1
|
Olaitan G, Ganesana M, Strohman A, Lynch WJ, Legon W, Venton BJ. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. J Neurochem 2025; 169:e70001. [PMID: 39902479 PMCID: PMC11791541 DOI: 10.1111/jnc.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 12/28/2024] [Indexed: 02/05/2025]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm2 ISPPA) of 2-min LIFU to the prelimbic cortex (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm2 to the PLC significantly reduced dopamine release by ~50% for up to 2 h. However, double the intensity (26 W/cm2) resulted in less inhibition (~30%), and half the intensity (6.5 W/cm2) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm2, suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
Affiliation(s)
- Greatness Olaitan
- Department of ChemistryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Andrew Strohman
- Graduate Program in Translational Biology, Medicine, and HealthVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
- Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
| | - Wendy J. Lynch
- Psychiatry and Neurobehavioral SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Wynn Legon
- Graduate Program in Translational Biology, Medicine, and HealthVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
- Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- Center for Human Neuroscience ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
- Center for Health Behaviors ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
| | - B. Jill Venton
- Department of ChemistryUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
3
|
Ge C, Masalehdan T, Shojaei Baghini M, Duran Toro V, Signorelli L, Thomson H, Gregurec D, Heidari H. Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404254. [PMID: 39445520 PMCID: PMC11633526 DOI: 10.1002/advs.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter-resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next-generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state-of-the-art microfabrication in depth due to its irreplaceable role in realizing next-generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through-silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.
Collapse
Affiliation(s)
- Changhao Ge
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Tahereh Masalehdan
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Mahdieh Shojaei Baghini
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vicente Duran Toro
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Lorenzo Signorelli
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hannah Thomson
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Danijela Gregurec
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hadi Heidari
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
4
|
Gu W, Wang L, Wang X, Zhao C, Guan S. Large-Scale, High-Density MicroLED Array-Based Optogenetic Device for Neural Stimulation and Recording. NANO LETTERS 2024. [PMID: 39564939 DOI: 10.1021/acs.nanolett.4c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Optogenetics has emerged as a pivotal tool in neuroscience, enabling precise control of neural activity through light stimulation. However, the current microLED arrays lack sufficient density and scalability. This study proposes an innovative optogenetic device capable of integrating hundreds of microLEDs and electrocorticography (ECOG) electrodes. Individual or multiple microLEDs in the device can be selectively controlled with a custom controller. The light intensity of microLEDs decreases with increasing brain tissue penetration while maintaining a low temperature rise during pulse stimulations. In addition, interference from microLED pulses on ECOG electrode recordings could be alleviated with local mean subtraction data processing. The optogenetic device enables high-quality neural signal recording and triggers a significant enhancement in neural activity following light stimulation. Integration of microLED arrays and ECOG electrodes in the optogenetic device represents a promising advancement in neuroscientific research, providing improved spatial and temporal recording and control over neural activity.
Collapse
Affiliation(s)
- Wen Gu
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Longda Wang
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Xiangyu Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Zhao
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Shouliang Guan
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| |
Collapse
|
5
|
Gouvêa Bogossian E, Salvagno M, Fiore M, Talamonti M, Prezioso C, Montanaro F, Fratino S, Schuind S, Taccone FS. Impact of fever on the outcome non-anoxic acute brain injury patients: a systematic review and meta-analysis. Crit Care 2024; 28:367. [PMID: 39538310 PMCID: PMC11559165 DOI: 10.1186/s13054-024-05132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Fever is a common condition in intensive care unit (ICU) patients, with an incidence between 30 and 50% in non-neurological ICU patients and up to 70-90% in neurological ICU patients. We aim to perform systematic review and meta-analysis of current literature to assess impact of fever on neurological outcomes and mortality of acute brain injury patients. METHODS We searched PubMed/Medline, Scopus and Embase databases following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, and we included both retrospective and prospective observational studies, interventional studies, and randomized clinical trials that had data on body temperature and fever during ICU admission. The primary endpoints were neurological outcome and mortality at any time. Secondary outcomes included: early neurological deterioration, delayed cerebral ischemia (DCI, only for patients with subarachnoid hemorrhage), large infarct or hemorrhage size, hemorrhagic transformation (only for patients with ischemic stroke). This study was registered in PROSPERO (CRD42020155903). RESULTS 180 studies from 14692 records identified after the initial search were included in the final analysis, for a total of 460,825 patients. Fever was associated with an increased probability of unfavorable neurological outcome (pooled OR 2.37 [95% CI 2.08-2.71], I2:92%), death (pooled OR 1.31 [95% CI 1.28-1.34], I2:93%), neurological deterioration (pooled OR 1.10 [95% CI 1.05-1.15]), risk of DCI (pooled OR 1.96 [95% CI 1.73-2.22]), large infarct size (pooled OR 2.94 [95% CI 2.90-2.98]) and hemorrhagic transformation (pooled OR 1.63 [95% CI 1.34-1.97]) and large hemorrhagic volume (pooled OR 2.38 [95% CI 1.94-2.93]). CONCLUSION Fever was associated with poor neurological outcomes and mortality in patients with acute brain injury. Whether normothermia should be targeted in the management of all neuro critically ill patients warrants specific research.
