1
|
Ortiz-Galvez LM, Caballero-Guzman A, Lopes C, Alfaro-Moreno E. Probabilistic material flow analysis of released nano titanium dioxide in Mexico. NANOIMPACT 2024; 35:100516. [PMID: 38838766 DOI: 10.1016/j.impact.2024.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Engineered Nanomaterials (ENMs) or products containing ENMs, known as nano-enabled products are commercialized globally by a large number of companies. Concern about the potential risks and negative impacts of releasing ENMs into the environment is under investigation. For this reason, methodologies to estimate the probable mass concentrations of ENMs released in different regions of the world have been developed. As a first attempt to estimate the probable mass flows of nanosized titanium dioxide (nano-TiO2) released in Mexico, we developed a Probabilistic Material Flow Analysis (PMFA) for 2015. The model describes probabilistic mass flows of released nano-TiO2 during the life cycle of sunscreens, coatings, ceramic, and other nano-enabled products, including the flows through the solid waste and wastewater management systems, as well as the transfer of nano-TiO2 to three environmental compartments (atmosphere, topsoil, and surface water). The PMFA incorporates the uncertainty related to the input data. We observed that the most significant nano-TiO2 flows occur to the surface water, landfill, and soil compartments, targeted as the main "hot-spots", where living organisms could be more exposed to this material. Further improvements in the model are needed due to some data gaps at some life cycle stages, for instance, solid waste management and reused wastewater manipulation for irrigation purposes. Finally, the model developed in this study can be adjusted to assess other ENM releases and can be beneficial for further investigation in fate modeling and environmental risk assessment.
Collapse
Affiliation(s)
- Luis Mauricio Ortiz-Galvez
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; Plentzia Marine Station University of the Basque Country, Areatza Pasealekua, 48620 Plentzia, Bizkaia Basque Country, Spain
| | | | - Carla Lopes
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Ernesto Alfaro-Moreno
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| |
Collapse
|
2
|
Li X, Li L, Tang L, Mei J, Fu J. Unveiling combined ecotoxicity: Interactions and impacts of engineered nanoparticles and PPCPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170746. [PMID: 38342466 DOI: 10.1016/j.scitotenv.2024.170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Emerging contaminants such as engineered nanoparticles (ENPs), pharmaceuticals and personal care products (PPCPs) are of great concern because of their wide distribution and incomplete removal in conventional wastewater and soil treatment processes. The production and usage of ENPs and PPCPs inevitably result in their coexistence in different environmental media, thus posing various risks to organisms in aquatic and terrestrial ecosystems. However, the existing literature on the physicochemical interactions between ENPs and PPCPs and their effects on organisms is rather limited. Therefore, this paper summarized the ecotoxicity of combined ENPs and PPCPs by discussing: (1) the interactions between ENPs and PPCPs, including processes such as aggregation, adsorption, transformation, and desorption, considering the influence of environmental factors like pH, ionic strength, dissolved organic matter, and temperature; (2) the effects of these interactions on bioaccumulation, bioavailability and biotoxicity in organisms at different trophic levels; (3) the impacted of ENPs and PPCPs on cellular-level biological process. This review elucidated the potential ecological hazards associated with the interaction of ENPs and PPCPs, and serves as a foundation for future investigations into the ecotoxicity and mode of action of ENPs, PPCPs, and their co-occurring metabolites.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Jingting Mei
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
3
|
Su Y, Wang B, Tong X, Peng S, Liu S, Xing B, Ji R. Steam disinfection enhances bioaccessibility of metallic nanoparticles in nano-enabled silicone-rubber baby bottle teats, pacifiers, and teethers. J Environ Sci (China) 2024; 136:161-171. [PMID: 37923427 DOI: 10.1016/j.jes.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/07/2023]
Abstract
Nano-enabled silicone-rubber articles for feeding or chewing could be a source of metallic nanoparticles (NPs) directly exposed to infants and young children. However, the impact of steam disinfection on release of NPs and the related potential risks to children's health are unknown. Here, we investigated contents and form of Ag and Zn in 57 nano-enabled silicone-rubber baby bottle teats, pacifiers, and teethers of seven countries and examined the impacts of steam disinfection on in vitro bioaccessibility (IVBA) of Ag and Zn in the articles. Nearly 89% articles had a mixture of Ag- and Zn-containing NPs and the teethers had relatively high Ag and Zn contents (up to 501 and 254 µg/g, respectively). Steam disinfection caused rubber decomposition into micro(nano)plastics (0.54-15.7 µm) and NP release from the interior of bulk rubber and micro-sized plastics, thus enhancing the IVBA of Ag and Zn by up to 5.5 times. The findings provide insights into mechanisms for NP release by steam disinfection. Though oral exposure risk assessment suggested low health concerns on individual metal release, our study points out the need to assess the potential health risks of child co-exposure to metallic NPs and micro(nano)plastics.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Vignardi CP, Adeleye AS, Kayal M, Oranu E, Miller RJ, Keller AA, Holden PA, Lenihan HS. Aging of Copper Nanoparticles in the Marine Environment Regulates Toxicity for a Coastal Phytoplankton Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6989-6998. [PMID: 37083408 DOI: 10.1021/acs.est.2c07953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Environmental conditions in aquatic ecosystems transform toxic chemicals over time, influencing their bioavailability and toxicity. Using an environmentally relevant methodology, we tested how exposure to seawater for 1-15 weeks influenced the accumulation and toxicity of copper nanoparticles (nano-Cu) in a marine phytoplankton species. Nano-Cu rapidly agglomerated in seawater and then decreased in size due to Cu dissolution. Dissolution rates declined during weeks 1-4 and remained low until 15 weeks, when the large agglomerates that had formed began to rapidly dissolve again. Marine phytoplankton species were exposed for 5-day periods to nano-Cu aged from 1 to 15 weeks at concentrations from 0.01 to 20 ppm. Toxicity to phytoplankton, measured as change in population growth rate, decreased significantly with particle aging from 0 to 4 weeks but increased substantially in the 15-week treatment due apparently to elevated Cu dissolution of reagglomerated particles. Results indicate that the transformation, fate, and toxicity of nano-Cu in marine ecosystems are influenced by a highly dynamic physicochemical aging process.
