1
|
Gupta A, Ma H, Ramanathan A, Zerze GH. A Deep Learning-Driven Sampling Technique to Explore the Phase Space of an RNA Stem-Loop. J Chem Theory Comput 2024; 20:9178-9189. [PMID: 39374435 DOI: 10.1021/acs.jctc.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The folding and unfolding of RNA stem-loops are critical biological processes; however, their computational studies are often hampered by the ruggedness of their folding landscape, necessitating long simulation times at the atomistic scale. Here, we adapted DeepDriveMD (DDMD), an advanced deep learning-driven sampling technique originally developed for protein folding, to address the challenges of RNA stem-loop folding. Although tempering- and order parameter-based techniques are commonly used for similar rare-event problems, the computational costs or the need for a priori knowledge about the system often present a challenge in their effective use. DDMD overcomes these challenges by adaptively learning from an ensemble of running MD simulations using generic contact maps as the raw input. DeepDriveMD enables on-the-fly learning of a low-dimensional latent representation and guides the simulation toward the undersampled regions while optimizing the resources to explore the relevant parts of the phase space. We showed that DDMD estimates the free energy landscape of the RNA stem-loop reasonably well at room temperature. Our simulation framework runs at a constant temperature without external biasing potential, hence preserving the information on transition rates, with a computational cost much lower than that of the simulations performed with external biasing potentials. We also introduced a reweighting strategy for obtaining unbiased free energy surfaces and presented a qualitative analysis of the latent space. This analysis showed that the latent space captures the relevant slow degrees of freedom for the RNA folding problem of interest. Finally, throughout the manuscript, we outlined how different parameters are selected and optimized to adapt DDMD for this system. We believe this compendium of decision-making processes will help new users adapt this technique for the rare-event sampling problems of their interest.
Collapse
Affiliation(s)
- Ayush Gupta
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Heng Ma
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Arvind Ramanathan
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gül H Zerze
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
2
|
Torrik A, Zarif M. Machine learning assisted sorting of active microswimmers. J Chem Phys 2024; 161:094907. [PMID: 39225539 DOI: 10.1063/5.0216862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Active matter systems, being in a non-equilibrium state, exhibit complex behaviors, such as self-organization, giving rise to emergent phenomena. There are many examples of active particles with biological origins, including bacteria and spermatozoa, or with artificial origins, such as self-propelled swimmers and Janus particles. The ability to manipulate active particles is vital for their effective application, e.g., separating motile spermatozoa from nonmotile and dead ones, to increase fertilization chance. In this study, we proposed a mechanism-an apparatus-to sort and demix active particles based on their motility values (Péclet number). Initially, using Brownian simulations, we demonstrated the feasibility of sorting self-propelled particles. Following this, we employed machine learning methods, supplemented with data from comprehensive simulations that we conducted for this study, to model the complex behavior of active particles. This enabled us to sort them based on their Péclet number. Finally, we evaluated the performance of the developed models and showed their effectiveness in demixing and sorting the active particles. Our findings can find applications in various fields, including physics, biology, and biomedical science, where the sorting and manipulation of active particles play a pivotal role.
Collapse
Affiliation(s)
- Abdolhalim Torrik
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| |
Collapse
|
3
|
Akinpelu A, Bhullar M, Yao Y. Discovery of novel materials through machine learning. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:453001. [PMID: 39106893 DOI: 10.1088/1361-648x/ad6bdb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Experimental exploration of new materials relies heavily on a laborious trial-and-error approach. In addition to substantial time and resource requirements, traditional experiments and computational modelling are typically limited in finding target materials within the enormous chemical space. Therefore, creating innovative techniques to expedite material discovery becomes essential. Recently, machine learning (ML) has emerged as a valuable tool for material discovery, garnering significant attention due to its remarkable advancements in prediction accuracy and time efficiency. This rapidly developing computational technique accelerates the search and optimization process and enables the prediction of material properties at a minimal computational cost, thereby facilitating the discovery of novel materials. We provide a comprehensive overview of recent studies on discovering new materials by predicting materials and their properties using ML techniques. Beginning with an introduction of the fundamental principles of ML methods, we subsequently examine the current research landscape on the applications of ML in predicting material properties that lead to the discovery of novel materials. Finally, we discuss challenges in employing ML within materials science, propose potential solutions, and outline future research directions.
Collapse
Affiliation(s)
- Akinwumi Akinpelu
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Mangladeep Bhullar
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Yansun Yao
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
4
|
Faran M, Ray D, Nag S, Raucci U, Parrinello M, Bisker G. A Stochastic Landscape Approach for Protein Folding State Classification. J Chem Theory Comput 2024; 20:5428-5438. [PMID: 38924770 PMCID: PMC11238538 DOI: 10.1021/acs.jctc.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Protein folding is a critical process that determines the functional state of proteins. Proper folding is essential for proteins to acquire their functional three-dimensional structures and execute their biological role, whereas misfolded proteins can lead to various diseases, including neurodegenerative disorders like Alzheimer's and Parkinson's. Therefore, a deeper understanding of protein folding is vital for understanding disease mechanisms and developing therapeutic strategies. This study introduces the Stochastic Landscape Classification (SLC), an innovative, automated, nonlearning algorithm that quantitatively analyzes protein folding dynamics. Focusing on collective variables (CVs) - low-dimensional representations of complex dynamical systems like molecular dynamics (MD) of macromolecules - the SLC approach segments the CVs into distinct macrostates, revealing the protein folding pathway explored by MD simulations. The segmentation is achieved by analyzing changes in CV trends and clustering these segments using a standard density-based spatial clustering of applications with noise (DBSCAN) scheme. Applied to the MD-based CV trajectories of Chignolin and Trp-Cage proteins, the SLC demonstrates apposite accuracy, validated by comparing standard classification metrics against ground-truth data. These metrics affirm the efficacy of the SLC in capturing intricate protein dynamics and offer a method to evaluate and select the most informative CVs. The practical application of this technique lies in its ability to provide a detailed, quantitative description of protein folding processes, with significant implications for understanding and manipulating protein behavior in industrial and pharmaceutical contexts.
Collapse
Affiliation(s)
- Michael Faran
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dhiman Ray
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Shubhadeep Nag
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Umberto Raucci
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Michele Parrinello
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Lee SKA, Tsai ST, Glotzer SC. Classification of complex local environments in systems of particle shapes through shape symmetry-encoded data augmentation. J Chem Phys 2024; 160:154102. [PMID: 38624110 DOI: 10.1063/5.0194820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Detecting and analyzing the local environment is crucial for investigating the dynamical processes of crystal nucleation and shape colloidal particle self-assembly. Recent developments in machine learning provide a promising avenue for better order parameters in complex systems that are challenging to study using traditional approaches. However, the application of machine learning to self-assembly on systems of particle shapes is still underexplored. To address this gap, we propose a simple, physics-agnostic, yet powerful approach that involves training a multilayer perceptron (MLP) as a local environment classifier for systems of particle shapes, using input features such as particle distances and orientations. Our MLP classifier is trained in a supervised manner with a shape symmetry-encoded data augmentation technique without the need for any conventional roto-translations invariant symmetry functions. We evaluate the performance of our classifiers on four different scenarios involving self-assembly of cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with varying aspect ratios, and truncated shapes with different degrees of truncation. The proposed training process and data augmentation technique are both straightforward and flexible, enabling easy application of the classifier to other processes involving particle orientations. Our work thus presents a valuable tool for investigating self-assembly processes on systems of particle shapes, with potential applications in structure identification of any particle-based or molecular system where orientations can be defined.
