1
|
Good HJ, Sanders T, Melnyk A, Mohtasebzadeh AR, Imhoff ED, Goodwill P, Rinaldi-Ramos CM. On the partial volume effect in magnetic particle imaging. Phys Med Biol 2025; 70:045006. [PMID: 39902767 DOI: 10.1088/1361-6560/ada417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025]
Abstract
Objective.Magnetic particle imaging (MPI) is an emerging tomographic 'hot spot' imaging modality with potential to visualize superparamagnetic iron oxide nanoparticle tracer distributions with high sensitivity and quantitative accuracy. MPI shares many similarities with positron emission tomography (PET), where the partial volume effect (PVE) can result in signal under- and over-quantification due to spill-over of signal arising from limited resolution. While the PVE has been alluded to in the MPI literature it has not been previously studied nor characterized. The objective of this study was to systematically characterize this PVE in MPI.Approach.This contribution characterizes the PVE using models of varying size and shape filled with a uniform concentration of tracer. The effect of object size on signal distribution was analyzed after application of a new image post-processing filter.Main results.As object size increased, signal distribution increased to a maximum signal value independent of object geometry and proportional to tracer concentration. Furthermore, for small objects with characteristic dimensions below the resolution of the tracer at the scanning conditions used, signal suppression was observed. These results are consistent with foundational observations of PVE in PET, suggesting that approaches to overcome the PVE in PET may be applicable to MPI.Significance.This finding has significant impact on the MPI field by demonstrating the presence of the PVE phenomenon that can directly influence imaging results.
Collapse
Affiliation(s)
- Hayden J Good
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32601, United States of America
| | - Toby Sanders
- Magnetic Insight Inc, Alameda, CA 94501, United States of America
| | - Andrii Melnyk
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32601, United States of America
| | | | - Eric Daniel Imhoff
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32601, United States of America
| | - Patrick Goodwill
- Magnetic Insight Inc, Alameda, CA 94501, United States of America
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32601, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32601, United States of America
| |
Collapse
|
2
|
Rashidi F, Yıldızeli B, Parvizi R, Taş S, Yıldızeli ŞO, Mutlu B, Bilehjani E, Mahmoudian B, Bakhshandeh H, Mousavi-Aghdas SA, Heresi GA. Unilateral Chronic Thromboembolic Pulmonary Disease: Do Patients Benefit From Thromboendarterectomy? Case Series From Three CTEPH Centres. Heart Lung Circ 2024; 33:1574-1581. [PMID: 39304381 DOI: 10.1016/j.hlc.2024.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/09/2024] [Accepted: 06/02/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Unilateral chronic thromboembolism pulmonary disease (CTEPD) is very rare. There is limited information on the safety and efficacy of pulmonary endarterectomy (PEA) in this population. This study investigated the effectiveness of PEA in this unique disease. METHODS This multicentre study included patients with unilateral CTEPD from three referral centres in the United States, Turkey, and Iran. The patients' demographic information, 6-minute walk test distance (6MWD), New York Heart Association (NYHA) functional class, and haemodynamics were evaluated. RESULT Of the 1,031 patients who had undergone PEA, 39 patients (3.7%) had pure unilateral involvement, of whom 28 were female (71.8%). There was a significant improvement in the mean pulmonary artery pressure (mPAP, 26 mmHg vs 21 mmHg; p=0.011) and pulmonary vascular resistance (PVR, 202 vs 136 dynes∗sec1∗cm-5; p=0.014). There was also a significant improvement in NYHA functional class (p<0.001) and 6MWD (360 vs 409 m; p<0.001). In the nine patients with normal haemodynamic parameters at rest, there was no significant change in median 6MWD (448.5 vs 449 m; p=0.208), mPAP (19 mmHg vs 16.5 mmHg; p=0.397), and PVR (129 vs 84.5 dynes∗sec1∗cm-5; p=0.128). The most common postoperative complication was ipsilateral pleural effusion. One patient needed extracorporeal membrane oxygenation support. No patient died within the 1-year follow up. CONCLUSION Pulmonary endarterectomy is a safe and effective procedure for improving the symptoms and haemodynamic parameters of patients with unilateral CTEPH. Symptomatic patients with unilateral chronic thromboembolic disease are suitable for PEA.
Collapse
Affiliation(s)
- Farid Rashidi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bedrettin Yıldızeli
- Department of Thoracic Surgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Rezayat Parvizi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Serpil Taş
- University of Health Sciences, Kartal Koşuyolu Teaching and Education Hospital, Department of Cardiovascular Surgery, Istanbul, Turkey
| | - Şehnaz Olgun Yıldızeli
- Marmara University School of Medicine, Department of Pulmonology and Intensive Care, Istanbul, Turkey
| | - Bülent Mutlu
- Marmara University School of Medicine, Department of Cardiology, Istanbul, Turkey
| | - Eisa Bilehjani
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hooman Bakhshandeh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mousavi-Aghdas
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gustavo A Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Pacheco MO, Gerzenshtein IK, Stoppel WL, Rinaldi-Ramos CM. Advances in Vascular Diagnostics using Magnetic Particle Imaging (MPI) for Blood Circulation Assessment. Adv Healthc Mater 2024; 13:e2400612. [PMID: 38879782 PMCID: PMC11442126 DOI: 10.1002/adhm.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/11/2024] [Indexed: 06/29/2024]
Abstract
Rapid and accurate assessment of conditions characterized by altered blood flow, cardiac blood pooling, or internal bleeding is crucial for diagnosing and treating various clinical conditions. While widely used imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound offer unique diagnostic advantages, they fall short for specific indications due to limited penetration depth and prolonged acquisition times. Magnetic particle imaging (MPI), an emerging tracer-based technique, holds promise for blood circulation assessments, potentially overcoming existing limitations with reduction in background signals and high temporal and spatial resolution, below the millimeter scale. Successful imaging of blood pooling and impaired flow necessitates tracers with diverse circulation half-lives optimized for MPI signal generation. Recent MPI tracers show potential in imaging cardiovascular complications, vascular perforations, ischemia, and stroke. The impressive temporal resolution and penetration depth also position MPI as an excellent modality for real-time vessel perfusion imaging via functional MPI (fMPI). This review summarizes advancements in optimized MPI tracers for imaging blood circulation and analyzes the current state of pre-clinical applications. This work discusses perspectives on standardization required to transition MPI from a research endeavor to clinical implementation and explore additional clinical indications that may benefit from the unique capabilities of MPI.
Collapse
Affiliation(s)
| | | | - Whitney L Stoppel
- Chemical Engineering, University of Florida, Gainesville FL
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL
| | - Carlos M Rinaldi-Ramos
- Chemical Engineering, University of Florida, Gainesville FL
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL
| |
Collapse
|
4
|
Rezaei B, Tay ZW, Mostufa S, Manzari ON, Azizi E, Ciannella S, Moni HEJ, Li C, Zeng M, Gómez-Pastora J, Wu K. Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications. NANOSCALE 2024; 16:11802-11824. [PMID: 38809214 DOI: 10.1039/d4nr01195c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Recent advancements in medical imaging have brought forth various techniques such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound, each contributing to improved diagnostic capabilities. Most recently, magnetic particle imaging (MPI) has become a rapidly advancing imaging modality with profound implications for medical diagnostics and therapeutics. By directly detecting the magnetization response of magnetic tracers, MPI surpasses conventional imaging modalities in sensitivity and quantifiability, particularly in stem cell tracking applications. Herein, this comprehensive review explores the fundamental principles, instrumentation, magnetic nanoparticle tracer design, and applications of MPI, offering insights into recent advancements and future directions. Novel tracer designs, such as zinc-doped iron oxide nanoparticles (Zn-IONPs), exhibit enhanced performance, broadening MPI's utility. Spatial encoding strategies, scanning trajectories, and instrumentation innovations are elucidated, illuminating the technical underpinnings of MPI's evolution. Moreover, integrating machine learning and deep learning methods enhances MPI's image processing capabilities, paving the way for more efficient segmentation, quantification, and reconstruction. The potential of superferromagnetic iron oxide nanoparticle chains (SFMIOs) as new MPI tracers further advanced the imaging quality and expanded clinical applications, underscoring the promising future of this emerging imaging modality.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Omid Nejati Manzari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Ebrahim Azizi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Hur-E-Jannat Moni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Changzhi Li
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
5
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
6
|
Tay Z, Kim HJ, Ho JS, Olivo M. A Magnetic Particle Imaging Approach for Minimally Invasive Imaging and Sensing With Implantable Bioelectronic Circuits. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1740-1752. [PMID: 38157469 DOI: 10.1109/tmi.2023.3348149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Minimally-invasive and biocompatible implantable bioelectronic circuits are used for long-term monitoring of physiological processes in the body. However, there is a lack of methods that can cheaply and conveniently image the device within the body while simultaneously extracting sensor information. Magnetic Particle Imaging (MPI) with zero background signal, high contrast, and high sensitivity with quantitative images is ideal for this challenge because the magnetic signal is not absorbed with increasing tissue depth and incurs no radiation dose. We show how to easily modify common implantable devices to be imaged by MPI by encapsulating and magnetically-coupling magnetic nanoparticles (SPIOs) to the device circuit. These modified implantable devices not only provide spatial information via MPI, but also couple to our handheld MPI reader to transmit sensor information by modulating harmonic signals from magnetic nanoparticles via switching or frequency-shifting with resistive or capacitive sensors. This paper provides proof-of-concept of an optimized MPI imaging technique for implantable devices to extract spatial information as well as other information transmitted by the implanted circuit (such as biosensing) via encoding in the magnetic particle spectrum. The 4D images present 3D position and a changing color tone in response to a variable biometric. Biophysical sensing via bioelectronic circuits that take advantage of the unique imaging properties of MPI may enable a wide range of minimally invasive applications in biomedicine and diagnosis.