Collapse
Affiliation(s)
- Caroline P Vignardi
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Adeyemi S Adeleye
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Mohsen Kayal
- UMR ENTROPIE, IRD, IFREMER, CNRS, University of La Reunion, University of New Caledonia, Noumea 98848, New Caledonia
| | - Ekene Oranu
- College of Letters & Science, University of California, Santa Barbara, California 93106, United States
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Patricia A Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Hunter S Lenihan
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. NANOMATERIALS 2022; 12:nano12111810. [PMID: 35683670 PMCID: PMC9181910 DOI: 10.3390/nano12111810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
The use of nanomaterials has been increasing in recent times, and they are widely used in industries such as cosmetics, drugs, food, water treatment, and agriculture. The rapid development of new nanomaterials demands a set of approaches to evaluate the potential toxicity and risks related to them. In this regard, nanosafety has been using and adapting already existing methods (toxicological approach), but the unique characteristics of nanomaterials demand new approaches (nanotoxicology) to fully understand the potential toxicity, immunotoxicity, and (epi)genotoxicity. In addition, new technologies, such as organs-on-chips and sophisticated sensors, are under development and/or adaptation. All the information generated is used to develop new in silico approaches trying to predict the potential effects of newly developed materials. The overall evaluation of nanomaterials from their production to their final disposal chain is completed using the life cycle assessment (LCA), which is becoming an important element of nanosafety considering sustainability and environmental impact. In this review, we give an overview of all these elements of nanosafety.
Collapse
|
6
|
Stetten L, Mackevica A, Tepe N, Hofmann T, von der Kammer F. Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles. NANOMATERIALS 2022; 12:nano12030519. [PMID: 35159864 PMCID: PMC8839430 DOI: 10.3390/nano12030519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023]
Abstract
The dissolution of metal-based engineered nanomaterials (ENMs) in aquatic environments is an important mechanism governing the release of toxic dissolved metals. For the registration of ENMs at regulatory bodies such as REACH, their dissolution behavior must therefore be assessed using standardized experimental approaches. To date, there are no standardized procedures for dissolution testing of ENMs in environmentally relevant aquatic media, and the Organisation for Economic Co-operation and Development (OECD) strongly encourages their development into test guidelines. According to a survey of surface water hydrochemistry, we propose to use media with low concentrations of Ca2+ and Mg2+ for a better simulation of the ionic background of surface waters, at pH values representing acidic (5 < pH < 6) and near-neutral/alkaline (7 < pH < 8) waters. We evaluated a continuous flow setup adapted to expose small amounts of ENMs to aqueous media, to mimic ENMs in surface waters. For this purpose, silver nanoparticles (Ag NPs) were used as model for soluble metal-bearing ENMs. Ag NPs were deposited onto a 10 kg.mol−1 membrane through the injection of 500 µL of a 5 mg.L−1 or 20 mg.L−1 Ag NP dispersion, in order to expose only a few micrograms of Ag NPs to the aqueous media. The dissolution rate of Ag NPs in 10 mM NaNO3 was more than two times higher for ~2 µg compared with ~8 µg of Ag NPs deposited onto the membrane, emphasizing the importance of evaluating the dissolution of ENMs at low concentrations in order to keep a realistic scenario. Dissolution rates of Ag NPs in artificial waters (2 mM Ca(NO3)2, 0.5 mM MgSO4, 0–5 mM NaHCO3) were also determined, proving the feasibility of the test using environmentally relevant media. In view of the current lack of harmonized methods, this work encourages the standardization of continuous flow dissolution methods toward OECD guidelines focused on natural aquatic environments, for systematic comparisons of nanomaterials and adapted risk assessments.
Collapse
|
7
|
Carboni A, Slomberg DL, Nassar M, Santaella C, Masion A, Rose J, Auffan M. Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16270-16282. [PMID: 34854667 DOI: 10.1021/acs.est.1c02221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, mesocosms have emerged as a useful tool for the environmental study of engineered nanomaterials (ENMs) as they can mimic the relevant exposure scenario of contamination. Herein, we analyzed the scientific outcomes of aquatic mesocosm experiments, with regard to their designs, the ENMs tested, and the end points investigated. Several mesocosm designs were consistently applied in the past decade to virtually mimic various contamination scenarios with regard to ecosystem setting as well as ENMs class, dose, and dosing. Statistical analyses were carried out with the literature data to identify the main parameters driving ENM distribution in the mesocosms and the potential risk posed to benthic and planktonic communities as well as global ecosystem responses. These analyses showed that at the end of the exposure, mesocosm size (water volume), experiment duration, and location indoor/outdoor had major roles in defining the ENMs/metal partitioning. Moreover, a higher exposure of the benthic communities is often observed but did not necessarily translate to a higher risk due to the lower hazard posed by transformed ENMs in the sediments (e.g., aggregated, sulfidized). However, planktonic organisms were generally exposed to lower concentrations of potentially more reactive and toxic ENM species. Hence, mesocosms can be complementary tools to existing standard operational procedures for regulatory purposes and environmental fate and risk assessment of ENMs. To date, the research was markedly unbalanced toward the investigation of metal-based ENMs compared to metalloid- and carbon-based ENMs but also nanoenabled products. Future studies are expected to fill this gap, with special regard to high production volume and potentially hazardous ENMs. Finally, to take full advantage of mesocosms, future studies must be carefully planned to incorporate interdisciplinary approaches and ensure that the large data sets produced are fully exploited.