Collapse
Affiliation(s)
- Elisa Gouvêa Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.
| | - Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Fiore
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Marta Talamonti
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Chiara Prezioso
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Federica Montanaro
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Sara Fratino
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Schuind
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Dang KM, Zhang YJ, Zhang T, Wang C, Sinner A, Coronica P, Poon JKS. NeuroQuantify - An image analysis software for detection and quantification of neuron cells and neurite lengths using deep learning. J Neurosci Methods 2024; 411:110273. [PMID: 39197681 DOI: 10.1016/j.jneumeth.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable quantitative information about neuron growth and neuronal differentiation, including the number of cells, neurites, neurite length and neurite orientation. This information is essential for assessing the development of neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for example, the study of neurodegenerative diseases and pharmaceuticals. NEW METHOD We have developed NeuroQuantify, an open-source software that uses deep learning to efficiently and quickly segment cells and neurites in phase contrast microscopy images. RESULTS NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post-processing of the images for the quantitative neurite length measurement based on segmentation of phase contrast microscopy images, and (iii) identification of neurite orientations. COMPARISON WITH EXISTING METHODS NeuroQuantify overcomes some of the limitations of existing methods in the automatic and accurate analysis of neuronal structures. It has been developed for phase contrast images rather than fluorescence images. In addition to typical functionality of cell counting, NeuroQuantify also detects and counts neurites, measures the neurite lengths, and produces the neurite orientation distribution. CONCLUSIONS We offer a valuable tool to assess network development rapidly and effectively. The user-friendly NeuroQuantify software can be installed and freely downloaded from GitHub at https://github.com/StanleyZ0528/neural-image-segmentation.
Collapse
Affiliation(s)
- Ka My Dang
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle D-06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada.
| | - Yi Jia Zhang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | - Tianchen Zhang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | - Chao Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | - Anton Sinner
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle D-06120, Germany
| | - Piero Coronica
- Max Planck Computing and Data Facility, Gießenbachstraße 2, Garching 85748, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle D-06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada.
| |
Collapse
|
7
|
Gou S, Yang S, Cheng Y, Yang S, Liu H, Li P, Du Z. Applications of 2D Nanomaterials in Neural Interface. Int J Mol Sci 2024; 25:8615. [PMID: 39201302 PMCID: PMC11354839 DOI: 10.3390/ijms25168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neural interfaces are crucial conduits between neural tissues and external devices, enabling the recording and modulation of neural activity. However, with increasing demand, simple neural interfaces are no longer adequate to meet the requirements for precision, functionality, and safety. There are three main challenges in fabricating advanced neural interfaces: sensitivity, heat management, and biocompatibility. The electrical, chemical, and optical properties of 2D nanomaterials enhance the sensitivity of various types of neural interfaces, while the newly developed interfaces do not exhibit adverse reactions in terms of heat management and biocompatibility. Additionally, 2D nanomaterials can further improve the functionality of these interfaces, including magnetic resonance imaging (MRI) compatibility, stretchability, and drug delivery. In this review, we examine the recent applications of 2D nanomaterials in neural interfaces, focusing on their contributions to enhancing performance and functionality. Finally, we summarize the advantages and disadvantages of these nanomaterials, analyze the importance of biocompatibility testing for 2D nanomaterials, and propose that improving and developing composite material structures to enhance interface performance will continue to lead the forefront of this field.