Collapse
|
7
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
8
|
Gao P, Liu Y, Wang X, Feng X, Liu H, Liu S, Huang X, Wu X, Xiong F, Jia X, Hui H, Jiang J, Tian J. Adhesion molecule-targeted magnetic particle imaging nanoprobe for visualization of inflammation in acute lung injury. Eur J Nucl Med Mol Imaging 2024; 51:1233-1245. [PMID: 38095676 DOI: 10.1007/s00259-023-06550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/27/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Uncontrolled intra-alveolar inflammation is a central pathogenic feature, and its severity translates into a valid prognostic indicator of acute lung injury (ALI). Unfortunately, current clinical imaging approaches are unsuitable for visualizing and quantifying intra-alveolar inflammation. This study aimed to construct a small-sized vascular cell adhesion molecule-1 (VCAM-1)-targeted magnetic particle imaging (MPI) nanoprobe (ESPVPN) to visualize and accurately quantify intra-alveolar inflammation at the molecular level. METHODS ESPVPN was engineered by conjugating a peptide (VHPKQHRGGSK(Cy7)GC) onto a polydopamine-functionalized superparamagnetic iron oxide core. The MPI performance, targeting, and biosafety of the ESPVPN were characterized. VCAM-1 expression in HUVECs and mouse models was evaluated by western blot. The degree of inflammation and distribution of VCAM-1 in the lungs were assessed using histopathology. The expression of pro-inflammatory markers and VCAM-1 in lung tissue lysates was measured using ELISA. After intravenous administration of ESPVPN, MPI and CT imaging were used to analyze the distribution of ESPVPN in the lungs of the LPS-induced ALI models. RESULTS The small-sized (~10 nm) ESPVPN exhibited superior MPI performance compared to commercial MagImaging® and Vivotrax, and ESPVPN had effective targeting and biosafety. VCAM-1 was highly expressed in LPS-induced ALI mice. VCAM-1 expression was positively correlated with the LPS-induced dose (R = 0.9381). The in vivo MPI signal showed positive correlations with both VCAM-1 expression (R = 0.9186) and representative pro-inflammatory markers (MPO, TNF-α, IL-6, IL-8, and IL-1β, R > 0.7). CONCLUSION ESPVPN effectively targeted inflammatory lungs and combined the advantages of MPI quantitative imaging to visualize and evaluate the degree of ALI inflammation.
Collapse
Affiliation(s)
- Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Liu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, 261053, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, No. 16 Xinjiekou Outer Street, Beijing, 100088, China
| | - Songlu Liu
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiazi Huang
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Wu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Xiong
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jingying Jiang
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
9
|
Feng X, Gao P, Li Y, Hui H, Jiang J, Xie F, Tian J. First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung. Bioeng Transl Med 2024; 9:e10626. [PMID: 38435827 PMCID: PMC10905553 DOI: 10.1002/btm2.10626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024] Open
Abstract
Increased pulmonary vascular permeability is a characteristic feature of lung injury. However, there are no established methods that allow the three-dimensional visualization and quantification of pulmonary vascular permeability in vivo. Evans blue extravasation test and total protein test of bronchoalveolar lavage fluid (BALF) are permeability assays commonly used in research settings. However, they lack the ability to identify the spatial and temporal heterogeneity of endothelial barrier disruption, which is typical in lung injuries. Magnetic resonance (MR) and near-infrared (NIR) imaging have been proposed to image pulmonary permeability, but suffer from limited sensitivity and penetration depth, respectively. In this study, we report the first use of magnetic particle imaging (MPI) to assess pulmonary vascular leakage noninvasively in vivo in mice. A dextran-coated superparamagnetic iron oxide (SPIO), synomag®, was employed as the imaging tracer, and pulmonary SPIO extravasation was imaged and quantified to evaluate the vascular leakage. Animal models of acute lung injury and pulmonary fibrosis (PF) were used to validate the proposed method. MPI sensitively detected the SPIO extravasation in both acutely injured and fibrotic lungs in vivo, which was confirmed by ex vivo imaging and Prussian blue staining. Moreover, 3D MPI illustrated the spatial heterogeneity of vascular leakage, which correlated well with CT findings. Based on the in vivo 3D MPI images, we defined the SPIO extravasation index (SEI) to quantify the vascular leakage. A significant increase in SEI was observed in the injured lungs, in consistent with the results obtained via ex vivo permeability assays. Overall, our results demonstrate that 3D quantitative MPI serves as a useful tool to examine pulmonary vascular integrity in vivo, which shows promise for future clinical translation.
Collapse
Affiliation(s)
- Xin Feng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang UniversityBeijingChina
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| | - Yabin Li
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Jingying Jiang
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| |
Collapse
|
10
|
Obata H, Tsuji AB, Sudo H, Sugyo A, Hashiya K, Ikeda H, Itoh M, Minegishi K, Nagatsu K, Ogawa M, Bando T, Sugiyama H, Zhang MR. Novel Auger-Electron-Emitting 191Pt-Labeled Pyrrole-Imidazole Polyamide Targeting MYCN Increases Cytotoxicity and Cytosolic dsDNA Granules in MYCN-Amplified Neuroblastoma. Pharmaceuticals (Basel) 2023; 16:1526. [PMID: 38004392 PMCID: PMC10675227 DOI: 10.3390/ph16111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Auger electrons can cause nanoscale physiochemical damage to specific DNA sites that play a key role in cancer cell survival. Radio-Pt is a promising Auger-electron source for damaging DNA efficiently because of its ability to bind to DNA. Considering that the cancer genome is maintained under abnormal gene amplification and expression, here, we developed a novel 191Pt-labeled agent based on pyrrole-imidazole polyamide (PIP), targeting the oncogene MYCN amplified in human neuroblastoma, and investigated its targeting ability and damaging effects. A conjugate of MYCN-targeting PIP and Cys-(Arg)3-coumarin was labeled with 191Pt via Cys (191Pt-MYCN-PIP) with a radiochemical purity of >99%. The binding potential of 191Pt-MYCN-PIP was evaluated via the gel electrophoretic mobility shift assay, suggesting that the radioagent bound to the DNA including the target sequence of the MYCN gene. In vitro assays using human neuroblastoma cells showed that 191Pt-MYCN-PIP bound to DNA efficiently and caused DNA damage, decreasing MYCN gene expression and MYCN signals in in situ hybridization analysis, as well as cell viability, especially in MYCN-amplified Kelly cells. 191Pt-MYCN-PIP also induced a substantial increase in cytosolic dsDNA granules and generated proinflammatory cytokines, IFN-α/β, in Kelly cells. Tumor uptake of intravenously injected 191Pt-MYCN-PIP was low and its delivery to tumors should be improved for therapeutic application. The present results provided a potential strategy, targeting the key oncogenes for cancer survival for Auger electron therapy.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; (H.O.)
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hayato Ikeda
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai 980-8578, Japan
- Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai 982-0826, Japan
| | - Masatoshi Itoh
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai 980-8578, Japan
| | - Katsuyuki Minegishi
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; (H.O.)
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; (H.O.)
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; (H.O.)
| |
Collapse
|
11
|
Ren G, Zhou X, Long R, Xie M, Kankala RK, Wang S, Zhang YS, Liu Y. Biomedical applications of magnetosomes: State of the art and perspectives. Bioact Mater 2023; 28:27-49. [PMID: 37223277 PMCID: PMC10200801 DOI: 10.1016/j.bioactmat.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023] Open
Abstract
Magnetosomes, synthesized by magnetotactic bacteria (MTB), have been used in nano- and biotechnological applications, owing to their unique properties such as superparamagnetism, uniform size distribution, excellent bioavailability, and easily modifiable functional groups. In this review, we first discuss the mechanisms of magnetosome formation and describe various modification methods. Subsequently, we focus on presenting the biomedical advancements of bacterial magnetosomes in biomedical imaging, drug delivery, anticancer therapy, biosensor. Finally, we discuss future applications and challenges. This review summarizes the application of magnetosomes in the biomedical field, highlighting the latest advancements and exploring the future development of magnetosomes.
