1
|
Baek I, Song Y. Investigation of neuro-regenerative therapeutic potential of nerve composite matrix hydrogels embedded with adipose-derived stem cells. Matrix Biol Plus 2024; 24:100165. [PMID: 39633894 PMCID: PMC11616072 DOI: 10.1016/j.mbplus.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Traumatic spinal cord injury (SCI) induces permanent sensorimotor deficit below the site of injury. There is various research conducted to provide effective therapy, however, SCI is still considered incurable due to the complex nature of the injury site. Recently, our lab developed a combinatorial therapeutic for SCI repair comprising human adipose-derived stem cell (hASC)-embedded nerve composite hydrogels using different ratios of decellularized sciatic nerve (dSN) and spinal cord (dSC) matrices. This study investigated angiogenic and neurotrophic effects of the combinatorial therapeutic in vitro. Compression testing was performed to analyze mechanical properties of the composite hydrogels and showed no significant difference between all hydrogel groups. Next, pro-angiogenic factors and neurotrophins secreted from hASCs within different ratios of the composite hydrogels were analyzed and we found culture durations and extracellular matrix (ECM) composition affect secretory behavior. Interestingly, ECM compositional difference between hydrogel groups had little influence on human brain microvascular endothelial cells (HBVECs) infiltration and dorsal root ganglia (DRG) neurite outgrowth. Finally, we conducted proteomic analysis to identify the ECM components potentially contributing to these observed effects. Taken together, dSN:dSC = 1:2 hydrogel showed slightly better therapeutic potentials, warranting validation using in vivo studies.
Collapse
Affiliation(s)
- Inha Baek
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Younghye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Saadinam F, Azami M, Pedram MS, Sadeghinezhad J, Jabbari Fakhr M, Salimi A, Aminianfar H, Molazem M, Mokhber Dezfouli MR, Dehghan MM. Injectable alginate chitosan hydrogel as a promising bioengineered therapy for acute spinal cord injury. Sci Rep 2024; 14:26747. [PMID: 39500959 PMCID: PMC11538431 DOI: 10.1038/s41598-024-77995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Dealing with spinal cord injuries presents problematic due to multiple secondary mechanisms. Beyond primary concerns like paralysis and disability, complications including urinary, gastrointestinal, cardiac, and respiratory disorders, along with substantial economic burdens may occur. Limited research focuses on modeling and treating contusion and compression injuries. Tissue engineering emerges as an innovative treatment, targeting lesion pathophysiology. This study was evaluated implanting injectable biomaterials into injury-induced cavity before glial scar formation, avoiding tissue incisions and minimizing further damage. The efficacy of injectable alginate/thiolated chitosan hydrogel was investigated for acute spinal cord injury induced by Vanický method in Wistar rats. Three days post-injury, hydrogel was administrated through microinjection after laminectomy. After 60 days, the hydrogel group demonstrated notable motor function enhancement compared to the control by the BBB locomotor test (P < 0.05). However, no statistically significant differences were observed in MRI assessment concerning lesion severity. Stereological and histopathological evaluations revealed a reduction in vacuole volume and the presence of axon profiles within the scaffold (P < 0.05), alongside reduced infiltration of inflammatory and Gitter cells in the hydrogel group, although the latter was not statistically significant compared to the control. Thiolated chitosan/ alginate hydrogel implantation may be regarded as a promising treatment to enhance motor function by restraining destructive processes post-acute spinal cord injury.
Collapse
Affiliation(s)
- Fatemeh Saadinam
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Sepehr Pedram
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Massoumeh Jabbari Fakhr
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Tissue Engineering and Applied Cell sciences, School of Medicine, Qom University of Medical Science and Health Services, Qom, Iran
| | - Atena Salimi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Aminianfar
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Molazem
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohammad Mehdi Dehghan
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
- Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Agarwal G, Shumard S, McCrary MW, Osborne O, Santiago JM, Ausec B, Schmidt CE. Decellularized porcine peripheral nerve based injectable hydrogels as a Schwann cell carrier for injured spinal cord regeneration. J Neural Eng 2024; 21:046002. [PMID: 38885674 DOI: 10.1088/1741-2552/ad5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.To develop a clinically relevant injectable hydrogel derived from decellularized porcine peripheral nerves and with mechanical properties comparable to native central nervous system (CNS) tissue to be used as a delivery vehicle for Schwann cell transplantation to treat spinal cord injury (SCI).Approach.Porcine peripheral nerves (sciatic and peroneal) were decellularized by chemical decellularization using a sodium deoxycholate and DNase (SDD) method previously developed by our group. The decellularized nerves were delipidated using dichloromethane and ethanol solvent and then digested using pepsin enzyme to form injectable hydrogel formulations. Genipin was used as a crosslinker to enhance mechanical properties. The injectability, mechanical properties, and gelation kinetics of the hydrogels were further analyzed using rheology. Schwann cells encapsulated within the injectable hydrogel formulations were passed through a 25-gauge needle and cell viability was assessed using live/dead staining. The ability of the hydrogel to maintain Schwann cell viability against an inflammatory milieu was assessedin vitrousing inflamed astrocytes co-cultured with Schwann cells.Mainresults. The SDD method effectively removes cells and retains extracellular matrix in decellularized tissues. Using rheological studies, we found that delipidation of decellularized porcine peripheral nerves using dichloromethane and ethanol solvent improves gelation kinetics and mechanical strength of hydrogels. The delipidated and decellularized hydrogels crosslinked using genipin mimicked the mechanical strength of CNS tissue. The hydrogels were found to have shear thinning properties desirable for injectable formulations and they also maintained higher Schwann cell viability during injection compared to saline controls. Usingin vitroco-culture experiments, we found that the genipin-crosslinked hydrogels also protected Schwann cells from astrocyte-mediated inflammation.Significance. Injectable hydrogels developed using delipidated and decellularized porcine peripheral nerves are a potential clinically relevant solution to deliver Schwann cells, and possibly other therapeutic cells, at the SCI site by maintaining higher cellular viability and increasing therapeutic efficacy for SCI treatment.
Collapse
Affiliation(s)
- Gopal Agarwal
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Samantha Shumard
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Olivia Osborne
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Jorge Mojica Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Breanna Ausec
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
4
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
5
|
Baek I, Song Y. Development of Combinatorial Therapeutics for Spinal Cord Injury using Stem Cell Delivery. J Vis Exp 2024:10.3791/66872. [PMID: 38912769 PMCID: PMC11292835 DOI: 10.3791/66872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Traumatic spinal cord injury (SCI) induces permanent sensorimotor deficit below the site of injury. It affects approximately a quarter million people in the US, and it represents an immeasurable public health concern. Research has been conducted to provide effective therapy; however, SCI is still considered incurable due to the complex nature of the injury site. A variety of strategies, including drug delivery, cell transplantation, and injectable biomaterials, are investigated, but one strategy alone limits their efficacy for regeneration. As such, combinatorial therapies have recently gained attention that can target multifaceted features of the injury. It has been shown that extracellular matrices (ECM) may increase the efficacy of cell transplantation for SCI. To this end, 3D hydrogels consisting of decellularized spinal cords (dSCs) and sciatic nerves (dSNs) were developed at different ratios and characterized. Histological analysis of dSCs and dSNs confirmed the removal of cellular and nuclear components, and native tissue architectures were retained after decellularization. Afterward, composite hydrogels were created at different volumetric ratios and subjected to analyses of turbidity gelation kinetics, mechanical properties, and embedded human adipose-derived stem cell (hASC) viability. No significant differences in mechanical properties were found among the different ratios of hydrogels and decellularized spinal cord matrices. Human ASCs embedded in the gels remained viable throughout the 14-day culture. This study provides a means of generating tissue-engineered combinatorial hydrogels that present nerve-specific ECM and pro-regenerative mesenchymal stem cells. This platform can provide new insights into neuro-regenerative strategies after SCI with future investigations.