Collapse
Affiliation(s)
- Shuchun Gou
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Siyi Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yuhang Cheng
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shu Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Hongli Liu
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou 510642, China;
| | - Peixuan Li
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zhanhong Du
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
8
|
Ermakova A. Fluorescent Nanodiamonds for High-Resolution Thermometry in Biology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1318. [PMID: 39120422 PMCID: PMC11313720 DOI: 10.3390/nano14151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Optically active color centers in diamond and nanodiamonds can be utilized as quantum sensors for measuring various physical parameters, particularly magnetic and electric fields, as well as temperature. Due to their small size and possible surface functionalization, fluorescent nanodiamonds are extremely attractive systems for biological and medical applications since they can be used for intracellular experiments. This review focuses on fluorescent nanodiamonds for thermometry with high sensitivity and a nanoscale spatial resolution for the investigation of living systems. The current state of the art, possible further development, and potential limitations of fluorescent nanodiamonds as thermometers will be discussed here.
Collapse
Affiliation(s)
- Anna Ermakova
- Physics Department, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium;
- Department of Magnetosphere-Ionosphere Coupling, Royal Belgian Institute for Space Aeronomy, 1180 Brussels, Belgium
| |
Collapse
|
9
|
Rogala J, Dreszer J, Sińczuk M, Miciuk Ł, Piątkowska-Janko E, Bogorodzki P, Wolak T, Wróbel A, Konarzewski M. Local variation in brain temperature explains gender-specificity of working memory performance. Front Hum Neurosci 2024; 18:1398034. [PMID: 39132677 PMCID: PMC11310161 DOI: 10.3389/fnhum.2024.1398034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Exploring gender differences in cognitive abilities offers vital insights into human brain functioning. Methods Our study utilized advanced techniques like magnetic resonance thermometry, standard working memory n-back tasks, and functional MRI to investigate if gender-based variations in brain temperature correlate with distinct neuronal responses and working memory capabilities. Results We observed a significant decrease in average brain temperature in males during working memory tasks, a phenomenon not seen in females. Although changes in female brain temperature were significantly lower than in males, we found an inverse relationship between the absolute temperature change (ATC) and cognitive performance, alongside a correlation with blood oxygen level dependent (BOLD) signal change induced by neural activity. This suggests that in females, ATC is a crucial determinant for the link between cognitive performance and BOLD responses, a linkage not evident in males. However, we also observed additional female specific BOLD responses aligned with comparable task performance to that of males. Discussion Our results suggest that females compensate for their brain's heightened temperature sensitivity by activating additional neuronal networks to support working memory. This study not only underscores the complexity of gender differences in cognitive processing but also opens new avenues for understanding how temperature fluctuations influence brain functionality.
Collapse
Affiliation(s)
- Jacek Rogala
- Centre for Research on Culture, Language, and Mind, University of Warsaw, Warsaw, Poland
- The Centre for Systemic Risk Analysis, University of Warsaw, Warsaw, Poland
| | - Joanna Dreszer
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marcin Sińczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Miciuk
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewa Piątkowska-Janko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bogorodzki
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany, Poland
| | - Andrzej Wróbel
- Nencki Institute of Experimental Biology, Warsaw, Poland
- Faculty of Philosophy, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
10
|
Phil Brooks F, Davis HC, Wong-Campos JD, Cohen AE. Optical constraints on two-photon voltage imaging. NEUROPHOTONICS 2024; 11:035007. [PMID: 39139631 PMCID: PMC11321468 DOI: 10.1117/1.nph.11.3.035007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Significance Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits in vivo, but the relative merits and limitations of one-photon (1P) versus two-photon (2P) voltage imaging are not well characterized. Aim We consider the optical and biophysical constraints particular to 1P and 2P voltage imaging and compare the imaging properties of commonly used GEVIs under 1P and 2P excitation. Approach We measure the brightness and voltage sensitivity of voltage indicators from commonly used classes under 1P and 2P illumination. We also measure the decrease in fluorescence as a function of depth in the mouse brain. We develop a simple model of the number of measurable cells as a function of reporter properties, imaging parameters, and desired signal-to-noise ratio (SNR). We then discuss how the performance of voltage imaging would be affected by sensor improvements and by recently introduced advanced imaging modalities. Results Compared with 1P excitation, 2P excitation requires ∼ 10 4 -fold more illumination power per cell to produce similar photon count rates. For voltage imaging with JEDI-2P in the mouse cortex with a target SNR of 10 (spike height to baseline shot noise), a measurement bandwidth of 1 kHz, a thermally limited laser power of 200 mW, and an imaging depth of > 300 μ m , 2P voltage imaging using an 80-MHz source can record from no more than ∼ 12 neurons simultaneously. Conclusions Due to the stringent photon-count requirements of voltage imaging and the modest voltage sensitivity of existing reporters, 2P voltage imaging in vivo faces a stringent tradeoff between shot noise and tissue photodamage. 2P imaging of hundreds of neurons with high SNR at a depth of > 300 μ m will require either major improvements in 2P GEVIs or qualitatively new approaches to imaging.
