-of-concept for bioelectronic sensors, recording external potentials from both: ex vivo heart tissue and in vitro cardiomyocyte-like HL-1 cells. The recordings show distinguishable action potentials with a signal to noise ratio over 14 from ex vivo tissue and over 6 from the cardiac-like cell line in vitro. Furthermore, in vitro neuronal signals are recorded by the graphene transistors with distinguishable bursting for the first time.
Collapse
|