Collapse
Affiliation(s)
- Inha Baek
- Department of Biomedical Engineering, University of Arkansas
| | - Younghye Song
- Department of Biomedical Engineering, University of Arkansas;
| |
Collapse
|
6
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
8
|
Politrón-Zepeda GA, Fletes-Vargas G, Rodríguez-Rodríguez R. Injectable Hydrogels for Nervous Tissue Repair-A Brief Review. Gels 2024; 10:190. [PMID: 38534608 PMCID: PMC10970171 DOI: 10.3390/gels10030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The repair of nervous tissue is a critical research field in tissue engineering because of the degenerative process in the injured nervous system. In this review, we summarize the progress of injectable hydrogels using in vitro and in vivo studies for the regeneration and repair of nervous tissue. Traditional treatments have not been favorable for patients, as they are invasive and inefficient; therefore, injectable hydrogels are promising for the treatment of damaged tissue. This review will contribute to a better understanding of injectable hydrogels as potential scaffolds and drug delivery system for neural tissue engineering applications.
Collapse
Affiliation(s)
- Gladys Arline Politrón-Zepeda
- Ingeniería en Sistemas Biológicos, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico;
| | - Gabriela Fletes-Vargas
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán-Yahualica de González Gallo, Tepatitlán de Morelos 47620, Jalisco, Mexico;
| | - Rogelio Rodríguez-Rodríguez
- Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
9
|
Qin C, Qi Z, Pan S, Xia P, Kong W, Sun B, Du H, Zhang R, Zhu L, Zhou D, Yang X. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration. Int J Nanomedicine 2023; 18:7305-7333. [PMID: 38084124 PMCID: PMC10710813 DOI: 10.2147/ijn.s436111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Bin Sun
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Haorui Du
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Renfeng Zhang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Longchuan Zhu
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Dinghai Zhou
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
10
|
Roh EJ, Kim DS, Kim JH, Lim CS, Choi H, Kwon SY, Park SY, Kim JY, Kim HM, Hwang DY, Han DK, Han I. Multimodal therapy strategy based on a bioactive hydrogel for repair of spinal cord injury. Biomaterials 2023; 299:122160. [PMID: 37209541 DOI: 10.1016/j.biomaterials.2023.122160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Traumatic spinal cord injury results in permanent and serious neurological impairment, but there is no effective treatment yet. Tissue engineering approaches offer great potential for the treatment of SCI, but spinal cord complexity poses great challenges. In this study, the composite scaffold consists of a hyaluronic acid-based hydrogel, decellularized brain matrix (DBM), and bioactive compounds such as polydeoxyribonucleotide (PDRN), tumor necrosis factor-α/interferon-γ primed mesenchymal stem cell-derived extracellular vesicles (TI-EVs), and human embryonic stem cell-derived neural progenitor cells (NPC). The composite scaffold showed significant effects on regenerative prosses including angiogenesis, anti-inflammation, anti-apoptosis, and neural differentiation. In addition, the composite scaffold (DBM/PDRN/TI-EV/NPC@Gel) induced an effective spinal cord regeneration in a rat spinal cord transection model. Therefore, this multimodal approach using an integrated bioactive scaffold coupled with biochemical cues from PDRN and TI-EVs could be used as an advanced tissue engineering platform for spinal cord regeneration.
Collapse
Affiliation(s)
- Eun Ji Roh
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; School of Integrative Engineering Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Chang Su Lim
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea; Division of Biotechnology College of Life Sciences and Biotechnology Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hyun-Mun Kim
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Dong-Youn Hwang
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | - Inbo Han
- Department of Neurosurgery CHA University School of Medicine, 335 Pangyo-ro Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
11
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
12
|
Mays EA, Ellis EB, Hussain Z, Parajuli P, Sundararaghavan HG. Enzyme-Mediated Nerve Growth Factor Release from Nanofibers Using Gelatin Microspheres. Tissue Eng Part A 2023; 29:333-343. [PMID: 37016821 DOI: 10.1089/ten.tea.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Spinal cord injury is a complex environment, with many conflicting growth factors present at different times throughout the injury timeline. Delivery of multiple growth factors has received mixed results, highlighting a need to consider the timing of delivery for possibly antagonistic growth factors. Cell-mediated degradation of delivery vehicles for delayed release of growth factors offers an attractive way to exploit the highly active immune response in the spinal cord injury environment. In this study, growth factor-loaded gelatin microspheres (GMS) combined with methacrylated hyaluronic acid (MeHA) were electrospun to create GMS fibers (GMSF) for delayed release of growth factors (GFs). GMS were successfully combined with MeHA while electrospinning, with an average fiber diameter of 365 ± 10 nm and 44% ± 8% fiber alignment. GMSF with nerve growth factor (NGF) was tested on dissociated chick dorsal root ganglia cells. We further tested the effect of M1 macrophage-conditioned media (M1CM) to simulate macrophage invasion after spinal cord injury for cell-mediated degradation. We hypothesized that neurons grown on GMSF with loaded NGF would exhibit longer neurites in M1CM, showing a release of functional NGF, as compared with controls. GMSF in M1CM was significantly different from MeHA in serum-free media (SFM) and M0-conditioned media (M0CM), as well as GMSF in M0CM (p < 0.05). Moreover, GMSF + NGF in all media conditions were significantly different from MeHA in SFM and M0CM (p < 0.05). The goal of this study was to develop a biomaterial system where drug delivery is triggered by immune response, allowing for more control and longer exposure to encapsulated drugs. The spinal cord injury microenvironment is known to have a robust immune response, making this immune-medicated drug release system particularly significant for directed repair.