Collapse
Affiliation(s)
- F. Phil Brooks
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
| | - Hunter C. Davis
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
| | - J. David Wong-Campos
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
| | - Adam E. Cohen
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
| |
Collapse
|
11
|
Olaitan GO, Ganesana M, Strohman A, Lynch WJ, Legon W, Jill Venton B. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580202. [PMID: 38979318 PMCID: PMC11230179 DOI: 10.1101/2024.02.13.580202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm 2 I sppa ) of 2-minute LIFU to the prelimbic region (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm 2 to the PLC significantly reduced dopamine release by ∼ 50% for up to 2 hours. However, double the intensity (26 W/cm 2 ) resulted in less inhibition (∼30%), and half the intensity (6.5 W/cm 2 ) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling of temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm 2 , suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
|
12
|
Brown GC. Bioenergetic myths of energy transduction in eukaryotic cells. Front Mol Biosci 2024; 11:1402910. [PMID: 38952719 PMCID: PMC11215017 DOI: 10.3389/fmolb.2024.1402910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 07/03/2024] Open
Abstract
The study of energy transduction in eukaryotic cells has been divided between Bioenergetics and Physiology, reflecting and contributing to a variety of Bioenergetic myths considered here: 1) ATP production = energy production, 2) energy transduction is confined to mitochondria (plus glycolysis and chloroplasts), 3) mitochondria only produce heat when required, 4) glycolysis is inefficient compared to mitochondria, and 5) mitochondria are the main source of reactive oxygen species (ROS) in cells. These myths constitute a 'mitocentric' view of the cell that is wrong or unbalanced. In reality, mitochondria are the main site of energy dissipation and heat production in cells, and this is an essential function of mitochondria in mammals. Energy transduction and ROS production occur throughout the cell, particularly the cytosol and plasma membrane, and all cell membranes act as two-dimensional energy conduits. Glycolysis is efficient, and produces less heat per ATP than mitochondria, which might explain its increased use in muscle and cancer cells.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Canet G, Monteiro FDG, Rocaboy E, Diego-Diaz S, Khelaifia B, Kim J, Valencia D, Yin A, Wu HT, Howell J, Blank E, Laliberté F, Fortin N, Boscher E, Fereydouni-Forouzandeh P, Champagne S, Guisle I, Hébert S, Pernet V, Liu H, Lu W, Debure L, Rapoport D, Ayappa I, Varga A, Parekh A, Osorio R, Lacroix S, Lucey B, Blessing E, Planel E. Sleep-wake body temperature regulates tau secretion in mice and correlates with CSF and plasma tau in humans. RESEARCH SQUARE 2024:rs.3.rs-4384494. [PMID: 38798432 PMCID: PMC11118695 DOI: 10.21203/rs.3.rs-4384494/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The sleep-wake cycle regulates interstitial fluid and cerebrospinal fluid (CSF) tau levels in both mouse and human by mechanisms that remain unestablished. Here, we reveal a novel pathway by which wakefulness increases extracellular tau levels in mouse and humans. In mice, higher body temperature (BT) associated with wakefulness and sleep deprivation increased CSF tau. In vitro, wakefulness temperatures upregulated tau secretion via a temperature-dependent increase in activity and expression of unconventional protein secretion pathway-1 components, namely caspase-3-mediated C-terminal cleavage of tau (TauC3), and membrane expression of PIP2 and syndecan-3. In humans, the increase in both CSF and plasma tau levels observed post-wakefulness correlated with BT increase during wakefulness. Our findings suggest sleep-wake variation in BT may contribute to regulating extracellular tau levels, highlighting the importance of thermoregulation in pathways linking sleep disturbance to neurodegeneration, and the potential for thermal intervention to prevent or delay tau-mediated neurodegeneration.
