1
|
Lee B, Lee J, Lee HK, Park H, Kwack MJ, Kim DY, Park I, Lim S, Lee DS. Breath Analyzer for Real-Time Exercise Fat Burning Prediction: Oral and Alveolar Breath Insights with CNN. ACS Sens 2025; 10:2510-2519. [PMID: 39714435 DOI: 10.1021/acssensors.4c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The increasing prevalence of obesity and metabolic disorders has created a significant demand for personalized devices that can effectively monitor fat metabolism. In this study, we developed an advanced breath analyzer system designed to provide real-time monitoring of exercise-induced fat burning by analyzing volatile organic compounds (VOCs) present in both oral and alveolar breath. Acetone in exhaled breath and β-hydroxybutyric acid (BOHB) in the blood are both biomarkers closely linked to the metabolic fat burning process occurring in the liver, particularly after exercise. The breath analyzer utilizes a sensor array to detect VOC patterns, with the data analyzed using a one-dimensional convolutional neural network (1D CNN) for an accurate prediction of BOHB levels in the blood. We collected and analyzed 30 exhaled breath samples with our analyzer and blood samples for BOHB from participants before and after exercise. The results showed a strong correlation between sensor responses and BOHB levels, with Pearson correlation coefficients of 0.99 across different postexercise time points. The 1D CNN model effectively estimated BOHB concentrations, achieving Pearson coefficients of 0.96 for the training data set and 0.86 for the test data set. Additionally, our findings confirm that alveolar air samples, which contain metabolic byproducts from deeper in the lungs, offer more reliable data for fat burning analysis than oral air samples. This noninvasive, real-time breath monitoring tool offers a promising solution for individuals demanding to optimize their exercise routines and track metabolic health with high precision and accuracy.
Collapse
Affiliation(s)
- Byeongju Lee
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
- Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Junyeong Lee
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Hyung-Kun Lee
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - HyungJu Park
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Myung-Joon Kwack
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Do Yeob Kim
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Inkyu Park
- Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Dae-Sik Lee
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| |
Collapse
|
2
|
Verma G, Gupta A. Next-Generation Chemiresistive Wearable Breath Sensors for Non-Invasive Healthcare Monitoring: Advances in Composite and Hybrid Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411495. [PMID: 39967468 DOI: 10.1002/smll.202411495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Recently wearable breath sensors have received significant attention in personalized healthcare systems by offering new methods for remote, non-invasive, and continuous monitoring of various health indicators from breath samples without disrupting daily routines. The rising demand for rapid, personalized diagnostics has sparked concerns over electronic waste from short-lived silicon-based devices. To address this issue, the development of flexible and wearable sensors for breath sensing applications is a promising approach. Research highlights the development of different flexible, wearable sensors operating with different operating principles, such as chemiresistive sensors to detect specific target analytes due to their simple design, high sensitivity, selectivity, and reliability. Further, focusing on the non-invasive detection of biomarkers through exhaled breath, chemiresistive wearable sensors offer a comprehensive and environmentally friendly solution. This article presents a comprehensive discussion of the recent advancement in chemiresistive wearable breath sensors for the non-invasive detection of breath biomarkers. The article further emphasizes the intricate development and functioning of the sensor, including the selection criteria for both the flexible substrate and advanced functional materials, including their sensing mechanisms. The review then explores the potential applications of wearable gas sensing systems with specific disease detection, with modern challenges associated with non-invasive breath sensors.
Collapse
Affiliation(s)
- Gulshan Verma
- Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur, 342030, India
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur, 342030, India
| |
Collapse
|
3
|
Zhang X, Frankevich V, Ding J, Ma Y, Chingin K, Chen H. Direct mass spectrometry analysis of exhaled human breath in real-time. MASS SPECTROMETRY REVIEWS 2025; 44:43-61. [PMID: 37565588 DOI: 10.1002/mas.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2022] [Accepted: 10/01/2022] [Indexed: 08/12/2023]
Abstract
The molecular composition of exhaled human breath can reflect various physiological and pathological conditions. Considerable progress has been achieved over the past decade in real-time analysis of exhaled human breath using direct mass spectrometry methods, including selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, extractive electrospray ionization mass spectrometry, secondary electrospray ionization mass spectrometry, acetone-assisted negative photoionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and low-pressure photoionization mass spectrometry. Here, recent developments in direct mass spectrometry analysis of exhaled human breath are reviewed with regard to analytical performance (chemical sensitivity, selectivity, quantitative capabilities) and applications of the developed methods in disease diagnosis, targeted molecular detection, and real-time metabolic monitoring.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Jianhua Ding
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Yuanyuan Ma
- Department of GCP, Shanghai Public Health Clinical Center, Shanghai, China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| |
Collapse
|
4
|
Pangerl J, Sukul P, Rück T, Fuchs P, Weigl S, Miekisch W, Bierl R, Matysik FM. An inexpensive UV-LED photoacoustic based real-time sensor-system detecting exhaled trace-acetone. PHOTOACOUSTICS 2024; 38:100604. [PMID: 38559568 PMCID: PMC10973644 DOI: 10.1016/j.pacs.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
In this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) - providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 8.3 ppbV and an NNEA of 1.4E-9 Wcm-1Hz-0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field.
Collapse
Affiliation(s)
- Jonas Pangerl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
- Institute of Analytical Chemistry, Chemo- and Biosensing, University of Regensburg, Regensburg 93053, Germany
| | - Pritam Sukul
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Thomas Rück
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Patricia Fuchs
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Stefan Weigl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Rostock 18057, Germany
| | - Rudolf Bierl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, Regensburg 93053, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensing, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
5
|
Yoshinaga K, Imasaka T, Imasaka T. Femtosecond Laser Ionization Mass Spectrometry for Online Analysis of Human Exhaled Breath. Anal Chem 2024; 96:11542-11548. [PMID: 38972070 DOI: 10.1021/acs.analchem.4c02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A variety of organic compounds in human exhaled breath were measured online by mass spectrometry using the fifth (206 nm) and fourth (257 nm) harmonic emissions of a femtosecond ytterbium (Yb) laser as the ionization source. Molecular ions were enhanced significantly by means of resonance-enhanced, two-color, two-photon ionization, which was useful for discrimination of analytes against the background. The limit of detection was 0.15 ppm for acetone in air. The concentration of acetone in exhaled breath was determined for three subjects to average 0.31 ppm, which lies within the range of normal healthy subjects and is appreciably lower than the range for patients with diabetes mellitus. Many other constituents, which could be assigned to acetaldehyde, ethanol, isoprene, phenol, octane, ethyl butanoate, indole, octanol, etc., were observed in the exhaled air. Therefore, the present approach shows potential for use in the online analysis of diabetes mellitus and also for the diagnosis of various diseases, such as COVID-19 and cancers.
Collapse
Affiliation(s)
- Katsunori Yoshinaga
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540:744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Totaro Imasaka
- Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
- Hikari Giken, Co., 2-10-30, Sakurazaka, Chuou-ku Fukuoka 810-0024, Japan
| | - Tomoko Imasaka
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540:744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Dragonieri S, Marco MD, Ahroud M, Quaranta VN, Portacci A, Iorillo I, Montagnolo F, Carpagnano GE. Electronic nose based analysis of exhaled volatile organic compounds spectrum reveals asthmatic shifts and consistency in controls post-exercise and spirometry. J Breath Res 2024; 18:036006. [PMID: 38876093 DOI: 10.1088/1752-7163/ad5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Analyzing exhaled volatile organic compounds (VOCs) with an electronic nose (e-nose) is emerging in medical diagnostics as a non-invasive, quick, and sensitive method for disease detection and monitoring. This study investigates if activities like spirometry or physical exercise affect exhaled VOCs measurements in asthmatics and healthy individuals, a crucial step for e-nose technology's validation for clinical use. The study analyzed exhaled VOCs using an e-nose in 27 healthy individuals and 27 patients with stable asthma, before and after performing spirometry and climbing five flights of stairs. Breath samples were collected using a validated technique and analyzed with a Cyranose 320 e-nose. In healthy controls, the exhaled VOCs spectrum remained unchanged after both lung function test and exercise. In asthmatics, principal component analysis and subsequent discriminant analysis revealed significant differences post-spirometry (vs. baseline 66.7% cross validated accuracy [CVA],p< 0.05) and exercise (vs. baseline 70.4% CVA,p< 0.05). E-nose measurements in healthy individuals are consistent, unaffected by spirometry or physical exercise. However, in asthma patients, significant changes in exhaled VOCs were detected post-activities, indicating airway responses likely due to constriction or inflammation, underscoring the e-nose's potential for respiratory condition diagnosis and monitoring.
Collapse
Affiliation(s)
| | | | - Madiha Ahroud
- Respiratory Diseases, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Molinier B, Arata C, Katz EF, Lunderberg DM, Ofodile J, Singer BC, Nazaroff WW, Goldstein AH. Bedroom Concentrations and Emissions of Volatile Organic Compounds during Sleep. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7958-7967. [PMID: 38656997 PMCID: PMC11080066 DOI: 10.1021/acs.est.3c10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Because humans spend about one-third of their time asleep in their bedrooms and are themselves emission sources of volatile organic compounds (VOCs), it is important to specifically characterize the composition of the bedroom air that they experience during sleep. This work uses real-time indoor and outdoor measurements of volatile organic compounds (VOCs) to examine concentration enhancements in bedroom air during sleep and to calculate VOC emission rates associated with sleeping occupants. Gaseous VOCs were measured with proton-transfer reaction time-of-flight mass spectrometry during a multiweek residential monitoring campaign under normal occupancy conditions. Results indicate high emissions of nearly 100 VOCs and other species in the bedroom during sleeping periods as compared to the levels in other rooms of the same residence. Air change rates for the bedroom and, correspondingly, emission rates of sleeping-associated VOCs were determined for two bounding conditions: (1) air exchange between the bedroom and outdoors only and (2) air exchange between the bedroom and other indoor spaces only (as represented by measurements in the kitchen). VOCs from skin oil oxidation and personal care products were present, revealing that many emission pathways can be important occupant-associated emission factors affecting bedroom air composition in addition to direct emissions from building materials and furnishings.