Collapse
Affiliation(s)
- Elizabeth A Mays
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Eric B Ellis
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, USA
| | - Zahin Hussain
- School of Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Prahlad Parajuli
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
13
|
Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, Nekounam H, Mahmoodi N. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater Today Bio 2023; 20:100614. [PMID: 37008830 PMCID: PMC10050787 DOI: 10.1016/j.mtbio.2023.100614] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, 2 Royal College Street, London, UK
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
15
|
Kellaway SC, Roberton V, Jones JN, Loczenski R, Phillips JB, White LJ. Engineered neural tissue made using hydrogels derived from decellularised tissues for the regeneration of peripheral nerves. Acta Biomater 2023; 157:124-136. [PMID: 36494008 DOI: 10.1016/j.actbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Engineered neural tissue (EngNT) promotes in vivo axonal regeneration. Decellularised materials (dECM) are complex biologic scaffolds that can improve the cellular environment and also encourage positive tissue remodelling in vivo. We hypothesised that we could incorporate a hydrogel derived from a decellularised tissue (dECMh) into EngNT, thereby providing an alternative to the currently used purified collagen I hydrogel for the first time. Decellularisation was carried out on bone (B-ECM), liver (LIV-ECM), and small intestinal (SIS-ECM) tissues and the resultant dECM was biochemically and mechanically characterised. dECMh differed in mechanical and biochemical properties that likely had an effect on Schwann cell behaviour observed in metabolic activity and contraction profiles. Cellular alignment was observed in tethered moulds within the B-ECM and SIS-ECM derived hydrogels only. No difference was observed in dorsal root ganglia (DRG) neurite extension between the dECMh groups and collagen I groups when applied as a coverslip coating, however, when DRG were seeded atop EngNT constructs, only the B-ECM derived EngNT performed similarly to collagen I derived EngNT. B-ECM EngNT further exhibited similar axonal regeneration to collagen I EngNT in a 10 mm gap rat sciatic nerve injury model after 4 weeks. Our results have shown that various dECMh can be utilised to produce EngNT that can promote neurite extension in vitro and axonal regeneration in vivo. STATEMENT OF SIGNIFICANCE: Nerve autografts are undesirable due to the sacrifice of a patient's own nerve tissue to repair injuries. Engineered neural tissue (EngNT) is a type of living artificial tissue that has been developed to overcome this. To date, only a collagen hydrogel has been shown to be effective in the production and utilisation of EngNT in animal models. Hydrogels may be made from decellularised extracellular matrix derived from many tissues. In this study we showed that hydrogels from various tissues may be used to create EngNT and one was shown to comparable to the currently used collagen based EngNT in a rat sciatic nerve injry model.
Collapse
Affiliation(s)
- Simon C Kellaway
- Centre for Nerve Engineering, University College London, UK; Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Biodiscovery Institute, University of Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Victoria Roberton
- Centre for Nerve Engineering, University College London, UK; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Joshua N Jones
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Rabea Loczenski
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James B Phillips
- Centre for Nerve Engineering, University College London, UK; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Lisa J White
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
16
|
Oligo (Poly (Ethylene Glycol) Fumarate)-Based Multicomponent Cryogels for Neural Tissue Replacement. Gels 2023; 9:gels9020105. [PMID: 36826275 PMCID: PMC9957547 DOI: 10.3390/gels9020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Synthetic hydrogels provide a promising platform to produce neural tissue analogs with improved control over structural, physical, and chemical properties. In this study, oligo (poly (ethylene glycol) fumarate) (OPF)-based macroporous cryogels were developed as a potential next-generation alternative to a non-porous OPF hydrogel previously proposed as an advanced biodegradable scaffold for spinal cord repair. A series of OPF cryogel conduits in combination with PEG diacrylate and 2-(methacryloyloxy) ethyl-trimethylammonium chloride (MAETAC) cationic monomers were synthesized and characterized. The contribution of each component to viscoelastic and hydration behaviors and porous structure was identified, and concentration relationships for these properties were revealed. The rheological properties of the materials corresponded to those of neural tissues and scaffolds, according to the reviewed data. A comparative assessment of adhesion, migration, and proliferation of neuronal cells in multicomponent cryogels was carried out to optimize cell-supporting characteristics. The results show that OPF-based cryogels can be used as a tunable synthetic scaffold for neural tissue repair with advantages over their hydrogel counterparts.
Collapse
|
17
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
18
|
He W, Wang H, Zhang X, Mao T, Lu Y, Gu Y, Ju D, Qi L, Wang Q, Dong C. Construction of a decellularized spinal cord matrix/GelMA composite scaffold and its effects on neuronal differentiation of neural stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2124-2144. [PMID: 35835455 DOI: 10.1080/09205063.2022.2102275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Spinal cord injury (SCI) leads to severe loss of motor and sensory functions, and the rehabilitation of SCI is a worldwide problem. Tissue-engineered scaffolds offer new hope for SCI patients, while the newly developed materials encountered a challenge in modeling the microenvironment around the lesion site. We constructed a new composite scaffold by mixing decellularized spinal cord extracellular matrix (dECM) with gelatin methacryloyl (GelMA). The dECM, as a natural biological material, retained a large number of proteins and growth factors related to neurogenesis. GelMA was a photopolymerizable material, harbored a polymer network structure, soft texture, certain shape and plenty of water. The viability, proliferation, and differentiation of neural stem cells (NSCs) on the composite scaffold were evaluated by cell count kit-8 (CCK8), Live/Dead assay, phalloidin staining, 5-Ethynyl-2'-deoxyurdine (EdU), immunofluorescence staining and western blot. The Live/Dead assay, phalloidin staining, EdU, and CCK8 assay showed that the composite scaffold had good biocompatibility and provided better support for proliferation of NSCs. Results of immunocytochemistry and western blot showed that the composite scaffolds promoted the specific differentiation of NSCs into neuron cells. Together, this dECM/GelMA composite scaffold can be used as a cell culture coating, the isolated NSCs seeded on the surface of composite scaffold expressed neuronal markers and assumed neuronal morphology. Our work provided a new method that would be widely used in tissue engineering of SCI.
Collapse
Affiliation(s)
- Wenhua He
- Department of Anatomy, Comparative Medicine Institution, Medical School of Nantong University, Nantong, China
| | - Hui Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Xuanxuan Zhang
- Department of Anatomy, Comparative Medicine Institution, Medical School of Nantong University, Nantong, China
| | - Tiantian Mao
- Department of Anatomy, Comparative Medicine Institution, Medical School of Nantong University, Nantong, China
| | - Yan Lu
- Department of Anatomy, Comparative Medicine Institution, Medical School of Nantong University, Nantong, China
| | - Yu Gu
- Department of Anatomy, Comparative Medicine Institution, Medical School of Nantong University, Nantong, China
| | - Dingyue Ju
- Department of Anatomy, Comparative Medicine Institution, Medical School of Nantong University, Nantong, China
| | - Longju Qi
- Department of Hepatic Intervention, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Qinghua Wang
- Department of Anatomy, Comparative Medicine Institution, Medical School of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Comparative Medicine Institution, Medical School of Nantong University, Nantong, China
| |
Collapse
|
19
|
Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization. Int J Mol Sci 2022; 23:ijms23158746. [PMID: 35955880 PMCID: PMC9369339 DOI: 10.3390/ijms23158746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Injuries to large peripheral nerves are often associated with tissue defects and require reconstruction using autologous nerve grafts, which have limited availability and result in donor site morbidity. Peripheral nerve-derived hydrogels could potentially supplement or even replace these grafts. In this study, three decellularization protocols based on the ionic detergents sodium dodecyl sulfate (P1) and sodium deoxycholate (P2), or the organic solvent tri-n-butyl phosphate (P3), were used to prepare hydrogels. All protocols resulted in significantly decreased amounts of genomic DNA, but the P2 hydrogel showed the best preservation of extracellular matrix proteins, cytokines, and chemokines, and reduced levels of sulfated glycosaminoglycans. In vitro P1 and P2 hydrogels supported Schwann cell viability, secretion of VEGF, and neurite outgrowth. Surgical repair of a 10 mm-long rat sciatic nerve gap was performed by implantation of tubular polycaprolactone conduits filled with hydrogels followed by analyses using diffusion tensor imaging and immunostaining for neuronal and glial markers. The results demonstrated that the P2 hydrogel considerably increased the number of axons and the distance of regeneration into the distal nerve stump. In summary, the method used to decellularize nerve tissue affects the efficacy of the resulting hydrogels to support regeneration after nerve injury.