Collapse
Affiliation(s)
- Shih-Kuang Alex Lee
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sun-Ting Tsai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sharon C Glotzer
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Lelièvre T, Pigeon T, Stoltz G, Zhang W. Analyzing Multimodal Probability Measures with Autoencoders. J Phys Chem B 2024; 128:2607-2631. [PMID: 38466759 DOI: 10.1021/acs.jpcb.3c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Finding collective variables to describe some important coarse-grained information on physical systems, in particular metastable states, remains a key issue in molecular dynamics. Recently, machine learning techniques have been intensively used to complement and possibly bypass expert knowledge in order to construct collective variables. Our focus here is on neural network approaches based on autoencoders. We study some relevant mathematical properties of the loss function considered for training autoencoders and provide physical interpretations based on conditional variances and minimum energy paths. We also consider various extensions in order to better describe physical systems, by incorporating more information on transition states at saddle points, and/or allowing for multiple decoders in order to describe several transition paths. Our results are illustrated on toy two-dimensional systems and on alanine dipeptide.
Collapse
Affiliation(s)
- Tony Lelièvre
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Thomas Pigeon
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
- IFP Energies Nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, 69360 Solaize, France
| | - Gabriel Stoltz
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Wei Zhang
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| |
Collapse
|
7
|
Petix CL, Fakhraei M, Kieslich CA, Howard MP. Surrogate Modeling of the Relative Entropy for Inverse Design Using Smolyak Sparse Grids. J Chem Theory Comput 2024; 20:1538-1546. [PMID: 37703086 DOI: 10.1021/acs.jctc.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Relative entropy minimization, a statistical-mechanics approach for finding potential energy functions that produce target structural ensembles, has proven to be a powerful strategy for the inverse design of nanoparticle self-assembly. For a given target structure, the gradient of the relative entropy with respect to the adjustable parameters of the potential energy function is computed by performing a simulation, and then these parameters are updated using iterative gradient-based optimization. Small parameter updates per iteration and many iterations can be required for numerical stability, but this incurs considerable computational expense because a new simulation must be performed to reevaluate the gradient at each iteration. Here, we investigate the use of surrogate modeling to decouple the process of minimizing the relative entropy from the computationally demanding process of determining its gradient. We approximate the relative-entropy gradient using Chebyshev polynomial interpolation on Smolyak sparse grids. Our approach potentially increases the robustness and computational efficiency of using the relative entropy for inverse design, primarily for physically informed potential energy functions that have a small number of adjustable parameters.
Collapse
Affiliation(s)
- C Levi Petix
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Mohammadreza Fakhraei
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Chris A Kieslich
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
8
|
Ferreira RAS, Correia SFH, Fu L, Georgieva P, Antunes M, André PS. Predicting the efficiency of luminescent solar concentrators for solar energy harvesting using machine learning. Sci Rep 2024; 14:4160. [PMID: 38378849 PMCID: PMC10879533 DOI: 10.1038/s41598-024-54657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Building-integrated photovoltaics (BIPV) is an emerging technology in the solar energy field. It involves using luminescent solar concentrators to convert traditional windows into energy generators by utilizing light harvesting and conversion materials. This study investigates the application of machine learning (ML) to advance the fundamental understanding of optical material design. By leveraging accessible photoluminescent measurements, ML models estimate optical properties, streamlining the process of developing novel materials, offering a cost-effective and efficient alternative to traditional methods, and facilitating the selection of competitive materials. Regression and clustering methods were used to estimate the optical conversion efficiency and power conversion efficiency. The regression models achieved a Mean Absolute Error (MAE) of 10%, which demonstrates accuracy within a 10% range of possible values. Both regression and clustering models showed high agreement, with a minimal MAE of 7%, highlighting the efficacy of ML in predicting optical properties of luminescent materials for BIPV.
Collapse
Affiliation(s)
- Rute A S Ferreira
- CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra F H Correia
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lianshe Fu
- CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Petia Georgieva
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, 3810-193, Aveiro, Portugal
- Institute of Electronics and Informatics Engineering of Aveiro (IEETA), 3800-193, Aveiro, Portugal
| | - Mario Antunes
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paulo S André
- Department of Electrical and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
9
|
Wang Y, Stebe KJ, de la Fuente-Nunez C, Radhakrishnan R. Computational Design of Peptides for Biomaterials Applications. ACS APPLIED BIO MATERIALS 2024; 7:617-625. [PMID: 36971822 PMCID: PMC11190638 DOI: 10.1021/acsabm.2c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Computer-aided molecular design and protein engineering emerge as promising and active subjects in bioengineering and biotechnological applications. On one hand, due to the advancing computing power in the past decade, modeling toolkits and force fields have been put to use for accurate multiscale modeling of biomolecules including lipid, protein, carbohydrate, and nucleic acids. On the other hand, machine learning emerges as a revolutionary data analysis tool that promises to leverage physicochemical properties and structural information obtained from modeling in order to build quantitative protein structure-function relationships. We review recent computational works that utilize state-of-the-art computational methods to engineer peptides and proteins for various emerging biomedical, antimicrobial, and antifreeze applications. We also discuss challenges and possible future directions toward developing a roadmap for efficient biomolecular design and engineering.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cesar de la Fuente-Nunez
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Patel RA, Webb MA. Data-Driven Design of Polymer-Based Biomaterials: High-throughput Simulation, Experimentation, and Machine Learning. ACS APPLIED BIO MATERIALS 2024; 7:510-527. [PMID: 36701125 DOI: 10.1021/acsabm.2c00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polymers, with the capacity to tunably alter properties and response based on manipulation of their chemical characteristics, are attractive components in biomaterials. Nevertheless, their potential as functional materials is also inhibited by their complexity, which complicates rational or brute-force design and realization. In recent years, machine learning has emerged as a useful tool for facilitating materials design via efficient modeling of structure-property relationships in the chemical domain of interest. In this Spotlight, we discuss the emergence of data-driven design of polymers that can be deployed in biomaterials with particular emphasis on complex copolymer systems. We outline recent developments, as well as our own contributions and takeaways, related to high-throughput data generation for polymer systems, methods for surrogate modeling by machine learning, and paradigms for property optimization and design. Throughout this discussion, we highlight key aspects of successful strategies and other considerations that will be relevant to the future design of polymer-based biomaterials with target properties.
Collapse
Affiliation(s)
- Roshan A Patel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
11
|
Patel R, Colmenares S, Webb MA. Sequence Patterning, Morphology, and Dispersity in Single-Chain Nanoparticles: Insights from Simulation and Machine Learning. ACS POLYMERS AU 2023; 3:284-294. [PMID: 37334192 PMCID: PMC10273411 DOI: 10.1021/acspolymersau.3c00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Single-chain nanoparticles (SCNPs) are intriguing materials inspired by proteins that consist of a single precursor polymer chain that has collapsed into a stable structure. In many prospective applications, such as catalysis, the utility of a single-chain nanoparticle will intricately depend on the formation of a mostly specific structure or morphology. However, it is not generally well understood how to reliably control the morphology of single-chain nanoparticles. To address this knowledge gap, we simulate the formation of 7680 distinct single-chain nanoparticles from precursor chains that span a wide range of, in principle, tunable patterning characteristics of cross-linking moieties. Using a combination of molecular simulation and machine learning analyses, we show how the overall fraction of functionalization and blockiness of cross-linking moieties biases the formation of certain local and global morphological characteristics. Importantly, we illustrate and quantify the dispersity of morphologies that arise due to the stochastic nature of collapse from a well-defined sequence as well as from the ensemble of sequences that correspond to a given specification of precursor parameters. Moreover, we also examine the efficacy of precise sequence control in achieving morphological outcomes in different regimes of precursor parameters. Overall, this work critically assesses how precursor chains might be feasibly tailored to achieve given SCNP morphologies and provides a platform to pursue future sequence-based design.