Collapse
Affiliation(s)
- Betty Molinier
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Caleb Arata
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Erin F. Katz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - David M. Lunderberg
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Jennifer Ofodile
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Brett C. Singer
- Indoor
Environment Group and Residential Building Systems Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - William W Nazaroff
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Allen H. Goldstein
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Mochalski P, King J, Unterkofler K, Mayhew CA. Unravelling the origin of isoprene in the human body-a forty year Odyssey. J Breath Res 2024; 18:032001. [PMID: 38663377 DOI: 10.1088/1752-7163/ad4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
In the breath research community's search for volatile organic compounds that can act as non-invasive biomarkers for various diseases, hundreds of endogenous volatiles have been discovered. Whilst these systemic chemicals result from normal and abnormal metabolic activities or pathological disorders, to date very few are of any use for the development of clinical breath tests that could be used for disease diagnosis or to monitor therapeutic treatments. The reasons for this lack of application are manifold and complex, and these complications either limit or ultimately inhibit the analytical application of endogenous volatiles for use in the medical sciences. One such complication is a lack of knowledge on the biological origins of the endogenous volatiles. A major exception to this is isoprene. Since 1984, i.e. for 40 years, it has been generally accepted that the pathway to the production of human isoprene, and hence the origin of isoprene in exhaled breath, is through cholesterol biosynthesis via the mevalonate (MVA) pathway within the liver. However, various studies between 2001 and 2012 provide compelling evidence that human isoprene is produced in skeletal muscle tissue. A recent multi-omic investigation of genes and metabolites has revealed that this proposal is correct by showing that human isoprene predominantly results from muscular lipolytic cholesterol metabolism. Despite the overwhelming proof for a muscular pathway to isoprene production in the human body, breath research papers still reference the hepatic MVA pathway. The major aim of this perspective is to review the evidence that leads to a correct interpretation for the origins of human isoprene, so that the major pathway to human isoprene production is understood and appropriately disseminated. This is important, because an accurate attribution to the endogenous origins of isoprene is needed if exhaled isoprene levels are to be correctly interpreted and for assessing isoprene as a clinical biomarker.
Collapse
Affiliation(s)
- P Mochalski
- Faculty for Chemistry and Pharmacy, Universität Innsbruck, Institute for Breath Research, Innrain 80-82, 6020 Innsbruck, Austria
- Institute of Chemistry, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland
| | - J King
- Faculty for Chemistry and Pharmacy, Universität Innsbruck, Institute for Breath Research, Innrain 80-82, 6020 Innsbruck, Austria
| | - K Unterkofler
- Faculty for Chemistry and Pharmacy, Universität Innsbruck, Institute for Breath Research, Innrain 80-82, 6020 Innsbruck, Austria
| | - C A Mayhew
- Faculty for Chemistry and Pharmacy, Universität Innsbruck, Institute for Breath Research, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Wen Y, Xie Y, Wang C, Hua L, Zhang L, Chen P, Li H. Determination of the two-compartment model parameters of exhaled HCN by fast negative photoionization mass spectrometry. Talanta 2024; 271:125710. [PMID: 38295448 DOI: 10.1016/j.talanta.2024.125710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
Breath exhaled hydrogen cyanide (HCN) has been identified to be associated with several respiratory diseases. Accurately distinguishing the concentration and release rate of different HCN sources is of great value in clinical research. However, there are still significant challenges due to the high adsorption and low concentration characteristics of exhaled HCN. In this study, a two-compartment kinetic model method based on negative photoionization mass spectrometry was developed to simultaneously determine the kinetic parameters including concentrations and release rates in the airways and alveoli. The influences of the sampling line diameter, length, and temperature on the response time of the sampling system were studied and optimized, achieving a response time of 0.2 s. The negative influence of oral cavity-released HCN was reduced by employing a strategy based on anatomical lung volume calculation. The calibration for HCN in the dynamic range of 0.5-100 ppbv and limit of detection (LOD) at 0.3 ppbv were achieved. Subsequently, the experiments of smoking, short-term passive smoking, and intake of bitter almonds were performed to examine the influences of endogenous and exogenous factors on the dynamic parameters of the model method. The results indicate that compared with steady-state concentration measurements, the kinetic parameters obtained using this model method can accurately and significantly reflect the changes in different HCN sources, highlighting its potential for HCN-related disease research.
Collapse
Affiliation(s)
- Yuxuan Wen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Chen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lichuan Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Ping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
10
|
Chou H, Arthur K, Shaw E, Schaber C, Boyle B, Allsworth M, Kelley EF, Stewart GM, Wheatley CM, Schwartz J, Fermoyle CC, Ziegler BL, Johnson KA, Robach P, Basset P, Johnson BD. Metabolic insights at the finish line: deciphering physiological changes in ultramarathon runners through breath VOC analysis. J Breath Res 2024; 18:026008. [PMID: 38290132 DOI: 10.1088/1752-7163/ad23f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Exhaustive exercise can induce unique physiological responses in the lungs and other parts of the human body. The volatile organic compounds (VOCs) in exhaled breath are ideal for studying the effects of exhaustive exercise on the lungs due to the proximity of the breath matrix to the respiratory tract. As breath VOCs can originate from the bloodstream, changes in abundance should also indicate broader physiological effects of exhaustive exercise on the body. Currently, there is limited published data on the effects of exhaustive exercise on breath VOCs. Breath has great potential for biomarker analysis as it can be collected non-invasively, and capture real-time metabolic changes to better understand the effects of exhaustive exercise. In this study, we collected breath samples from a small group of elite runners participating in the 2019 Ultra-Trail du Mont Blanc ultra-marathon. The final analysis included matched paired samples collected before and after the race from 24 subjects. All 48 samples were analyzed using the Breath Biopsy Platform with GC-Orbitrap™ via thermal desorption gas chromatography-mass spectrometry. The Wilcoxon signed-rank test was used to determine whether VOC abundances differed between pre- and post-race breath samples (adjustedP-value < .05). We identified a total of 793 VOCs in the breath samples of elite runners. Of these, 63 showed significant differences between pre- and post-race samples after correction for multiple testing (12 decreased, 51 increased). The specific VOCs identified suggest the involvement of fatty acid oxidation, inflammation, and possible altered gut microbiome activity in response to exhaustive exercise. This study demonstrates significant changes in VOC abundance resulting from exhaustive exercise. Further investigation of VOC changes along with other physiological measurements can help improve our understanding of the effect of exhaustive exercise on the body and subsequent differences in VOCs in exhaled breath.
Collapse
Affiliation(s)
- Hsuan Chou
- Owlstone Medical, Cambridge, United Kingdom
| | | | - Elen Shaw
- Owlstone Medical, Cambridge, United Kingdom
| | | | | | | | - Eli F Kelley
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Glenn M Stewart
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Courtney M Wheatley
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Jesse Schwartz
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Caitlin C Fermoyle
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Utah Vascular Research Laboratory, Salt Lake City, UT, United States of America
| | - Briana L Ziegler
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Kay A Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Paul Robach
- Ecole Nationale des Sports de Montagne, Chamonix, France
| | | | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
11
|
Sukul P, Richter A, Junghanss C, Schubert JK, Miekisch W. Origin of breath isoprene in humans is revealed via multi-omic investigations. Commun Biol 2023; 6:999. [PMID: 37777700 PMCID: PMC10542801 DOI: 10.1038/s42003-023-05384-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Plants, animals and humans metabolically produce volatile isoprene (C5H8). Humans continuously exhale isoprene and exhaled concentrations differ under various physio-metabolic and pathophysiological conditions. Yet unknown metabolic origin hinders isoprene to reach clinical practice as a biomarker. Screening 2000 individuals from consecutive mass-spectrometric studies, we herein identify five healthy German adults without exhaled isoprene. Whole exome sequencing in these adults reveals only one shared homozygous (European prevalence: <1%) IDI2 stop-gain mutation, which causes losses of enzyme active site and Mg2+-cofactor binding sites. Consequently, the conversion of isopentenyl diphosphate to dimethylallyl diphosphate (DMAPP) as part of the cholesterol metabolism is prevented in these adults. Targeted sequencing depicts that the IDI2 rs1044261 variant (p.Trp144Stop) is heterozygous in isoprene deficient blood-relatives and absent in unrelated isoprene normal adults. Wild-type IDI1 and cholesterol metabolism related serological parameters are normal in all adults. IDI2 determines isoprene production as only DMAPP sources isoprene and unlike plants, humans lack isoprene synthase and its enzyme homologue. Human IDI2 is expressed only in skeletal-myocellular peroxisomes and instant spikes in isoprene exhalation during muscle activity underpins its origin from muscular lipolytic cholesterol metabolism. Our findings translate isoprene as a clinically interpretable breath biomarker towards potential applications in human medicine.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Anna Richter
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | - Jochen K Schubert
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
12
|
Romano A, Fehervari M, Boshier PR. Influence of ventilatory parameters on the concentration of exhaled volatile organic compounds in mechanically ventilated patients. Analyst 2023; 148:4020-4029. [PMID: 37497696 DOI: 10.1039/d3an00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Analysis of volatile organic compounds (VOC) within exhaled breath is subject to numerous sources of methodological and physiological variability. Whilst breathing pattern is expected to influence the concentrations of selected exhaled VOCs, it remains challenging to investigate respiratory rate and depth accurately in awake subjects. Online breath sampling was performed in 20 mechanically ventilated patients using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). The effect of variation in respiratory rate (RR) and tidal volume (TV) on the VOC release profiles was examined. A panel of nineteen VOCs were selected, including isoprene, acetone, propofol, volatile aldehydes, acids and phenols. Variation in RR had the greatest influence on exhaled isoprene levels, with maximum and average concentrations being inversely correlated with RR. Variations in RR had a statistically significant impact on acetone, C3-C7 linear aldehydes and acetic acid. In comparison, phenols (including propofol), C8-C10 aldehydes and C3-C6 carboxylic acids were not influenced by RR. Isoprene was the only compound to be influenced by variation in TV. These findings, obtained under controlled conditions, provide useful guidelines for the optimisation of breath sampling protocols to be applied on awake patients.