Collapse
|
20
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
21
|
Cornelison C, Fadel S. Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci 2022; 23:8496. [PMID: 35955631 PMCID: PMC9369181 DOI: 10.3390/ijms23158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer's disease and Parkinson's disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of 'immunomodulation' leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called 'click' or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair.
Collapse
Affiliation(s)
- Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
22
|
Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022; 10:812340. [PMID: 35646849 PMCID: PMC9136098 DOI: 10.3389/fbioe.2022.812340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a severe and traumatic disorder that ultimately results in the loss of motor, sensory, and autonomic nervous function. After SCI, local immune inflammatory response persists and does not weaken or disappear. The interference of local adverse immune factors after SCI brings great challenges to the repair of SCI. Among them, microglia, macrophages, neutrophils, lymphocytes, astrocytes, and the release of various cytokines, as well as the destruction of the extracellular matrix are mainly involved in the imbalance of the immune microenvironment. Studies have shown that immune remodeling after SCI significantly affects the survival and differentiation of stem cells after transplantation and the prognosis of SCI. Recently, immunological reconstruction strategies based on biomaterials have been widely explored and achieved good results. In this review, we discuss the important factors leading to immune dysfunction after SCI, such as immune cells, cytokines, and the destruction of the extracellular matrix. Additionally, the immunomodulatory strategies based on biomaterials are summarized, and the clinical application prospects of these immune reconstructs are evaluated.
Collapse
|
23
|
Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 2022; 10:15-31. [PMID: 34901526 PMCID: PMC8637010 DOI: 10.1016/j.bioactmat.2021.09.014] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
The application of scaffolding materials is believed to hold enormous potential for tissue regeneration. Despite the widespread application and rapid advance of several tissue-engineered scaffolds such as natural and synthetic polymer-based scaffolds, they have limited repair capacity due to the difficulties in overcoming the immunogenicity, simulating in-vivo microenvironment, and performing mechanical or biochemical properties similar to native organs/tissues. Fortunately, the emergence of decellularized extracellular matrix (dECM) scaffolds provides an attractive way to overcome these hurdles, which mimic an optimal non-immune environment with native three-dimensional structures and various bioactive components. The consequent cell-seeded construct based on dECM scaffolds, especially stem cell-recellularized construct, is considered an ideal choice for regenerating functional organs/tissues. Herein, we review recent developments in dECM scaffolds and put forward perspectives accordingly, with particular focus on the concept and fabrication of decellularized scaffolds, as well as the application of decellularized scaffolds and their combinations with stem cells (recellularized scaffolds) in tissue engineering, including skin, bone, nerve, heart, along with lung, liver and kidney.
Collapse
Affiliation(s)
| | | | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rubei Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jiashang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
24
|
Bousalis D, McCrary MW, Vaughn N, Hlavac N, Evering A, Kolli S, Song YH, Morley C, Angelini T, Schmidt CE. Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. J Biomed Mater Res A 2022; 110:595-611. [PMID: 34590403 PMCID: PMC8742792 DOI: 10.1002/jbm.a.37312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Damage to the nervous system can result in loss of sensory and motor function, paralysis, or even death. To facilitate neural regeneration and functional recovery, researchers have employed biomaterials strategies to address both peripheral and central nervous system injuries. Injectable hydrogels that recapitulate native nerve extracellular matrix are especially promising for neural tissue engineering because they offer more flexibility for minimally invasive applications and provide a growth-permissive substrate for neural cell types. Here, we explore the development of injectable hydrogels derived from decellularized rat peripheral nerves (referred to as "injectable peripheral nerve [iPN] hydrogels"), which are processed using a newly developed sodium deoxycholate and DNase (SDD) decellularization method. We assess the gelation kinetics, mechanical properties, cell bioactivity, and drug release kinetics of the iPN hydrogels. The iPN hydrogels thermally gel when exposed to 37°C in under 20 min and have mechanical properties similar to neural tissue. The hydrogels demonstrate in vitro biocompatibility through support of Schwann cell viability and metabolic activity. Additionally, iPN hydrogels promote greater astrocyte spreading compared to collagen I hydrogels. Finally, the iPN is a promising delivery vehicle of drug-loaded microparticles for a combinatorial approach to neural injury therapies.
Collapse
Affiliation(s)
- Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Michaela W. McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Natalie Vaughn
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Ashley Evering
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Shruti Kolli
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL,Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR
| | - Cameron Morley
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
25
|
Aksel H, Sarkar D, Lin MH, Buck A, Huang GTJ. Cell-Derived Extracellular Matrix Proteins in Colloidal Microgel as a Self-Assembly Hydrogel for Regenerative Endodontics. J Endod 2022; 48:527-534. [DOI: 10.1016/j.joen.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/20/2023]
|
26
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
27
|
Nelson DW, Gilbert RJ. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv Healthc Mater 2021; 10:e2101329. [PMID: 34494398 PMCID: PMC8599642 DOI: 10.1002/adhm.202101329] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Neurological and functional recovery is limited following central nervous system injury and severe injury to the peripheral nervous system. Extracellular matrix (ECM)-mimetic hydrogels are of particular interest as regenerative scaffolds for the injured nervous system as they provide 3D bioactive interfaces that modulate cellular response to the injury environment and provide naturally degradable scaffolding for effective tissue remodeling. In this review, three unique ECM-mimetic hydrogels used in models of neural injury are reviewed: fibrin hydrogels, which rely on a naturally occurring enzymatic gelation, hyaluronic acid hydrogels, which require chemical modification prior to chemical crosslinking, and elastin-like polypeptide (ELP) hydrogels, which exhibit a temperature-sensitive gelation. The hydrogels are reviewed by summarizing their unique biological properties, their use as drug depots, and their combination with other biomaterials, such as electrospun fibers and nanoparticles. This review is the first to focus on these three ECM-mimetic hydrogels for their use in neural tissue engineering. Additionally, this is the first review to summarize the use of ELP hydrogels for nervous system applications. ECM-mimetic hydrogels have shown great promise in preclinical models of neural injury and future advancements in their design and use can likely lead to viable treatments for patients with neural injury.