Collapse
|
12
|
Ali MK, Javaid S, Afzal H, Zafar I, Fayyaz K, Ain Q, Rather MA, Hossain MJ, Rashid S, Khan KA, Sharma R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. ENVIRONMENTAL RESEARCH 2023; 232:116290. [PMID: 37295589 DOI: 10.1016/j.envres.2023.116290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.
Collapse
Affiliation(s)
- Muhammad Kashif Ali
- Deparment of Physiology, Rashid Latif Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Saher Javaid
- KAM School of Life Sciences, Forman Christian College (a Chartered University) Lahore, Punjab, Pakistan.
| | - Haseeb Afzal
- Department of ENT, Ameer Ud Din Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad (GCWUF), Punjab, 54700, Pakistan.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
13
|
Sun F, Kadupitiya J, Jadhao V. Probing Accuracy-Speedup Tradeoff in Machine Learning Surrogates for Molecular Dynamics Simulations. J Chem Theory Comput 2023. [PMID: 37094180 DOI: 10.1021/acs.jctc.2c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The performance promise of machine learning surrogates of molecular dynamics simulations of soft materials is significant but generally comes at the cost of acquiring large training datasets to learn the complex relationships between input soft material attributes and output properties. Under the constraint of limited high-performance computing resources, optimizing the size of the training datasets becomes paramount. Using an artificial neural network based surrogate for molecular dynamics simulations of confined electrolytes, we explore the tradeoff between surrogate accuracy and computational gains. Accuracy is assessed by computing the root-mean-square errors between the surrogate predictions and the ground truth results obtained via molecular dynamics simulations. The computational performance is judged by evaluating the speedup which incorporates the training dataset creation time. Improvement in accuracy occurs with a loss of speedup, which scales as the inverse of the training dataset size. The link between surrogate generalizability and the accuracy-speedup tradeoff is assessed by examining the errors incurred in surrogate predictions on unseen, interpolated input variables and developing a net speedup metric to capture the associated gains.
Collapse
Affiliation(s)
- Fanbo Sun
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Jcs Kadupitiya
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| |
Collapse
|
14
|
Ricci E, Vergadou N. Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers. J Phys Chem B 2023; 127:2302-2322. [PMID: 36888553 DOI: 10.1021/acs.jpcb.2c06354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Machine learning (ML) is having an increasing impact on the physical sciences, engineering, and technology and its integration into molecular simulation frameworks holds great potential to expand their scope of applicability to complex materials and facilitate fundamental knowledge and reliable property predictions, contributing to the development of efficient materials design routes. The application of ML in materials informatics in general, and polymer informatics in particular, has led to interesting results, however great untapped potential lies in the integration of ML techniques into the multiscale molecular simulation methods for the study of macromolecular systems, specifically in the context of Coarse Grained (CG) simulations. In this Perspective, we aim at presenting the pioneering recent research efforts in this direction and discussing how these new ML-based techniques can contribute to critical aspects of the development of multiscale molecular simulation methods for bulk complex chemical systems, especially polymers. Prerequisites for the implementation of such ML-integrated methods and open challenges that need to be met toward the development of general systematic ML-based coarse graining schemes for polymers are discussed.
Collapse
Affiliation(s)
- Eleonora Ricci
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
- Institute of Informatics and Telecommunications, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
| | - Niki Vergadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
| |
Collapse
|
15
|
Xu Z, Ou Z. Direct Imaging of the Kinetic Crystallization Pathway: Simulation and Liquid-Phase Transmission Electron Microscopy Observations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2026. [PMID: 36903141 PMCID: PMC10004038 DOI: 10.3390/ma16052026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The crystallization of materials from a suspension determines the structure and function of the final product, and numerous pieces of evidence have pointed out that the classical crystallization pathway may not capture the whole picture of the crystallization pathways. However, visualizing the initial nucleation and further growth of a crystal at the nanoscale has been challenging due to the difficulties of imaging individual atoms or nanoparticles during the crystallization process in solution. Recent progress in nanoscale microscopy had tackled this problem by monitoring the dynamic structural evolution of crystallization in a liquid environment. In this review, we summarized several crystallization pathways captured by the liquid-phase transmission electron microscopy technique and compared the observations with computer simulation. Apart from the classical nucleation pathway, we highlight three nonclassical pathways that are both observed in experiments and computer simulations: formation of an amorphous cluster below the critical nucleus size, nucleation of the crystalline phase from an amorphous intermediate, and transition between multiple crystalline structures before achieving the final product. Among these pathways, we also highlight the similarities and differences between the experimental results of the crystallization of single nanocrystals from atoms and the assembly of a colloidal superlattice from a large number of colloidal nanoparticles. By comparing the experimental results with computer simulations, we point out the importance of theory and simulation in developing a mechanistic approach to facilitate the understanding of the crystallization pathway in experimental systems. We also discuss the challenges and future perspectives for investigating the crystallization pathways at the nanoscale with the development of in situ nanoscale imaging techniques and potential applications to the understanding of biomineralization and protein self-assembly.
Collapse
Affiliation(s)
- Zhangying Xu
- Qian Weichang College, Shanghai University, Shanghai 200444, China
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Mastracco P, Gonzàlez-Rosell A, Evans J, Bogdanov P, Copp SM. Chemistry-Informed Machine Learning Enables Discovery of DNA-Stabilized Silver Nanoclusters with Near-Infrared Fluorescence. ACS NANO 2022; 16:16322-16331. [PMID: 36124941 PMCID: PMC9620400 DOI: 10.1021/acsnano.2c05390] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA can stabilize silver nanoclusters (AgN-DNAs) whose atomic sizes and diverse fluorescence colors are selected by nucleobase sequence. These programmable nanoclusters hold promise for sensing, bioimaging, and nanophononics. However, DNA's vast sequence space challenges the design and discovery of AgN-DNAs with tailored properties. In particular, AgN-DNAs with bright near-infrared luminescence above 800 nm remain rare, placing limits on their applications for bioimaging in the tissue transparency windows. Here, we present a design method for near-infrared emissive AgN-DNAs. By combining high-throughput experimentation and machine learning with fundamental information from AgN-DNA crystal structures, we distill the salient DNA sequence features that determine AgN-DNA color, for the entire known spectral range of these nanoclusters. A succinct set of nucleobase staple features are predictive of AgN-DNA color. By representing DNA sequences in terms of these motifs, our machine learning models increase the design success for near-infrared emissive AgN-DNAs by 12.3 times as compared to training data, nearly doubling the number of known AgN-DNAs with bright near-infrared luminescence above 800 nm. These results demonstrate how incorporating known structure-property relationships into machine learning models can enhance materials study and design, even for sparse and imbalanced training data.
