1
|
Alghamdi SA, Alissa M, Alghamdi A, Alshehri MA, Albelasi A, Alzahrani KJ, Safhi AY. Interplays Between Matrix Metalloproteinases and Neurotropic Viruses: An Overview. Rev Med Virol 2024; 34:e2585. [PMID: 39349731 DOI: 10.1002/rmv.2585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 11/08/2024]
Abstract
Matrix metalloproteinases (MMPs) are a diverse group of proteases involved in various physiological and pathological processes through modulation of extracellular matrix (ECM) components, cytokines, and growth factors. In the central nervous system (CNS), MMPs play a major role in CNS development, plasticity, repair, and reorganisation contributing to learning, memory, and neuroimmune response to injury. MMPs are also linked to various neurological disorders such as Alzheimer's disease, Parkinson's disease, cerebral aneurysm, stroke, epilepsy, multiple sclerosis, and brain cancer suggesting these proteases as key regulatory factors in the nervous system. Moreover, MMPs have been involved in the pathogenesis of neurotropic viral infections via dysregulation of various cellular processes, which may highlight these factors as potential targets for the treatment and control of neurological complications associated with viral pathogens. This review provides an overview of the roles of MMPs in various physiological processes of the CNS and their interactions with neurotropic viral pathogens.
Collapse
Affiliation(s)
- Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Albelasi
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Sheikh MH, Errede M, d'Amati A, Khan NQ, Fanti S, Loiola RA, McArthur S, Purvis GSD, O'Riordan CE, Ferorelli D, Dell'Erba A, Kieswich J, Reutelingsperger C, Maiorano E, Yaqoob M, Thiemermann C, Baragetti A, Catapano AL, Norata GD, Marelli-Berg F, Virgintino D, Solito E. Impact of metabolic disorders on the structural, functional, and immunological integrity of the blood-brain barrier: Therapeutic avenues. FASEB J 2022; 36:e22107. [PMID: 34939700 DOI: 10.1096/fj.202101297r] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
Abstract
Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Section of Anatomic Pathology, University of Bari, Bari, Italy
| | - Noorafza Q Khan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rodrigo A Loiola
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Laboratoire de la Barrière Hémato-Encéphalique, Faculty Jean Perrin, EA 2465, Université d'Artois, Arras, France
| | - Simon McArthur
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth S D Purvis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Caroline E O'Riordan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Davide Ferorelli
- Department of Interdisciplinary Medicine, Section of Legal Medicine, University of Bari, Bari, Italy
| | - Alessandro Dell'Erba
- Department of Interdisciplinary Medicine, Section of Legal Medicine, University of Bari, Bari, Italy
| | - Julius Kieswich
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chis Reutelingsperger
- Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Eugenio Maiorano
- Department of Emergency and Organ Transplantation, Section of Anatomic Pathology, University of Bari, Bari, Italy
| | - Magdi Yaqoob
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Milan University, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Milan University, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Milan University, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Italy.,S.I.S.A. Centre for the Study of Atherosclerosis-Bassini Hospital, Cinisello Balsamo, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
Saha P, Sarkar S, Paidi RK, Biswas SC. TIMP-1: A key cytokine released from activated astrocytes protects neurons and ameliorates cognitive behaviours in a rodent model of Alzheimer's disease. Brain Behav Immun 2020; 87:804-819. [PMID: 32194232 DOI: 10.1016/j.bbi.2020.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by two pathologic species, extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles. Astrocytes that maintain normal homeostasis in the brain undergo a set of molecular, cellular and functional changes called reactive astrogliosis in various neurological diseases including AD. It is hypothesized that reactive astrocytes initially tend to protect neurons by reducing Aβ load and by secreting a plethora of cytokines, however, their functions have only been poorly investigated. Our studies on the kinetics of activation of cortical astrocytes following Aβ-exposure revealed significant level of activation as early as in 6 h. The astrocyte conditioned medium (ACM) from 6 h Aβ-treated astrocytes (Aβ-ACM) provided significant neuroprotection of cultured cortical neurons against Aβ insults. Analysis of the secreted proteins in Aβ-ACM revealed a marked increase of Tissue inhibitor of Metalloproteinase-1 (TIMP-1) within 6 h. Interestingly, we found that neutralization of TIMP-1 with antibody or knockdown with siRNA in astrocytes abolished most of the neuroprotective ability of the 6 h Aβ-ACM on Aβ-treated cultured neurons. Furthermore addition of exogenous rat recombinant TIMP-1 protein protects primary neurons from Aβ mediated toxicity. In a well characterized Aβ-infused rodent model of AD, intra-cerebroventricular administration of TIMP-1 revealed a reduction in Aβ load and apoptosis in hippocampal and cortical regions. Finally, we found that TIMP-1 can ameliorate Aβ-induced cognitive dysfunctions through restoration of Akt and its downstream pathway and maintenance of synaptic integrity. Thus, our results not only provide a functional clarity for TIMP-1, secreted by activated astrocytes, but also support it as a major candidate in cytokine-mediated therapy of AD especially at the early phase of disease progression.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