Collapse
Affiliation(s)
- Andrea Carboni
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Danielle L Slomberg
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Mohammad Nassar
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- Laboratory of Microbial Ecology of the Rhizosphere, Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, ECCOREV FR 3098, F-13108 Saint Paul-Lez-Durance, France
| | - Armand Masion
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Jerome Rose
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
- Civil and Environmental Engineering Department, Duke University, Durham, North Carolina 27707, United States
| | - Melanie Auffan
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
- Civil and Environmental Engineering Department, Duke University, Durham, North Carolina 27707, United States
| |
Collapse
|
8
|
Nizam NUM, Hanafiah MM, Woon KS. A Content Review of Life Cycle Assessment of Nanomaterials: Current Practices, Challenges, and Future Prospects. NANOMATERIALS 2021; 11:nano11123324. [PMID: 34947673 PMCID: PMC8708326 DOI: 10.3390/nano11123324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Abstract
This paper provides a comprehensive review of 71 previous studies on the life cycle assessment (LCA) of nanomaterials (NMs) from 2001 to 2020 (19 years). Although various studies have been carried out to assess the efficiency and potential of wastes for nanotechnology, little attention has been paid to conducting a comprehensive analysis related to the environmental performance and hotspot of NMs, based on LCA methodology. Therefore, this paper highlights and discusses LCA methodology’s basis (goal and scope definition, system boundary, life cycle inventory, life cycle impact assessment, and interpretation) to insights into current practices, limitations, progress, and challenges of LCA application NMs. We found that there is still a lack of comprehensive LCA study on the environmental impacts of NMs until end-of-life stages, thereby potentially supporting misleading conclusions, in most of the previous studies reviewed. For a comprehensive evaluation of LCA of NMs, we recommend that future studies should: (1) report more detailed and transparent LCI data within NMs LCA studies; (2) consider the environmental impacts and potential risks of NMs within their whole life cycle; (3) adopt a transparent and prudent characterization model; and (4) include toxicity, uncertainty, and sensitivity assessments to analyze the exposure pathways of NMs further. Future recommendations towards improvement and harmonization of methodological for future research directions were discussed and provided. This study’s findings redound to future research in the field of LCA NMs specifically, considering that the release of NMs into the environment is yet to be explored due to limited understanding of the mechanisms and pathways involved.
Collapse
Affiliation(s)
- Nurul Umairah M. Nizam
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Marlia M. Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence:
| | - Kok Sin Woon
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| |
Collapse
|
9
|
Patch D, Koch I, Peloquin D, O'Carroll D, Weber K. Development and validation of a method for the weathering and detachment of representative nanomaterials from conventional silver-containing textiles. CHEMOSPHERE 2021; 284:131269. [PMID: 34186226 DOI: 10.1016/j.chemosphere.2021.131269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Nanotoxicology research commonly utilizes pristine nanomaterials for toxicity assessment, which may not be perfectly representative of what is released into environmental systems. The goal of the present study was to develop a method to simulate human weathering of silver-containing textiles. To achieve this goal the roles of physical and chemical stress on X-Static® containing athletic textiles were investigated and compared to data collected from human weathering experiments and literature. Chemical weathering methods (artificial sweat) were used independently and alongside physical weathering methods (3D printed stretching and abrasion instruments). Non-weathered control textiles were found to release 29 ± 11 mg Ag/kg of textile into wash water effluent (ICP-MS), with 16% being released as ionic silver (ICP-MS) and the rest as metallic nanomaterials, nanosheets, and particulates of varying size (SEM/XANES). Real and simulated human weathered textiles released similar amounts of total silver (67 ± 11 mg Ag/kg, 84 ± 13 mg Ag/kg respectively) with the silver released being composed of ionic (1.5%, 2%) and a mixture of metallic and chlorinated nanomaterials, nanosheets, and particulates. The method was shown to effectively detach environmentally representative silver materials from silver-containing textiles and can provide such materials for future studies on the assessment of their fate, transport, and toxicity.
Collapse
Affiliation(s)
- David Patch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada
| | - Iris Koch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada
| | - Derek Peloquin
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Denis O'Carroll
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kela Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada.
| |
Collapse
|
10
|
Ahmed T, Noman M, Manzoor N, Ali S, Rizwan M, Ijaz M, Allemailem KS, BinShaya AS, Alhumaydhi FA, Li B. Recent advances in nanoparticles associated ecological harms and their biodegradation: Global environmental safety from nano-invaders. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106093. [DOI: 10.1016/j.jece.2021.106093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
11
|
Lehutso RF, Thwala M. Assessment of Nanopollution from Commercial Products in Water Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2537. [PMID: 34684978 PMCID: PMC8539925 DOI: 10.3390/nano11102537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/19/2023]
Abstract
The use of nano-enabled products (NEPs) can release engineered nanomaterials (ENMs) into water resources, and the increasing commercialisation of NEPs raises the environmental exposure potential. The current study investigated the release of ENMs and their characteristics from six commercial products (sunscreens, body creams, sanitiser, and socks) containing nTiO2, nAg, and nZnO. ENMs were released in aqueous media from all investigated NEPs and were associated with ions (Ag+ and Zn2+) and coating agents (Si and Al). NEPs generally released elongated (7-9 × 66-70 nm) and angular (21-80 × 25-79 nm) nTiO2, near-spherical (12-49 nm) and angular nAg (21-76 × 29-77 nm), and angular nZnO (32-36 × 32-40 nm). NEPs released varying ENMs' total concentrations (ca 0.4-95%) of total Ti, Ag, Ag+, Zn, and Zn2+ relative to the initial amount of ENMs added in NEPs, influenced by the nature of the product and recipient water quality. The findings confirmed the use of the examined NEPs as sources of nanopollution in water resources, and the physicochemical properties of the nanopollutants were determined. Exposure assessment data from real-life sources are highly valuable for enriching the robust environmental risk assessment of nanotechnology.