Collapse
Affiliation(s)
- Peter Mastracco
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Joshua Evans
- Chaffey
Community College, Rancho
Cucamonga, California 91737, United States
| | - Petko Bogdanov
- Department
of Computer Science, University at Albany-SUNY, Albany, New York 12222, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Email
for S.M.C.:
| |
Collapse
|
18
|
Mao R, O’Leary J, Mesbah A, Mittal J. A Deep Learning Framework Discovers Compositional Order and Self-Assembly Pathways in Binary Colloidal Mixtures. JACS AU 2022; 2:1818-1828. [PMID: 36032540 PMCID: PMC9400045 DOI: 10.1021/jacsau.2c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Binary colloidal superlattices (BSLs) have demonstrated enormous potential for the design of advanced multifunctional materials that can be synthesized via colloidal self-assembly. However, mechanistic understanding of the three-dimensional self-assembly of BSLs is largely limited due to a lack of tractable strategies for characterizing the many two-component structures that can appear during the self-assembly process. To address this gap, we present a framework for colloidal crystal structure characterization that uses branched graphlet decomposition with deep learning to systematically and quantitatively describe the self-assembly of BSLs at the single-particle level. Branched graphlet decomposition is used to evaluate local structure via high-dimensional neighborhood graphs that quantify both structural order (e.g., body-centered-cubic vs face-centered-cubic) and compositional order (e.g., substitutional defects) of each individual particle. Deep autoencoders are then used to efficiently translate these neighborhood graphs into low-dimensional manifolds from which relationships among neighborhood graphs can be more easily inferred. We demonstrate the framework on in silico systems of DNA-functionalized particles, in which two well-recognized design parameters, particle size ratio and interparticle potential well depth can be adjusted independently. The framework reveals that binary colloidal mixtures with small interparticle size disparities (i.e., A- and B-type particle radius ratios of r A/r B = 0.8 to r A/r B = 0.95) can promote the self-assembly of defect-free BSLs much more effectively than systems of identically sized particles, as nearly defect-free BCC-CsCl, FCC-CuAu, and IrV crystals are observed in the former case. The framework additionally reveals that size-disparate colloidal mixtures can undergo nonclassical nucleation pathways where BSLs evolve from dense amorphous precursors, instead of directly nucleating from dilute solution. These findings illustrate that the presented characterization framework can assist in enhancing mechanistic understanding of the self-assembly of binary colloidal mixtures, which in turn can pave the way for engineering the growth of defect-free BSLs.
Collapse
Affiliation(s)
- Runfang Mao
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jared O’Leary
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ali Mesbah
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Jeetain Mittal
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Gardin A, Perego C, Doni G, Pavan GM. Classifying soft self-assembled materials via unsupervised machine learning of defects. Commun Chem 2022; 5:82. [PMID: 36697761 PMCID: PMC9814741 DOI: 10.1038/s42004-022-00699-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/29/2022] [Indexed: 01/28/2023] Open
Abstract
Unlike molecular crystals, soft self-assembled fibers, micelles, vesicles, etc., exhibit a certain order in the arrangement of their constitutive monomers but also high structural dynamicity and variability. Defects and disordered local domains that continuously form-and-repair in their structures impart to such materials unique adaptive and dynamical properties, which make them, e.g., capable to communicate with each other. However, objective criteria to compare such complex dynamical features and to classify soft supramolecular materials are non-trivial to attain. Here we show a data-driven workflow allowing us to achieve this goal. Building on unsupervised clustering of Smooth Overlap of Atomic Position (SOAP) data obtained from equilibrium molecular dynamics simulations, we can compare a variety of soft supramolecular assemblies via a robust SOAP metric. This provides us with a data-driven "defectometer" to classify different types of supramolecular materials based on the structural dynamics of the ordered/disordered local molecular environments that statistically emerge within them.
Collapse
Affiliation(s)
- Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Giovanni Doni
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy. .,Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland.
| |
Collapse
|
20
|
Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches. Polymers (Basel) 2022; 14:polym14142794. [PMID: 35890571 PMCID: PMC9319487 DOI: 10.3390/polym14142794] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
In the last decades, 3D printing has played a crucial role as an innovative technology for tissue and organ fabrication, patient-specific orthoses, drug delivery, and surgical planning. However, biomedical materials used for 3D printing are usually static and unable to dynamically respond or transform within the internal environment of the body. These materials are fabricated ex situ, which involves first printing on a planar substrate and then deploying it to the target surface, thus resulting in a possible mismatch between the printed part and the target surfaces. The emergence of 4D printing addresses some of these drawbacks, opening an attractive path for the biomedical sector. By preprogramming smart materials, 4D printing is able to manufacture structures that dynamically respond to external stimuli. Despite these potentials, 4D printed dynamic materials are still in their infancy of development. The rise of artificial intelligence (AI) could push these technologies forward enlarging their applicability, boosting the design space of smart materials by selecting promising ones with desired architectures, properties, and functions, reducing the time to manufacturing, and allowing the in situ printing directly on target surfaces achieving high-fidelity of human body micro-structures. In this review, an overview of 4D printing as a fascinating tool for designing advanced smart materials is provided. Then will be discussed the recent progress in AI-empowered 3D and 4D printing with open-loop and closed-loop methods, in particular regarding shape-morphing 4D-responsive materials, printing on moving targets, and surgical robots for in situ printing. Lastly, an outlook on 5D printing is given as an advanced future technique, in which AI will assume the role of the fifth dimension to empower the effectiveness of 3D and 4D printing for developing intelligent systems in the biomedical sector and beyond.
Collapse
|
21
|
Appeldorn JH, Lemcke S, Speck T, Nikoubashman A. Employing Artificial Neural Networks to Identify Reaction Coordinates and Pathways for Self-Assembly. J Phys Chem B 2022; 126:5007-5016. [DOI: 10.1021/acs.jpcb.2c02232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jörn H. Appeldorn
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Simon Lemcke
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
22
|
Ragulskaya A, Starostin V, Begam N, Girelli A, Rahmann H, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Reverse-engineering method for XPCS studies of non-equilibrium dynamics. IUCRJ 2022; 9:439-448. [PMID: 35844477 PMCID: PMC9252156 DOI: 10.1107/s2052252522004560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) is a powerful tool in the investigation of dynamics covering a broad time and length scale. It has been widely used to probe dynamics for systems in both equilibrium and non-equilibrium states; in particular, for systems undergoing a phase transition where the structural growth kinetics and the microscopic dynamics are strongly intertwined. The resulting time-dependent dynamic behavior can be described using the two-time correlation function (TTC), which, however, often contains more interesting features than the component along the diagonal, and cannot be easily interpreted via the classical simulation methods. Here, a reverse engineering (RE) approach is proposed based on particle-based heuristic simulations. This approach is applied to an XPCS measurement on a protein solution undergoing a liquid-liquid phase separation. It is demonstrated that the rich features of experimental TTCs can be well connected with the key control parameters including size distribution, concentration, viscosity and mobility of domains. The dynamic information obtained from this RE analysis goes beyond the existing theory. The RE approach established in this work is applicable for other processes such as film growth, coarsening or evolving systems.
Collapse
Affiliation(s)
- Anastasia Ragulskaya
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Vladimir Starostin
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Nafisa Begam
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Anita Girelli
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
| | - Mario Reiser
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
- European X-ray free-electron laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Fajun Zhang
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Gutt
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Kadupitiya JCS, Fox GC, Jadhao V. Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac5f60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Classical molecular dynamics simulations are based on solving Newton’s equations of motion. Using a small timestep, numerical integrators such as Verlet generate trajectories of particles as solutions to Newton’s equations. We introduce operators derived using recurrent neural networks that accurately solve Newton’s equations utilizing sequences of past trajectory data, and produce energy-conserving dynamics of particles using timesteps up to 4000 times larger compared to the Verlet timestep. We demonstrate significant speedup in many example problems including 3D systems of up to 16 particles.