4
|
Boguszewska-Czubara A, Budzynska B, Skalicka-Wozniak K, Kurzepa J. Perspectives and New Aspects of Metalloproteinases' Inhibitors in the Therapy of CNS Disorders: From Chemistry to Medicine. Curr Med Chem 2019; 26:3208-3224. [PMID: 29756562 DOI: 10.2174/0929867325666180514111500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/31/2017] [Accepted: 04/05/2018] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) play a key role in remodeling of the extracellular matrix (ECM) and, at the same time, influence cell differentiation, migration, proliferation, and survival. Their importance in a variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders has been known for many years but special attention should be paid on the role of MMPs in the central nervous system (CNS) disorders. Till now, there are not many well documented physiological MMP target proteins in the brain but only some pathological ones. Numerous neurodegenerative diseases are a consequence of or result in disturbed remodeling of brain ECM, therefore proper action of MMPs as well as control of their activity may play crucial roles in the development of these diseases. In the present review, we discuss the role of metalloproteinase inhibitors, from the wellknown natural endogenous tissue inhibitors of metalloproteinases (TIMPs) to the exogenous synthetic ones like (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT), tetracyclines, batimastat (BB-94) and FN-439. As the MMP-TIMP system has been well described in physiological development as well as in pathological conditions mainly in neoplastic diseases, the knowledge about the enzymatic system in mammalian brain tissue still remains poorly understood in this context. Therefore, we focus on MMPs inhibition in the context of the physiological function of the adult brain as well as pathological conditions including neurodegenerative diseases, brain injuries, and others.
Collapse
Affiliation(s)
| | - Barbara Budzynska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Gudo ES, Silva-Barbosa SD, Linhares-Lacerda L, Ribeiro-Alves M, Real SC, Bou-Habib DC, Savino W. HAM/TSP-derived HTLV-1-infected T cell lines promote morphological and functional changes in human astrocytes cell lines: possible role in the enhanced T cells recruitment into Central Nervous System. Virol J 2015; 12:165. [PMID: 26458945 PMCID: PMC4603815 DOI: 10.1186/s12985-015-0398-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mechanisms through which HTLV-1 leads to and maintains damage in the central nervous system of patients undergoing HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) are still poorly understood. In recent years, increasing evidence indicates that, not only lymphocytes but also glial cells, in particular astrocytes, play a role in the pathophysiology of HAM/TSP. In this study we used a model of co-culture between human HTLV-1-infected (CIB and C91PL) and non-infected (CEM) T lymphocyte cell lines and astrocyte (U251 and U87) cell lines to mimic the in vivo T cell-astrocyte interactions. RESULTS We first observed that CIB and C91PL adhere strongly to cultured astrocytes cell lines, and that co-cultures of HTLV-1 infected and astrocyte cell lines cells resulted in rapid syncytium formation, accompanied by severe morphological alterations and increased apoptotic cell death of astrocyte cells. Additionally, cultures of astrocyte cell lines in presence of supernatants harvested from HTLV-1-infected T cell cultures resulted in significant increase in the mRNA of CCL2, CXCL1, CXCL2, CXCL3, CXCL10, IL-13, IL-8, NFKB1, TLR4, TNF, MMP8 and VCAM1, as compared with the values obtained when we applied supernatants of non-infected T- cell lines. Lastly, soluble factors secreted by cultured astrocytic cell lines primed through 1-h interaction with infected T cell lines, further enhanced migratory responses, as compared to the effect seen when supernatants from astrocytic cell lines were primed with non-infected T cell lines. CONCLUSION Collectively, our results show that HTLV-1 infected T lymphocyte cell lines interact strongly with astrocyte cell lines, leading to astrocyte damage and increased secretion of attracting cytokines, which in turn may participate in the further attraction of HTLV-1-infected T cells into central nervous system (CNS), thus amplifying and prolonging the immune damage of CNS.