Collapse
Affiliation(s)
- Raisibe Florence Lehutso
- Water Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - Melusi Thwala
- Water Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
- Department of Environmental Health, Nelson Mandela University, Gqeberha 6019, South Africa
- Centre for Environmental Management, University of the Free State, Bloemfontein 9031, South Africa
| |
Collapse
|
12
|
Wang J, Wang L, Zhao W, Yu N, Cheng M, Su M, Hu J, Wu X, Du H, Wang M. The Role of Apoptosis Pathway in the Cytotoxicity Induced by Fresh and Aged Zinc Oxide Nanoparticles. NANOSCALE RESEARCH LETTERS 2021; 16:129. [PMID: 34370102 PMCID: PMC8353024 DOI: 10.1186/s11671-021-03587-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are used in a wide range of applications including industry, commercial products and medicine field. Numerous mechanistic studies for ZnO NPs' toxicity were performed on pristine (fresh) NPs. However, the cytotoxicity induced by the transformed (aged) ZnO NPs and the underlying mechanisms remain unclear. Here, we observed the physicochemical transformation of ZnO NPs underwent over time, followed by evaluating the cytotoxicity of fresh and aged NPs. We found that fresh ZnO NPs induced higher apoptosis level than their aged counterparts. Accordingly, RNA sequencing data from aged ZnO NP-treated human-hamster hybrid (AL) cells showed that p53, PI3k-Akt, FoXO, Glutathione, ErbB, HIF-1, Oxytocin and Jak-STAT signaling pathways were enriched but no apoptosis pathway. Quantitative PCR results revealed the significantly higher mRNA level of IL1B and CD69 in fresh NP-treated groups compared to that of aged ZnO NP- and zinc chloride-treated groups. The above results indicated that the lower cytotoxicity of aged ZnO NPs is partially attributed to their reduced potency in inducing apoptosis. The transcriptional regulation of multiple signal pathways activated by aged NPs may help to build the cellular homeostasis. Taken together, our findings highlight the influence of aging (environmental transformation) process of ZnO NPs on their toxicities and biological consequences.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Lei Wang
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Wenting Zhao
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Meiling Cheng
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Jian Hu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xiaoyan Wu
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hua Du
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China.
| | - Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China.
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81, Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Ameen F, Alsamhary K, Alabdullatif JA, ALNadhari S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112027. [PMID: 33578100 DOI: 10.1016/j.ecoenv.2021.112027] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 05/02/2023]
Abstract
The unregulated deposition of metal-based nanoparticles in terrestrial ecosystems particularly in agricultural systems has alarmingly threatened the sustainability of the environment and diversity of beneficial microbial populations such as soil bacteria and fungi. This occurs due to the poor treatment of biosolids during wastewater treatment and their application in agricultural fields to enhance the fertility of soils. Continuous deposition, low biodegradability, and longer persistence of metal nanoparticles in soils adversely impact the population of soil beneficial bacteria and fungi. The current literature suggests the toxic outcome of nanoparticle-fungi and nanoparticle-bacteria interactions based on various toxicity endpoints. Therefore, due to the extreme importance of beneficial soil bacteria and fungi for soil fertility and plant growth, this review summarizes the production, application, release of metal nanoparticles in the soil system and their impact on various soil microbes specifically plant growth-promoting rhizobacteria, cellular toxicity and impact of nanoparticles on bioactive molecule production by microbes, destructive nanoparticle impact on unicellular, mycorrhizal, and cellulose/lignin degrading fungi. This review also highlights the molecular alterations in fungi and bacteria-induced by nanoparticles and suggests a plausible toxicity mechanism. This review advances the understanding of the nano-toxicity aspect as a common outcome of nanoparticles and fungi/bacteria interactions.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jamila A Alabdullatif
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh ALNadhari
- Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Hedberg J, Eriksson M, Kesraoui A, Norén A, Odnevall Wallinder I. Transformation of silver nanoparticles released from skin cream and mouth spray in artificial sweat and saliva solutions: particle size, dissolution, and surface area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12968-12979. [PMID: 33097992 PMCID: PMC7921047 DOI: 10.1007/s11356-020-11241-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
The use of silver nanoparticles (Ag NPs) in consumer products can result in diffuse environmental dispersion of both NPs and ionic silver. This study investigated the transformation of Ag NPs present in two consumer products (skin cream, mouth spray) in terms of release of Ag NPs and ionic silver and changes in particle size in artificial sweat and saliva solutions. Large differences in silver release were observed with the smaller sized Ag NPs in mouth spray releasing more silver compared with the Ag NPs of the skin cream. Substantial particle agglomeration took place in both artificial sweat and saliva, forming large-sized agglomerates (> 100 nm). The amount of dissolved silver in solution after 24 h was less than 10% of the total amount of Ag NPs for both products. The results show that the Ag NPs of these consumer products will largely remain as NPs even after 24 h of skin or saliva contact. The use of normalization by geometric surface area of the particles was tested as a way to compare dissolution for Ag NPs of different characteristics, including pristine, bare, as well as PVP-capped Ag NPs. Normalization of silver dissolution with the geometric surface area was shown promising, but more extensive studies are required to unambiguously conclude whether it is a way forward to enable grouping of the dissolution behavior of Ag NPs released from consumer products.