Collapse
Affiliation(s)
- Gang Ren
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xia Zhou
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| | - Shibin Wang
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| |
Collapse
|
12
|
Good HJ, Sehl OC, Gevaert JJ, Yu B, Berih MA, Montero SA, Rinaldi-Ramos CM, Foster PJ. Inter-user Comparison for Quantification of Superparamagnetic Iron Oxides with Magnetic Particle Imaging Across Two Institutions Highlights a Need for Standardized Approaches. Mol Imaging Biol 2023; 25:954-967. [PMID: 37386319 DOI: 10.1007/s11307-023-01829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE Magnetic particle imaging (MPI) is being explored in biological contexts that require accurate and reproducible quantification of superparamagnetic iron oxide nanoparticles (SPIONs). While many groups have focused on improving imager and SPION design to improve resolution and sensitivity, a few have focused on improving quantification and reproducibility of MPI. The aim of this study was to compare MPI quantification results by two different systems and the accuracy of SPION quantification performed by multiple users at two institutions. PROCEDURES Six users (3 from each institute) imaged a known amount of Vivotrax + (10 μg Fe), diluted in a small (10 μL) or large (500 μL) volume. These samples were imaged with or without calibration standards in the field of view, to create a total of 72 images (6 users × triplicate samples × 2 sample volumes × 2 calibration methods). These images were analyzed by the respective user with two region of interest (ROI) selection methods. Image intensities, Vivotrax + quantification, and ROI selection were compared across users, within and across institutions. RESULTS MPI imagers at two different institutes produce significantly different signal intensities, that differ by over 3 times for the same concentration of Vivotrax + . Overall quantification yielded measurements that were within [Formula: see text] 20% from ground truth; however, SPION quantification values obtained at each laboratory were significantly different. Results suggest that the use of different imagers had a stronger influence on SPION quantification compared to differences arising from user error. Lastly, calibration conducted from samples in the imaging field of view gave the same quantification results as separately imaged samples. CONCLUSIONS This study highlights that there are many factors that contribute to the accuracy and reproducibility of MPI quantification, including variation between MPI imagers and users, despite pre-defined experimental setup, image acquisition parameters, and ROI selection analysis.
Collapse
Affiliation(s)
- Hayden J Good
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA.
| | - Olivia C Sehl
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Julia J Gevaert
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
| | - Maryam A Berih
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Sebastian A Montero
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Paula J Foster
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| |
Collapse
|
13
|
Mohn F, Exner M, Szwargulski P, Möddel M, Knopp T, Graeser M. Saline bolus for negative contrast perfusion imaging in magnetic particle imaging. Phys Med Biol 2023; 68:175026. [PMID: 37609892 DOI: 10.1088/1361-6560/ace309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023]
Abstract
Objective.Magnetic particle imaging (MPI) is capable of high temporal resolution measurements of the spatial distribution of magnetic nanoparticles and therefore well suited for perfusion imaging, which is an important tool in medical diagnosis. Perfusion imaging in MPI usually requires a fresh bolus of tracer material to capture the key signal dynamics. Here, we propose a method to decouple the imaging sequence from the injection of additional tracer material, without further increasing the administered iron dose in the body with each image.Approach.A bolus of physiological saline solution without any particles (negative contrast) diminishes the steady-state concentration of a long-circulating tracer during passage. This depression in the measured concentration contributes to the required contrast dynamics. The presence of a long-circulating tracer is therefore a prerequisite to obtain the negative contrast. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background.Main results.Perfusion parameters are calculated based on the time response of the proposed negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low.Significance.Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.
Collapse
Affiliation(s)
- Fabian Mohn
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Exner
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Patryk Szwargulski
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Martin Möddel
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Knopp
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fraunhofer Research Institution for Individualized and Cell-based Medicine, IMTE, Lübeck, Germany
| | - Matthias Graeser
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fraunhofer Research Institution for Individualized and Cell-based Medicine, IMTE, Lübeck, Germany
- Institute for Medical Engineering, University of Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Good HJ, Sehl OC, Gevaert JJ, Yu B, Berih MA, Montero SA, Rinaldi-Ramos CM, Foster PJ. Inter-user comparison for quantification of superparamagnetic iron oxides with magnetic particle imaging across two institutions highlights a need for standardized approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535446. [PMID: 37066180 PMCID: PMC10104026 DOI: 10.1101/2023.04.03.535446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Purpose Magnetic particle imaging (MPI) is being explored in biological contexts that require accurate and reproducible quantification of superparamagnetic iron oxide nanoparticles (SPIONs). While many groups have focused on improving imager and SPION design to improve resolution and sensitivity, few have focused on improving quantification and reproducibility of MPI. The aim of this study was to compare MPI quantification results by two different systems and the accuracy of SPION quantification performed by multiple users at two institutions. Procedures Six users (3 from each institute) imaged a known amount of Vivotrax+ (10 μg Fe), diluted in a small (10 μL) or large (500 μL) volume. These samples were imaged with or without calibration standards in the field of view, to create a total of 72 images (6 users x triplicate samples x 2 sample volumes x 2 calibration methods). These images were analyzed by the respective user with two region of interest (ROI) selection methods. Image intensities, Vivotrax+ quantification, and ROI selection was compared across users, within and across institutions. Results MPI imagers at two different institutes produce significantly different signal intensities, that differ by over 3 times for the same concentration of Vivotrax+. Overall quantification yielded measurements that were within ± 20% from ground truth, however SPION quantification values obtained at each laboratory were significantly different. Results suggest that the use of different imagers had a stronger influence on SPION quantification compared to differences arising from user error. Lastly, calibration conducted from samples in the imaging field of view gave the same quantification results as separately imaged samples. Conclusions This study highlights that there are many factors that contribute to the accuracy and reproducibility of MPI quantification, including variation between MPI imagers and users, despite pre-defined experimental set up, image acquisition parameters, and ROI selection analysis.
Collapse
Affiliation(s)
- Hayden J. Good
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Olivia C. Sehl
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Julia J. Gevaert
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Maryam A. Berih
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Sebastian A. Montero
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville FL, 32611, United States of America
| | - Paula J. Foster
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| |
Collapse
|
15
|
Ajayi TO, Liu S, Rosen C, Rinaldi-Ramos CM, Allen KD, Sharma B. Application of magnetic particle imaging to evaluate nanoparticle fate in rodent joints. J Control Release 2023; 356:347-359. [PMID: 36868518 PMCID: PMC11565467 DOI: 10.1016/j.jconrel.2023.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Nanoparticles are a promising approach for improving intra-articular drug delivery and tissue targeting. However, techniques to non-invasively track and quantify their concentration in vivo are limited, resulting in an inadequate understanding of their retention, clearance, and biodistribution in the joint. Currently, fluorescence imaging is often used to track nanoparticle fate in animal models; however, this approach has limitations that impede long-term quantitative assessment of nanoparticles over time. The goal of this work was to evaluate an emerging imaging modality, magnetic particle imaging (MPI), for intra-articular tracking of nanoparticles. MPI provides 3D visualization and depth-independent quantification of superparamagnetic iron oxide nanoparticle (SPION) tracers. Here, we developed and characterized a polymer-based magnetic nanoparticle system incorporated with SPION tracers and cartilage targeting properties. MPI was then used to longitudinally assess nanoparticle fate after intra-articular injection. Magnetic nanoparticles were injected into the joints of healthy mice, and evaluated for nanoparticle retention, biodistribution, and clearance over 6 weeks using MPI. In parallel, the fate of fluorescently tagged nanoparticles was tracked using in vivo fluorescence imaging. The study was concluded at day 42, and MPI and fluorescence imaging demonstrated different profiles in nanoparticle retention and clearance from the joint. MPI signal was persistent over the study duration, suggesting NP retention of at least 42 days, much longer than the 14 days observed based on fluorescence signal. These data suggest that the type of tracer - SPIONs or fluorophores - and modality of imaging can affect interpretation of nanoparticle fate in the joint. Given that understanding particle fate over time is paramount for attaining insights about therapeutic profiles in vivo, our data suggest MPI may yield a quantitative and robust method to non-invasively track nanoparticles following intra-articular injection on an extended timeline.