Collapse
Affiliation(s)
- Eduardo Samo Gudo
- National Institute of Health, Ministry of Health, Av. Eduardo Mondlane, 1008, Maputo, Mozambique. .,Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | - Leandra Linhares-Lacerda
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Marcelo Ribeiro-Alves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Suzana Corte Real
- Laboratory of Structural Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Menezes SM, Decanine D, Brassat D, Khouri R, Schnitman SV, Kruschewsky R, López G, Alvarez C, Talledo M, Gotuzzo E, Vandamme AM, Galvão-Castro B, Liblau R, Weyenbergh JV. CD80+ and CD86+ B cells as biomarkers and possible therapeutic targets in HTLV-1 associated myelopathy/tropical spastic paraparesis and multiple sclerosis. J Neuroinflammation 2014; 11:18. [PMID: 24472094 PMCID: PMC3922160 DOI: 10.1186/1742-2094-11-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/13/2014] [Indexed: 01/14/2023] Open
Abstract
Background Human T-cell lymphotropic virus (HTLV-1) is the causative agent of the incapacitating, neuroinflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Currently, there are no disease-modifying therapies with long-term clinical benefits or validated biomarkers for clinical follow-up in HAM/TSP. Although CD80 and CD86 costimulatory molecules play prominent roles in immune regulation and reflect disease status in multiple sclerosis (MS), data in HAM/TSP are lacking. Methods Using flow cytometry, we quantified ex vivo and in vitro expression of CD80 and CD86 in PBMCs of healthy controls, HTLV-1-infected individuals with and without HAM/TSP, and MS patients. We hypothesized ex vivo CD80 and CD86 expressions and their in vitro regulation by interferon (IFN)-α/β mirror similarities between HAM/TSP and MS and hence might reveal clinically useful biomarkers in HAM/TSP. Results Ex vivo expression of CD80 and CD86 in T and B cells increased in all HTLV-1 infected individuals, but with a selective defect for B cell CD86 upregulation in HAM/TSP. Despite decreased total B cells with increasing disease duration (p = 0.0003, r = −0.72), CD80+ B cells positively correlated with disease severity (p = 0.0017, r = 0.69) in HAM/TSP. B cell CD80 expression was higher in women with HAM/TSP, underscoring that immune markers can reflect the female predominance observed in most autoimmune diseases. In contrast to MS patients, CD80+ (p = 0.0001) and CD86+ (p = 0.0054) lymphocytes expanded upon in vitro culture in HAM/TSP patients. The expansion of CD80+ and CD86+ T cells but not B cells was associated with increased proliferation in HTLV-1 infection. In vitro treatment with IFN-β but not IFN-α resulted in a pronounced increase of B cell CD86 expression in healthy controls, as well as in patients with neuroinflammatory disease (HAM/TSP and MS), similar to in vivo treatment in MS. Conclusions We propose two novel biomarkers, ex vivo CD80+ B cells positively correlating to disease severity and CD86+ B cells preferentially induced by IFN-β, which restores defective upregulation in HAM/TSP. This study suggests a role for B cells in HAM/TSP pathogenesis and opens avenues to B cell targeting (with proven clinical benefit in MS) in HAM/TSP but also CD80-directed immunotherapy, unprecedented in both HAM/TSP and MS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Affiliation(s)
- Robert R McKendall
- Departments of Neurology and Microbiology & Immunology, University of Texas Medical Branch,Galveston,TX,USA.
| |
Collapse
|
8
|
Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 2012; 3:406. [PMID: 23226145 PMCID: PMC3510432 DOI: 10.3389/fmicb.2012.00406] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2-5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.