Collapse
|
24
|
Hossain MS, Ji J, Lynch CJ, Guzman M, Nangia S, Mozhdehi D. Adaptive Recombinant Nanoworms from Genetically Encodable Star Amphiphiles. Biomacromolecules 2022; 23:863-876. [PMID: 34942072 PMCID: PMC8924867 DOI: 10.1021/acs.biomac.1c01314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Indexed: 02/04/2023]
Abstract
Recombinant nanoworms are promising candidates for materials and biomedical applications ranging from the templated synthesis of nanomaterials to multivalent display of bioactive peptides and targeted delivery of theranostic agents. However, molecular design principles to synthesize these assemblies (which are thermodynamically favorable only in a narrow region of the phase diagram) remain unclear. To advance the identification of design principles for the programmable assembly of proteins into well-defined nanoworms and to broaden their stability regimes, we were inspired by the ability of topologically engineered synthetic macromolecules to acess rare mesophases. To test this design principle in biomacromolecular assemblies, we used post-translational modifications (PTMs) to generate lipidated proteins with precise topological and compositional asymmetry. Using an integrated experimental and computational approach, we show that the material properties (thermoresponse and nanoscale assembly) of these hybrid amphiphiles are modulated by their amphiphilic architecture. Importantly, we demonstrate that the judicious choice of amphiphilic architecture can be used to program the assembly of proteins into adaptive nanoworms, which undergo a morphological transition (sphere-to-nanoworms) in response to temperature stimuli.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Miguel Guzman
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, 111 College Place, Syracuse, New York 13244, United
States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
25
|
Kadulkar S, Sherman ZM, Ganesan V, Truskett TM. Machine Learning-Assisted Design of Material Properties. Annu Rev Chem Biomol Eng 2022; 13:235-254. [PMID: 35300515 DOI: 10.1146/annurev-chembioeng-092220-024340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Designing functional materials requires a deep search through multidimensional spaces for system parameters that yield desirable material properties. For cases where conventional parameter sweeps or trial-and-error sampling are impractical, inverse methods that frame design as a constrained optimization problem present an attractive alternative. However, even efficient algorithms require time- and resource-intensive characterization of material properties many times during optimization, imposing a design bottleneck. Approaches that incorporate machine learning can help address this limitation and accelerate the discovery of materials with targeted properties. In this article, we review how to leverage machine learning to reduce dimensionality in order to effectively explore design space, accelerate property evaluation, and generate unconventional material structures with optimal properties. We also discuss promising future directions, including integration of machine learning into multiple stages of a design algorithm and interpretation of machine learning models to understand how design parameters relate to material properties. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sanket Kadulkar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Zachary M Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; .,Department of Physics, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
26
|
Abstract
Optimal design of polymers is a challenging task due to their enormous chemical and configurational space. Recent advances in computations, machine learning, and increasing trends in data and software availability can potentially address this problem and accelerate the molecular-scale design of polymers. Here, the central problem of polymer design is reviewed, and the general ideas of data-driven methods and their working principles in the context of polymer design are discussed. This Review provides a historical perspective and a summary of current trends and outlines future scopes of data-driven methods for polymer research. A few representative case studies on the use of such data-driven methods for discovering new polymers with exceptional properties are presented. Moreover, attempts are made to highlight how data-driven strategies aid in establishing new correlations and advancing the fundamental understanding of polymers. This Review posits that the combination of machine learning, rapid computational characterization of polymers, and availability of large open-sourced homogeneous data will transform polymer research and development over the coming decades. It is hoped that this Review will serve as a useful reference to researchers who wish to develop and deploy data-driven methods for polymer research and education.
Collapse
Affiliation(s)
- Tarak K. Patra
- Department of Chemical Engineering,
Center for Atomistic Modeling and Materials Design and Center for
Carbon Capture Utilization and Storage, Indian Institute of Technology Madras, Chennai, TN 600036, India
| |
Collapse
|
27
|
Nguyen D, Tao L, Li Y. Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design. Front Chem 2022; 9:820417. [PMID: 35141207 PMCID: PMC8819075 DOI: 10.3389/fchem.2021.820417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, the synthesis of monomer sequence-defined polymers has expanded into broad-spectrum applications in biomedical, chemical, and materials science fields. Pursuing the characterization and inverse design of these polymer systems requires our fundamental understanding not only at the individual monomer level, but also considering the chain scales, such as polymer configuration, self-assembly, and phase separation. However, our accessibility to this field is still rudimentary due to the limitations of traditional design approaches, the complexity of chemical space along with the burdened cost and time issues that prevent us from unveiling the underlying monomer sequence-structure-property relationships. Fortunately, thanks to the recent advancements in molecular dynamics simulations and machine learning (ML) algorithms, the bottlenecks in the tasks of establishing the structure-function correlation of the polymer chains can be overcome. In this review, we will discuss the applications of the integration between ML techniques and coarse-grained molecular dynamics (CGMD) simulations to solve the current issues in polymer science at the chain level. In particular, we focus on the case studies in three important topics-polymeric configuration characterization, feed-forward property prediction, and inverse design-in which CGMD simulations are leveraged to generate training datasets to develop ML-based surrogate models for specific polymer systems and designs. By doing so, this computational hybridization allows us to well establish the monomer sequence-functional behavior relationship of the polymers as well as guide us toward the best polymer chain candidates for the inverse design in undiscovered chemical space with reasonable computational cost and time. Even though there are still limitations and challenges ahead in this field, we finally conclude that this CGMD/ML integration is very promising, not only in the attempt of bridging the monomeric and macroscopic characterizations of polymer materials, but also enabling further tailored designs for sequence-specific polymers with superior properties in many practical applications.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Lei Tao
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
28
|
Lieu UT, Yoshinaga N. Inverse design of two-dimensional structure by self-assembly of patchy particles. J Chem Phys 2022; 156:054901. [DOI: 10.1063/5.0072234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Natsuhiko Yoshinaga
- WPI Advanced Institute for Materials Research, Tohoku University - Katahira Campus, Japan
| |
Collapse
|
29
|
Jabir B, Rabhi L, Falih N. RNN- and CNN-based weed detection for crop improvement: An overview. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-387-396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Deep learning is a modern technique for image processing and data analysis with promising results and great potential. Successfully applied in various fields, it has recently entered the field of agriculture to address such agricultural problems as disease identification, fruit/plant classification, fruit counting, pest identification, and weed detection. The latter was the subject of our work. Weeds are harmful plants that grow in crops, competing for things like sunlight and water and causing crop yield losses. Traditional data processing techniques have several limitations and consume a lot of time. Therefore, we aimed to take inventory of deep learning networks used in agriculture and conduct experiments to reveal the most efficient ones for weed control.
Study objects and methods. We used new advanced algorithms based on deep learning to process data in real time with high precision and efficiency. These algorithms were trained on a dataset containing real images of weeds taken from Moroccan fields.
Results and discussion. The analysis of deep learning methods and algorithms trained to detect weeds showed that the Convolutional Neural Network is the most widely used in agriculture and the most efficient in weed detection compared to others, such as the Recurrent Neural Network.
Conclusion. Since the Convolutional Neural Network demonstrated excellent accuracy in weed detection, we adopted it in building a smart system for detecting weeds and spraying them in place.