Collapse
Affiliation(s)
| | | | - Emma Rocaboy
- Research Center of CHU de Quebec - Laval University
| | | | | | - Jessica Kim
- Department of Psychiatry, NYU Grossman School of Medicine
| | - Daphne Valencia
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | - Audrey Yin
- Department of Psychiatry, NYU Grossman School of Medicine
| | - Hau-Tieng Wu
- Department of Psychiatry, NYU Grossman School of Medicine
| | - Jordan Howell
- Department of Psychiatry, NYU Grossman School of Medicine
| | - Emily Blank
- Department of Psychiatry, NYU Grossman School of Medicine
| | | | - Nadia Fortin
- Research Center of CHU de Quebec - Laval University
| | - Emmanuelle Boscher
- Centre de recherche du CHU de Québec-Université Laval, CHUL, Axe Neurosciences, Faculté de médecine, Département de psychiatrie et de neurosciences, Québec, C
| | | | | | | | - Sébastien Hébert
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, Québec
| | | | | | - William Lu
- Department of Neurology, Washington University School of Medicine
| | | | - David Rapoport
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | - Indu Ayappa
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | - Andrew Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | | | | | - Brendan Lucey
- Department of Neurology, Washington University School of Medicine
| | | | - Emmanuel Planel
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, Québec
| |
Collapse
|
14
|
Sato H, Sugimoto F, Furukawa R, Tateno T. Modulatory Effects on Laminar Neural Activity Induced by Near-Infrared Light Stimulation with a Continuous Waveform to the Mouse Inferior Colliculus In Vivo. eNeuro 2024; 11:ENEURO.0521-23.2024. [PMID: 38627064 DOI: 10.1523/eneuro.0521-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Infrared neural stimulation (INS) is a promising area of interest for the clinical application of a neuromodulation method. This is in part because of its low invasiveness, whereby INS modulates the activity of the neural tissue mainly through temperature changes. Additionally, INS may provide localized brain stimulation with less tissue damage. The inferior colliculus (IC) is a crucial auditory relay nucleus and a potential target for clinical application of INS to treat auditory diseases and develop artificial hearing devices. Here, using continuous INS with low to high-power density, we demonstrate the laminar modulation of neural activity in the mouse IC in the presence and absence of sound. We investigated stimulation parameters of INS to effectively modulate the neural activity in a facilitatory or inhibitory manner. A mathematical model of INS-driven brain tissue was first simulated, temperature distributions were numerically estimated, and stimulus parameters were selected from the simulation results. Subsequently, INS was administered to the IC of anesthetized mice, and the modulation effect on the neural activity was measured using an electrophysiological approach. We found that the modulatory effect of INS on the spontaneous neural activity was bidirectional between facilitatory and inhibitory effects. The modulatory effect on sound-evoked responses produced only an inhibitory effect to all examined stimulus intensities. Thus, this study provides important physiological evidence on the response properties of IC neurons to INS. Overall, INS can be used for the development of new therapies for neurological disorders and functional support devices for auditory central processing.
Collapse
Affiliation(s)
- Hiromu Sato
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Futoshi Sugimoto
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Ryo Furukawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Takashi Tateno
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| |
Collapse
|
15
|
Clark AM, Ingold A, Reiche CF, Cundy D, Balsor JL, Federer F, McAlinden N, Cheng Y, Rolston JD, Rieth L, Dawson MD, Mathieson K, Blair S, Angelucci A. An optrode array for spatiotemporally-precise large-scale optogenetic stimulation of deep cortical layers in non-human primates. Commun Biol 2024; 7:329. [PMID: 38485764 PMCID: PMC10940688 DOI: 10.1038/s42003-024-05984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Optogenetics has transformed studies of neural circuit function, but remains challenging to apply to non-human primates (NHPs). A major challenge is delivering intense, spatiotemporally-precise, patterned photostimulation across large volumes in deep tissue. Such stimulation is critical, for example, to modulate selectively deep-layer corticocortical feedback circuits. To address this need, we have developed the Utah Optrode Array (UOA), a 10×10 glass needle waveguide array fabricated atop a novel opaque optical interposer, and bonded to an electrically addressable µLED array. In vivo experiments with the UOA demonstrated large-scale, spatiotemporally precise, activation of deep circuits in NHP cortex. Specifically, the UOA permitted both focal (confined to single layers/columns), and widespread (multiple layers/columns) optogenetic activation of deep layer neurons, as assessed with multi-channel laminar electrode arrays, simply by varying the number of activated µLEDs and/or the irradiance. Thus, the UOA represents a powerful optoelectronic device for targeted manipulation of deep-layer circuits in NHP models.