Collapse
Affiliation(s)
- Jonas Hedberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden.
| | - Madeleine Eriksson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Amina Kesraoui
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Alexander Norén
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| |
Collapse
|
15
|
Grillo R, Fraceto LF, Amorim MJB, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124148. [PMID: 33059255 DOI: 10.1016/j.jhazmat.2020.124148] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Recent years have seen the development of various colloidal formulations of pesticides and other agrochemicals aimed at use in sustainable agriculture. These formulations include inorganic, organic or hybrid particulates, or nanocarriers composed of biodegradable polymers, that can provide a better control of the release of active ingredients. The very small particle sizes and high surface areas of nanopesticides may however also lead to some unintended (eco)toxicological effects due to the way in which they interact with the target and non-target species and the environment. The current level of knowledge on ecotoxicological effects of nanopesticides is scarce, especially in regard to the fate and behaviour of such formulations in the environment. Nanopesticides will however have to cross a stringent regulatory scrutiny before marketing in most countries for health and environmental risks under a range of regulatory frameworks that require pre-market notification, risk assessment and approval, followed by labelling, post-market monitoring and surveillance. This review provides an overview of the key regulatory and ecotoxicological aspects relating to nanopesticides that will need to be considered for environmentally-sustainable use in agriculture.
Collapse
Affiliation(s)
- Renato Grillo
- Department of Physics and Chemistry, São Paulo State University (UNESP), Avenida Brasil, 56, Centro, 15385-000 Ilha Solteira, SP, Brazil.
| | - Leonardo F Fraceto
- Department of Environmental Engineering, São Paulo State University (UNESP), Avenida Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Reinhilde Schoonjans
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43123 Parma, Italy
| | - Qasim Chaudhry
- University of Chester, Parkgate Road, Chester CH1 4BJ, United Kingdom
| |
Collapse
|
16
|
Xiarchos I, Morozinis AK, Kavouras P, Charitidis CA. Nanocharacterization, Materials Modeling, and Research Integrity as Enablers of Sound Risk Assessment: Designing Responsible Nanotechnology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001590. [PMID: 32656997 DOI: 10.1002/smll.202001590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Nanotechnology, as a mature enabling technology, has great potential to boost societal welfare. However, nanomaterials' current and foreseen applications raise serious concerns about their impact on human health and the environment. These concerns emerge because a reliable risk assessment in nanotechnology is yet to be achieved. The reasons for such a shortcoming are the inherent difficulties in characterizing nanomaterials properties. The interaction of characterization with modeling is an open issue and, due to overarching concerns about the reliability of research results, usually framed within the context of research integrity. This essay explores the connection between these different, but deeply intertwined concerns and the way they enable the production of responsible nanotechnology, i.e., nanotechnology devoted to societal welfare.
Collapse
Affiliation(s)
- Ioannis Xiarchos
- Research Lab of Advanced, Composite, Nanomaterials, and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str., Zographos, Athens, 15780, Greece
| | - Athanasios K Morozinis
- Research Lab of Advanced, Composite, Nanomaterials, and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str., Zographos, Athens, 15780, Greece
| | - Panagiotis Kavouras
- Research Lab of Advanced, Composite, Nanomaterials, and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str., Zographos, Athens, 15780, Greece
| | - Costas A Charitidis
- Research Lab of Advanced, Composite, Nanomaterials, and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str., Zographos, Athens, 15780, Greece
| |
Collapse
|
17
|
Carboni A, Gelabert A, Charron G, Faucher S, Lespes G, Sivry Y, Benedetti MF. Mobility and transformation of CdSe/ZnS quantum dots in soil: Role of the capping ligands and ageing effect. CHEMOSPHERE 2020; 254:126868. [PMID: 32348924 DOI: 10.1016/j.chemosphere.2020.126868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The increasing application of Quantum Dots (QDs) is cause of concern for the potential negative effects for the ecosystem, especially in soils that may act as a sink. In this study, soil leaching experiments were performed in quartz sand packed columns to investigate the behavior of core-shell CdSe/ZnS QDs coated with either small ligands (TGA-QDs) or more complex polymers (POAMA-QDs). Fluorescence emission was compared to mass spectrometric measurements to assess the nanoparticles (NPs) state in both the leachate (transported species) and porous media (deposited amounts). Although both QDs were strongly retained in the column, large differences were observed depending on their capping ligand stability. Specifically, for TGA-QDs elution was negligible and the retained fraction accumulated in the top-columns. Furthermore, 74% of the NPs were degraded and 38% of the Se was found in the leachate in non-NPs state. Conversely, POAMA-QDs were recovered to a larger extent (78.1%), and displayed a higher transport along the soil profile. Further experiments with altered NPs showed that homo-aggregation of the QDs prior injection determined a reduced mobility but no significant changes in their stability. Eventually, ageing of the NPs in the column (15 days) caused the disruption of up to 92% of the original QDs and the immobilization of NPs and metals. These results indicate that QDs will accumulate in top-soils, where transformations phenomena will determine the overall transport, persistency and degradation of these chemicals. Once accumulated, they may act as a source for potentially toxic Cd and Se metal species displaying enhanced mobility.