Collapse
Affiliation(s)
- Andrea Romano
- Department Surgery and Cancer, Imperial College, London, UK
| | | | - Piers R Boshier
- Department Surgery and Cancer, Imperial College, London, UK
- Francis Crick Institute, London, UK
| |
Collapse
|
13
|
Biagini D, Pugliese NR, Vivaldi FM, Ghimenti S, Lenzi A, De Angelis F, Ripszam M, Bruderer T, Armenia S, Cappeli F, Taddei S, Masi S, Francesco FD, Lomonaco T. Breath analysis combined with cardiopulmonary exercise testing and echocardiography for monitoring heart failure patients: the AEOLUS protocol. J Breath Res 2023; 17:046006. [PMID: 37524075 DOI: 10.1088/1752-7163/acec08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
This paper describes the AEOLUS pilot study which combines breath analysis with cardiopulmonary exercise testing (CPET) and an echocardiographic examination for monitoring heart failure (HF) patients. Ten consecutive patients with a prior clinical diagnosis of HF with reduced left ventricular ejection fraction were prospectively enrolled together with 15 control patients with cardiovascular risk factors, including hypertension, type II diabetes or chronic ischemic heart disease. Breath samples were collected at rest and during CPET coupled with exercise stress echocardiography (CPET-ESE) protocol by means of needle trap micro-extraction and were analyzed through gas-chromatography coupled with mass spectrometry. The protocol also involved using of a selected ion flow tube mass spectrometer for a breath-by-breath isoprene and acetone analysis during exercise. At rest, HF patients showed increased breath levels of acetone and pentane, which are related to altered oxidation of fatty acids and oxidative stress, respectively. A significant positive correlation was observed between acetone and the gold standard biomarker NT-proBNP in plasma (r= 0.646,p< 0.001), both measured at rest. During exercise, some exhaled volatiles (e.g., isoprene) mirrored ventilatory and/or hemodynamic adaptation, whereas others (e.g., sulfide compounds and 3-hydroxy-2-butanone) depended on their origin. At peak effort, acetone levels in HF patients differed significantly from those of the control group, suggesting an altered myocardial and systemic metabolic adaptation to exercise for HF patients. These preliminary data suggest that concomitant acquisition of CPET-ESE and breath analysis is feasible and might provide additional clinical information on the metabolic maladaptation of HF patients to exercise. Such information may refine the identification of patients at higher risk of disease worsening.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Nicola R Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico M Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Francesca De Angelis
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Matyas Ripszam
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tobias Bruderer
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federica Cappeli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Bastide GMGBH, Remund AL, Oosthuizen DN, Derron N, Gerber PA, Weber IC. Handheld device quantifies breath acetone for real-life metabolic health monitoring. SENSORS & DIAGNOSTICS 2023; 2:918-928. [PMID: 37465007 PMCID: PMC10351029 DOI: 10.1039/d3sd00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023]
Abstract
Non-invasive breath analysis with mobile health devices bears tremendous potential to guide therapeutic treatment and personalize lifestyle changes. Of particular interest is the breath volatile acetone, a biomarker for fat burning, that could help in understanding and treating metabolic diseases. Here, we report a hand-held (6 × 10 × 19.5 cm3), light-weight (490 g), and simple device for rapid acetone detection in breath. It comprises a tailor-made end-tidal breath sampling unit, connected to a sensor and a pump for on-demand breath sampling, all operated using a Raspberry Pi microcontroller connected with a HDMI touchscreen. Accurate acetone detection is enabled by introducing a catalytic filter and a separation column, which remove and separate undesired interferents from acetone upstream of the sensor. This way, acetone is detected selectively even in complex gas mixtures containing highly concentrated interferents. This device accurately tracks breath acetone concentrations in the exhaled breath of five volunteers during a ketogenic diet, being as high as 26.3 ppm. Most importantly, it can differentiate small acetone changes during a baseline visit as well as before and after an exercise stimulus, being as low as 0.5 ppm. It is stable for at least four months (122 days), and features excellent bias and precision of 0.03 and 0.6 ppm at concentrations below 5 ppm, as validated by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). Hence, this detector is highly promising for simple-in-use, non-invasive, and routine monitoring of acetone to guide therapeutic treatment and track lifestyle changes.
Collapse
Affiliation(s)
- Grégoire M G B H Bastide
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Anna L Remund
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Dina N Oosthuizen
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Mechanical and Industrial Engineering, Northeastern University 467 Egan Center 02115 MA Boston USA
| | - Nina Derron
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Ines C Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| |
Collapse
|
15
|
Shawn ST, Harshman SW, Davidson CN, Lee JH, Jung AE, Parker A, Hawkins MA, Stamps BW, Pitsch RL, Martin JA. Sterilization and reuse of masks for a standardized exhaled breath collection device by autoclaving. J Breath Res 2023; 17:036006. [PMID: 37352843 DOI: 10.1088/1752-7163/ace127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
Exhaled breath research has been hindered by a lack of standardization in collection and analysis methodologies. Recently, the Respiration Collector forIn VitroAnalysis (ReCIVA) sampling device has illustrated the potential to provide a consistent and convenient method for exhaled breath collection onto adsorbent media. However, the significant costs, compared to exhaled breath bags, associated with the standardized collector is believed to be the reason for limited widespread use by researchers in the exhaled breath field. For example, in addition to the sampling hardware, a single-use disposable silicon mask affixed with a filter is required for each exhaled breath collection. To reduce the financial burden, streamline device upkeep, reduce waste material, and ease the logistical burden associated with the single use masks, it is hypothesized that the consumable masks and filters could be sterilized by autoclaving for reuse. The masks were contaminated, autoclaved, and then tested for any surviving pathogens with spore strip standards and by measuring the optical density of cultures. The compound background collected when using the ReCIVA with new masks was compared to that collected with repeatedly autoclaved masks via thermal desorption gas chromatography mass spectrometry (TD-GC-MS). The capacity to block particulate matter of new filters was tested against that of autoclaved filters by introducing an aerosol and comparing pre-filter and post-filter particle counts. Finally, breath samplings were conducted with new masks and autoclaved masks to test for changes in measurements by TD-GC-MS of exogenous and endogenous compounds. The data illustrate the autoclave cycle sterilizes masks spiked with saliva to background levels (p= 0.2527). The results indicate that background levels of siloxane compounds are increased as masks are repetitively autoclaved. The data show that mask filters have significant breakthrough of 1μm particles after five repetitive autoclaving cycles compared to new filters (p= 0.0219). Finally, exhaled breath results utilizing a peppermint ingestion protocol indicate two compounds associated with peppermint, menthone and 1-Methyl-4-(1-methylethyl)-cyclohexanol, and an endogenous exhaled breath compound, isoprene, show no significant difference if sampled with a new mask or a mask autoclaved five times (p> 0.1063). Collectively, the data indicate that ReCIVA masks and filters can be sterilized via autoclave and reused. The results suggest ReCIVA mask and filter reuse should be limited to three times to limit potentially problematic background contaminants and filter dysfunction.
Collapse
Affiliation(s)
- Samuel T Shawn
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Sean W Harshman
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Christina N Davidson
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Jae Hwan Lee
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Anne E Jung
- UES Inc., 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Ariel Parker
- UES Inc., 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - M Aaron Hawkins
- UES Inc., 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Blake W Stamps
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2977 Hobson Way, Area B, Building 653, Wright- Patterson AFB, OH 45433, United States of America
| | - Rhonda L Pitsch
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Jennifer A Martin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2977 Hobson Way, Area B, Building 653, Wright- Patterson AFB, OH 45433, United States of America
| |
Collapse
|
16
|
Walsh CM, Fadel MG, Jamel SH, Hanna GB. Breath Testing in the Surgical Setting: Applications, Challenges, and Future Perspectives. Eur Surg Res 2023; 64:315-322. [PMID: 37311421 PMCID: PMC10614239 DOI: 10.1159/000531504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND The potential for exhaled breath to be a valuable diagnostic tool is often overlooked as it can be difficult to imagine how a barely visible sample of breath could hold such a rich source of information about the state of our health. However, technological advances over the last 50 years have enabled us to detect volatile organic compounds (VOCs) present in exhaled breath, and this provides the key to understanding the wealth of information contained within these readily available samples. SUMMARY VOCs are produced as a by-product of metabolism; hence, changes in the underlying physiological processes will be reflected in the exact composition of VOCs in exhaled breath. It has been shown that characteristic changes occur in the breath VOC profile associated with certain diseases including cancer, which may enable the non-invasive detection of cancer at primary care level for patients with vague symptoms. The use of breath testing as a diagnostic tool has many advantages. It is non-invasive and quick, and the test is widely accepted by patients and clinicians. However, breath samples provide a snapshot of the VOCs present in a particular patient at a given point in time, so this can be heavily influenced by external factors such as diet, smoking, and the environment. These must all be accounted for when attempting to draw conclusions about disease status. This review focuses on the current applications for breath testing in the field of surgery, as well as discussing the challenges encountered with developing a breath test in a clinical environment. The future of breath testing in the surgical setting is also discussed, including the translation of breath research into clinical practice. KEY MESSAGES Analysis of VOCs in exhaled breath can identify the presence of underlying disease including cancer as well as other infectious or inflammatory conditions. Despite the patient factors, environmental factors, storage, and transport considerations that must be accounted for, breath testing demonstrates ideal characteristics for a triage test, being non-invasive, simple, and universally acceptable to patients and clinicians. Many novel biomarkers and diagnostic tests fail to translate into clinical practice because their potential clinical application does not align with the requirements and unmet needs of the healthcare sector. Non-invasive breath testing, however, has the great potential to revolutionise the early detection of diseases, such as cancer, in the surgical setting for patients with vague symptoms.
Collapse
Affiliation(s)
- Caoimhe M Walsh
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael G Fadel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sara H Jamel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
17
|
Sharma A, Kumar R, Varadwaj P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol Diagn Ther 2023; 27:321-347. [PMID: 36729362 PMCID: PMC9893210 DOI: 10.1007/s40291-023-00640-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Collapse
Affiliation(s)
- Anju Sharma
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pritish Varadwaj
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
18
|
Maiti KS. Non-Invasive Disease Specific Biomarker Detection Using Infrared Spectroscopy: A Review. Molecules 2023; 28:2320. [PMID: 36903576 PMCID: PMC10005715 DOI: 10.3390/molecules28052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Many life-threatening diseases remain obscure in their early disease stages. Symptoms appear only at the advanced stage when the survival rate is poor. A non-invasive diagnostic tool may be able to identify disease even at the asymptotic stage and save lives. Volatile metabolites-based diagnostics hold a lot of promise to fulfil this demand. Many experimental techniques are being developed to establish a reliable non-invasive diagnostic tool; however, none of them are yet able to fulfil clinicians' demands. Infrared spectroscopy-based gaseous biofluid analysis demonstrated promising results to fulfil clinicians' expectations. The recent development of the standard operating procedure (SOP), sample measurement, and data analysis techniques for infrared spectroscopy are summarized in this review article. It has also outlined the applicability of infrared spectroscopy to identify the specific biomarkers for diseases such as diabetes, acute gastritis caused by bacterial infection, cerebral palsy, and prostate cancer.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max–Planck–Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; ; Tel.: +49-289-14054
- Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
- Laser-Forschungslabor, Klinikum der Universität München, Fraunhoferstrasse 20, 82152 Planegg, Germany
| |
Collapse
|
19
|
Park SJ, Moon YK, Park SW, Lee SM, Kim TH, Kim SY, Lee JH, Jo YM. Highly Sensitive and Selective Real-Time Breath Isoprene Detection using the Gas Reforming Reaction of MOF-Derived Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7102-7111. [PMID: 36700612 DOI: 10.1021/acsami.2c20416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Real-time breath isoprene sensing provides noninvasive methods for monitoring human metabolism and early diagnosis of cardiovascular diseases. Nonetheless, the stable alkene structure and high humidity of the breath hinder sensitive and selective isoprene detection. In this work, we derived well-defined Co3O4@polyoxometalate yolk-shell structures using a metal-organic framework template. The inner space, including highly catalytic Co3O4 yolks surrounded by a semipermeable polyoxometalate shell, enables stable isoprene to be reformed to reactive intermediate species by increasing the gas residence time and the reaction with the inner catalyst. This sensor exhibited selective isoprene detection with an extremely high chemiresistive response (180.6) and low detection limit (0.58 ppb). The high sensing performance can be attributed to electronic sensitization and catalytic promotion effects. In addition, the reforming reaction of isoprene is further confirmed by the proton transfer reaction-quadrupole mass spectrometry analysis. The practical feasibility of this sensor in smart healthcare applications is exhibited by monitoring muscle activity during the workout.