Collapse
Affiliation(s)
- Andrew M Clark
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Alexander Ingold
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Christopher F Reiche
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Donald Cundy
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Justin L Balsor
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Frederick Federer
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Niall McAlinden
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Yunzhou Cheng
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - John D Rolston
- Departments of Neurosurgery and Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Loren Rieth
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Martin D Dawson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Keith Mathieson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Steve Blair
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Aurup C, Bendig J, Blackman SG, McCune EP, Bae S, Jimenez-Gambin S, Ji R, Konofagou EE. Transcranial Functional Ultrasound Imaging Detects Focused Ultrasound Neuromodulation Induced Hemodynamic Changes in Mouse and Nonhuman Primate Brains In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583971. [PMID: 38559149 PMCID: PMC10979885 DOI: 10.1101/2024.03.08.583971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Focused ultrasound (FUS) is an emerging noinvasive technique for neuromodulation in the central nervous system (CNS). To evaluate the effects of FUS-induced neuromodulation, many studies used behavioral changes, functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). However, behavioral readouts are often not easily mapped to specific brain activity, EEG has low spatial resolution limited to the surface of the brain and fMRI requires a large importable scanner that limits additional readouts and manipulations. In this context, functional ultrasound imaging (fUSI) holds promise to directly monitor the effects of FUS neuromodulation with high spatiotemporal resolution in a large field of view, with a comparatively simple and flexible setup. fUSI uses ultrafast Power Doppler Imaging (PDI) to measure changes in cerebral blood volume, which correlates well with neuronal activity and local field potentials. We designed a setup that aligns a FUS transducer with a linear array to allow immediate subsequent monitoring of the hemodynamic response with fUSI during and after FUS neuromodulation. We established a positive correlation between FUS pressure and the size of the activated area, as well as changes in cerebral blood volume (CBV) and found that unilateral sonications produce bilateral hemodynamic changes with ipsilateral accentuation in mice. We further demonstrated the ability to perform fully noninvasive, transcranial FUS-fUSI in nonhuman primates for the first time by using a lower-frequency transducer configuration.
Collapse
Affiliation(s)
- Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jonas Bendig
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Samuel G. Blackman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Erica P. McCune
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sua Bae
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Robin Ji
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
18
|
Zheng N, Jiang Y, Jiang S, Kim J, Chen G, Li Y, Cheng J, Jia X, Yang C. Multifunctional Fiber-Based Optoacoustic Emitter as a Bidirectional Brain Interface. Adv Healthc Mater 2023; 12:e2300430. [PMID: 37451259 PMCID: PMC10592200 DOI: 10.1002/adhm.202300430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
A bidirectional brain interface with both "write" and "read" functions can be an important tool for fundamental studies and potential clinical treatments for neurological diseases. Herein, a miniaturized multifunctional fiber-based optoacoustic emitter (mFOE) is reported thatintegrates simultaneous optoacoustic stimulation for "write" and electrophysiology recording of neural circuits for "read". Because of the intrinsic ability of neurons to respond to acoustic wave, there is no requirement of the viral transfection. The orthogonality between optoacoustic waves and electrical field provides a solution to avoid the interference between electrical stimulation and recording. The stimulation function of the mFOE is first validated in cultured ratcortical neurons using calcium imaging. In vivo application of mFOE for successful simultaneous optoacoustic stimulation and electrical recording of brain activities is confirmed in mouse hippocampus in both acute and chronical applications up to 1 month. Minor brain tissue damage is confirmed after these applications. The capability of simultaneous neural stimulation and recording enabled by mFOE opens up new possibilities for the investigation of neural circuits and brings new insights into the study of ultrasound neurostimulation.