Collapse
|
30
|
Hernandes VF, Marques MS, Bordin JR. Phase classification using neural networks: application to supercooled, polymorphic core-softened mixtures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:024002. [PMID: 34638114 DOI: 10.1088/1361-648x/ac2f0f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Characterization of phases of soft matter systems is a challenge faced in many physical chemical problems. For polymorphic fluids it is an even greater challenge. Specifically, glass forming fluids, as water, can have, besides solid polymorphism, more than one liquid and glassy phases, and even a liquid-liquid critical point. In this sense, we apply a neural network algorithm to analyze the phase behavior of a mixture of core-softened fluids that interact through the continuous-shouldered well (CSW) potential, which have liquid polymorphism and liquid-liquid critical points, similar to water. We also apply the neural network to mixtures of CSW fluids and core-softened alcohols models. We combine and expand methods based on bond-orientational order parameters to study mixtures, applied to mixtures of hardcore fluids and to supercooled water, to include longer range coordination shells. With this, the trained neural network was able to properly predict the crystalline solid phases, the fluid phases and the amorphous phase for the pure CSW and CSW-alcohols mixtures with high efficiency. More than this, information about the phase populations, obtained from the network approach, can help verify if the phase transition is continuous or discontinuous, and also to interpret how the metastable amorphous region spreads along the stable high density fluid phase. These findings help to understand the behavior of supercooled polymorphic fluids and extend the comprehension of how amphiphilic solutes affect the phases behavior.
Collapse
Affiliation(s)
- V F Hernandes
- Programa de Pós-Graduação em Física, Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96001-970, Pelotas-RS, Brazil
| | - M S Marques
- Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia Rua Bertioga, 892, Morada Nobre, CEP 47810-059, Barreiras-BA, Brazil
| | - José Rafael Bordin
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96001-970, Pelotas-RS, Brazil
| |
Collapse
|
31
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
32
|
Escobedo FA. On the calculation of free energies over Hamiltonian and order parameters via perturbation and thermodynamic integration. J Chem Phys 2021; 155:114112. [PMID: 34551542 DOI: 10.1063/5.0061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, complementary formulas are presented to compute free-energy differences via perturbation (FEP) methods and thermodynamic integration (TI). These formulas are derived by selecting only the most statistically significant data from the information extractable from the simulated points involved. On the one hand, commonly used FEP techniques based on overlap sampling leverage the full information contained in the overlapping macrostate probability distributions. On the other hand, conventional TI methods only use information on the first moments of those distributions, as embodied by the first derivatives of the free energy. Since the accuracy of simulation data degrades considerably for high-order moments (for FEP) or free-energy derivatives (for TI), it is proposed to consider, consistently for both methods, data up to second-order moments/derivatives. This provides a compromise between the limiting strategies embodied by common FEP and TI and leads to simple, optimized expressions to evaluate free-energy differences. The proposed formulas are validated with an analytically solvable harmonic Hamiltonian (for assessing systematic errors), an atomistic system (for computing the potential of mean force with coordinate-dependent order parameters), and a binary-component coarse-grained model (for tracing a solid-liquid phase diagram in an ensemble sampled through alchemical transformations). It is shown that the proposed FEP and TI formulas are straightforward to implement, perform similarly well, and allow robust estimation of free-energy differences even when the spacing of successive points does not guarantee them to have proper overlapping in phase space.
Collapse
Affiliation(s)
- Fernando A Escobedo
- Robert Frederick Smith School of Chemistry and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
33
|
Glielmo A, Husic BE, Rodriguez A, Clementi C, Noé F, Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem Rev 2021; 121:9722-9758. [PMID: 33945269 PMCID: PMC8391792 DOI: 10.1021/acs.chemrev.0c01195] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Unsupervised learning is becoming an essential tool to analyze the increasingly large amounts of data produced by atomistic and molecular simulations, in material science, solid state physics, biophysics, and biochemistry. In this Review, we provide a comprehensive overview of the methods of unsupervised learning that have been most commonly used to investigate simulation data and indicate likely directions for further developments in the field. In particular, we discuss feature representation of molecular systems and present state-of-the-art algorithms of dimensionality reduction, density estimation, and clustering, and kinetic models. We divide our discussion into self-contained sections, each discussing a specific method. In each section, we briefly touch upon the mathematical and algorithmic foundations of the method, highlight its strengths and limitations, and describe the specific ways in which it has been used-or can be used-to analyze molecular simulation data.
Collapse
Affiliation(s)
- Aldo Glielmo
- International
School for Advanced Studies (SISSA) 34014 Trieste, Italy
| | - Brooke E. Husic
- Freie
Universität Berlin, Department of Mathematics
and Computer Science, 14195 Berlin, Germany
| | - Alex Rodriguez
- International Centre for Theoretical
Physics (ICTP), Condensed Matter and Statistical
Physics Section, 34100 Trieste, Italy
| | - Cecilia Clementi
- Freie
Universität Berlin, Department for
Physics, 14195 Berlin, Germany
- Rice
University Houston, Department of Chemistry, Houston, Texas 77005, United States
| | - Frank Noé
- Freie
Universität Berlin, Department of Mathematics
and Computer Science, 14195 Berlin, Germany
- Freie
Universität Berlin, Department for
Physics, 14195 Berlin, Germany
- Rice
University Houston, Department of Chemistry, Houston, Texas 77005, United States
| | - Alessandro Laio
- International
School for Advanced Studies (SISSA) 34014 Trieste, Italy
- International Centre for Theoretical
Physics (ICTP), Condensed Matter and Statistical
Physics Section, 34100 Trieste, Italy
| |
Collapse
|
34
|
Whitelam S, Tamblyn I. Neuroevolutionary Learning of Particles and Protocols for Self-Assembly. PHYSICAL REVIEW LETTERS 2021; 127:018003. [PMID: 34270312 DOI: 10.1103/physrevlett.127.018003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Within simulations of molecules deposited on a surface we show that neuroevolutionary learning can design particles and time-dependent protocols to promote self-assembly, without input from physical concepts such as thermal equilibrium or mechanical stability and without prior knowledge of candidate or competing structures. The learning algorithm is capable of both directed and exploratory design: it can assemble a material with a user-defined property, or search for novelty in the space of specified order parameters. In the latter mode it explores the space of what can be made, rather than the space of structures that are low in energy but not necessarily kinetically accessible.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, Califronia 94720, USA
| | - Isaac Tamblyn
- National Research Council of Canada Ottawa, Ontario K1N 5A2, Canada Vector Institute for Artificial Intelligence Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
35
|
Ashraf C, Joshi N, Beck DAC, Pfaendtner J. Data Science in Chemical Engineering: Applications to Molecular Science. Annu Rev Chem Biomol Eng 2021; 12:15-37. [PMID: 33710940 DOI: 10.1146/annurev-chembioeng-101220-102232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemical engineering is being rapidly transformed by the tools of data science. On the horizon, artificial intelligence (AI) applications will impact a huge swath of our work, ranging from the discovery and design of new molecules to operations and manufacturing and many areas in between. Early adoption of data science, machine learning, and early examples of AI in chemical engineering has been rich with examples of molecular data science-the application tools for molecular discovery and property optimization at the atomic scale. We summarize key advances in this nascent subfield while introducing molecular data science for a broad chemical engineering readership. We introduce the field through the concept of a molecular data science life cycle and discuss relevant aspects of five distinct phases of this process: creation of curated data sets, molecular representations, data-driven property prediction, generation of new molecules, and feasibility and synthesizability considerations.