Collapse
Affiliation(s)
- Derek W Nelson
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| |
Collapse
|
28
|
Ozudogru E, Isik M, Eylem CC, Nemutlu E, Arslan YE, Derkus B. Decellularized spinal cord meninges extracellular matrix hydrogel that supports neurogenic differentiation and vascular structure formation. J Tissue Eng Regen Med 2021; 15:948-963. [PMID: 34463042 DOI: 10.1002/term.3240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023]
Abstract
Decellularization of extracellular matrices offers an alternative source of regenerative biomaterials that preserve biochemical structure and matrix components of native tissues. In this study, decellularized bovine spinal cord meninges (dSCM)-derived extracellular matrix hydrogel (MeninGEL) is fabricated by employing a protocol that involves physical, chemical, and enzymatic processing of spinal meninges tissue and preserves the biochemical structure of meninges. The success of decellularization is characterized by measuring the contents of residual DNA, glycosaminoglycans, and hydroxyproline, while a proteomics analysis is applied to reveal the composition of MeninGEL. Frequency and temperature sweep rheometry show that dSCM forms self-supporting hydrogel at physiological temperature. The MeninGEL possesses excellent cytocompatibility. Moreover, it is evidenced with immuno/histochemistry and gene expression studies that the hydrogel induces growth-factor free differentiation of human mesenchymal stem cells into neural-lineage cells. Furthermore, MeninGEL instructs human umbilical vein endothelial cells to form vascular branching. With its innate bioactivity and low batch-to-batch variation property, the MeninGEL has the potential to be an off-the-shelf product in nerve tissue regeneration and restoration.
Collapse
Affiliation(s)
- Eren Ozudogru
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Melis Isik
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey.,Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara, Turkey
| |
Collapse
|
29
|
Liu S, Rao Z, Zou J, Chen S, Zhu Q, Liu X, Bai Y, Liu Y, Quan D. Properties Regulation and Biological Applications of Decellularized Peripheral Nerve Matrix Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:6473-6487. [PMID: 35006869 DOI: 10.1021/acsabm.1c00616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Decellularized peripheral nerve matrix hydrogel (DNM-G) has drawn increasing attention in the field of neural tissue engineering, owing to its high tissue-specific bioactivity, drug/cell delivery capability, and multifunctional processability. However, the mechanisms and influencing factors of DNM-G formation have been rarely reported. To enable potential biological applications, the relationship between gelation conditions (including digestion time and gel concentration) and mechanical properties/stability (sol-gel transition temperature, gelation time, nanotopology, and storage modulus) of the DNM-G were systematically investigated in this study. The adequate-digested decellularized nerve matrix solution exhibited higher mechanical property, shorter gelation time, and a lower gelation temperature. A noteworthy increase of β-sheet proportion was identified through Fourier-transform infrared spectroscopy (FTIR) and circular dichroism (CD) characterizations, which suggested the possible major secondary structure formation during the phase transition. Besides, the DNM-G degraded fast that over 70% mass loss was noted after 4 weeks when immersing in PBS. A natural cross-linking agent, genipin, was gently introduced into DNM-G to enhance its mechanical properties and stability without changing its microstructure and biological performance. As a prefabricated scaffold, DNM-G remarkably increased the length and penetration depth of dorsal root ganglion (DRG) neurites compared to collagen gel. Furthermore, the DNM-G promoted the myelination and facilitated the formation of the morphological neural network. Finally, we demonstrated the feasibility of applying DNM-G in support-free extrusion-based 3D printing. Overall, the mechanical and biological performance of DNM-G can be manipulated by tuning the processing parameters, which is key to the versatile applications of DNM-G in regenerative medicine.
Collapse
Affiliation(s)
- Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zilong Rao
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianlong Zou
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shihao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingtang Zhu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaolin Liu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Daping Quan
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen Ther 2021; 18:88-96. [PMID: 34095366 PMCID: PMC8142036 DOI: 10.1016/j.reth.2021.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Decellularized extracellular matrix (dECM) is widely used in regenerative medicine as a scaffold material due to its unique biological activity and good biocompatibility. Hydrogel is a three-dimensional network structure polymer with high water content and high swelling that can simulate the water environment of human tissues, has good biocompatibility, and can exchange nutrients, oxygen, and waste with cells. At present, hydrogel is the ideal biological material for tissue engineering. In recent years, rapid development of the hydrogel theory and technology and progress in the use of dECM to form hydrogels have attracted considerable attention to dECM hydrogels as an innovative method for tissue engineering and regenerative medicine. This article introduces the classification of hydrogels, and focuses on the history and formation of dECM hydrogels, the source of dECM, the application of dECM hydrogels in tissue engineering and the commercial application of dECM materials.
Collapse
Affiliation(s)
- Wenhui Zhang
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Aoling Du
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Shun Liu
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mingyue Lv
- Anesthesia Class 1 of Chuanshan College, South China University, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
31
|
Song YH, Maynes MA, Hlavac N, Visosevic D, Daramola KO, Porvasnik SL, Schmidt CE. Development of novel apoptosis-assisted lung tissue decellularization methods. Biomater Sci 2021; 9:3485-3498. [PMID: 33949462 DOI: 10.1039/d1bm00032b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Decellularized tissues hold great potential for both regenerative medicine and disease modeling applications. The acellular extracellular matrix (ECM)-enriched scaffolds can be recellularized with patient-derived cells prior to transplantation, or digested to create thermally-gelling ECM hydrogels for 3D cell culture. Current methods of decellularization clear cellular components using detergents, which can result in loss of ECM proteins and tissue architectural integrity. Recently, an alternative approach utilizing apoptosis to decellularize excised murine sciatic nerves resulted in superior ECM preservation, cell removal, and immune tolerance in vivo. However, this apoptosis-assisted decellularization approach has not been optimized for other tissues with a more complex geometry, such as lungs. To this end, we developed an apoptosis-assisted lung tissue decellularization method using a combination of camptothecin and sulfobetaine-10 (SB-10) to induce apoptosis and facilitate gentle and effective removal of cell debris, respectively. Importantly, combination of the two agents resulted in superior cell removal and ECM preservation compared to either of the treatments alone, presumably because of pulmonary surfactants. In addition, our method was superior in cell removal compared to a previously established detergent-based decellularization protocol. Furthermore, thermally-gelling lung ECM hydrogels supported high viability of rat lung epithelial cells for up to 2 weeks in culture. This work demonstrates that apoptosis-based lung tissue decellularization is a superior technique that warrants further utilization for both regenerative medicine and disease modeling purposes.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA. and Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.
| | - Mark A Maynes
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Daniel Visosevic
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Kaitlyn O Daramola
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Stacy L Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
Santi S, Corridori I, Pugno NM, Motta A, Migliaresi C. Injectable Scaffold-Systems for the Regeneration of Spinal Cord: Advances of the Past Decade. ACS Biomater Sci Eng 2021; 7:983-999. [PMID: 33523634 DOI: 10.1021/acsbiomaterials.0c01779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nowadays, whenever is possible and as an alternative to open spine surgery, minimally invasive procedures are preferred to treat spinal cord injuries (SCI), with percutaneous injections or small incisions, that are faster, less traumatic, and require less recovery time. Injectable repair systems are based on materials that can be injected in the lesion site, can eventually be loaded with drugs or even cells, and act as scaffolds for the lesion repair. The review analyzes papers written from 2010 onward on injectable materials/systems used/proposed for the regenerative and combinatorial therapies of SCI and discusses the in vivo models that have been used to validate them.