Collapse
Affiliation(s)
- Seon Ju Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Kook Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sei-Woong Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tae-Hyun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Current address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Harshman SW, Jung AE, Strayer KE, Alfred BL, Mattamana J, Veigl AR, Dash AI, Salter CE, Stoner-Dixon MA, Kelly JT, Davidson CN, Pitsch RL, Martin JA. Investigation of an individual with background levels of exhaled isoprene: a case study. J Breath Res 2023; 17. [PMID: 36596256 DOI: 10.1088/1752-7163/acaf98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Isoprene is one of the most abundant and most frequently evaluated volatile organic compounds in exhaled breath. Recently, several individuals with background levels of exhaled isoprene have been identified. Here, case study data are provided for an individual, identified from a previous study, with this low prevalence phenotype. It is hypothesized that the individual will illustrate low levels of exhaled isoprene at rest and during exercise. At rest, the subject (7.1 ppb) shows background (μ= 14.2 ± 7.0 ppb) levels of exhaled isoprene while the control group illustrates significantly higher quantities (μ= 266.2 ± 72.3 ppb) via proton transfer reaction mass spectrometry (PTR-MS). The result, background levels of isoprene at rest, is verified by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) collections with the individual showing -3.6 ppb exhaled isoprene while the room background containedμ= -4.1 ± 0.1 ppb isoprene. As isoprene has been shown previously to increase at the initiation of exercise, exercise bike experiments were performed with the individual identified with low isoprene, yielding low and invariant levels of exhaled isoprene (μ= 6.6 ± 0.1 ppb) during the exercise while control subjects illustrated an approximate 2.5-fold increase (preμ= 286.3 ± 43.8 ppb, exerciseμ= 573.0 ± 147.8 ppb) in exhaled isoprene upon exercise start. Additionally, exhaled breath bag data showed a significant decrease in isoprene (delta post/pre, p = 0.0078) of the control group following the exercise regimen. Finally, TD-GC-MS results for exhaled isoprene from the individual's family (mother, father, sister and maternal grandmother) illustrated that the mother and father exhibited isoprene values (28.5 ppb, 77.2 ppb) below control samples 95% confidence interval (μ= 166.8 ± 43.3 ppb) while the individual's sister (182.0 ppb) was within the control range. These data provide evidence for a large dynamic range in exhaled isoprene in this family. Collectively, these results provide additional data surrounding the existence of a small population of individuals with background levels of exhaled isoprene.
Collapse
Affiliation(s)
- Sean W Harshman
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Anne E Jung
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Kraig E Strayer
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Bryan L Alfred
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - John Mattamana
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Alena R Veigl
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Aubrianne I Dash
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Charles E Salter
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Madison A Stoner-Dixon
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - John T Kelly
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Christina N Davidson
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Rhonda L Pitsch
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Jennifer A Martin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2977 Hobson Way, Area B, Building 653, Wright-Patterson AFB, OH 45433, United States of America
| |
Collapse
|
21
|
Nagamine K, Mineta D, Ishida K, Katayama K, Kondo T. Mixed effects of moderate exercise and subsequent various food ingestion on breath acetone. J Breath Res 2023; 17. [DOI: 10.1088/1752-7163/ac9ed4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Acetone, which is exhaled with breath, is a by-product of lipolysis and could be used as a simple, useful indicator of lipolysis in the body because, unlike blood sampling, it can be measured non-invasively and repeatedly. Breath acetone concentration, however, is known to be affected by several factors such as exercise and food. We designed the experiments to evaluate the mixed effect on breath acetone of exercise and food ingestion in order to enhance the usefulness of breath acetone for monitoring fat loss. Seven healthy males performed moderate exercise for twice of 45 min with an interval of 15 min then rested for 4 h. Exhaled air was sampled every 15 min throughout the experiment. The subjects took one of four types, sugar-rich, balanced, protein-rich and fat-rich, of food for lunch one hour after the exercises or kept fasting. In the case of fasting, breath acetone kept increasing significantly (p < 0.05) compared with the rest value after the exercises until the end of the experiment. In contrast, in the case of taking any type of food, the change in breath acetone varied according to the food type. In the case of taking sugar-rich food, breath acetone significantly decreased (p < 0.05) compared with the fasting case. This decrease might be due to a suppression of acetone production when carbohydrates such as sugar are supplied to a body in the fasting condition. In contrast, in the case of taking fat-rich food, breath acetone showed the higher level than the fasting case. This additional increase might be attributable to the promotion of ketone bodies production, including acetone, due to the ingestion of medium chain triglycerides contained in the fat-rich food. We should therefore consider exercise and food ingestion in using breath acetone as a non-invasive indicator of lipolysis.
Collapse
|
22
|
Xu X, Pang H, Liu C, Wang K, Loisel G, Li L, Gligorovski S, Li X. Real-time measurements of product compounds formed through the reaction of ozone with breath exhaled VOCs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2237-2248. [PMID: 36472140 DOI: 10.1039/d2em00339b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human presence can affect indoor air quality because of secondary organic compounds formed upon reactions between gaseous oxidant species, e.g., ozone (O3), hydroxyl radicals (OH), and chemical compounds from skin, exhaled breath, hair and clothes. We assess the gas-phase product compounds generated by reactions of gaseous O3 with volatile organic compounds (VOCs) from exhaled human breath by real time analysis using a high-resolution quadrupole-orbitrap mass spectrometer (HRMS) coupled to a secondary electrospray ionization (SESI) source. Based on the product compounds identified we propose a reaction mechanism initiated by O3 oxidation of the most common breath constituents, isoprene, α-terpinene and ammonia (NH3). The reaction of O3 with isoprene and α-terpinene generates ketones and aldehydes such as 3,4-dihydroxy-2-butanone, methyl vinyl ketone, 3-carbonyl butyraldehyde, formaldehyde and toxic compounds such as 3-methyl furan. Formation of compounds with reduced nitrogen containing functional groups such as amines, imines and imides is highly plausible through NH3 initiated cleavage of the C-O bond. The detected gas-phase product compounds suggest that human breath can additionally affect indoor air quality through the formation of harmful secondary products and future epidemiological studies should evaluate the potential health effects of these compounds.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Chao Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| |
Collapse
|
23
|
Jiang C, Dobrowolny H, Gescher DM, Meyer-Lotz G, Steiner J, Hoeschen C, Frodl T. Volatile organic compounds from exhaled breath in schizophrenia. World J Biol Psychiatry 2022; 23:773-784. [PMID: 35171077 DOI: 10.1080/15622975.2022.2040052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES This study aims to find out whether volatile organic compounds (VOCs) from exhaled breath differ significantly between patients with schizophrenia and healthy controls and whether it might be possible to create an algorithm that can predict the likelihood of suffering from schizophrenia. METHODS To test this theory, a group of patients with clinically diagnosed acute schizophrenia as well as a healthy comparison group has been investigated, which have given breath samples during awakening response right after awakening, after 30 min and after 60 min. The VOCs were measured using Proton-Transfer-Reaction Mass Spectrometry. RESULTS By applying bootstrap with mixed model analysis (n = 1000), we detected 10 signatures (m/z 39, 40, 59, 60, 69, 70, 74, 85, 88 and 90) showing reduced concentration in patients with schizophrenia compared to healthy controls. These could safely discriminate patients and controls and were not influenced by smoking. Logistic regression forward method achieved an area under the receiver operating characteristic curve (AUC) of 0.91 and an accuracy of 82% and a machine learning approach with bartMachine an AUC of 0.96 and an accuracy of 91%. CONCLUSION Breath gas analysis is easy to apply, well tolerated and seems to be a promising candidate for further studies on diagnostic and predictive clinical utility.
Collapse
Affiliation(s)
- Carina Jiang
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany
| | - Dorothee Maria Gescher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany
| | - Christoph Hoeschen
- Institute of Medical Engineering, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg (OVGU), Magdeburg, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
24
|
You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. ENVIRONMENT INTERNATIONAL 2022; 170:107611. [PMID: 36335895 DOI: 10.1016/j.envint.2022.107611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Gaseous organic compounds, mainly volatile organic compounds (VOCs), have become a wide concern in various indoor environments where we spend the majority of our daily time. The sources, compositions, variations, and sinks of indoor VOCs are extremely complex, and their potential impacts on human health are less understood. Owing to the deployment of the state-of-the-art real-time mass spectrometry during the last two decades, our understanding of the sources, dynamic changes and chemical transformations of VOCs indoors has been significantly improved. This review aims to summarize the key findings from mass spectrometry measurements in recent indoor studies including residence, classroom, office, sports center, etc. The sources and sinks, compositions and distributions of indoor VOCs, and the factors (e.g., human activities, air exchange rate, temperature and humidity) driving the changes in indoor VOCs are discussed. The physical and chemical processes of gas-particle partitioning and secondary oxidation processes of VOCs, and their impacts on human health are summarized. Finally, the recommendations for future research directions on indoor VOCs measurements and indoor chemistry are proposed.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyao Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Mass spectrometry for breath analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Pugliese G, Trefz P, Weippert M, Pollex J, Bruhn S, Schubert JK, Miekisch W, Sukul P. Real-time metabolic monitoring under exhaustive exercise and evaluation of ventilatory threshold by breathomics: Independent validation of evidence and advances. Front Physiol 2022; 13:946401. [PMID: 36035465 PMCID: PMC9412033 DOI: 10.3389/fphys.2022.946401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
Breath analysis was coupled with ergo-spirometry for non-invasive profiling of physio-metabolic status under exhaustive exercise. Real-time mass-spectrometry based continuous analysis of exhaled metabolites along with breath-resolved spirometry and heart rate monitoring were executed while 14 healthy adults performed ergometric ramp exercise protocol until exhaustion. Arterial blood lactate level was analyzed at defined time points. Respiratory-cardiac parameters and exhalation of several blood-borne volatiles changed continuously with the course of exercise and increasing workloads. Exhaled volatiles mirrored ventilatory and/or hemodynamic effects and depended on the origin and/or physicochemical properties of the substances. At the maximum workload, endogenous isoprene, methanethiol, dimethylsulfide, acetaldehyde, butanal, butyric acid and acetone concentrations decreased significantly by 74, 25, 35, 46, 21, 2 and 2%, respectively. Observed trends in exogenous cyclohexadiene and acetonitrile mimicked isoprene profile due to their similar solubility and volatility. Assignment of anaerobic threshold was possible via breath acetone. Breathomics enabled instant profiling of physio-metabolic effects and anaerobic thresholds during exercise. Profiles of exhaled volatiles indicated effects from muscular vasoconstriction, compartmental distribution of perfusion, extra-alveolar gas-exchange and energy homeostasis. Sulfur containing compounds and butyric acid turned out to be interesting for investigations of combined diet and exercise programs. Reproducible metabolic breath patterns have enhanced scopes of breathomics in sports science/medicine.