Collapse
Affiliation(s)
- A Carboni
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France; Centre de Recherche et d'Enseignement de Géosciences de l'Environnement, Technopole Environnement Arbois-Mediterranee, BP80, 13545, Aix-en-Provence Cedex 04, Aix-en-Provence, France.
| | - A Gelabert
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| | - G Charron
- Laboratoire Matière et Systèmes Complexes (MSC), Univ. Paris Diderot, 75013, Paris, France
| | - S Faucher
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau, France
| | - G Lespes
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau, France
| | - Y Sivry
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| | - M F Benedetti
- Université de Paris, Institut de Physique du Globe de Paris, UMR 7154, CNRS, F-75005, Paris, France
| |
Collapse
|
18
|
Spurgeon DJ, Lahive E, Schultz CL. Nanomaterial Transformations in the Environment: Effects of Changing Exposure Forms on Bioaccumulation and Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000618. [PMID: 32402152 DOI: 10.1002/smll.202000618] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
In the environment, nanomaterials (NMs) are subject to chemical transformations, such as redox reactions, dissolution, coating degradation, and organic matter, protein, and macromolecule binding, and physical transformations including homo or heteroagglomeration. The combination of these reactions can result in NMs with differing characteristics progressing through a functional fate pathway that leads to the formation of transformed NM functional fate groups with shared properties. To establish the nature of such effects of transformation on NMs, four main types of studies are conducted: 1) chemical aging for transformation of pristine NMs; 2) manipulation of test media to change NM surface properties; 3) aging of pristine NMs water, sediment, or soil; 4) NM aging in waste streams and natural environments. From these studies a paradigm of aging effects on NM uptake and toxicity can be developed. Transformation, especially speciation changes, largely results in reduced potency. Further reactions at the surface resulting in processes, such as ecocorona formation and heteroagglomeration may additionally reduce NM potency. When NMs of differing potency transform and enter environments, common transformation reaction occurring in receiving system may act to reduce the variation in hazard between different initial NMs leading to similar actual hazard under realistic exposure conditions.
Collapse
Affiliation(s)
- David J Spurgeon
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Elma Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Carolin L Schultz
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
19
|
Abbas Q, Yousaf B, Ali MU, Munir MAM, El-Naggar A, Rinklebe J, Naushad M. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. ENVIRONMENT INTERNATIONAL 2020; 138:105646. [PMID: 32179325 DOI: 10.1016/j.envint.2020.105646] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 05/24/2023]
Abstract
The ever increasing production and use of nano-enabled commercial products release the massive amount of engineered nanoparticles (ENPs) in the environment. An increasing number of recent studies have shown the toxic effects of ENPs on different organisms, raising concerns over the nano-pollutants behavior and fate in the various environmental compartments. After the release of ENPs in the environment, ENPs interact with various components of the environment and undergoes dynamic transformation processes. This review focus on ENPs transformations in the various environmental compartments. The transformation processes of ENPs are interrelated to multiple environmental aspects. Physical, chemical and biological processes such as the homo- or hetero-agglomeration, dissolution/sedimentation, adsorption, oxidation, reduction, sulfidation, photochemically and biologically mediated reactions mainly occur in the environment consequently changes the mobility and bioavailability of ENPs. Physico-chemical characteristics of ENPs (particle size, surface area, zeta potential/surface charge, colloidal stability, and core-shell composition) and environmental conditions (pH, ionic strength, organic and inorganic colloids, temperature, etc.) are the most important parameters which regulated the ENPs environmental transformations. Meanwhile, in the environment, organisms encountered multiple transformed ENPs rather than the pristine nanomaterials due to their interactions with various environmental materials and other pollutants. Thus it is the utmost importance to study the behavior of transformed ENPs to understand their environmental fate, bioavailability, and mode of toxicity.
Collapse
Affiliation(s)
- Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, Ankara 06800, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - Mu Naushad
- Department of Chemistry, College of Science, Bld#5, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Lewis RW, Bertsch PM, McNear DH. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review. Nanotoxicology 2019; 13:392-428. [PMID: 30760121 DOI: 10.1080/17435390.2018.1530391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deposition of engineered nanomaterials (ENMs) in various environmental compartments is projected to continue rising exponentially. Terrestrial environments are expected to be the largest repository for environmentally released ENMs. Because ENMs are enriched in biosolids during wastewater treatment, agriculturally applied biosolids facilitate ENM exposure of key soil micro-organisms, such as plant growth-promoting rhizobacteria (PGPR). The ecological ramifications of increasing levels of ENM exposure of terrestrial micro-organisms are not clearly understood, but a growing body of research has investigated the toxicity of ENMs to various soil bacteria using a myriad of toxicity end-points and experimental procedures. This review explores what is known regarding ENM toxicity to important soil bacteria, with a focus on ENMs which are expected to accumulate in terrestrial ecosystems at the highest concentrations and pose the greatest potential threat to soil micro-organisms having potential indirect detrimental effects on plant growth. Knowledge gaps in the fundamental understanding of nanotoxicity to bacteria are identified, including the role of physicochemical properties of ENMs in toxicity responses, particularly in agriculturally relevant micro-organisms. Strategies for improving the impact of future research through the implementation of in-depth ENM characterization and use of necessary experimental controls are proposed. The future of nanotoxicological research employing microbial ecoreceptors is also explored, highlighting the need for continued research utilizing bacterial isolates while concurrently expanding efforts to study ENM-bacteria interactions in more complex environmentally relevant media, e.g. soil. Additionally, the particular importance of future work to extensively examine nanotoxicity in the context of bacterial ecosystem function, especially of plant growth-promoting agents, is proposed.