Collapse
Affiliation(s)
- Sofia Santi
- BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, Via delle Regole 101, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ilaria Corridori
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
| | - Nicola M Pugno
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy.,School of Engineering and Material Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
| | - Antonella Motta
- BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, Via delle Regole 101, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Claudio Migliaresi
- BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, Via delle Regole 101, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
33
|
Zimmermann R, Vieira Alves Y, Sperling LE, Pranke P. Nanotechnology for the Treatment of Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:353-365. [PMID: 33135599 DOI: 10.1089/ten.teb.2020.0188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) affects the central nervous system (CNS) and there is currently no treatment with the potential for rehabilitation. Although several clinical treatments have been developed, they are still at an early stage and have not shown success in repairing the broken fiber, which prevents cellular regeneration and integral restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering for neural tissue injuries, this review focuses on the latest advances in nanotechnology for SCI treatment and tissue repair. The PubMed database was used for the bibliographic survey. Initial research using the following keywords "tissue engineering and spinal cord injury" revealed 970 articles published in the last 10 years. The articles were further analyzed, excluding those not related to SCI or with results that did not pertain to the field of interest, including the reviews. It was observed that a total of 811 original articles used the quoted keywords. When the word "treatment" was added, 662 articles were found and among them, 529 were original ones. Finally, when the keywords "Nanotechnology and spinal cord injury" were used, 102 articles were found, 65 being original articles. A search concerning the biomaterials used for SCI found 700 articles with 589 original articles. A total of 107 articles were included in the discussion of this review and some are used for the theoretical framework. Recent progress in nanotechnology and tissue engineering has shown promise for repairing CNS damage. A variety of in vivo animal testing for SCI has been used with or without cells and some of these in vivo studies have shown successful results. However, there is no translation to humans using nanotechnology for SCI treatment, although there is one ongoing trial that employs a tissue engineering approach, among other technologies. The first human surgical scaffold implantation will elucidate the possibility of this use for further clinical trials. This review concludes that even though tissue engineering and nanotechnology are being investigated as a possibility for SCI treatment, tests with humans are still in the theoretical stage. Impact statement Thousands of people are affected by spinal cord injury (SCI) per year in the world. This type of lesion is one of the most severe conditions that can affect humans and usually causes permanent loss of strength, sensitivity, and motor function below the injury site. This article reviews studies on the PubMed database, assessing the publications on SCI in the study field of tissue engineering, focusing on the use of nanotechnology for the treatment of SCI. The review makes an evaluation of the biomaterials used for the treatment of this condition and the techniques applied for the production of nanostructured biomaterials.
Collapse
Affiliation(s)
- Rafaela Zimmermann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yuri Vieira Alves
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura E Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Health School, Faculty of Medicine, UNISINOS, São Leopoldo, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Research Institute, Porto Alegre, Brazil
| |
Collapse
|
34
|
Dong L, Kang X, Ma Q, Xu Z, Sun H, Hao D, Chen X. Novel Approach for Efficient Recovery for Spinal Cord Injury Repair via Biofabricated Nano-Cerium Oxide Loaded PCL With Resveratrol to Improve in Vitro Biocompatibility and Autorecovery Abilities. Dose Response 2020; 18:1559325820933518. [PMID: 32952482 PMCID: PMC7476352 DOI: 10.1177/1559325820933518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
It is more difficult to develop the low-cost spinal cord injury repair materials with high stability and biocompatibility for the biomedical applications. Herein, for the first time, we demonstrated the functional restoration of an injured spinal cord by the nano CeO2 particles assembled onto poly (∊-caprolactone) (PCL)/resveratrol (RVL) were synthesized using the biocompatible ionic liquid. The as-prepared biocompatible nanomaterials were characterized and confirmed by using different instruments such as Fourier transform infra-red spectroscopy for functional groups identification, X-ray diffraction for crystalline nature, Scanning electron microscopy, transmission electron microscopy for morphological structure, Dynamic light scattering for size distribution of the nanoparticles and thermogravimetric analysis for thermal properties. The synergetic effect between the uniform distributions of nano-sized CeO2 particles onto the PCL polymer with RVL can remarkably enhance the catalytic performance. Biofabricated nano-cerium oxide loaded PCL with RVL revealed that treatment significantly preserved hydrogen peroxide and also good catalytic performance. This study presents a nano-sized cerium oxide particles loaded PCL with RVL biocompatible materials have been providing highly efficient regenerative activity and biocompatibility in spinal card regeneration.
Collapse
Affiliation(s)
- Liang Dong
- Department of Spine Surgery, Hong-Hui Hospital, Xi' an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | - Xin Kang
- Department of Orthopedic, Hong-Hui Hospital, Xi' an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | - Qiang Ma
- Department of Orthopedic, Hong-Hui Hospital, Xi' an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | - Zhengwei Xu
- Department of Spine Surgery, Hong-Hui Hospital, Xi' an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | - Honghui Sun
- Department of Spine Surgery, Hong-Hui Hospital, Xi' an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | - Dingjun Hao
- Department of Spine Surgery, Hong-Hui Hospital, Xi' an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiujin Chen
- Department of Orthopedic, Hong-Hui Hospital, Xi' an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
35
|
Alizadeh A, Moradi L, Katebi M, Ai J, Azami M, Moradveisi B, Ostad SN. Delivery of injectable thermo-sensitive hydrogel releasing nerve growth factor for spinal cord regeneration in rat animal model. J Tissue Viability 2020; 29:359-366. [PMID: 32839065 DOI: 10.1016/j.jtv.2020.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023]
Abstract
The main goal of this study was to explore the beneficial effect of nerve growth factor (NGF)-overexpressing of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated in injectable chitosan/β-glycerophosphate/hydroxyethylcellulose (CS/β-GP/HEC) hydrogel for spinal cord regeneration. The CS/β-GP/HEC hydrogel and genetically transduced hADSCs using pseudo-lentiviruses-NGF were prepared. The mechanical properties, morphology and cytotoxicity of the hydrogel were investigated by rheometry, scanning electron microscope (SEM), and MTT assay, respectively. Rats animals were undergone spinal cord injury (SCI), then one-week post-injury, CS/β-GP/HEC hydrogel, transduced hADSCs and transduced hADSCs/CS/β-GP/HEC hydrogel injected into the site of the lesion. Animals with SCI and animals with laminectomy without SCI were considered as negative control and sham groups, respectively. Positive control group received no surgical intervention. At eight weeks post-injection, histological studies indicated a significant increase in cell proliferation, a smaller cavity in size at the SCI site as well as better locomotor functions for transduced hADSCs/CS/β-GP/HEC hydrogel group (P ≤ 0.05) compared to other experimental groups. Our results showed that CS/β-GP/HEC hydrogel in combination with transduced-hADSCs is able to successfully regenerate SCI. These results may be applicable in the selection of the best therapeutic strategy based on gene therapy and tissue engineering for SCI treatment.