Collapse
Affiliation(s)
- Chowdhury Ashraf
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; ,
| | - Nisarg Joshi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; ,
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; , .,eScience Institute, University of Washington, Seattle, Washington 98195, USA
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
36
|
Alessandri R, Grünewald F, Marrink SJ. The Martini Model in Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008635. [PMID: 33956373 PMCID: PMC11468591 DOI: 10.1002/adma.202008635] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
Collapse
Affiliation(s)
- Riccardo Alessandri
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
- Present address:
Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fabian Grünewald
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | - Siewert J. Marrink
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| |
Collapse
|
37
|
Lindquist BA. Inverse design of equilibrium cluster fluids applied to a physically informed model. J Chem Phys 2021; 154:174907. [PMID: 34241069 DOI: 10.1063/5.0048812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inverse design strategies have proven highly useful for the discovery of interaction potentials that prompt self-assembly of a variety of interesting structures. However, often the optimized particle interactions do not have a direct relationship to experimental systems. In this work, we show that Relative Entropy minimization is able to discover physically meaningful parameter sets for a model interaction built from depletion attraction and electrostatic repulsion that yield self-assembly of size-specific clusters. We then explore the sensitivity of the optimized interaction potentials with respect to deviations in the underlying physical quantities, showing that clustering behavior is largely preserved even as the optimized parameters are perturbed.
Collapse
Affiliation(s)
- Beth A Lindquist
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
38
|
Koutsoukos S, Philippi F, Malaret F, Welton T. A review on machine learning algorithms for the ionic liquid chemical space. Chem Sci 2021; 12:6820-6843. [PMID: 34123314 PMCID: PMC8153233 DOI: 10.1039/d1sc01000j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
There are thousands of papers published every year investigating the properties and possible applications of ionic liquids. Industrial use of these exceptional fluids requires adequate understanding of their physical properties, in order to create the ionic liquid that will optimally suit the application. Computational property prediction arose from the urgent need to minimise the time and cost that would be required to experimentally test different combinations of ions. This review discusses the use of machine learning algorithms as property prediction tools for ionic liquids (either as standalone methods or in conjunction with molecular dynamics simulations), presents common problems of training datasets and proposes ways that could lead to more accurate and efficient models.
Collapse
Affiliation(s)
- Spyridon Koutsoukos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Francisco Malaret
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
39
|
Kadulkar S, Howard MP, Truskett TM, Ganesan V. Prediction and Optimization of Ion Transport Characteristics in Nanoparticle-Based Electrolytes Using Convolutional Neural Networks. J Phys Chem B 2021; 125:4838-4849. [PMID: 33914555 DOI: 10.1021/acs.jpcb.1c02004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We develop a convolutional neural network (CNN) model to predict the diffusivity of cations in nanoparticle-based electrolytes and use it to identify the characteristics of morphologies that exhibit optimal transport properties. The ground truth data are obtained from kinetic Monte Carlo (kMC) simulations of cation transport parametrized using a multiscale modeling strategy. We implement deep learning approaches to quantitatively link the diffusivity of cations to the spatial arrangement of the nanoparticles. We then integrate the trained CNN model with a topology optimization algorithm for accelerated discovery of nanoparticle morphologies that exhibit optimal cation diffusivities at a specified nanoparticle loading, and we investigate the ability of the CNN model to quantitatively account for the influence of interparticle spatial correlations on cation diffusivity. Finally, by using data-driven approaches, we explore how simple descriptors of nanoparticle morphology correlate with cation diffusivity, thus providing a physical rationale for the observed optimal microstructures. The results of this study highlight the capability of CNNs to serve as surrogate models for structure-property relationships in composites with monodisperse spherical particles, which can in turn be used with inverse methods to discover morphologies that produce optimal target properties.
Collapse
Affiliation(s)
- Sanket Kadulkar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael P Howard
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering and Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
40
|
Bias free multiobjective active learning for materials design and discovery. Nat Commun 2021; 12:2312. [PMID: 33875649 PMCID: PMC8055971 DOI: 10.1038/s41467-021-22437-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 11/09/2022] Open
Abstract
The design rules for materials are clear for applications with a single objective. For most applications, however, there are often multiple, sometimes competing objectives where there is no single best material and the design rules change to finding the set of Pareto optimal materials. In this work, we leverage an active learning algorithm that directly uses the Pareto dominance relation to compute the set of Pareto optimal materials with desirable accuracy. We apply our algorithm to de novo polymer design with a prohibitively large search space. Using molecular simulations, we compute key descriptors for dispersant applications and drastically reduce the number of materials that need to be evaluated to reconstruct the Pareto front with a desired confidence. This work showcases how simulation and machine learning techniques can be coupled to discover materials within a design space that would be intractable using conventional screening approaches.
Collapse
|
41
|
Upadhya R, Kosuri S, Tamasi M, Meyer TA, Atta S, Webb MA, Gormley AJ. Automation and data-driven design of polymer therapeutics. Adv Drug Deliv Rev 2021; 171:1-28. [PMID: 33242537 PMCID: PMC8127395 DOI: 10.1016/j.addr.2020.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Polymers are uniquely suited for drug delivery and biomaterial applications due to tunable structural parameters such as length, composition, architecture, and valency. To facilitate designs, researchers may explore combinatorial libraries in a high throughput fashion to correlate structure to function. However, traditional polymerization reactions including controlled living radical polymerization (CLRP) and ring-opening polymerization (ROP) require inert reaction conditions and extensive expertise to implement. With the advent of air-tolerance and automation, several polymerization techniques are now compatible with well plates and can be carried out at the benchtop, making high throughput synthesis and high throughput screening (HTS) possible. To avoid HTS pitfalls often described as "fishing expeditions," it is crucial to employ intelligent and big data approaches to maximize experimental efficiency. This is where the disruptive technologies of machine learning (ML) and artificial intelligence (AI) will likely play a role. In fact, ML and AI are already impacting small molecule drug discovery and showing signs of emerging in drug delivery. In this review, we present state-of-the-art research in drug delivery, gene delivery, antimicrobial polymers, and bioactive polymers alongside data-driven developments in drug design and organic synthesis. From this insight, important lessons are revealed for the polymer therapeutics community including the value of a closed loop design-build-test-learn workflow. This is an exciting time as researchers will gain the ability to fully explore the polymer structural landscape and establish quantitative structure-property relationships (QSPRs) with biological significance.
Collapse
Affiliation(s)
| | | | | | | | - Supriya Atta
- Rutgers, The State University of New Jersey, USA
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | | |
Collapse
|
42
|
Berressem F, Nikoubashman A. BoltzmaNN: Predicting effective pair potentials and equations of state using neural networks. J Chem Phys 2021; 154:124123. [PMID: 33810691 DOI: 10.1063/5.0045441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neural networks (NNs) are employed to predict equations of state from a given isotropic pair potential using the virial expansion of the pressure. The NNs are trained with data from molecular dynamics simulations of monoatomic gases and liquids, sampled in the NVT ensemble at various densities. We find that the NNs provide much more accurate results compared to the analytic low-density limit estimate of the second virial coefficient and the Carnahan-Starling equation of state for hard sphere liquids. Furthermore, we design and train NNs for computing (effective) pair potentials from radial pair distribution functions, g(r), a task that is often performed for inverse design and coarse-graining. Providing the NNs with additional information on the forces greatly improves the accuracy of the predictions since more correlations are taken into account; the predicted potentials become smoother, are significantly closer to the target potentials, and are more transferable as a result.