Collapse
Affiliation(s)
- Giovanni Pugliese
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Phillip Trefz
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany
| | | | - Johannes Pollex
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | - Sven Bruhn
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | - Jochen K. Schubert
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany
| | - Pritam Sukul
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany
- *Correspondence: Pritam Sukul,
| |
Collapse
|
27
|
de Jong FJM, Wingelaar TT, Brinkman P, van Ooij PJAM, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Pulmonary Oxygen Toxicity Through Exhaled Breath Markers After Hyperbaric Oxygen Treatment Table 6. Front Physiol 2022; 13:899568. [PMID: 35620607 PMCID: PMC9127798 DOI: 10.3389/fphys.2022.899568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: The hyperbaric oxygen treatment table 6 (TT6) is widely used to manage dysbaric illnesses in divers and iatrogenic gas emboli in patients after surgery and other interventional procedures. These treatment tables can have adverse effects, such as pulmonary oxygen toxicity (POT). It is caused by reactive oxygen species' damaging effect in lung tissue and is often experienced after multiple days of therapy. The subclinical pulmonary effects have not been determined. The primary aim of this study was to measure volatile organic compounds (VOCs) in breath, indicative of subclinical POT after a TT6. Since the exposure would be limited, the secondary aim of this study was to determine whether these VOCs decreased to baseline levels within a few hours. Methods: Fourteen healthy, non-smoking volunteers from the Royal Netherlands Navy underwent a TT6 at the Amsterdam University Medical Center-location AMC. Breath samples for GC-MS analysis were collected before the TT6 and 30 min, 2 and 4 h after finishing. The concentrations of ions before and after exposure were compared by Wilcoxon signed-rank tests. The VOCs were identified by comparing the chromatograms with the NIST library. Compound intensities over time were tested using Friedman tests, with Wilcoxon signed-rank tests and Bonferroni corrections used for post hoc analyses. Results: Univariate analyses identified 11 compounds. Five compounds, isoprene, decane, nonane, nonanal and dodecane, showed significant changes after the Friedman test. Isoprene demonstrated a significant increase at 30 min after exposure and a subsequent decrease at 2 h. Other compounds remained constant, but declined significantly 4 h after exposure. Discussion and Conclusion: The identified VOCs consisted mainly of (methyl) alkanes, which may be generated by peroxidation of cell membranes. Other compounds may be linked to inflammatory processes, oxidative stress responses or cellular metabolism. The hypothesis, that exhaled VOCs would increase after hyperbaric exposure as an indicator of subclinical POT, was not fulfilled, except for isoprene. Hence, no evident signs of POT or subclinical pulmonary damage were detected after a TT6. Further studies on individuals recently exposed to pulmonary irritants, such as divers and individuals exposed to other hyperbaric treatment regimens, are needed.
Collapse
Affiliation(s)
- Feiko J. M. de Jong
- Royal Netherlands Navy Diving and Submarine Medical Centre, Den Helder, Netherlands
- Department of Anesthesiology, Amsterdam UMC Location AMC, Amsterdam, Netherlands
| | - Thijs T. Wingelaar
- Royal Netherlands Navy Diving and Submarine Medical Centre, Den Helder, Netherlands
- Department of Anesthesiology, Amsterdam UMC Location AMC, Amsterdam, Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC Location AMC, Amsterdam, Netherlands
| | - Pieter-Jan A. M. van Ooij
- Royal Netherlands Navy Diving and Submarine Medical Centre, Den Helder, Netherlands
- Department of Respiratory Medicine, Amsterdam UMC Location AMC, Amsterdam, Netherlands
| | | | - Marcus W. Hollmann
- Department of Anesthesiology, Amsterdam UMC Location AMC, Amsterdam, Netherlands
| | - Rob A. van Hulst
- Department of Anesthesiology, Amsterdam UMC Location AMC, Amsterdam, Netherlands
| |
Collapse
|
28
|
Abstract
The chemical composition of exhaled breath was examined for volatile organic compound (VOC) indicators of sexual arousal in human beings. Participants (12-male, 12-female) were shown a randomized series of three emotion-inducing 10-min film clips interspersed with 3-min neutral film clips. The films caused different arousals: sports film (positive-nonsexual); horror film (negative-nonsexual); and erotic (sexual) that were monitored with physiological measurements including genital response and temperature. Simultaneously the breath was monitored for VOC and CO2. While some breath compounds (methanol and acetone) changed uniformly irrespective of the film order, several compounds did show significant arousal associated changes. For both genders CO2 and isoprene decreased in the sex clip. Some male individuals showed particularly strong increases of indole, phenol and cresol coincident with sexual arousal that decreased rapidly afterwards. These VOCs are degradation products of tyrosine and tryptophan, precursors for dopamine, noradrenalin, and serotonin, and therefore represent potential breath markers of sexual arousal.
Collapse
|
29
|
Mochalski P, King J, Mayhew CA, Unterkofler K. Modelling of Breath and Various Blood Volatilomic Profiles—Implications for Breath Volatile Analysis. Molecules 2022; 27:molecules27082381. [PMID: 35458579 PMCID: PMC9028376 DOI: 10.3390/molecules27082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Researchers looking for biomarkers from different sources, such as breath, urine, or blood, frequently search for specific patterns of volatile organic compounds (VOCs), often using pattern recognition or machine learning techniques. However, they are not generally aware that these patterns change depending on the source they use. Therefore, we have created a simple model to demonstrate that the distribution patterns of VOCs in fat, mixed venous blood, alveolar air, and end-tidal breath are different. Our approach follows well-established models for the description of dynamic real-time breath concentration profiles. We start with a uniform distribution of end-tidal concentrations of selected VOCs and calculate the corresponding target concentrations. For this, we only need partition coefficients, mass balance, and the assumption of an equilibrium state, which avoids the need to know the volatiles’ metabolic rates and production rates within the different compartments.
Collapse
Affiliation(s)
- Paweł Mochalski
- Institute for Breath Research, Leopold-Franzens-Universität, Innrain 66, A-6020 Innsbruck, Austria; (P.M.); (J.K.); (C.A.M.)
- Institute of Chemistry, Jan Kochanowski University, 25-369 Kielce, Poland
| | - Julian King
- Institute for Breath Research, Leopold-Franzens-Universität, Innrain 66, A-6020 Innsbruck, Austria; (P.M.); (J.K.); (C.A.M.)
| | - Chris A. Mayhew
- Institute for Breath Research, Leopold-Franzens-Universität, Innrain 66, A-6020 Innsbruck, Austria; (P.M.); (J.K.); (C.A.M.)
- Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
| | - Karl Unterkofler
- Institute for Breath Research, Leopold-Franzens-Universität, Innrain 66, A-6020 Innsbruck, Austria; (P.M.); (J.K.); (C.A.M.)
- Research Center BI, University of Applied Sciences Vorarlberg, Hochschulstraße 1, A-6850 Dornbirn, Austria
- Correspondence:
| |
Collapse
|
30
|
Bell L, Wallen M, Talpey S, Myers M, O'Brien B. Can exhaled volatile organic compounds differentiate high and low responders to resistance exercise? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Park SW, Jeong SY, Moon YK, Kim K, Yoon JW, Lee JH. Highly Selective and Sensitive Detection of Breath Isoprene by Tailored Gas Reforming: A Synergistic Combination of Macroporous WO 3 Spheres and Au Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11587-11596. [PMID: 35174700 DOI: 10.1021/acsami.1c19766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Precise detection of breath isoprene can provide valuable information for monitoring the physical and physiological status of human beings or for the early diagnosis of cardiovascular diseases. However, the extremely low concentration and low chemical reactivity of breath isoprene hamper the selective and sensitive detection of isoprene using oxide semiconductor chemiresistors. Herein, we report that macroporous WO3 microspheres whose inner macropores are surrounded by Au nanoparticles exhibit a high response (resistance ratio = 11.3) to 0.1 ppm isoprene under highly humid conditions at 275 °C and an extremely low detection limit (0.2 ppb). Furthermore, the sensor showed excellent selectivity to isoprene over five interferants that could be exhaled by humans. Notably, the selectivity to isoprene is critically dependent on the location of Au nanocatalysts and macroporosity. The mechanism underlying the selective isoprene detection is investigated in relation to the reforming of less reactive isoprene into more reactive intermediate species promoted by macroporous catalytic reactors, which is confirmed by the analysis using a proton transfer reaction quadrupole mass spectrometer. The sensor for breath analysis has high potential for simple physical and physiological monitoring as well as disease diagnosis.
Collapse
Affiliation(s)
- Sei-Woong Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Yong Jeong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Kook Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - KiBeom Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Wook Yoon
- Department of Information Materials Engineering, Division of Advanced Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Dong H, Qian L, Cui Y, Zheng X, Cheng C, Cao Q, Xu F, Wang J, Chen X, Wang D. Online Accurate Detection of Breath Acetone Using Metal Oxide Semiconductor Gas Sensor and Diffusive Gas Separation. Front Bioeng Biotechnol 2022; 10:861950. [PMID: 35350181 PMCID: PMC8958005 DOI: 10.3389/fbioe.2022.861950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Breath acetone (BrAce) level is an indicator of lipid oxidation rate, which is crucial for evaluating the status of ketoacidosis, ketogenic diet, and fat burning during exercise. Despite its usefulness, detecting BrAce accurately is challenging because exhaled breath contains an enormous variety of compounds. Although many sensors and devices have been developed for BrAce measurement, most of them were tested with only synthetic or spiked breath samples, and few can detect low concentration BrAce in an online manner, which is critical for extending application areas and the wide acceptance of the technology. Here, we show that online detection of BrAce can be achieved using a metal oxide semiconductor acetone sensor. The high accuracy measurement of low concentration BrAce was enabled by separating major interference gases utilizing their large diffusion coefficients, and the accuracy is further improved by the correction of humidity effect. We anticipate that the approach can push BrAce measurement closer to being useful for various applications.