Collapse
Affiliation(s)
- Tolulope O Ajayi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Sitong Liu
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Chelsea Rosen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis. Mol Imaging 2023. [DOI: 10.1155/2023/4131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Magnetic particle imaging (MPI) is a new tracer-based imaging modality that is useful in diagnosing various pathophysiology related to the vascular system and for sensitive tracking of cytotherapies. MPI uses nonradioactive and easily assimilated nanometer-sized iron oxide particles as tracers. MPI images the nonlinear Langevin behavior of the iron oxide particles and has allowed for the sensitive detection of iron oxide-labeled therapeutic cells in the body. This review will provide an overview of MPI technology, the tracer, and its use in vascular imaging and cytotherapies using molecular targets.
Collapse
|
17
|
Tong W, Zhang Y, Hui H, Feng X, Ning B, Yu T, Wang W, Shang Y, Zhang G, Zhang S, Tian F, He W, Chen Y, Tian J. Sensitive magnetic particle imaging of haemoglobin degradation for the detection and monitoring of intraplaque haemorrhage in atherosclerosis. EBioMedicine 2023; 90:104509. [PMID: 36905783 PMCID: PMC10023936 DOI: 10.1016/j.ebiom.2023.104509] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Intraplaque haemorrhage (IPH) drives atherosclerosis progression and is a key imaging biomarker of unstable plaques. Non-invasive and sensitive monitoring of IPH is challenging due to the compositional complexity and dynamic nature of atherosclerotic plaques. Magnetic particle imaging (MPI) is a highly sensitive, radiation-free, and no-tissue-background tomographic technique that detects superparamagnetic nanoparticles. Thus, we aimed to investigate whether MPI can in vivo detect and monitor IPH. METHODS Thirty human carotid endarterectomy samples were collected and scanned with MPI. The tandem stenosis (TS) model was employed to establish unstable plaques with IPH in ApoE-/- mice. MPI and 7 T T1-weighted magnetic resonance imaging (MRI) were performed on TS ApoE-/- mice. Plaque specimens were analyzed histologically. FINDINGS Human carotid endarterectomy samples exhibited endogenous MPI signals, which histologically colocalized with IPH. In vitro experiments identified haemosiderin, a haemoglobin degradation product, as a potential source of MPI signals. Longitudinal MPI of TS ApoE-/- mice detected IPH at unstable plaques, of which MPI signal-to-noise ratio values increased from 6.43 ± 1.74 (four weeks) to 10.55 ± 2.30 (seven weeks) and reduced to 7.23 ± 1.44 (eleven weeks). In contrast, 7 T T1-weighted MRI did not detect the small-size IPH (329.91 ± 226.82 μm2) at four weeks post-TS. The time-course changes in IPH were shown to correlate with neovessel permeability providing a possible mechanism for signal changes over time. INTERPRETATION MPI is a highly sensitive imaging technology that allows the identification of atherosclerotic plaques with IPH and may help detect and monitor unstable plaques in patients. FUNDING This work was supported in part by the Beijing Natural Science Foundation under Grant JQ22023; the National Key Research and Development Program of China under Grant 2017YFA0700401; the National Natural Science Foundation of China under Grant 62027901, 81827808, 81730050, 81870178, 81800221, 81527805, and 81671851; the CAS Youth Innovation Promotion Association under Grant Y2022055 and CAS Key Technology Talent Program; and the Project of High-Level Talents Team Introduction in Zhuhai City (Zhuhai HLHPTP201703).
Collapse
Affiliation(s)
- Wei Tong
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingqian Zhang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Bin Ning
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Wang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yaxin Shang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100069, China
| | - Guanghao Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Suhui Zhang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Feng Tian
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital, Affiliated with Jinan University, Zhuhai, 519000, China.
| |
Collapse
|
18
|
Fung KLB, Colson C, Bryan J, Saayujya C, Mokkarala-Lopez J, Hartley A, Yousuf K, Kuo R, Lu Y, Fellows BD, Chandrasekharan P, Conolly SM. First Superferromagnetic Remanence Characterization and Scan Optimization for Super-Resolution Magnetic Particle Imaging. NANO LETTERS 2023; 23:1717-1725. [PMID: 36821385 PMCID: PMC10790312 DOI: 10.1021/acs.nanolett.2c04404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic particle imaging (MPI) is a sensitive, high-contrast tracer modality that images superparamagnetic iron oxide nanoparticles, enabling radiation-free theranostic imaging. MPI resolution is currently limited by scanner and particle constraints. Recent tracers have experimentally shown 10× resolution and signal improvements with dramatically sharper M-H curves. Experiments show a dependence on interparticle interactions, conforming to literature definitions of superferromagnetism. We thus call our tracers superferromagnetic iron oxide nanoparticles (SFMIOs). While SFMIOs provide excellent signal and resolution, they exhibit hysteresis with non-negligible remanence and coercivity. We provide the first quantitative measurements of SFMIO remanence decay and reformation using a novel multiecho pulse sequence. We characterize MPI scanning with remanence decay and coercivity and describe an SNR-optimized pulse sequence for SFMIOs under human electromagnetic safety limitations. The resolution from SFMIOs could enable clinical MPI with 10× reduced scanner selection fields, reducing hardware costs by up to 100×.
Collapse
Affiliation(s)
- K L Barry Fung
- UC Berkeley-UCSF Graduate Group in Bioengineering, University of California Berkeley and University of California San Francisco, https://bioegrad.berkeley.edu/
| | - Caylin Colson
- UC Berkeley-UCSF Graduate Group in Bioengineering, University of California Berkeley and University of California San Francisco, https://bioegrad.berkeley.edu/
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Javier Mokkarala-Lopez
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Allison Hartley
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Khadija Yousuf
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Benjamin D Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Steven M Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Lăbuşcă L, Herea DD, Chiriac H, Lupu N. Magnetic sensors for regenerative medicine. MAGNETIC SENSORS AND ACTUATORS IN MEDICINE 2023:401-433. [DOI: 10.1016/b978-0-12-823294-1.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Kaur T, Sharma D. Expansion of thermometry in magnetic hyperthermia cancer therapy: antecedence and aftermath. Nanomedicine (Lond) 2022; 17:1607-1623. [PMID: 36318111 DOI: 10.2217/nnm-2022-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Magnetic hyperthermia cancer therapy (MHCT) is a promising antitumor therapy based on the generation of heat by magnetic nanoparticles under the influence of an alternating-current magnetic field. However, an often-overlooked factor hindering the translation of MHCT to clinics is the inability to accurately monitor temperature, thereby leading to erroneous thermal control. It is significant to address 'thermometry' during magnetic hyperthermia because numerous factors are affected by the magnetic fields employed, rendering traditional thermometry methods unsuitable for temperature estimation. Currently, there is a dearth of literature describing appropriate techniques for thermometry during MHCT. This review offers a general outline of the various modes of conventional thermometry as well as cutting-edge techniques operating at cellular/nanoscale levels (nanothermometry) as prospective thermometers for MHCT in the future.
Collapse
Affiliation(s)
- Tashmeen Kaur
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| |
Collapse
|
21
|
Lv J, Zhang L, Du W, Ling G, Zhang P. Functional gold nanoparticles for diagnosis, treatment and prevention of thrombus. J Control Release 2022; 345:572-585. [DOI: 10.1016/j.jconrel.2022.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
|
22
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
23
|
Knopp T, Grosser M, Graeser M, Gerkmann T, Moddel M. Efficient Joint Estimation of Tracer Distribution and Background Signals in Magnetic Particle Imaging Using a Dictionary Approach. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3568-3579. [PMID: 34152980 DOI: 10.1109/tmi.2021.3090928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Background signals are a primary source of artifacts in magnetic particle imaging and limit the sensitivity of the method since background signals are often not precisely known and vary over time. The state-of-the art method for handling background signals uses one or several background calibration measurements with an empty scanner bore and subtracts a linear combination of these background measurements from the actual particle measurement. This approach yields satisfying results in case that the background measurements are taken in close proximity to the particle measurement and when the background signal drifts linearly. In this work, we propose a joint estimation of particle distribution and background signal based on a dictionary that is capable of representing typical background signals. Reconstruction is performed frame-by-frame with minimal assumptions on the temporal evolution of background signals. Thus, even non-linear temporal evolution of the latter can be captured. Using a singular-value decomposition, the dictionary is derived from a large number of background calibration scans that do not need to be recorded in close proximity to the particle measurement. The dictionary is sufficiently expressive and represented by its principle components. The proposed joint estimation of particle distribution and background signal is expressed as a linear Tikhonov-regularized least squares problem, which can be efficiently solved. In phantom experiments it is shown that the method strongly suppresses background artifacts and even allows to estimate and remove the direct feed-through of the excitation field.