Collapse
Affiliation(s)
- Robert Currer
- National Center for Biodefense and Infectious Diseases, George Mason University Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Inflammation in neuroviral diseases. J Neural Transm (Vienna) 2010; 117:899-906. [PMID: 20390431 DOI: 10.1007/s00702-010-0402-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
During any viral infection of the central nervous system (CNS), the extent and nature of neural cell alterations are dictated by the localization of virus replication and, possibly, persistence. However, one additional source of CNS damage comes from the immune response that develops following CNS viral infection. Indeed, despite of its major role in controlling virus spread in the infected CNS, the immune system is equipped with numerous molecular effectors shared with the nervous system that may greatly alter the homeostasis and function of neural cells. Proinflammatory cytokines and metalloproteases belong to this inflammatory cascade. Besides neurovirulence, the crosstalk engaged between neural and immune cells is a major factor determining the outcome of neuroviral infections.
Collapse
|
10
|
Alteration of blood-brain barrier integrity by retroviral infection. PLoS Pathog 2008; 4:e1000205. [PMID: 19008946 PMCID: PMC2575404 DOI: 10.1371/journal.ppat.1000205] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/15/2008] [Indexed: 01/18/2023] Open
Abstract
The blood–brain barrier (BBB), which forms the interface between the blood and the cerebral parenchyma, has been shown to be disrupted during retroviral-associated neuromyelopathies. Human T Lymphotropic Virus (HTLV-1) Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a slowly progressive neurodegenerative disease associated with BBB breakdown. The BBB is composed of three cell types: endothelial cells, pericytes and astrocytes. Although astrocytes have been shown to be infected by HTLV-1, until now, little was known about the susceptibility of BBB endothelial cells to HTLV-1 infection and the impact of such an infection on BBB function. We first demonstrated that human cerebral endothelial cells express the receptors for HTLV-1 (GLUT-1, Neuropilin-1 and heparan sulfate proteoglycans), both in vitro, in a human cerebral endothelial cell line, and ex vivo, on spinal cord autopsy sections from HAM/TSP and non-infected control cases. In situ hybridization revealed HTLV-1 transcripts associated with the vasculature in HAM/TSP. We were able to confirm that the endothelial cells could be productively infected in vitro by HTLV-1 and that blocking of either HSPGs, Neuropilin 1 or Glut1 inhibits this process. The expression of the tight-junction proteins within the HTLV-1 infected endothelial cells was altered. These cells were no longer able to form a functional barrier, since BBB permeability and lymphocyte passage through the monolayer of endothelial cells were increased. This work constitutes the first report of susceptibility of human cerebral endothelial cells to HTLV-1 infection, with implications for HTLV-1 passage through the BBB and subsequent deregulation of the central nervous system homeostasis. We propose that the susceptibility of cerebral endothelial cells to retroviral infection and subsequent BBB dysfunction is an important aspect of HAM/TSP pathogenesis and should be considered in the design of future therapeutics strategies. The blood–brain barrier (BBB) forms the interface between the blood and the central nervous system (CNS). BBB disruption is considered to be a key event in the pathogenesis of retroviral-associated neurological diseases. The present paper deals with the susceptibility of the endothelial cells (i.e., one of the main cellular components of BBB) to retroviral infection, and with the impact of infection in BBB function. This study focuses on the Human T-Lymphotropic Virus (HTLV-1), which infects 20 million people worldwide, and is the etiological agent of a neurodegenerative disease called HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). We first demonstrated that the cerebral endothelial cells express the receptors for the retrovirus in vitro, and on spinal cord autopsy sections from non-infected and HAM/TSP patients. We found on these latter that vascular-like structures were infected and confirmed in vitro that the endothelial cells could be productively infected by HTLV-1. We demonstrated that such an infection impairs BBB properties in vitro, as well as tight junctions, that are cell adhesion structures. This study is the first to demonstrate the impact of HTLV-1 infection on human BBB integrity; such a susceptibility has to be considered in the design of future therapeutics strategies.
Collapse
|
11
|
Afonso PV, Ozden S, Prevost MC, Schmitt C, Seilhean D, Weksler B, Couraud PO, Gessain A, Romero IA, Ceccaldi PE. Human Blood-Brain Barrier Disruption by Retroviral-Infected Lymphocytes: Role of Myosin Light Chain Kinase in Endothelial Tight-Junction Disorganization. THE JOURNAL OF IMMUNOLOGY 2007; 179:2576-83. [PMID: 17675520 DOI: 10.4049/jimmunol.179.4.2576] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies.