Collapse
Affiliation(s)
- Ricky W Lewis
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA
| | - Paul M Bertsch
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA.,b CSIRO Land and Water , Ecosciences Precinct , Brisbane , Australia.,c Center for the Environmental Implications of Nanotechnology (CEINT) , Duke University , Durham , NC , USA
| | - David H McNear
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
21
|
Ye N, Wang Z, Wang S, Peijnenburg WJGM. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Nanotoxicology 2018; 12:423-438. [PMID: 29658385 DOI: 10.1080/17435390.2018.1458342] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Concomitant releases of various engineered nanoparticles (NPs) into the environment have resulted in concerns regarding their combined toxicity to aquatic organisms. It is however, still elusive to distinguish the contribution to toxicity of components in NP mixtures. In the present study, we quantitatively evaluated the relative contribution of NPs in their particulate form (NP(particle)) and of dissolved ions released from NPs (NP(ion)) to the combined toxicity of binary mixtures of ZnO NPs and graphene oxide nanoplatelets (GO NPs) to three aquatic organisms of different trophic levels, including an alga species (Scenedesmus obliquus), a cladoceran species (Daphnia magna), and a freshwater fish larva (Danio rerio). Our results revealed that the effects of ZnO NPs and GO NPs were additive to S. obliquus and D. magna but antagonistic to D. rerio. The relative contribution to toxicity (RCT) of the mixture components to S. obliquus decreased in the order of RCTGO NP(particle) > RCTZnO NP(particle) > RCTZnO NP(ion), while the RCT of the mixture components to D. magna and D. rerio decreased in the order of RCTZnO NP(particle) > RCTGO NP(particle) > RCTZnO NP(ion). This finding also implies that the suspended particles rather than the dissolved Zn-ions dictated the combined toxicity of binary mixtures of ZnO NPs and GO NPs to the aquatic organisms of different trophic level. The alleviation of the contribution to toxicity of the ionic form of ZnO NPs was caused by the adsorption of the dissolved ions on GO NPs. Furthermore, the ZnO NP(particle) and GO NP(particle) displayed a different contribution to the observed mixture toxicity, dependent on the trophic level of the aquatic organisms tested. The difference of the contributions between the two particulate forms was mainly associated with differences in the intracellular accumulation of reactive oxygen species. Our findings highlight the important role of particles in the ecological impact of multi-nanomaterial systems.
Collapse
Affiliation(s)
- Nan Ye
- a School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology , Nanjing University of Information Science and Technology , Nanjing , China
| | - Zhuang Wang
- a School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology , Nanjing University of Information Science and Technology , Nanjing , China.,b Institute of Environmental Sciences (CML) , Leiden University , Leiden , The Netherlands
| | - Se Wang
- a School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology , Nanjing University of Information Science and Technology , Nanjing , China.,b Institute of Environmental Sciences (CML) , Leiden University , Leiden , The Netherlands
| | - Willie J G M Peijnenburg
- b Institute of Environmental Sciences (CML) , Leiden University , Leiden , The Netherlands.,c Centre for Safety of Substances and Products , National Institute of Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| |
Collapse
|
22
|
Johnston HJ, Verdon R, Gillies S, Brown DM, Fernandes TF, Henry TB, Rossi AG, Tran L, Tucker C, Tyler CR, Stone V. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 2017; 48:252-271. [PMID: 29239234 DOI: 10.1080/10408444.2017.1404965] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assessing the safety of engineered nanomaterials (NMs) is paramount to the responsible and sustainable development of nanotechnology, which provides huge societal benefits. Currently, there is no evidence that engineered NMs cause detrimental health effects in humans. However, investigation of NM toxicity using in vivo, in vitro, in chemico, and in silico models has demonstrated that some NMs stimulate oxidative stress and inflammation, which may lead to adverse health effects. Accordingly, investigation of these responses currently dominates NM safety assessments. There is a need to reduce reliance on rodent testing in nanotoxicology for ethical, financial and legislative reasons, and due to evidence that rodent models do not always predict the human response. We advocate that in vitro models and zebrafish embryos should have greater prominence in screening for NM safety, to better align nanotoxicology with the 3Rs principles. Zebrafish are accepted for use by regulatory agencies in chemical safety assessments (e.g. developmental biology) and there is growing acceptance of their use in biomedical research, providing strong foundations for their use in nanotoxicology. We suggest that investigation of the response of phagocytic cells (e.g. neutrophils, macrophages) in vitro should also form a key part of NM safety assessments, due to their prominent role in the first line of defense. The development of a tiered testing strategy for NM hazard assessment that promotes the more widespread adoption of non-rodent, alternative models and focuses on investigation of inflammation and oxidative stress could make nanotoxicology testing more ethical, relevant, and cost and time efficient.
Collapse
Affiliation(s)
| | - Rachel Verdon
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Suzanne Gillies
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - David M Brown
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | | | - Theodore B Henry
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Adriano G Rossi
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Lang Tran
- c Institute of Occupational Medicine , Edinburgh , UK
| | - Carl Tucker
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Charles R Tyler
- d Department of Biosciences , College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | - Vicki Stone
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
23
|
Pulido-Reyes G, Leganes F, Fernández-Piñas F, Rosal R. Bio-nano interface and environment: A critical review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3181-3193. [PMID: 28731222 DOI: 10.1002/etc.3924] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 05/25/2023]
Abstract
The bio-nano interface is the boundary where engineered nanomaterials (ENMs) meet the biological system, exerting the biological function for which they have been designed or inducing adverse effects on other cells or organisms when they reach nontarget scenarios (i.e., the natural environment). Research has been performed to determine the fate, transport, and toxic properties of ENMs, but much of it is focused on pristine or so-called as-manufactured ENMs, or else modifications of the materials were not assessed. We review the most recent progress regarding the bio-nano interface and the transformations that ENMs undergo in the environment, paying special attention to the adsorption of environmental biomolecules on the surface of ENMs. Whereas the protein corona has received considerable attention in the fields of biomedics and human toxicology, its environmental analogue (the eco-corona) has been much less studied. A section dedicated to the analytical methods for studying and characterizing the eco-corona is also presented. We conclude by presenting and discussing the key problems and knowledge gaps that need to be resolved in the near future regarding the bio-nano interface and the eco-corona. Environ Toxicol Chem 2017;36:3181-3193. © 2017 SETAC.