Collapse
|
24
|
Tay ZW, Savliwala S, Hensley DW, Fung KLB, Colson C, Fellows BD, Zhou X, Huynh Q, Lu Y, Zheng B, Chandrasekharan P, Rivera-Jimenez SM, Rinaldi-Ramos CM, Conolly SM. Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging. SMALL METHODS 2021; 5:e2100796. [PMID: 34927972 PMCID: PMC8837195 DOI: 10.1002/smtd.202100796] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic nanoparticles have many advantages in medicine such as their use in non-invasive imaging as a Magnetic Particle Imaging (MPI) tracer or Magnetic Resonance Imaging contrast agent, the ability to be externally shifted or actuated and externally excited to generate heat or release drugs for therapy. Existing nanoparticles have a gentle sigmoidal magnetization response that limits resolution and sensitivity. Here it is shown that superferromagnetic iron oxide nanoparticle chains (SFMIOs) achieve an ideal step-like magnetization response to improve both image resolution & SNR by more than tenfold over conventional MPI. The underlying mechanism relies on dynamic magnetization with square-like hysteresis loops in response to 20 kHz, 15 kAm-1 MPI excitation, with nanoparticles assembling into a chain under an applied magnetic field. Experimental data shows a "1D avalanche" dipole reversal of every nanoparticle in the chain when the applied field overcomes the dynamic coercive threshold of dipole-dipole fields from adjacent nanoparticles in the chain. Intense inductive signal is produced from this event resulting in a sharp signal peak. Novel MPI imaging strategies are demonstrated to harness this behavior towards order-of-magnitude medical image improvements. SFMIOs can provide a breakthrough in noninvasive imaging of cancer, pulmonary embolism, gastrointestinal bleeds, stroke, and inflammation imaging.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), #02-02 Helios Building, Singapore, 138667, Singapore
| | - Shehaab Savliwala
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611-6005, USA
| | - Daniel W Hensley
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - K L Barry Fung
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Caylin Colson
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Benjamin D Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Xinyi Zhou
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Quincy Huynh
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Yao Lu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Bo Zheng
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| | | | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611-6005, USA
| | - Steven M Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA, 94720-1762, USA
| |
Collapse
|
25
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
26
|
Makela AV, Gaudet JM, Murrell DH, Mansfield JR, Wintermark M, Contag CH. Mind Over Magnets - How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience. Neuroscience 2021; 474:100-109. [PMID: 33197498 DOI: 10.1016/j.neuroscience.2020.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022]
Abstract
Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jeffrey M Gaudet
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Magnetic Insight Inc, Alameda, CA, USA
| | - Donna H Murrell
- London Regional Cancer Program, Western University, London, ON, Canada
| | | | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
27
|
Luengo Morato Y, Ovejero Paredes K, Lozano Chamizo L, Marciello M, Filice M. Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles. Polymers (Basel) 2021; 13:2989. [PMID: 34503029 PMCID: PMC8434540 DOI: 10.3390/polym13172989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.
Collapse
Affiliation(s)
- Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
28
|
Helfer BM, Ponomarev V, Patrick PS, Blower PJ, Feitel A, Fruhwirth GO, Jackman S, Pereira Mouriès L, Park MVDZ, Srinivas M, Stuckey DJ, Thu MS, van den Hoorn T, Herberts CA, Shingleton WD. Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy 2021; 23:757-773. [PMID: 33832818 PMCID: PMC9344904 DOI: 10.1016/j.jcyt.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.
Collapse
Affiliation(s)
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - P Stephen Patrick
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexandra Feitel
- Formerly, Health and Environmental Sciences Institute, US Environmental Protection Agency, Washington, DC, USA
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shawna Jackman
- Charles River Laboratories, Shrewsbury, Massachusetts, USA
| | | | - Margriet V D Z Park
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands; Cenya Imaging BV, Amsterdam, the Netherlands
| | - Daniel J Stuckey
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Mya S Thu
- Visicell Medical Inc, La Jolla, California, USA
| | | | | | | |
Collapse
|
29
|
Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 2021; 50:8102-8146. [PMID: 34047311 DOI: 10.1039/d0cs00260g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique because of its signal linearly propotional to the tracer mass, ability to generate positive contrast, low tissue background, unlimited tissue penetration depth, and lack of ionizing radiation. The sensitivity and resolution of MPI are highly dependent on the properties of magnetic nanoparticles (MNPs), and extensive research efforts have been focused on the design and synthesis of tracers. This review examines parameters that dictate the performance of MNPs, including size, shape, composition, surface property, crystallinity, the surrounding environment, and aggregation state to provide guidance for engineering MPI tracers with better performance. Finally, we discuss applications of MPI imaging and its challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Joanna Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | - Jiacheng Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| |
Collapse
|
30
|
Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 2021; 13:943. [PMID: 34202604 PMCID: PMC8309177 DOI: 10.3390/pharmaceutics13070943] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
The use of magnetism in medicine has changed dramatically since its first application by the ancient Greeks in 624 BC. Now, by leveraging magnetic nanoparticles, investigators have developed a range of modern applications that use external magnetic fields to manipulate biological systems. Drug delivery systems that incorporate these particles can target therapeutics to specific tissues without the need for biological or chemical cues. Once precisely located within an organism, magnetic nanoparticles can be heated by oscillating magnetic fields, which results in localized inductive heating that can be used for thermal ablation or more subtle cellular manipulation. Biological imaging can also be improved using magnetic nanoparticles as contrast agents; several types of iron oxide nanoparticles are US Food and Drug Administration (FDA)-approved for use in magnetic resonance imaging (MRI) as contrast agents that can improve image resolution and information content. New imaging modalities, such as magnetic particle imaging (MPI), directly detect magnetic nanoparticles within organisms, allowing for background-free imaging of magnetic particle transport and collection. "Lab-on-a-chip" technology benefits from the increased control that magnetic nanoparticles provide over separation, leading to improved cellular separation. Magnetic separation is also becoming important in next-generation immunoassays, in which particles are used to both increase sensitivity and enable multiple analyte detection. More recently, the ability to manipulate material motion with external fields has been applied in magnetically actuated soft robotics that are designed for biomedical interventions. In this review article, the origins of these various areas are introduced, followed by a discussion of current clinical applications, as well as emerging trends in the study and application of these materials.
Collapse
Affiliation(s)
- Deanna D. Stueber
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
| | - Jake Villanova
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| | - Itzel Aponte
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
| | - Zhen Xiao
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| | - Vicki L. Colvin
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| |
Collapse
|
31
|
Kratz H, Mohtashamdolatshahi A, Eberbeck D, Kosch O, Wiekhorst F, Taupitz M, Hamm B, Stolzenburg N, Schnorr J. Tailored Magnetic Multicore Nanoparticles for Use as Blood Pool MPI Tracers. NANOMATERIALS 2021; 11:nano11061532. [PMID: 34200588 PMCID: PMC8228684 DOI: 10.3390/nano11061532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
For the preclinical development of magnetic particle imaging (MPI) in general, and the exploration of possible new clinical applications of MPI in particular, tailored MPI tracers with surface properties optimized for the intended use are needed. Here we present the synthesis of magnetic multicore particles (MCPs) modified with polyethylene glycol (PEG) for use as blood pool MPI tracers. To achieve the stealth effect the carboxylic groups of the parent MCP were activated and coupled with pegylated amines (mPEG-amines) with different PEG-chain lengths from 2 to 20 kDa. The resulting MCP-PEG variants with PEG-chain lengths of 10 kDa (MCP-PEG10K after one pegylation step and MCP-PEG10K2 after a second pegylation step) formed stable dispersions and showed strong evidence of a successful reaction of MCP and MCP-PEG10K with mPEG-amine with 10 kDa, while maintaining their magnetic properties. In rats, the mean blood half-lives, surprisingly, were 2 and 62 min, respectively, and therefore, for MCP-PEG10K2, dramatically extended compared to the parent MCP, presumably due to the higher PEG density on the particle surface, which may lead to a lower phagocytosis rate. Because of their significantly extended blood half-life, MCP-PEG10K2 are very promising as blood pool tracers for future in vivo cardiovascular MPI.
Collapse
Affiliation(s)
- Harald Kratz
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (A.M.); (M.T.); (B.H.); (N.S.); (J.S.)