Collapse
MESH Headings
- Blood-Brain Barrier/enzymology
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/pathology
- Blood-Brain Barrier/ultrastructure
- Blood-Brain Barrier/virology
- Cell Line, Transformed
- Cerebellum/blood supply
- Cerebellum/enzymology
- Cerebellum/immunology
- Cerebellum/ultrastructure
- Endothelial Cells/enzymology
- Endothelial Cells/immunology
- Endothelial Cells/pathology
- Endothelial Cells/virology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/virology
- Human T-lymphotropic virus 1/immunology
- Humans
- Interleukin-1alpha/immunology
- Interleukin-1alpha/metabolism
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Lymphocytes/ultrastructure
- Lymphocytes/virology
- Membrane Proteins/biosynthesis
- Membrane Proteins/immunology
- Models, Immunological
- Myosin-Light-Chain Kinase/immunology
- Myosin-Light-Chain Kinase/metabolism
- Neurodegenerative Diseases/enzymology
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/pathology
- Neurodegenerative Diseases/virology
- Paraparesis, Tropical Spastic/enzymology
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Phosphoproteins/biosynthesis
- Phosphoproteins/immunology
- Spinal Cord/enzymology
- Spinal Cord/immunology
- Spinal Cord/ultrastructure
- Spinal Cord/virology
- Tight Junctions/immunology
- Tight Junctions/metabolism
- Tight Junctions/ultrastructure
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Zonula Occludens-1 Protein
Collapse
Affiliation(s)
- Philippe Vicente Afonso
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie and Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Banerjee P, Rochford R, Antel J, Canute G, Wrzesinski S, Sieburg M, Feuer G. Proinflammatory cytokine gene induction by human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 Tax in primary human glial cells. J Virol 2007; 81:1690-700. [PMID: 17121800 PMCID: PMC1797548 DOI: 10.1128/jvi.01513-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 11/14/2006] [Indexed: 01/04/2023] Open
Abstract
Infection with human T-cell leukemia virus type 1 (HTLV-1) can result in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic inflammatory disease of the central nervous system (CNS). HTLV-2 is highly related to HTLV-1 at the genetic level and shares a high degree of sequence homology, but infection with HTLV-2 is relatively nonpathogenic compared to HTLV-1. Although the pathogenesis of HAM/TSP remains to be fully elucidated, previous evidence suggests that elevated levels of the proinflammatory cytokines in the CNS are associated with neuropathogenesis. We demonstrate that HTLV-1 infection in astrogliomas results in a robust induction of interleukin-1beta (IL-1beta), IL-1alpha, tumor necrosis factor alpha (TNF-alpha), TNF-beta, and IL-6 expression. HTLV encodes for a viral transcriptional transactivator protein named Tax that also induces the transcription of cellular genes. To investigate and compare the effects of Tax1 and Tax2 expression on the dysregulation of proinflammatory cytokines, lentivirus vectors were used to transduce primary human astrocytomas and oligodendrogliomas. The expression of Tax1 in primary human astrocytomas and oligodendrogliomas resulted in significantly higher levels of proinflammatory cytokine gene expression compared to Tax2. Notably, Tax1 expression uniquely sensitized primary human astrocytomas to apoptosis. A Tax2/Tax1 chimera encoding the C-terminal 53 amino acids of the Tax1 fused to the Tax2 gene (Tax(221)) demonstrated a phenotype that resembled Tax1, with respect to proinflammatory cytokine gene expression and sensitization to apoptosis. The patterns of differential cytokine induction and sensitization to apoptosis displayed by Tax1 and Tax2 may reflect differences relating to the heightened neuropathogenicity associated with HTLV-1 infection and the development of HAM/TSP.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Sheehy N, Lillis L, Watters K, Lewis M, Gautier V, Hall W. Functional analysis of human T lymphotropic virus type 2 Tax proteins. Retrovirology 2006; 3:20. [PMID: 16551350 PMCID: PMC1462996 DOI: 10.1186/1742-4690-3-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 03/21/2006] [Indexed: 12/03/2022] Open
Abstract