Collapse
Affiliation(s)
- Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Lida Moradi
- Department of Dermatology, School of Medicine, New York University, USA
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Borhan Moradveisi
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Poisoning and Toxicology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Temples MN, Adjei IM, Nimocks PM, Djeu J, Sharma B. Engineered Three-Dimensional Tumor Models to Study Natural Killer Cell Suppression. ACS Biomater Sci Eng 2020; 6:4179-4199. [PMID: 33463353 DOI: 10.1021/acsbiomaterials.0c00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A critical hurdle associated with natural killer (NK) cell immunotherapies is inadequate infiltration and function in the solid tumor microenvironment. Well-controlled 3D culture systems could advance our understanding of the role of various biophysical and biochemical cues that impact NK cell migration in solid tumors. The objectives of this study were to establish a biomaterial which (i) supports NK cell migration and (ii) recapitulates features of the in vivo solid tumor microenvironment, to study NK infiltration and function in a 3D system. Using peptide-functionalized poly(ethylene glycol)-based hydrogels, the extent of NK-92 cell migration was observed to be largely dependent on the density of integrin binding sites and the presence of matrix metalloproteinase degradable sites. When lung cancer cells were encapsulated into the hydrogels to create tumor microenvironments, the extent of NK-92 cell migration and functional activity was dependent on the cancer cell type and duration of 3D culture. NK-92 cells showed greater migration into the models consisting of nonmetastatic A549 cells relative to metastatic H1299 cells, and reduced migration in both models when cancer cells were cultured for 7 days versus 1 day. In addition, the production of NK cell-related pro-inflammatory cytokines and chemokines was reduced in H1299 models relative to A549 models. These differences in NK-92 cell migration and cytokine/chemokine production corresponded to differences in the production of various immunomodulatory molecules by the different cancer cells, namely, the H1299 models showed increased stress ligand shedding and immunosuppressive cytokine production, particularly TGF-β. Indeed, inhibition of TGF-β receptor I in NK-92 cells restored their infiltration in H1299 models to levels similar to that in A549 models and increased overall infiltration in both models. Relative to conventional 2D cocultures, NK-92 cell mediated cytotoxicity was reduced in the 3D tumor models, suggesting the hydrogel serves to mimic some features of the biophysical barriers in in vivo tumor microenvironments. This study demonstrates the feasibility of a synthetic hydrogel system for investigating the biophysical and biochemical cues impacting NK cell infiltration and NK cell-cancer cell interactions in the solid tumor microenvironment.
Collapse
Affiliation(s)
- Madison N Temples
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Isaac M Adjei
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Phoebe M Nimocks
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Julie Djeu
- Department of Immunology, Moffitt Cancer Center MRC 4E, 12902 Magnolia Drive, Tampa, Florida 33612-9497, United States
| | - Blanka Sharma
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| |
Collapse
|
37
|
Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B 2020; 8:10712-10738. [DOI: 10.1039/d0tb01842b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogel-based scaffold design approaches for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Mohammad-Hossein Beigi
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Sheyda Labbaf
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | | | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility
- Faculty of Engineering and Applied Science
- Ontario Tech University
- Ontario
- Canada
| |
Collapse
|
38
|
Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater 2020; 101:357-371. [PMID: 31711898 DOI: 10.1016/j.actbio.2019.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a devastating lesion lacking effective treatment options currently available in clinics. The inflammatory process exacerbates the extent of the lesion through a secondary injury mechanism, where proinflammatory classically activated macrophages (M1) are prevalent at the lesion site. However, the polarized alternatively activated anti-inflammatory macrophages (M2) are known to play an important role in wound healing and regeneration following SCI. Herein, we introduce porcine brain decellularized extracellular matrix (dECM) to modulate the macrophages in the injured spinal cord. The hydrogels with collagen and dECM at various dECM concentrations (1, 5, and 8 mg/ml) were used to cultivate primary macrophages and neurons. The dECM hydrogels were shown to promote the polarization of macrophages toward M2 phase and the neurite outgrowth of cortical and hippocampal neurons. When the dECM hydrogels were applied to rat SCI models, the proportion of M1 and M2 macrophages in the injured spinal cord was substantially altered. When received dECM concetration of 5 mg/ml, the expression of molecules associated with M2 (CD206, arginase1, and IL-10) was significantly increased. Consistently, the population of total macrophages and cavity area were substantially reduced in the dECM-treated groups. As a result, the locomotor functions of injured spinal cord, as assessed by BBB and ladder scoring, were significantly improved. Collectively, the porcine brain dECM with optimal concentration promotes functional recovery in SCI models through the activation of M2 macrophages, suggesting the promising use of the engineered hydrogels in the treatment of acute SCI. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) is a devastating lesion, lacking effective treatment options currently available in clinics. Here we delineated that the treatment of injured spinal cord with porcine brain decellularized matrix-based hydrogels for the first time, and could modulate the macrophage polarization and the ultimate functional recovery. When appropriate formulations were applied to a contused spinal cord model in rats, the decellularized matrix hydrogels shifted the macrophages to polarize to pro-regenerative M2 phenotype, decreased the size of lesion cavity, and finally promoted the locomotor functions until 8 weeks following the injury. We consider this work can significantly augment the matrix(biomaterial)-based therapeutic options, as an alternative to drug or cell-free approaches, for the treatment of acute injury of spinal cord.
Collapse
|
39
|
McCrary MW, Vaughn NE, Hlavac N, Song YH, Wachs RA, Schmidt CE. Novel Sodium Deoxycholate-Based Chemical Decellularization Method for Peripheral Nerve. Tissue Eng Part C Methods 2020; 26:23-36. [DOI: 10.1089/ten.tec.2019.0135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Michaela W. McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Natalie E. Vaughn
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Rebecca A. Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
40
|
Morgado PI, Palacios M, Larrain J. In situ injectable hydrogels for spinal cord regeneration: advances from the last 10 years. Biomed Phys Eng Express 2019; 6:012002. [PMID: 33438588 DOI: 10.1088/2057-1976/ab52e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a tremendously devastating disorder with no effective therapy. Neuroprotective strategies have been applied aiming to prevent secondary cell death but no successful and robust effects have been observed. Recently, combinatorial approaches using biomaterials with cells and/or growth factors have demonstrated promising therapeutic effects because of the improvement of axonal growth and in vivo functional recovery in model organisms. In situ injectable hydrogels are a particularly attractive neuroregenerative approach to improve spinal cord repair and regeneration since they can be precisely injected into the lesion site filling the space prior to gelification, decrease scarring and promote axon growth due to the hydrogel's soft structure. Important advances regarding the use of hydrogels as potential therapeutic approaches has been reported during the last 10 years. Injectable alginate hydrogel loaded with GDNF, thermoresponsives heparin-poloxamer loaded with NGF and imidazole-poly(organophosphazenes) hydrogels are just three examples of biomaterials that can promote neurite, axon growth and improve functional recovery in hemisected and resected rats. Here we will review the status of in situ injectable hydrogels for spinal cord regeneration with special focus in the advantages of using hydrogel scaffolds, the ideal polymers to be used, the gelification process and the cells or growth factors combined. The in vitro and in vivo results reported for those biomaterials will be presented, compared and discussed.