Collapse
Affiliation(s)
- Hao Dong
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, China
| | - Libin Qian
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Yaoxuan Cui
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Xubin Zheng
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Chen Cheng
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Qingpeng Cao
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Feng Xu
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Jin Wang
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, China
- *Correspondence: Xing Chen, ; Di Wang,
| | - Di Wang
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
- *Correspondence: Xing Chen, ; Di Wang,
| |
Collapse
|
33
|
Comeau ZJ, Lessard BH, Shuhendler AJ. The Need to Pair Molecular Monitoring Devices with Molecular Imaging to Personalize Health. Mol Imaging Biol 2022; 24:675-691. [PMID: 35257276 PMCID: PMC8901094 DOI: 10.1007/s11307-022-01714-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
By enabling the non-invasive monitoring and quantification of biomolecular processes, molecular imaging has dramatically improved our understanding of disease. In recent years, non-invasive access to the molecular drivers of health versus disease has emboldened the goal of precision health, which draws on concepts borrowed from process monitoring in engineering, wherein hundreds of sensors can be employed to develop a model which can be used to preventatively detect and diagnose problems. In translating this monitoring regime from inanimate machines to human beings, precision health posits that continual and on-the-spot monitoring are the next frontiers in molecular medicine. Early biomarker detection and clinical intervention improves individual outcomes and reduces the societal cost of treating chronic and late-stage diseases. However, in current clinical settings, methods of disease diagnoses and monitoring are typically intermittent, based on imprecise risk factors, or self-administered, making optimization of individual patient outcomes an ongoing challenge. Low-cost molecular monitoring devices capable of on-the-spot biomarker analysis at high frequencies, and even continuously, could alter this paradigm of therapy and disease prevention. When these devices are coupled with molecular imaging, they could work together to enable a complete picture of pathogenesis. To meet this need, an active area of research is the development of sensors capable of point-of-care diagnostic monitoring with an emphasis on clinical utility. However, a myriad of challenges must be met, foremost, an integration of the highly specialized molecular tools developed to understand and monitor the molecular causes of disease with clinically accessible techniques. Functioning on the principle of probe-analyte interactions yielding a transducible signal, probes enabling sensing and imaging significantly overlap in design considerations and targeting moieties, however differing in signal interpretation and readout. Integrating molecular sensors with molecular imaging can provide improved data on the personal biomarkers governing disease progression, furthering our understanding of pathogenesis, and providing a positive feedback loop toward identifying additional biomarkers and therapeutics. Coupling molecular imaging with molecular monitoring devices into the clinical paradigm is a key step toward achieving precision health.
Collapse
Affiliation(s)
- Zachary J Comeau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, ON, K1N 6N5, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada.
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
34
|
Biagini D, Fusi J, Vezzosi A, Oliveri P, Ghimenti S, Lenzi A, Salvo P, Daniele S, Scarfò G, Vivaldi FM, Bonini A, Martini C, Franzoni F, Di Francesco F, Lomonaco T. Effects of long-term vegan diet on breath composition. J Breath Res 2022; 16. [PMID: 35051905 DOI: 10.1088/1752-7163/ac4d41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
The composition of exhaled breath derives from an intricate combination of normal and abnormal physiological processes that are modified by the consumption of food and beverages, circadian rhythms, bacterial infections, and genetics as well as exposure to xenobiotics. This complexity, which results wide intra- and inter-individual variability and is further influenced by sampling conditions, hinders the identification of specific biomarkers and makes it difficult to differentiate between pathological and nominally healthy subjects. The identification of a "normal" breath composition and the relative influence of the aforementioned parameters would make breath analyses much faster for diagnostic applications. We thus compared, for the first time, the breath composition of age-matched volunteers following a vegan and a Mediterranean omnivorous diet in order to evaluate the impact of diet on breath composition. Mixed breath was collected from 38 nominally healthy volunteers who were asked to breathe into a two-liter handmade Nalophan bag. Exhalation flow rate and carbon dioxide values were monitored during breath sampling. An aliquot (100 mL) of breath was loaded into a sorbent tube (250 mg of Tenax GR, 60/80 mesh) before being analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Breath profiling using TD-GC-MS analysis identified five compounds (methanol, 1-propanol, pentane, hexane, and hexanal), thus enabling differentiation between samples collected from the different group members . Principal component analysis showed a clear separation between groups, suggesting that breath analysis could be used to study the influence of dietary habits in the fields of nutrition and metabolism. Surprisingly, one Italian woman and her brother showed extremely low breath isoprene levels (about 5 ppbv), despite their normal lipidic profile and respiratory data, such as flow rate and pCO2. Further investigations to reveal the reasons behind low isoprene levels in breath would help reveal the origin of isoprene in breath.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Jonathan Fusi
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Annasilvia Vezzosi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Paolo Oliveri
- Department of Drug and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno, 13, Genoa, 16100, ITALY
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, Pisa, Tuscany, 56124, ITALY
| | - Pietro Salvo
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, Pisa, 56124, ITALY
| | - Simona Daniele
- University of Pisa Department of Pharmacy, Via Bonanno Pisano, 12, Pisa, Toscana, 56126, ITALY
| | - Giorgia Scarfò
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Claudia Martini
- University of Pisa Department of Pharmacy, Via Bonanno Pisano, 12, Pisa, Toscana, 56126, ITALY
| | - Ferdinando Franzoni
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| |
Collapse
|
35
|
Heaney LM, Kang S, Turner MA, Lindley MR, Thomas CLP. The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study. Molecules 2022; 27:370. [PMID: 35056684 PMCID: PMC8779231 DOI: 10.3390/molecules27020370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 01/01/2023] Open
Abstract
Exhaled volatile organic compounds (VOCs) are of interest due to their minimally invasive sampling procedure. Previous studies have investigated the impact of exercise, with evidence suggesting that breath VOCs reflect exercise-induced metabolic activity. However, these studies have yet to investigate the impact of maximal exercise to exhaustion on breath VOCs, which was the main aim of this study. Two-litre breath samples were collected onto thermal desorption tubes using a portable breath collection unit. Samples were collected pre-exercise, and at 10 and 60 min following a maximal exercise test (VO2MAX). Breath VOCs were analysed by thermal desorption-gas chromatography-mass spectrometry using a non-targeted approach. Data showed a tendency for reduced isoprene in samples at 10 min post-exercise, with a return to baseline by 60 min. However, inter-individual variation meant differences between baseline and 10 min could not be confirmed, although the 10 and 60 min timepoints were different (p = 0.041). In addition, baseline samples showed a tendency for both acetone and isoprene to be reduced in those with higher absolute VO2MAX scores (mL(O2)/min), although with restricted statistical power. Baseline samples could not differentiate between relative VO2MAX scores (mL(O2)/kg/min). In conclusion, these data support that isoprene levels are dynamic in response to exercise.
Collapse
Affiliation(s)
- Liam M. Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| | - Shuo Kang
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK; (S.K.); (M.A.T.); (C.L.P.T.)
| | - Matthew A. Turner
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK; (S.K.); (M.A.T.); (C.L.P.T.)
| | - Martin R. Lindley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - C. L. Paul Thomas
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK; (S.K.); (M.A.T.); (C.L.P.T.)
| |
Collapse
|
36
|
Paleczek A, Rydosz AM. Review of the algorithms used in exhaled breath analysis for the detection of diabetes. J Breath Res 2022; 16. [PMID: 34996056 DOI: 10.1088/1752-7163/ac4916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Currently, intensive work is underway on the development of truly noninvasive medical diagnostic systems, including respiratory analysers based on the detection of biomarkers of several diseases including diabetes. In terms of diabetes, acetone is considered as a one of the potential biomarker, although is not the single one. Therefore, the selective detection is crucial. Most often, the analysers of exhaled breath are based on the utilization of several commercially available gas sensors or on specially designed and manufactured gas sensors to obtain the highest selectivity and sensitivity to diabetes biomarkers present in the exhaled air. An important part of each system are the algorithms that are trained to detect diabetes based on data obtained from sensor matrices. The prepared review of the literature showed that there are many limitations in the development of the versatile breath analyser, such as high metabolic variability between patients, but the results obtained by researchers using the algorithms described in this paper are very promising and most of them achieve over 90% accuracy in the detection of diabetes in exhaled air. This paper summarizes the results using various measurement systems, feature extraction and feature selection methods as well as algorithms such as Support Vector Machines, k-Nearest Neighbours and various variations of Neural Networks for the detection of diabetes in patient samples and simulated artificial breath samples.
Collapse
Affiliation(s)
- Anna Paleczek
- Institute of Electronics, AGH University of Science and Technology Faculty of Computer Science Electronics and Telecommunications, al. A. Mickiewicza 30, Krakow, 30-059, POLAND
| | - Artur Maciej Rydosz
- Institute of Electronics, AGH University of Science and Technology Faculty of Computer Science Electronics and Telecommunications, Al. Mickiewicza 30, Krakow, 30-059, POLAND
| |
Collapse
|
37
|
Liu B, Tang W, Li H, Liu R, Dong F, Guo Y, Li J, Hou K. Point-of-care detection of sevoflurane anesthetics in exhaled breath using a miniature TOFMS for diagnosis of postoperative agitation symptoms in children. Analyst 2022; 147:2484-2493. [DOI: 10.1039/d2an00479h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A miniature TOFMS with MEPEI has been developed for POC diagnosis of postoperative agitation symptoms, and can analyze sevoflurane by direct sampling. The risk is high when the sevoflurane in the exhaled breath is higher than 500 ppmv.