Collapse
Affiliation(s)
- Gerardo Pulido-Reyes
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Francisco Leganes
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
24
|
Park MVDZ, Bleeker EAJ, Brand W, Cassee FR, van Elk M, Gosens I, de Jong WH, Meesters JAJ, Peijnenburg WJGM, Quik JTK, Vandebriel RJ, Sips AJAM. Considerations for Safe Innovation: The Case of Graphene. ACS NANO 2017; 11:9574-9593. [PMID: 28933820 DOI: 10.1021/acsnano.7b04120] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The terms "Safe innovation" and "Safe(r)-by-design" are currently popular in the field of nanotechnology. These terms are used to describe approaches that advocate the consideration of safety aspects already at an early stage of the innovation process of (nano)materials and nanoenabled products. Here, we investigate the possibilities of considering safety aspects during various stages of the innovation process of graphene, outlining what information is already available for assessing potential hazard, exposure, and risks. In addition, we recommend further steps to be taken by various stakeholders to promote the safe production and safe use of graphene.
Collapse
Affiliation(s)
- Margriet V D Z Park
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Eric A J Bleeker
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Walter Brand
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Flemming R Cassee
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Merel van Elk
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Ilse Gosens
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Wim H de Jong
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | | | | | - Joris T K Quik
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Rob J Vandebriel
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Adriënne J A M Sips
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
25
|
Mehrabi K, Nowack B, Arroyo Rojas Dasilva Y, Mitrano DM. Improvements in Nanoparticle Tracking Analysis To Measure Particle Aggregation and Mass Distribution: A Case Study on Engineered Nanomaterial Stability in Incineration Landfill Leachates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5611-5621. [PMID: 28438022 DOI: 10.1021/acs.est.7b00597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Numerous nanometrology techniques have been developed in recent years to determine the size, concentration, and a number of other characteristics of engineered nanomaterials (ENM) in environmental matrices. Among the many available techniques, nanoparticle tracking analysis (NTA) can measure individual particles to create a size distribution and measure the particle number. Therefore, we explore the possibility to use these data to calculate the particle mass distribution. Additionally, we further developed the NTA methodology to explore its suitability for analysis of ENM in complex matrices by measuring ENM agglomeration and sedimentation in municipal solid waste incineration landfill leachates over time. 100 nm Au ENM were spiked into DI H2O and synthetic and natural leachates. We present the possibility of measuring ENM in the presence of natural particles based on differences in particle refractivity indices, delineate the necessity of creating a calibration curve to adjust the given NTA particle number concentration, and determine the instruments linear range under different conditions. By measuring the particle size and the particle number distribution, we were able to calculate the ENM mass remaining in suspension. By combining these metrics together with transmission electron microscopy (TEM) analyses, we could assess the extent of both homo- and heteroagglomeration as well as particle sedimentation. Reporting both size and mass based metrics is common in atmospheric particle measurements, but now, the NTA can give us the possibility of applying the same approach also to aqueous samples.
Collapse
Affiliation(s)
- Kamyar Mehrabi
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Yadira Arroyo Rojas Dasilva
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Electron Microscopy Center, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Denise M Mitrano
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Process Engineering, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
26
|
Sun TY, Mitrano DM, Bornhöft NA, Scheringer M, Hungerbühler K, Nowack B. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2854-2863. [PMID: 28157288 DOI: 10.1021/acs.est.6b05702] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental emissions. Material flow models (MFA) have been used to provide predicted environmental emissions but most current nano-MFA models consider neither the rapid development of ENM production nor the fact that a large proportion of ENM are entering an in-use stock and are released from products over time (i.e., have a lag phase). Here we use dynamic probabilistic material flow modeling to predict scenarios of the future flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to environmental compartments and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. In these scenarios, we estimate likely future amounts if the use and distribution of ENM in products continues along current trends (i.e., a business-as-usual approach) and predict the effect of hypothetical trends in the market development of nanomaterials, such as the emergence of a new widely used product or the ban on certain substances, on the flows of nanomaterials to the environment in years to come. We show that depending on the scenario and the product type affected, significant changes of the flows occur over time, driven by the growth of stocks and delayed release dynamics.
Collapse
Affiliation(s)
- Tian Yin Sun
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory , Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich , CH-8093 Zürich, Switzerland
| | - Denise M Mitrano
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory , Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Nikolaus A Bornhöft
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory , Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Department of Informatics, University of Zurich , Binzmühlestrasse 14, 8050 Zurich, Switzerland
| | - Martin Scheringer
- Institute for Chemical and Bioengineering, ETH Zürich , CH-8093 Zürich, Switzerland
- RECETOX, Masaryk University , 625 00 Brno, Czech Republic
| | - Konrad Hungerbühler
- Institute for Chemical and Bioengineering, ETH Zürich , CH-8093 Zürich, Switzerland
| | - Bernd Nowack
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory , Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| |
Collapse
|