Collapse
Affiliation(s)
- Fabian Berressem
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
43
|
Peerless JS, Kwansa AL, Hawkins BS, Smith RC, Yingling YG. Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model. J Chem Inf Model 2021; 61:1745-1761. [PMID: 33729778 DOI: 10.1021/acs.jcim.0c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular dynamics (MD) simulation technique is among the most broadly used computational methods to investigate atomistic phenomena in a variety of chemical and biological systems. One of the most common (and most uncertain) parametrization steps in MD simulations of soft materials is the assignment of partial charges to atoms. Here, we apply uncertainty quantification and sensitivity analysis calculations to assess the uncertainty associated with partial charge assignment in the context of MD simulations of an organic solvent. Our results indicate that the effect of partial charge variance on bulk properties, such as solubility parameters, diffusivity, dipole moment, and density, measured from MD simulations is significant; however, measured properties are observed to be less sensitive to partial charges of less accessible (or buried) atoms. Diffusivity, for example, exhibits a global sensitivity of up to 22 × 10-5 cm2/s per electron charge on some acetonitrile atoms. We then demonstrate that machine learning techniques, such as Gaussian process regression (GPR), can be effective and rapid tools for uncertainty quantification of MD simulations. We show that the formulation and application of an efficient GPR surrogate model for the prediction of responses effectively reduces the computational time of additional sample points from hours to milliseconds. This study provides a much-needed context for the effect that partial charge uncertainty has on MD-derived material properties to illustrate the benefit of considering partial charges as distributions rather than point-values. To aid in this treatment, this work then demonstrates methods for rapid characterization of resulting sensitivity in MD simulations.
Collapse
Affiliation(s)
- James S Peerless
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Albert L Kwansa
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Branden S Hawkins
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Ralph C Smith
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States of America
| |
Collapse
|
44
|
Ma Y, Aulicino JC, Ferguson AL. Inverse Design of Self-Assembling Diamond Photonic Lattices from Anisotropic Colloidal Clusters. J Phys Chem B 2021; 125:2398-2410. [PMID: 33647208 DOI: 10.1021/acs.jpcb.0c08723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Colloidal nanoparticles with anisotropic interactions are promising building blocks for the fabrication of complex functional materials. A challenge in the self-assembly of colloidal particles is the rational design of geometry and chemistry to program the formation of a desired target structure. We report an inverse design procedure integrating Langevin dynamics simulations and evolutionary algorithms to engineer anisotropic patchy colloidal clusters to spontaneously assemble into a cubic diamond lattice possessing a complete photonic band gap. The combination of a tetrahedral cluster geometry and optimized placement of a single type of anisotropic interaction patch results in a colloidal building block predicted to assemble a cubic diamond lattice with more than 82% yield. This design represents an experimentally viable colloidal building block capable of high-fidelity assembly of a cubic diamond lattice.
Collapse
Affiliation(s)
- Yutao Ma
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph C Aulicino
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
45
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
46
|
Piñeros WD, Tlusty T. Inverse design of nonequilibrium steady states: A large-deviation approach. Phys Rev E 2021; 103:022101. [PMID: 33735990 DOI: 10.1103/physreve.103.022101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The design of small scale nonequilibrium steady states (NESS) is a challenging, open ended question. While similar equilibrium problems are tractable using standard thermodynamics, a generalized description for nonequilibrium systems is lacking, making the design problem particularly difficult. Here we show we can exploit the large-deviation behavior of a Brownian particle and design a variety of geometrically complex steady-state density distributions and flux field flows. We achieve this design target from direct knowledge of the joint large-deviation functional for the empirical density and flow, and a "relaxation" algorithm on the desired target states via adjustable force field parameters. We validate the method by replicating analytical results, and demonstrate its capacity to yield complex prescribed targets, such as rose-curve or polygonal shapes on the plane. We consider this dynamical fluctuation approach a first step towards the design of more complex NESS where general frameworks are otherwise still lacking.
Collapse
Affiliation(s)
- William D Piñeros
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Physics and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
47
|
Tu KH, Huang H, Lee S, Lee W, Sun Z, Alexander-Katz A, Ross CA. Machine Learning Predictions of Block Copolymer Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005713. [PMID: 33206426 DOI: 10.1002/adma.202005713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Directed self-assembly of block copolymers is a key enabler for nanofabrication of devices with sub-10 nm feature sizes, allowing patterning far below the resolution limit of conventional photolithography. Among all the process steps involved in block copolymer self-assembly, solvent annealing plays a dominant role in determining the film morphology and pattern quality, yet the interplay of the multiple parameters during solvent annealing, including the initial thickness, swelling, time, and solvent ratio, makes it difficult to predict and control the resultant self-assembled pattern. Here, machine learning tools are applied to analyze the solvent annealing process and predict the effect of process parameters on morphology and defectivity. Two neural networks are constructed and trained, yielding accurate prediction of the final morphology in agreement with experimental data. A ridge regression model is constructed to identify the critical parameters that determine the quality of line/space patterns. These results illustrate the potential of machine learning to inform nanomanufacturing processes.
Collapse
Affiliation(s)
- Kun-Hua Tu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wonmoo Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
48
|
Topel M, Ferguson AL. Reconstruction of protein structures from single-molecule time series. J Chem Phys 2020; 153:194102. [DOI: 10.1063/5.0024732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Maximilian Topel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
49
|
Webb MA, Jackson NE, Gil PS, de Pablo JJ. Targeted sequence design within the coarse-grained polymer genome. SCIENCE ADVANCES 2020; 6:eabc6216. [PMID: 33087352 PMCID: PMC7577717 DOI: 10.1126/sciadv.abc6216] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 05/05/2023]
Abstract
The chemical design of polymers with target structural and/or functional properties represents a grand challenge in materials science. While data-driven design approaches are promising, success with polymers has been limited, largely due to limitations in data availability. Here, we demonstrate the targeted sequence design of single-chain structure in polymers by combining coarse-grained modeling, machine learning, and model optimization. Nearly 2000 unique coarse-grained polymers are simulated to construct and analyze machine learning models. We find that deep neural networks inexpensively and reliably predict structural properties with limited sequence information as input. By coupling trained ML models with sequential model-based optimization, polymer sequences are proposed to exhibit globular, swollen, or rod-like behaviors, which are verified by explicit simulations. This work highlights the promising integration of coarse-grained modeling with data-driven design and represents a necessary and crucial step toward more complex polymer design efforts.
Collapse
Affiliation(s)
- Michael A Webb
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60615, USA
| | - Nicholas E Jackson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60615, USA
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 06349, USA
| | - Phwey S Gil
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60615, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60615, USA.
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 06349, USA
| |
Collapse
|
50
|
Dumortier L, Mossa S. From Ionic Surfactants to Nafion through Convolutional Neural Networks. J Phys Chem B 2020; 124:8918-8927. [DOI: 10.1021/acs.jpcb.0c06172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Loïc Dumortier
- X-ray Microspectroscopy and Imaging Group, Department of Chemistry, Ghent University, Krijgslaan 281/S12, B-9000 Gent, Belgium
| | - Stefano Mossa
- CEA, IRIG-MEM, Univ. Grenoble Alpes, 38000 Grenoble, France
- Institut Laue-Langevin,
BP 156, F-38042 Cedex 9 Grenoble, France
| |
Collapse
|