Collapse
|
41
|
Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 2019; 148:38-59. [PMID: 30582938 PMCID: PMC6959132 DOI: 10.1016/j.addr.2018.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging. Recent development of various nanoscale strategies provides exciting and promising new means of treating SCI by crossing the blood-spinal cord barrier and delivering therapeutics. As such, we discuss different nanomaterial fabrication methods and provide an overview of recent studies where nanomaterials were developed to modulate inflammatory signals, target inhibitory factors in the lesion, and promote axonal regeneration after SCI. We also review emerging areas of research such as optogenetics, immunotherapy and CRISPR-mediated genome editing where nanomaterials can provide synergistic effects in developing novel SCI therapy regimens, as well as current efforts and barriers to clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathan M Griffin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
42
|
Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury. Neurochem Res 2019; 45:171-179. [DOI: 10.1007/s11064-019-02808-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
|
43
|
Mobini S, Song YH, McCrary MW, Schmidt CE. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019; 198:146-166. [PMID: 29880219 PMCID: PMC6957334 DOI: 10.1016/j.biomaterials.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The technologies related to ex vivo models and lab-on-a-chip devices for studying the regeneration of brain, spinal cord, and peripheral nerve tissues are essential tools for neural tissue engineering and regenerative medicine research. The need for ex vivo systems, lab-on-a-chip technologies and disease models for neural tissue engineering applications are emerging to overcome the shortages and drawbacks of traditional in vitro systems and animal models. Ex vivo models have evolved from traditional 2D cell culture models to 3D tissue-engineered scaffold systems, bioreactors, and recently organoid test beds. In addition to ex vivo model systems, we discuss lab-on-a-chip devices and technologies specifically for neural tissue engineering applications. Finally, we review current commercial products that mimic diseased and normal neural tissues, and discuss the future directions in this field.
Collapse
Affiliation(s)
- Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
44
|
Zhou X, Wang J, Huang X, Fang W, Tao Y, Zhao T, Liang C, Hua J, Chen Q, Li F. Injectable decellularized nucleus pulposus-based cell delivery system for differentiation of adipose-derived stem cells and nucleus pulposus regeneration. Acta Biomater 2018; 81:115-128. [PMID: 30267879 DOI: 10.1016/j.actbio.2018.09.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Stem cell-based tissue engineering is a promising treatment for intervertebral disc (IVD) degeneration. A bio-scaffold that can maintain the function of transplanted cells and possesses favorable mechanical properties is needed in tissue engineering. Decellularized nucleus pulposus (dNP) has the potential to be a suitable bio-scaffold because it mimics the native nucleus pulposus (NP) composition. However, matrix loss during decellularization and difficulty in transplantation limit the clinical application of dNP scaffolds. In this study, we fabricated an injectable dNP-based cell delivery system (NPCS) and evaluated its properties by assessing the microstructure, biochemical composition, water content, biosafety, biostability, and mechanical properties. We also investigated the stimulatory effects of the bio-scaffold on the NP-like differentiation of adipose-derived stem cells (ADSCs) in vitro and the regenerative effects of the NPCS on degenerated NP in an in vivo animal model. The results showed that approximately 68% and 43% of the collagen and sGAG, respectively, remained in the NPCS after 30 days. The NPCS also showed mechanical properties similar to those of fresh NP. In addition, the NPCS was biocompatible and able to induce NP-like differentiation and extracellular matrix (ECM) synthesis in ADSCs. The disc height index (almost 81%) and the MRI index (349.05 ± 38.48) of the NPCS-treated NP were significantly higher than those of the degenerated NP after 16 weeks. The NPCS also partly restored the ECM content and the structure of degenerated NP in vivo. Our NPCS has good biological and mechanical properties and has the ability to promote the regeneration of degenerated NP. STATEMENT OF SIGNIFICANCE: Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration. Stem cell-based tissue engineering is a promising treatment for NP regeneration. Bio-scaffolds which have favorable biological and mechanical properties are needed in tissue engineering. Decellularized NP (dNP) scaffold is a potential choice for tissue engineering, but the difficulty in balancing complete decellularization and retaining ECM limits its usage. Instead of choosing different decellularization protocols, we complementing the sGAG lost during decellularization by cross-linking via genipin and fabricating an injectable dNP-based cell delivery system (NPCS) which has similar components as the native NP. We also investigated the biological and mechanical properties of the NPCS in vitro and verified its regenerative effects on degenerated IVDs in an animal model.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Weijing Fang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tengfei Zhao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
45
|
Cerqueira SR, Lee YS, Cornelison RC, Mertz MW, Wachs RA, Schmidt CE, Bunge MB. Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury. Biomaterials 2018; 177:176-185. [PMID: 29929081 PMCID: PMC6034707 DOI: 10.1016/j.biomaterials.2018.05.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/10/2023]
Abstract
Schwann cell (SC) transplantation has been comprehensively studied as a strategy for spinal cord injury (SCI) repair. SCs are neuroprotective and promote axon regeneration and myelination. Nonetheless, substantial SC death occurs post-implantation, which limits therapeutic efficacy. The use of extracellular matrix (ECM)-derived matrices, such as Matrigel, supports transplanted SC survival and axon growth, resulting in improved motor function. Because appropriate matrices are needed for clinical translation, we test here the use of an acellular injectable peripheral nerve (iPN) matrix. Implantation of SCs in iPN into a contusion lesion did not alter immune cell infiltration compared to injury only controls. iPN implants were larger and contained twice as many SC-myelinated axons as Matrigel grafts. SC/iPN animals performed as well as the SC/Matrigel group in the BBB locomotor test, and made fewer errors on the grid walk at 4 weeks, equalizing at 8 weeks. The fact that this clinically relevant iPN matrix is immunologically tolerated and supports SC survival and axon growth within the graft offers a highly translational possibility for improving efficacy of SC treatment after SCI. To our knowledge, it is the first time that an injectable PN matrix is being evaluated to improve the efficacy of SC transplantation in SCI repair.
Collapse
Affiliation(s)
- Susana R Cerqueira
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Yee-Shuan Lee
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Robert C Cornelison
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Michaela W Mertz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca A Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
46
|
Führmann T, Shoichet MS. The role of biomaterials in overcoming barriers to regeneration in the central nervous system. ACTA ACUST UNITED AC 2018; 13:050201. [PMID: 29864020 DOI: 10.1088/1748-605x/aac2f6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tobias Führmann
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada M5S 3E1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada M5S 3E1
| | | |
Collapse
|