Collapse
Affiliation(s)
- Nan Zheng
- Division of Materials Science and EngineeringBoston UniversityBostonMA02215USA
| | - Ying Jiang
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
| | - Guo Chen
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
| | - Yueming Li
- Department of Mechanical EngineeringBoston UniversityBostonMA02215USA
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
- Department of Materials Science and EngineeringVirginia TechBlacksburgVA24061USA
| | - Chen Yang
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
- Department of ChemistryBoston UniversityBostonMA02215USA
| |
Collapse
|
19
|
Seo J, Shin H, Cho S, Lee S, Ryu W, Han SC, Kim DH, Kang GH. A phased array ultrasound system with a robotic arm for neuromodulation. Med Eng Phys 2023; 118:104023. [PMID: 37536829 DOI: 10.1016/j.medengphy.2023.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Ultrasonic neuromodulation (UNMOD) provides a non-invasive brain stimulation. However, the high-resolution region-specificity of UNMOD with a single element transducer combined with a mechanical positioning system could have limits due to the intrinsic positioning error from mechanical systems. OBJECTIVE/HYPOTHESIS A phased array system could lead to highly selective neuromodulation with electronic control. METHODS A specialized phased-array system with a robotic arm is implemented for a rhesus monkey model. Various primary motor cortex areas related to tail, hand, and mouth were stimulated with a 200 μm step size. The ultrasonic parameters were ISPTA of 840 mW/cm2, pulse repetition frequency of 100 Hz, and a 5% duty factor at 600 kHz. The induced movement were recorded and analyzed. RESULTS Separate digits, mouth, and tongue motions were successfully induced by electronically controlling the focus. The identical body part movement could be induced when the focus was moved back to the identical primary motor cortex with electronic control. Accordingly, the reproducibility of UNMOD could be partially validated with rhesus monkey model. CONCLUSION A phased-array system appears to have a potential for the non-invasive and region-selective neuromodulation method.
Collapse
Affiliation(s)
- Jongbum Seo
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Korea.
| | - Hyunsoo Shin
- School of Electrical Engineering, Hanyang University (ERICA Campus), Ansan Gyeonggi-do, Korea
| | - Sungtaek Cho
- School of Electrical Engineering, Hanyang University (ERICA Campus), Ansan Gyeonggi-do, Korea
| | - Sungon Lee
- School of Electrical Engineering, Hanyang University (ERICA Campus), Ansan Gyeonggi-do, Korea
| | - Wooseok Ryu
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Su-Cheol Han
- Jeonbuk Department of Inhalation Research, KIT, KRICT, Korea
| | - Da Hee Kim
- Jeonbuk Department of Inhalation Research, KIT, KRICT, Korea
| | - Goo Hwa Kang
- Jeonbuk Department of Inhalation Research, KIT, KRICT, Korea
| |
Collapse
|
20
|
Whalen AJ, Fried SI. Thermal safety considerations for implantable micro-coil design. J Neural Eng 2023; 20:10.1088/1741-2552/ace79a. [PMID: 37451256 PMCID: PMC10467159 DOI: 10.1088/1741-2552/ace79a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Micro magnetic stimulation of the brain via implantable micro-coils is a promising novel technology for neuromodulation. Careful consideration of the thermodynamic profile of such devices is necessary for effective and safe designs.Objective.We seek to quantify the thermal profile of bent wire micro-coils in order to understand and mitigate thermal impacts of micro-coil stimulation.Approach. In this study, we use fine wire thermocouples and COMSOL finite element modeling to examine the profile of the thermal gradients generated near bent wire micro-coils submerged in a water bath during stimulation. We tested a range of stimulation parameters previously reported in the literature such as voltage amplitude, stimulus frequency, stimulus repetition rate and coil wire materials.Main results. We found temperature increases ranging from <1 °C to 8.4 °C depending upon the stimulation parameters tested and coil wire materials used. Numerical modeling of the thermodynamics identified hot spots of the highest temperatures along the micro-coil contributing to the thermal gradients and demonstrated that these thermal gradients can be mitigated by the choice of wire conductor material and construction geometry.Significance. ISO standard 14708-1 designates a thermal safety limit of 2 °C temperature increase for active implantable medical devices. By switching the coil wire material from platinum/iridium to gold, our study achieved a 5-6-fold decrease in the thermal impact of coil stimulation. The thermal gradients generated from the gold wire coil were measured below the 2 °C safety limit for all stimulation parameters tested.