- Correspondence: ; Tel.: +49-30-450-527180
| | - Azadeh Mohtashamdolatshahi
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (A.M.); (M.T.); (B.H.); (N.S.); (J.S.)
| | - Dietmar Eberbeck
- Physikalisch-Technische Bundesanstalt, D-10587 Berlin, Germany; (D.E.); (O.K.); (F.W.)
| | - Olaf Kosch
- Physikalisch-Technische Bundesanstalt, D-10587 Berlin, Germany; (D.E.); (O.K.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, D-10587 Berlin, Germany; (D.E.); (O.K.); (F.W.)
| | - Matthias Taupitz
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (A.M.); (M.T.); (B.H.); (N.S.); (J.S.)
| | - Bernd Hamm
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (A.M.); (M.T.); (B.H.); (N.S.); (J.S.)
| | - Nicola Stolzenburg
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (A.M.); (M.T.); (B.H.); (N.S.); (J.S.)
| | - Jörg Schnorr
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (A.M.); (M.T.); (B.H.); (N.S.); (J.S.)
| |
Collapse
|
32
|
Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-Morales L, Mitchell DA, Rinaldi-Ramos CM. Tracking adoptive T cell immunotherapy using magnetic particle imaging. Nanotheranostics 2021; 5:431-444. [PMID: 33972919 PMCID: PMC8100755 DOI: 10.7150/ntno.55165] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Adoptive cellular therapy (ACT) is a potent strategy to boost the immune response against cancer. ACT is effective against blood cancers but faces challenges in treating solid tumors. A critical step for the success of ACT immunotherapy is to achieve efficient trafficking and persistence of T cells to solid tumors. Non-invasive tracking of the accumulation of adoptively transferred T cells to tumors would greatly accelerate development of more effective ACT strategies. We demonstrate the use of magnetic particle imaging (MPI) to non-invasively track ACT T cells in vivo in a mouse model of brain cancer. Magnetic labeling did not impair primary tumor-specific T cells in vitro, and MPI allowed the detection of labeled T cells in the brain after intravenous or intracerebroventricular administration. These results support the use of MPI to track adoptively transferred T cells and accelerate the development of ACT treatments for brain tumors and other cancers.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
| | - Lan B. Hoang-Minh
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
- Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL USA
| | - Andreina Chiu-Lam
- Department of Chemical Engineering, University of Florida, Gainesville, FL USA
| | - Nicole Sarna
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
| | - Leyda Marrero-Morales
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
| | - Duane A. Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
- Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL USA
- UF Health Cancer Center, University of Florida, Gainesville, FL USA
| | - Carlos M. Rinaldi-Ramos
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
- Department of Chemical Engineering, University of Florida, Gainesville, FL USA
- UF Health Cancer Center, University of Florida, Gainesville, FL USA
| |
Collapse
|
33
|
Boberg M, Gdaniec N, Szwargulski P, Werner F, Möddel M, Knopp T. Simultaneous imaging of widely differing particle concentrations in MPI: problem statement and algorithmic proposal for improvement. Phys Med Biol 2021; 66. [PMID: 33765669 DOI: 10.1088/1361-6560/abf202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022]
Abstract
Magnetic particle imaging (MPI) is a tomographic imaging technique for determining the spatial distribution of superparamagnetic nanoparticles. Current MPI systems are capable of imaging iron masses over a wide dynamic range of more than four orders of magnitude. In theory, this range could be further increased using adaptive amplifiers, which prevent signal clipping. While this applies to a single sample, the dynamic range is severely limited if several samples with different concentrations or strongly inhomogeneous particle distributions are considered. One scenario that occurs quite frequently in pre-clinical applications is that a highly concentrated tracer bolus in the vascular system 'shadows' nearby organs with lower effective tracer concentrations. The root cause of the problem is the ill-posedness of the MPI imaging operator, which requires regularization for stable reconstruction. In this work, we introduce a simple two-step algorithm that increases the dynamic range by a factor of four. Furthermore, the algorithm enables spatially adaptive regularization, i.e. highly concentrated signals can be reconstructed with maximum spatial resolution, while low concentrated signals are strongly regularized to prevent noise amplification.
Collapse
Affiliation(s)
- Marija Boberg
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, D-21073 Hamburg, Germany
| | - Nadine Gdaniec
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, D-21073 Hamburg, Germany
| | - Patryk Szwargulski
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, D-21073 Hamburg, Germany
| | - Franziska Werner
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, D-21073 Hamburg, Germany
| | - Martin Möddel
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, D-21073 Hamburg, Germany
| | - Tobias Knopp
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, D-21073 Hamburg, Germany
| |
Collapse
|
34
|
Siepmann R, Nilius H, Mueller F, Mueller K, Luisi C, Dadfar SM, Straub M, Schulz V, Reinartz SD. Image-derived mean velocity measurement for prediction of coronary flow reserve in a canonical stenosis phantom using magnetic particle imaging. PLoS One 2021; 16:e0249697. [PMID: 33886607 PMCID: PMC8061921 DOI: 10.1371/journal.pone.0249697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/24/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Aim of this study is to evaluate whether magnetic particle imaging (MPI) is capable of measuring velocities occurring in the coronary arteries and to compute coronary flow reserve (CFR) in a canonical phantom as a preliminary study. METHODS For basic velocity measurements, a circulation phantom was designed containing replaceable glass tubes with three varying inner diameters, matching coronary-vessel diameters. Standardised boluses of superparamagnetic-iron-oxide-nanoparticles were injected and visualised by MPI. Two image-based techniques were competitively applied to calibrate the respective glass tube and to compute the mean velocity: full-duration-at-half-maximum (FDHM) and tracer dilution (TD) method. For CFR-calculation, four necessary settings of the circulation model of a virtual vessel with an inner diameter of 4 mm were generated using differently sized glass tubes and a stenosis model. The respective velocities in stenotic glass tubes were computed without recalibration. RESULTS On velocity level, comparison showed a good agreement (rFDHM = 0.869, rTD = 0.796) between techniques, preferably better for 4 mm and 6 mm inner diameter glass tubes. On CFR level MPI-derived CFR-prediction performed considerably inferior with a relative error of 20-44%. CONCLUSIONS MPI has the ability to reliably measure coronary blood velocities at rest as well as under hyperaemia and therefore may be suitable for CFR calculation. Calibration-associated accuracy of CFR-measurements has to be improved substantially in further studies.
Collapse
Affiliation(s)
- Robert Siepmann
- Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Henning Nilius
- Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Florian Mueller
- Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Katrin Mueller
- Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Claudio Luisi
- Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Marcel Straub
- Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Volkmar Schulz
- Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
35
|
Rivera-Rodriguez A, Rinaldi-Ramos CM. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annu Rev Chem Biomol Eng 2021; 12:163-185. [PMID: 33856937 DOI: 10.1146/annurev-chembioeng-102720-015630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; , .,Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
36
|
Chandrasekharan P, Fung KB, Zhou XY, Cui W, Colson C, Mai D, Jeffris K, Huynh Q, Saayujya C, Kabuli L, Fellows B, Lu Y, Yu E, Tay ZW, Zheng B, Fong L, Conolly SM. Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers. Nanotheranostics 2021; 5:240-255. [PMID: 33614400 PMCID: PMC7893534 DOI: 10.7150/ntno.50721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
White blood cells (WBCs) are a key component of the mammalian immune system and play an essential role in surveillance, defense, and adaptation against foreign pathogens. Apart from their roles in the active combat of infection and the development of adaptive immunity, immune cells are also involved in tumor development and metastasis. Antibody-based therapeutics have been developed to regulate (i.e. selectively activate or inhibit immune function) and harness immune cells to fight malignancy. Alternatively, non-invasive tracking of WBC distribution can diagnose inflammation, infection, fevers of unknown origin (FUOs), and cancer. Magnetic Particle Imaging (MPI) is a non-invasive, non-radioactive, and sensitive medical imaging technique that uses safe superparamagnetic iron oxide nanoparticles (SPIOs) as tracers. MPI has previously been shown to track therapeutic stem cells for over 87 days with a ~200 cell detection limit. In the current work, we utilized antibody-conjugated SPIOs specific to neutrophils for in situ labeling, and non-invasive and radiation-free tracking of these inflammatory cells to sites of infection and inflammation in an in vivo murine model of lipopolysaccharide-induced myositis. MPI showed sensitive detection of inflammation with a contrast-to-noise ratio of ~8-13.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - K.L. Barry Fung
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Xinyi Y. Zhou
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Caylin Colson
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - David Mai
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kenneth Jeffris
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Leyla Kabuli
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Elaine Yu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Lawrence Fong
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, United States
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
38
|
Lu Y, Rivera-Rodriguez A, Tay ZW, Hensley D, Fung KLB, Colson C, Saayujya C, Huynh Q, Kabuli L, Fellows B, Chandrasekharan P, Rinaldi C, Conolly S. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. Int J Hyperthermia 2021; 37:141-154. [PMID: 33426994 DOI: 10.1080/02656736.2020.1853252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Magnetic fluid hyperthermia (MFH) has been widely investigated as a treatment tool for cancer and other diseases. However, focusing traditional MFH to a tumor deep in the body is not feasible because the in vivo wavelength of 300 kHz very low frequency (VLF) excitation fields is longer than 100 m. Recently we demonstrated that millimeter-precision localized heating can be achieved by combining magnetic particle imaging (MPI) with MFH. In principle, real-time MPI imaging can also guide the location and dosing of MFH treatments. Hence, the combination of MPI imaging plus real time localized MPI-MFH could soon permit closed-loop high-resolution hyperthermia treatment. In this review, we will discuss the fundamentals of localized MFH (e.g. physics and biosafety limitations), hardware implementation, MPI real-time guidance, and new research directions on MPI-MFH. We will also discuss how the scale up to human-sized MPI-MFH scanners could proceed.