Collapse
Affiliation(s)
- Bing Liu
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Wenxi Tang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 758 Hefei Road, Qingdao 266035, People's Republic of China
| | - Hang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Ruidong Liu
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Fengshuo Dong
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Yingzhe Guo
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 758 Hefei Road, Qingdao 266035, People's Republic of China
| | - Keyong Hou
- Environment Research Institute, Shandong University, 72 Binhai Road, Qingdao 266237, People's Republic of China
| |
Collapse
|
38
|
Lueno M, Dobrowolny H, Gescher D, Gbaoui L, Meyer-Lotz G, Hoeschen C, Frodl T. Volatile Organic Compounds From Breath Differ Between Patients With Major Depression and Healthy Controls. Front Psychiatry 2022; 13:819607. [PMID: 35903642 PMCID: PMC9314777 DOI: 10.3389/fpsyt.2022.819607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a widespread common disorder. Up to now, there are no easy and frequent to use non-invasive biomarkers that could guide the diagnosis and treatment of MDD. The aim of this study was to investigate whether there are different mass concentrations of volatile organic compounds (VOCs) in the exhaled breath between patients with MDD and healthy controls. For this purpose, patients with MDD according to DSM-V and healthy subjects were investigated. VOCs contained in the breath were collected immediately after awakening, after 30 min, and after 60 min in a respective breath sample and measured using PRT-MS (proton-transfer-reaction mass spectrometry). Concentrations of masses m/z 88, 89, and 90 were significantly decreased in patients with MDD compared with healthy controls. Moreover, changes during the time in mass concentrations of m/z 93 and 69 significantly differed between groups. Differentiation between groups was possible with an AUCs of 0.80-0.94 in ROC analyses. In this first study, VOCs differed between patients and controls, and therefore, might be a promising tool for future studies. Altered masses are conceivable with energy metabolism in a variety of biochemical processes and involvement of the brain-gut-lung-microbiome axis.
Collapse
Affiliation(s)
- Marian Lueno
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothee Gescher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Laila Gbaoui
- Institute of Medical Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gabriele Meyer-Lotz
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Hoeschen
- Institute of Medical Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
39
|
Real-Time Monitoring of Metabolism during Exercise by Exhaled Breath. Metabolites 2021; 11:metabo11120856. [PMID: 34940614 PMCID: PMC8709070 DOI: 10.3390/metabo11120856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/24/2023] Open
Abstract
Continuous monitoring of metabolites in exhaled breath has recently been introduced as an advanced method to allow non-invasive real-time monitoring of metabolite shifts during rest and acute exercise bouts. The purpose of this study was to continuously measure metabolites in exhaled breath samples during a graded cycle ergometry cardiopulmonary exercise test (CPET), using secondary electrospray high resolution mass spectrometry (SESI-HRMS). We also sought to advance the research area of exercise metabolomics by comparing metabolite shifts in exhaled breath samples with recently published data on plasma metabolite shifts during CPET. We measured exhaled metabolites using SESI-HRMS during spiroergometry (ramp protocol) on a bicycle ergometer. Real-time monitoring through gas analysis enabled us to collect high-resolution data on metabolite shifts from rest to voluntary exhaustion. Thirteen subjects participated in this study (7 female). Median age was 30 years and median peak oxygen uptake (VO2max) was 50 mL·/min/kg. Significant changes in metabolites (n = 33) from several metabolic pathways occurred during the incremental exercise bout. Decreases in exhaled breath metabolites were measured in glyoxylate and dicarboxylate, tricarboxylic acid cycle (TCA), and tryptophan metabolic pathways during graded exercise. This exploratory study showed that selected metabolite shifts could be monitored continuously and non-invasively through exhaled breath, using SESI-HRMS. Future studies should focus on the best types of metabolites to monitor from exhaled breath during exercise and related sources and underlying mechanisms.
Collapse
|
40
|
Liver Impairment-The Potential Application of Volatile Organic Compounds in Hepatology. Metabolites 2021; 11:metabo11090618. [PMID: 34564434 PMCID: PMC8471934 DOI: 10.3390/metabo11090618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Liver diseases are currently diagnosed through liver biopsy. Its invasiveness, costs, and relatively low diagnostic accuracy require new techniques to be sought. Analysis of volatile organic compounds (VOCs) in human bio-matrices has received a lot of attention. It is known that a musty odour characterises liver impairment, resulting in the elucidation of volatile chemicals in the breath and other body fluids such as urine and stool, which may serve as biomarkers of a disease. Aims: This study aims to review all the studies found in the literature regarding VOCs in liver diseases, and to summarise all the identified compounds that could be used as diagnostic or prognostic biomarkers. The literature search was conducted on ScienceDirect and PubMed, and each eligible publication was qualitatively assessed by two independent evaluators using the SANRA critical appraisal tool. Results: In the search, 58 publications were found, and 28 were kept for inclusion: 23 were about VOCs in the breath, one in the bile, three in urine, and one in faeces. Each publication was graded from zero to ten. A graphical summary of the metabolic pathways showcasing the known liver disease-related VOCs and suggestions on how VOC analysis on liver impairment could be applied in clinical practice are given.
Collapse
|
41
|
Finewax Z, Pagonis D, Claflin MS, Handschy AV, Brown WL, Jenks O, Nault BA, Day DA, Lerner BM, Jimenez JL, Ziemann PJ, de Gouw JA. Quantification and source characterization of volatile organic compounds from exercising and application of chlorine-based cleaning products in a university athletic center. INDOOR AIR 2021; 31:1323-1339. [PMID: 33337567 DOI: 10.1111/ina.12781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 05/15/2023]
Abstract
Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3 , H2 O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.
Collapse
Affiliation(s)
- Zachary Finewax
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Demetrios Pagonis
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | | | - Anne V Handschy
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Wyatt L Brown
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Olivia Jenks
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Benjamin A Nault
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Douglas A Day
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | | | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Paul J Ziemann
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| |
Collapse
|
42
|
Breen MS, Isakov V, Prince S, McGuinness K, Egeghy PP, Stephens B, Arunachalam S, Stout D, Walker R, Alston L, Rooney AA, Taylor KW, Buckley TJ. Integrating Personal Air Sensor and GPS to Determine Microenvironment-Specific Exposures to Volatile Organic Compounds. SENSORS 2021; 21:s21165659. [PMID: 34451101 PMCID: PMC8402344 DOI: 10.3390/s21165659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Personal exposure to volatile organic compounds (VOCs) from indoor sources including consumer products is an understudied public health concern. To develop and evaluate methods for monitoring personal VOC exposures, we performed a pilot study and examined time-resolved sensor-based measurements of geocoded total VOC (TVOC) exposures across individuals and microenvironments (MEs). We integrated continuous (1 min) data from a personal TVOC sensor and a global positioning system (GPS) logger, with a GPS-based ME classification model, to determine TVOC exposures in four MEs, including indoors at home (Home-In), indoors at other buildings (Other-In), inside vehicles (In-Vehicle), and outdoors (Out), across 45 participant-days for five participants. To help identify places with large emission sources, we identified high-exposure events (HEEs; TVOC > 500 ppb) using geocoded TVOC time-course data overlaid on Google Earth maps. Across the 45 participant-days, the MEs ranked from highest to lowest median TVOC were: Home-In (165 ppb), Other-In (86 ppb), In-Vehicle (52 ppb), and Out (46 ppb). For the two participants living in single-family houses with attached garages, the median exposures for Home-In were substantially higher (209, 416 ppb) than the three participant homes without attached garages: one living in a single-family house (129 ppb), and two living in apartments (38, 60 ppb). The daily average Home-In exposures exceeded the estimated Leadership in Energy and Environmental Design (LEED) building guideline of 108 ppb for 60% of the participant-days. We identified 94 HEEs across all participant-days, and 67% of the corresponding peak levels exceeded 1000 ppb. The MEs ranked from the highest to the lowest number of HEEs were: Home-In (60), Other-In (13), In-Vehicle (12), and Out (9). For Other-In and Out, most HEEs occurred indoors at fast food restaurants and retail stores, and outdoors in parking lots, respectively. For Home-In HEEs, the median TVOC emission and removal rates were 5.4 g h-1 and 1.1 h-1, respectively. Our study demonstrates the ability to determine individual sensor-based time-resolved TVOC exposures in different MEs, in support of identifying potential sources and exposure factors that can inform exposure mitigation strategies.
Collapse
Affiliation(s)
- Michael S. Breen
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA;
- Correspondence:
| | - Vlad Isakov
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA; (V.I.); (D.S.); (R.W.); (L.A.)
| | - Steven Prince
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA;
| | - Kennedy McGuinness
- Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA; (K.M.); (S.A.)
| | - Peter P. Egeghy
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA; (P.P.E.); (T.J.B.)
| | - Brent Stephens
- Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Saravanan Arunachalam
- Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA; (K.M.); (S.A.)
| | - Dan Stout
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA; (V.I.); (D.S.); (R.W.); (L.A.)
| | - Richard Walker
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA; (V.I.); (D.S.); (R.W.); (L.A.)
| | - Lillian Alston
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA; (V.I.); (D.S.); (R.W.); (L.A.)
| | - Andrew A. Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27711, USA; (A.A.R.); (K.W.T.)
| | - Kyla W. Taylor
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27711, USA; (A.A.R.); (K.W.T.)
| | - Timothy J. Buckley
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA; (P.P.E.); (T.J.B.)
| |
Collapse
|
43
|
Zhang X, Ren X, Zhong Y, Chingin K, Chen H. Rapid and sensitive detection of acetone in exhaled breath through the ambient reaction with water radical cations. Analyst 2021; 146:5037-5044. [PMID: 34231556 DOI: 10.1039/d1an00402f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The levels of acetone and other ketones in exhaled human breath can be associated with various metabolic conditions, e.g. ketosis, lung cancer, dietary fat loss and diabetes. In this study, ketones in breath samples were charged through the reaction with water radical cations to form [M + H2O]˙+ ions, which were detected by mass spectrometry. Our experimental data indicate that under the optimized experimental conditions, the limit of detection for acetone using our approach is 0.14 ng L-1 (∼0.06 ppb). The linear dynamic range of detection spans four orders of magnitude. The developed approach was applied to real-time semi-quantitative analysis of acetone in the exhaled breath of human volunteers, revealing significantly higher levels of acetone in the breath of smokers compared to non-smokers. The developed approach features the obviation of sample collection, easy operation, high speed of analysis (10 s per run), high sensitivity, and spectral interpretation, which indicates the potential of ambient corona discharge ionization mass spectrometry as a selective, sensitive and noninvasive technique for the determination of exhaled ketones in clinical diagnosis including lung cancer, diabetes, etc.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China.
| | | | | | | | | |
Collapse
|
44
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
45
|
Weber IC, Wang CT, Güntner AT. Room-Temperature Catalyst Enables Selective Acetone Sensing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1839. [PMID: 33917648 PMCID: PMC8067997 DOI: 10.3390/ma14081839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Catalytic packed bed filters ahead of gas sensors can drastically improve their selectivity, a key challenge in medical, food and environmental applications. Yet, such filters require high operation temperatures (usually some hundreds °C) impeding their integration into low-power (e.g., battery-driven) devices. Here, we reveal room-temperature catalytic filters that facilitate highly selective acetone sensing, a breath marker for body fat burn monitoring. Varying the Pt content between 0-10 mol% during flame spray pyrolysis resulted in Al2O3 nanoparticles decorated with Pt/PtOx clusters with predominantly 5-6 nm size, as revealed by X-ray diffraction and electron microscopy. Most importantly, Pt contents above 3 mol% removed up to 100 ppm methanol, isoprene and ethanol completely already at 40 °C and high relative humidity, while acetone was mostly preserved, as confirmed by mass spectrometry. When combined with an inexpensive, chemo-resistive sensor of flame-made Si/WO3, acetone was detected with high selectivity (≥225) over these interferants next to H2, CO, form-/acetaldehyde and 2-propanol. Such catalytic filters do not require additional heating anymore, and thus are attractive for integration into mobile health care devices to monitor, for instance, lifestyle changes in gyms, hospitals or at home.