Collapse
Affiliation(s)
- Andrew J. Whalen
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Shelley I. Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Boston VA Medical Center, Boston, USA
| |
Collapse
|
21
|
Bolmatov D, Collier CP, Zav’yalov D, Egami T, Katsaras J. Real Space and Time Imaging of Collective Headgroup Dipole Motions in Zwitterionic Lipid Bilayers. MEMBRANES 2023; 13:442. [PMID: 37103869 PMCID: PMC10142431 DOI: 10.3390/membranes13040442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Lipid bilayers are supramolecular structures responsible for a range of processes, such as transmembrane transport of ions and solutes, and sorting and replication of genetic materials, to name just a few. Some of these processes are transient and currently, cannot be visualized in real space and time. Here, we developed an approach using 1D, 2D, and 3D Van Hove correlation functions to image collective headgroup dipole motions in zwitterionic phospholipid bilayers. We show that both 2D and 3D spatiotemporal images of headgroup dipoles are consistent with commonly understood dynamic features of fluids. However, analysis of the 1D Van Hove function reveals lateral transient and re-emergent collective dynamics of the headgroup dipoles-occurring at picosecond time scales-that transmit and dissipate heat at longer times, due to relaxation processes. At the same time, the headgroup dipoles also generate membrane surface undulations due a collective tilting of the headgroup dipoles. A continuous intensity band of headgroup dipole spatiotemporal correlations-at nanometer length and nanosecond time scales-indicates that dipoles undergo stretching and squeezing elastic deformations. Importantly, the above mentioned intrinsic headgroup dipole motions can be externally stimulated at GHz-frequency scale, enhancing their flexoelectric and piezoelectric capabilities (i.e., increased conversion efficiency of mechanical energy into electric energy). In conclusion, we discuss how lipid membranes can provide molecular-level insights about biological learning and memory, and as platforms for the development of the next generation of neuromorphic computers.
Collapse
Affiliation(s)
- Dima Bolmatov
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C. Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dmitry Zav’yalov
- Department of Physics, Volgograd State Technical University, Volgograd 400005, Russia
| | - Takeshi Egami
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37916, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John Katsaras
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
22
|
Foutz TJ, Rensing N, Han L, Durand DM, Wong M. Spatial and Amplitude Dynamics of Neurostimulation: Insights from the Acute Intrahippocampal Kainate Seizure Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531440. [PMID: 36945383 PMCID: PMC10028881 DOI: 10.1101/2023.03.07.531440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Objective Neurostimulation is an emerging treatment for patients with medically refractory epilepsy, which is used to suppress, prevent, and terminate seizure activity. Unfortunately, after implantation and despite best clinical practice, most patients continue to have persistent seizures even after years of empirical optimization. The objective of this study is to determine optimal spatial and amplitude properties of neurostimulation in inhibiting epileptiform activity in an acute hippocampal seizure model. Methods We performed high-throughput testing of high-frequency focal brain stimulation in the acute intrahippocampal kainic acid mouse model of temporal lobe epilepsy. We evaluated combinations of six anatomic targets and three stimulus amplitudes. Results We found that the spike-suppressive effects of high-frequency neurostimulation are highly dependent on the stimulation amplitude and location, with higher amplitude stimulation being significantly more effective. Epileptiform spiking activity was significantly reduced with ipsilateral 250 μA stimulation of the CA1 and CA3 hippocampal regions with 21.5% and 22.2% reductions, respectively. In contrast, we found that spiking frequency and amplitude significantly increased with stimulation of the ventral hippocampal commissure. We further found spatial differences with broader effects from CA1 versus CA3 stimulation. Significance These findings demonstrate that the effects of therapeutic neurostimulation in an acute hippocampal seizure model are highly dependent on the location of stimulation and stimulus amplitude. We provide a platform to optimize the anti-seizure effects of neurostimulation, and demonstrate that an exploration of the large electrical parameter and location space can improve current modalities for treating epilepsy. Key Points Evaluated spatial and temporal parameters of neurostimulation in a mouse model of acute seizuresBrief bursts of high-frequency (100 Hz) stimulation effectively interrupted epileptiform activity.The suppressive effect was highly dependent on stimulation amplitude and was maximal at the ipsilateral CA1 and CA3 regions.Pro-excitatory effects were identified with high-amplitude high-frequency stimulation at the ventral hippocampal commissure and contralateral CA1.
Collapse
|