Collapse
Affiliation(s)
- Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Zhi Wei Tay
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - K L Barry Fung
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Caylin Colson
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Leyla Kabuli
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Benjamin Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Steven Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
39
|
Tong W, Hui H, Shang W, Zhang Y, Tian F, Ma Q, Yang X, Tian J, Chen Y. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Am J Cancer Res 2021; 11:506-521. [PMID: 33391489 PMCID: PMC7738857 DOI: 10.7150/thno.49812] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a pivotal driver of atherosclerotic plaque progression and rupture and is a target for identifying vulnerable plaques. However, challenges arise with the current in vivo imaging modalities for differentiating vulnerable atherosclerotic plaques from stable plaques due to their low specificity and sensitivity. Herein, we aimed to develop a novel multimodal imaging platform that specifically targets and identifies high-risk plaques in vivo by detecting active myeloperoxidase (MPO), a potential inflammatory marker of vulnerable atherosclerotic plaque. Methods: A novel multimodal imaging agent, 5-HT-Fe3O4-Cy7 nanoparticles (5HFeC NPs), used for active MPO targeting, was designed by conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with 5-hydroxytryptamine and cyanine 7 N-hydroxysuccinimide ester. The specificity and sensitivity of 5HFeC NPs were evaluated using magnetic particle imaging (MPI), fluorescence imaging (FLI), and computed tomographic angiography (CTA) in an ApoE-/- atherosclerosis mouse model. Treatment with 4-ABAH, an MPO inhibitor, was used to assess the monitoring ability of 5HFeC NPs. Results: 5HFeC NPs can sensitively differentiate and accurately localize vulnerable atherosclerotic plaques in ApoE-/- mice via MPI/FLI/CTA. High MPI and FLI signals were observed in atherosclerotic plaques within the abdominal aorta, which were histologically confirmed by multiple high-risk features of macrophage infiltration, neovascularization, and microcalcification. Inhibition of active MPO reduced accumulation of 5HFeC NPs in the abdominal aorta. Accumulation of 5HFeC NPs in plaques enabled quantitative evaluation of the severity of inflammation and monitoring of MPO activity. Conclusions: This multimodal MPI approach revealed that active MPO-targeted nanoparticles might serve as a method for detecting vulnerable atherosclerotic plaques and monitoring MPO activity.
Collapse
|
40
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu EY, Fung BK, Colson C, Fellows BD, Lu Y, Huynh Q, Saayujya C, Keselman P, Hensley D, Lu K, Orendorff R, Konkle J, Saritas EU, Zheng B, Goodwill P, Conolly S. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
41
|
Graeser M, Ludewig P, Szwargulski P, Foerger F, Liebing T, Forkert ND, Thieben F, Magnus T, Knopp T. Design of a head coil for high resolution mouse brain perfusion imaging using magnetic particle imaging. Phys Med Biol 2020; 65:235007. [PMID: 33049723 DOI: 10.1088/1361-6560/abc09e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Magnetic particle imaging (MPI) is a novel and versatile imaging modality developing toward human application. When up-scaling to human size, the sensitivity of the systems naturally drops as the coil sensitivity depends on the bore diameter. Thus, new methods to push the sensitivity limit further have to be investigated to cope for this loss. In this paper a dedicated surface coil for mice is developed, improving the sensitivity in cerebral imaging applications. Similar to magnetic resonance imaging the developed surface coil improves the sensitivity due to the closer vicinity to the region of interest. With the developed surface coil presented in this work, it is possible to image tracer samples containing only 896 pg[Formula: see text] and detect even small vessels and anatomical structures within a wild type mouse model. As current sensitivity measures require a tracer system a new method for determining a sensitivity measure without this requirement is presented and verified to enable comparison between MPI receiver systems.
Collapse
Affiliation(s)
- Matthias Graeser
- Section for Biomedical Imaging, Department of Diagnostic and Interventional Radiology and Nuclear Medicine at the University Medical Center Hamburg- Eppendorf, Hamburg, Germany. Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Top CB, Gungor A. Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4164-4173. [PMID: 32746156 DOI: 10.1109/tmi.2020.3014197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have a high potential for use in clinical diagnostic and therapeutic applications. In vivo distribution of SPIONs can be imaged with the Magnetic Particle Imaging (MPI) method, which uses an inhomogeneous magnetic field with a field free region (FFR). The spatial distribution of the SPIONs are obtained by scanning the FFR inside the field of view (FOV) and sensing SPION related magnetic field disturbance. MPI magnets can be configured to generate a field free point (FFP), or a field free line (FFL) to scan the FOV. FFL scanners provide more sensitivity, and are also more suitable for scanning large regions compared to FFP scanners. Interventional procedures will benefit greatly from FFL based open magnet configurations. Here, we present the first open-sided MPI system that can electronically scan the FOV with an FFL to generate tomographic MPI images. Magnetic field measurements show that FFL can be rotated electronically in the horizontal plane and translated in three dimensions to generate 3D MPI images. Using the developed scanner, we obtained 2D images of dot and cylinder phantoms with varying iron concentrations between 11 [Formula: see text]/ml and 770 [Formula: see text]/ml. We used a measurement based system matrix image reconstruction method that minimizes l1 -norm and total variation in the images. Furthermore, we present 2D imaging results of two 4 mm-diameter vessel phantoms with 0% and 75% stenosis. The experiments show high quality imaging results with a resolution down to 2.5 mm for a relatively low gradient field of 0.6 T/m.
Collapse
|
43
|
Franke J, Baxan N, Lehr H, Heinen U, Reinartz S, Schnorr J, Heidenreich M, Kiessling F, Schulz V. Hybrid MPI-MRI System for Dual-Modal In Situ Cardiovascular Assessments of Real-Time 3D Blood Flow Quantification-A Pre-Clinical In Vivo Feasibility Investigation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4335-4345. [PMID: 32804645 DOI: 10.1109/tmi.2020.3017160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-invasive quantification of functional parameters of the cardiovascular system, in particular the heart, remains very challenging with current imaging techniques. This aspect is mainly due to the fact, that the spatio-temporal resolution of current imaging methods, such as Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET), does not offer the desired data repetition rates in the context of real-time data acquisition and thus, can cause artifacts and misinterpretations in accelerated data acquisition approaches. We present a fast non-invasive and quantitative dual-modal in situ cardiovascular assessment using a hybrid imaging system which combines the new imaging modality Magnetic Particle Imaging (MPI) and MRI. This pre-clinical hybrid imaging system provides either a 0.5 T homogeneous B0 field for MRI or a 2.2 T/m gradient field featuring a Field-Free-Point for MPI. A comprehensive coil system allows in both imaging modes for spatial encoding, signal excitation and reception. In this work, 3-dimensional anatomical information acquired with MRI is combined with in situ sequentially acquired time-resolved 3D (i.e. 3D + t) MPI bolus tracking of superparamagnetic iron oxide nanoparticles. MPI data were acquired during a 21 [Formula: see text] (40 μ mol(Fe)/kgBW) bolus tail vein injection under free-breathing with an ungated and non-triggered MPI scan with a repetition rate of 46 volumes per seconds. We successfully determined quantitative hemodynamics as 3D + t velocity vector estimations of a beating rat's heart by analyzing 3 seconds of 3D + t MPI image data. The used hybrid system allows for MR-based MPI Field-of-View planning and cardiac cross-sectional anatomy analysis, precise co-registration of dual-modal datasets, as well as for MPI-based hemodynamic functional analysis using an optical flow technique. We present the first in-vivo results of a new methodology, allowing for fast, non-invasive, quantitative and in situ hybrid cardiovascular assessment, showing its potential for future clinical applications.