Collapse
Affiliation(s)
- Ines C. Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
| | - Chang-ting Wang
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
| | - Andreas T. Güntner
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| |
Collapse
|
46
|
Henderson B, Lopes Batista G, Bertinetto CG, Meurs J, Materić D, Bongers CCWG, Allard NAE, Eijsvogels TMH, Holzinger R, Harren FJM, Jansen JJ, Hopman MTE, Cristescu SM. Exhaled Breath Reflects Prolonged Exercise and Statin Use during a Field Campaign. Metabolites 2021; 11:metabo11040192. [PMID: 33805108 PMCID: PMC8064097 DOI: 10.3390/metabo11040192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Volatile organic compounds (VOCs) in exhaled breath provide insights into various metabolic processes and can be used to monitor physiological response to exercise and medication. We integrated and validated in situ a sampling and analysis protocol using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for exhaled breath research. The approach was demonstrated on a participant cohort comprising users of the cholesterol-lowering drug statins and non-statin users during a field campaign of three days of prolonged and repeated exercise, with no restrictions on food or drink consumption. The effect of prolonged exercise was reflected in the exhaled breath of participants, and relevant VOCs were identified. Most of the VOCs, such as acetone, showed an increase in concentration after the first day of walking and subsequent decrease towards baseline levels prior to walking on the second day. A cluster of short-chain fatty acids including acetic acid, butanoic acid, and propionic acid were identified in exhaled breath as potential indicators of gut microbiota activity relating to exercise and drug use. We have provided novel information regarding the use of breathomics for non-invasive monitoring of changes in human metabolism and especially for the gut microbiome activity in relation to exercise and the use of medication, such as statins.
Collapse
Affiliation(s)
- Ben Henderson
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands; (B.H.); (G.L.B.); (J.M.); (D.M.); (F.J.M.H.)
| | - Guilherme Lopes Batista
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands; (B.H.); (G.L.B.); (J.M.); (D.M.); (F.J.M.H.)
| | - Carlo G. Bertinetto
- Department of Analytical Chemistry and Chemometrics, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands; (C.G.B.); (J.J.J.)
| | - Joris Meurs
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands; (B.H.); (G.L.B.); (J.M.); (D.M.); (F.J.M.H.)
| | - Dušan Materić
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands; (B.H.); (G.L.B.); (J.M.); (D.M.); (F.J.M.H.)
- Institute for Marine and Atmospheric Research, Utrecht University, 3584 CC Utrecht, The Netherlands;
| | - Coen C. W. G. Bongers
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 XZ Nijmegen, The Netherlands; (C.C.W.G.B.); (N.A.E.A.); (T.M.H.E.); (M.T.E.H.)
| | - Neeltje A. E. Allard
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 XZ Nijmegen, The Netherlands; (C.C.W.G.B.); (N.A.E.A.); (T.M.H.E.); (M.T.E.H.)
| | - Thijs M. H. Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 XZ Nijmegen, The Netherlands; (C.C.W.G.B.); (N.A.E.A.); (T.M.H.E.); (M.T.E.H.)
| | - Rupert Holzinger
- Institute for Marine and Atmospheric Research, Utrecht University, 3584 CC Utrecht, The Netherlands;
| | - Frans J. M. Harren
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands; (B.H.); (G.L.B.); (J.M.); (D.M.); (F.J.M.H.)
| | - Jeroen J. Jansen
- Department of Analytical Chemistry and Chemometrics, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands; (C.G.B.); (J.J.J.)
| | - Maria T. E. Hopman
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 XZ Nijmegen, The Netherlands; (C.C.W.G.B.); (N.A.E.A.); (T.M.H.E.); (M.T.E.H.)
| | - Simona M. Cristescu
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands; (B.H.); (G.L.B.); (J.M.); (D.M.); (F.J.M.H.)
- Correspondence:
| |
Collapse
|
47
|
Weber IC, Derron N, Königstein K, Gerber PA, Güntner AT, Pratsinis SE. Monitoring Lipolysis by Sensing Breath Acetone down to Parts‐per‐Billion. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ines C. Weber
- Particle Technology Laboratory Department of Mechanical and Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| | - Nina Derron
- Department of Endocrinology, Diabetology, and Clinical Nutrition University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Karsten Königstein
- Division Sports and Exercise Medicine Department of Sport, Exercise and Health University of Basel CH-4052 Basel Switzerland
| | - Philipp A. Gerber
- Department of Endocrinology, Diabetology, and Clinical Nutrition University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Andreas T. Güntner
- Particle Technology Laboratory Department of Mechanical and Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory Department of Mechanical and Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| |
Collapse
|
48
|
Sport in Town: The Smart Healthy ENV Project, a Pilot Study of Physical Activity with Multiparametric Monitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052432. [PMID: 33801395 PMCID: PMC7967572 DOI: 10.3390/ijerph18052432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Background: Increasing evidence links meteorological characteristics and air pollution to physiological responses during sports activities in urban areas with different traffic levels. Objective: The main objective of the Smart Healthy ENV (SHE, “Smart Monitoring Integrated System For A Healthy Urban Environment In Smart Cities”) project was to identify the specific responses of a group of volunteers during physical activity, by monitoring their heart rates and collecting breath samples, combined with data on meteorological determinants and pollution substances obtained through fixed sensor nodes placed along city routes and remotely connected to a dedicated data acquisition server. Methods: Monitoring stations were placed along two urban routes in Pisa, each two km long, with one located within the park beside the Arno river (green route) and the other in a crowded traffic zone (red route). Our sample participants were engaged in sports activities (N = 15, with different levels of ability) and were monitored through wearable sensors. They were first asked to walk back and forth (4 km) and then to run the same route. The experimental sessions were conducted over one day per route. A breath sample was also collected before each test. A questionnaire concerning temperature and fatigue perception was administered for all of the steps of the study over the two days. Results: The heart rates of the participants were monitored in the baseline condition, during walking, and while running, and were correlated with meteorological and pollutant data and with breath composition. Changes in the heart rates and breath composition were detected during the experimental sessions. These variations were related to the physical activity and to the meteorological conditions and air pollution levels. Conclusions: The SHE project can be considered a proof-of-concept study aimed at monitoring physiological and environmental variables during physical activity in urban areas, and can be used in future studies to provide useful information to those involved in sports and the broader community.
Collapse
|
49
|
Wang D, Zhang F, Prabhakar A, Qin X, Forzani ES, Tao N. Colorimetric Sensor for Online Accurate Detection of Breath Acetone. ACS Sens 2021; 6:450-453. [PMID: 33210907 DOI: 10.1021/acssensors.0c02025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Breath acetone (BrAce) is a validated biomarker of lipid oxidation and has been extensively studied for many applications, such as monitoring ketoacidosis in diabetes, guiding ketogenic diet, and measuring fat burning during exercise. Although many sensors have been reported for BrAce measurement, most of the contributions tested only synthetic or spiked breath samples, because of the complex components of human breath. Here, we show that online accurate detection of BrAce can be achieved using a colorimetric sensor. The high selectivity is enabled by the specific reaction between acetone and hydroxylamine sulfate, and the sensor has a high agreement with a reference instrument in ketosis monitoring. We anticipate that the colorimetric acetone sensor can be applied to various health-related applications.
Collapse
Affiliation(s)
- Di Wang
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 310000, China
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Amlendu Prabhakar
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Xingcai Qin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Erica S. Forzani
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
50
|
Deficiency and absence of endogenous isoprene in adults, disqualified its putative origin. Heliyon 2021; 7:e05922. [PMID: 33490682 PMCID: PMC7810773 DOI: 10.1016/j.heliyon.2021.e05922] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 01/24/2023] Open
Abstract
Background Isoprene (C5H8) is a clinically important breath metabolite. Although, hundreds of studies have reported differential expressions in isoprene exhalation as breath biomarker for diverse diseases, the substance couldn't enter to clinical practice as diagnostic marker. Moreover, many experimental/basic observations upon breath isoprene remained unrelated to the corresponding pathophysiological effects on its putative metabolic origin (i.e. mevalonate pathway). Here, we investigated the fundamental reason that hindered the rational interpretation and translation of this marker from basic to clinical science. Methods Via high-resolution mass-spectrometry based breathomics in 1026 human subjects, we discovered adults with significant deficiency (order of magnitude lower than the normal) and complete absence of breath isoprene. We prospectively applied real-time breathomics, quantitative gene expression analysis of the mevalonate pathway enzymes, lipid-profiling and hemodynamic monitoring on those isoprene deficient subjects and controls. Additionally, the subject with absence of isoprene was followed up throughout different phases of her womanhood. Results In contrast to convention, we witnessed that adults can live healthy without exhaling isoprene or with significant deficiency. This rare phenotype represents a recessive inheritance. Despite physio-metabolic changes during menstrual cycle (that is known to profoundly affect isoprene exhalation) and profoundly increased plasma cholesterol during pregnancy and after childbirth, isoprene remained absent. All genes of mevalonate pathway enzymes were normally expressed in all participants, without any down-regulation or compensatory up-regulation. Conclusions Absence/deficiency of isoprene despite normal lipid profiles and no mevalonate pathway malfunction disqualifies the long-believed metabolic origin of isoprene from cholesterol biosynthesis. Thus, clinical translation of breath isoprene expressions should not be generally attributed to corresponding pathophysiological effects onto mevalonate/cholesterol pathway. Our finding has refined and optimized the clinical interpretation of isoprene as biomarker in volatile metabolomics and breathomics. Future studies will address the correct metabolic origin of isoprene to imply this important marker to routine practice.
Collapse
|