Collapse
|
44
|
Woods JC, Wild JM, Wielpütz MO, Clancy JP, Hatabu H, Kauczor HU, van Beek EJ, Altes TA. Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J Magn Reson Imaging 2020; 52:1306-1320. [PMID: 31846139 PMCID: PMC7297663 DOI: 10.1002/jmri.27030] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary MRI can now provide high-resolution images that are sensitive to early disease and specific to inflammation in cystic fibrosis (CF) lung disease. With specificity and function limited via computed tomography (CT), there are significant advantages to MRI. Many of the modern MRI techniques can be performed throughout life, and can be employed to understand changes over time, in addition to quantification of treatment response. Proton density and T1 /T2 contrast images can be obtained within a single breath-hold, providing depiction of structural abnormalities and active inflammation. Modern radial and/or spiral ultrashort echo-time (UTE) techniques rival CT in resolution for depiction and quantification of structure, for both airway and parenchymal abnormalities. Contrast perfusion MRI techniques are now utilized routinely to visualize changes in pulmonary and bronchial circulation that routinely occur in CF lung disease, and noncontrast techniques are moving closer to clinical translation. Functional information can be obtained from noncontrast proton images alone, using techniques such as Fourier decomposition. Hyperpolarized-gas MRI, increasingly using 129 Xe, is now becoming more widespread and has been demonstrated to have high sensitivity to early airway obstruction in CF via ventilation MRI. The sensitivity of 129 Xe MRI promises future use in personalized medicine, management of early CF lung disease, and in future clinical trials. By combining structural and functional techniques, with or without hyperpolarized gases, regional structure-function relationships can be obtained, giving insight into the pathophysiology of disease and improved clinical management. This article reviews the modern MRI techniques that can routinely be employed for CF lung disease in nearly any large medical center. Level of Evidence: 4 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Jason C. Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital and University of Cincinnati; Cincinnati OH, USA
| | - Jim M. Wild
- Department of Radiology, University of Sheffield, Sheffield UK
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for lung Research (DZL), Heidelberg, Germany
| | - John P. Clancy
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital and University of Cincinnati; Cincinnati OH, USA
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for lung Research (DZL), Heidelberg, Germany
| | - Edwin J.R. van Beek
- Edinburgh Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Talissa A Altes
- Department of Radiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
45
|
Gdaniec N, Boberg M, Moddel M, Szwargulski P, Knopp T. Suppression of Motion Artifacts Caused by Temporally Recurring Tracer Distributions in Multi-Patch Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3548-3558. [PMID: 32746103 DOI: 10.1109/tmi.2020.2998910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic particle imaging is a tracer based imaging technique to determine the spatial distribution of superparamagnetic iron oxide nanoparticles with a high spatial and temporal resolution. Due to physiological constraints, the imaging volume is restricted in size and larger volumes are covered by shifting object and imaging volume relative to each other. This results in reduced temporal resolution, which can lead to motion artifacts when imaging dynamic tracer distributions. A common source of such dynamic distributions are cardiac and respiratory motion in in-vivo experiments, which are in good approximation periodic. We present a raw data processing technique that combines data snippets into virtual frames corresponding to a specific state of the dynamic motion. The technique is evaluated on the basis of measurement data obtained from a rotational phantom at two different rotational frequencies. These frequencies are determined from the raw data without reconstruction and without an additional navigator signal. The reconstructed images give reasonable representations of the rotational phantom frozen in several different states of motion while motion artifacts are suppressed.
Collapse
|
46
|
Han X, Li Y, Liu W, Chen X, Song Z, Wang X, Deng Y, Tang X, Jiang Z. The Applications of Magnetic Particle Imaging: From Cell to Body. Diagnostics (Basel) 2020; 10:E800. [PMID: 33050139 PMCID: PMC7600969 DOI: 10.3390/diagnostics10100800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetic particle imaging (MPI) is a cutting-edge imaging technique that is attracting increasing attention. This novel technique collects signals from superparamagnetic nanoparticles as its imaging tracer. It has characteristics such as linear quantitativity, positive contrast, unlimited penetration, no radiation, and no background signal from surrounding tissue. These characteristics enable various medical applications. In this paper, we first introduce the development and imaging principles of MPI. Then, we discuss the current major applications of MPI by dividing them into four categories: cell tracking, blood pool imaging, tumor imaging, and visualized magnetic hyperthermia. Even though research on MPI is still in its infancy, we hope this discussion will promote interest in the applications of MPI and encourage the design of tracers tailored for MPI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (X.H.); (Y.L.); (W.L.); (X.C.); (Z.S.); (X.W.); (Y.D.); (X.T.)
| |
Collapse
|
47
|
Liang X, Wang K, Du J, Tian J, Zhang H. The first visualization of chemotherapy-induced tumor apoptosis via magnetic particle imaging in a mouse model. Phys Med Biol 2020; 65:195004. [PMID: 32764190 DOI: 10.1088/1361-6560/abad7c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Imaging technologies that allow non-radiative visualization and quantification of apoptosis have a great potential for assessing therapy response, early diagnosis, and disease monitoring. Magnetic particle imaging (MPI), the direct imaging of magnetic nanoparticles as positive contrast agent and sole signal source, enables high image contrast (no tissue background signal), potential high sensitivity, and quantifiable signal intensity. These properties confer a great potential for application to tumor apoptosis monitoring. In this study, a simple and robust method was used to conjugate Alexa Fluor 647-AnnexinV (AF647-Anx), which can avidly bind to apoptotic cells, to superparamagnetic iron oxide (SPIO) nanoparticles, termed AF647-Anx-SPIO, which serves as an MPI-detectable tracer. Based on this apoptosis-specific tracer, MPI can accurately and unambiguously detect and quantify apoptotic tumor cells. AF647-Anx-SPIO showed relatively high affinity for apoptotic cells, and differences in binding between treated (apoptotic rate 67.21% ± 1.36%) and untreated (apoptotic rate 10.12 ± 0.11%) cells could be detected by MPI in vitro (P < 0.05). Moreover, the imaging signal was almost proportional to the number of apoptotic cells determined using an MPI scanner (R 2 = 0.99). There was a greater accumulation of AF647-Anx-SPIO in tumors of drug-treated animals than in tumors of untreated animals (P < 0.05), and the difference could be detected by MPI ex vivo, while for in vivo imaging, no MPI imaging signal was detected in either group. Overall, this preliminary study demonstrates that MPI could be a potential imaging modality for tumor apoptosis imaging.
Collapse
Affiliation(s)
- Xin Liang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China. College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
49
|
Salamon J, Dieckhoff J, Kaul MG, Jung C, Adam G, Möddel M, Knopp T, Draack S, Ludwig F, Ittrich H. Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. Sci Rep 2020; 10:7480. [PMID: 32366912 PMCID: PMC7198551 DOI: 10.1038/s41598-020-64280-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/09/2020] [Indexed: 11/09/2022] Open
Abstract
Temperature-resolved magnetic particle imaging (MPI) represents a promising tool for medical imaging applications. In this study an approach based on a single calibration measurement was applied for highlighting the potential of MPI for monitoring of temperatures during thermal ablation of liver tumors. For this purpose, liver tissue and liver tumor phantoms embedding different superparamagnetic iron oxide nanoparticles (SPION) were prepared, locally heated up to 70 °C and recorded with MPI. Optimal temperature MPI SPIONs and a corresponding linear model for temperature calculation were determined. The temporal and spatial temperature distributions were compared with infrared (IR) camera results yielding quantitative agreements with a mean absolute deviation of 1 °C despite mismatches in boundary areas.
Collapse
Affiliation(s)
- J Salamon
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - J Dieckhoff
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - M G Kaul
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - C Jung
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - G Adam
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - M Möddel
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, 21073, Hamburg, Germany
| | - T Knopp
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, 21073, Hamburg, Germany
| | - S Draack
- Institute of Electrical Measurement Science and Fundamental Electrical Engineering, TU Braunschweig, 38106, Braunschweig, Germany
| | - F Ludwig
- Institute of Electrical Measurement Science and Fundamental Electrical Engineering, TU Braunschweig, 38106, Braunschweig, Germany
| | - H Ittrich
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
50
|
Tay ZW, Hensley DW, Chandrasekharan P, Zheng B, Conolly SM. Optimization of Drive Parameters for Resolution, Sensitivity and Safety in Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1724-1734. [PMID: 31796392 PMCID: PMC8034762 DOI: 10.1109/tmi.2019.2957041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic Particle Imaging is an emerging tracer imaging modality with zero background signal and zero ionizing radiation, high contrast and high sensitivity with quantitative images. While there is recent work showing that the low amplitude or low frequency drive parameters can improve MPI's spatial resolution by mitigating relaxation losses, the concomitant decrease of the MPI's tracer sensitivity due to the lower drive slew rates was not fully addressed. There has yet to be a wide parameter space, multi-objective optimization of MPI drive parameters for high resolution, high sensitivity and safety. In a large-scale study, we experimentally test 5 different nanoparticles ranging from multi to single-core across 18.5 nm to 32.1 nm core sizes and across an expansive drive parameter range of 0.4 - 416 kHz and 0.5 - 40 mT/ μ0 to assess spatial resolution, SNR, and safety. In addition, we analyze how drive-parameter-dependent shifts in harmonic signal energy away and towards the discarded first harmonic affect effective SNR in this optimization study. The results show that when optimizing for all four factors of resolution, SNR, discarded-harmonic-energy and safety, the overall trends are no longer monotonic and clear optimal points emerge. We present drive parameters different from conventional preclinical MPI showing ~ 2-fold improvement in spatial resolution while remaining within safety limits and addressing sensitivity by minimizing the typical SNR loss involved. Finally, validation of the optimization results with 2D images of phantoms was performed.
Collapse
|