Background The Tax proteins encoded by human T lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) are transcriptional activators of both the viral long terminal repeat (LTR) and cellular promoters via the CREB and NFkB pathways. In contrast to HTLV-1, HTLV-2 has been classified into four distinct genetic subtypes A, B, C and D defined by phylogenetic analysis of their nucleotide sequences and the size and amino acid sequence of their Tax proteins. In the present study we have analysed and compared the transactivating activities of three Tax 2A and one Tax 2B proteins using LTR and NFkB reporter assays. Results We found that with the exception of the prototype Tax 2A Mo protein, the other two Tax 2A proteins failed to transactivate either the viral LTR or NFkB promoter in Jurkat and 293T cells. Loss of activity was not associated with either expression levels or an alteration in subcellular distribution as all Tax 2 proteins were predominantly located in the cytoplasm of transfected cells. Analysis of the sequence of the two inactive Tax 2A proteins relative to Mo indicated that one had six amino acid changes and the other had one change in the central region of the protein. Mutations present at the amino and the extreme carboxy termini of Mo resulted in the loss of LTR but not NFkB activation whereas those occurring in the central region of the protein appeared to abolish transactivation of both promoters. Analysis of the transactivation phenotypes of Tax 1, Tax 2A Mo and Tax 2B containing mutations identified in the present study or previously characterised Tax mutations showed that domains required for LTR and NFkB activation are very similar but not identical in all three Tax proteins. Conclusion Our results suggest that loss of activity of two Tax 2A proteins derived from different isolates is associated with multiple amino acid changes relative to Mo in domains required for the activation of the CREB or CREB and NFkB pathways and that these domains are very similar but not identical in Tax 2B and Tax 1. The loss of Tax function in 2A viruses may have implications for their biological and pathogenic properties.
Collapse
Affiliation(s)
- Noreen Sheehy
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Lillis
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karen Watters
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martha Lewis
- University of California, Department of Medicine, UCLA Centre for Health Sciences, Los Angeles, California, USA
| | - Virginie Gautier
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William Hall
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
14
|
Alefantis T, Jain P, Ahuja J, Mostoller K, Wigdahl B. HTLV-1 Tax nucleocytoplasmic shuttling, interaction with the secretory pathway, extracellular signaling, and implications for neurologic disease. J Biomed Sci 2005; 12:961-74. [PMID: 16228291 DOI: 10.1007/s11373-005-9026-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) oncoprotein Tax interacts with numerous cellular pathways promoting both the survival and pathogenesis of the virus in the human population. Tax has been studied extensively with respect to its role in transcriptional transactivation and its involvement in the up-regulation of a number of cellular genes during the process of oncogenic transformation. These processes are dependent on Tax localization to the nucleus where it interacts with a number of cellular transcription factors during its course of nuclear action. However, there is mounting evidence suggesting that Tax may shuttle between the nucleus and cytoplasm, localize to several cytoplasmic organelles with subsequent secretion from both Tax-transfected cells as well as HTLV-1-infected cells. In addition, the presence of cell-free Tax in cerebral spinal fluid (CSF) was recently demonstrated to occur during all stages of HAM/TSP. This has brought about an increased interest in the cytoplasmic localization of Tax and the implications this localization may have with respect to the progression of HTLV-1-associated disease processes. This review addresses the functional implications relevant to the localization and accumulation of Tax in the cytoplasm including the Tax amino acid signals and cellular protein interactions that may regulate this process. Specifically, we have discussed three important processes associated with the cytoplasmic localization of Tax. First, the process of Tax shuttling between the nucleus and cytoplasm will be described and how this process may be involved in regulating different transcriptional activation pathways. Second, cytoplasmic localization of Tax will be discussed with relevance to Tax secretion and the interaction of Tax with proteins in the cellular secretory pathway. Finally, the secretion of Tax and the effects of extracellular Tax on HTLV-1 pathogenesis will be addressed.
Collapse
|
15
|
Alefantis T, Mostoller K, Jain P, Harhaj E, Grant C, Wigdahl B. Secretion of the Human T Cell Leukemia Virus Type I Transactivator Protein Tax. J Biol Chem 2005; 280:17353-62. [PMID: 15659397 DOI: 10.1074/jbc.m409851200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I protein Tax is well known as a transcriptional transactivator and inducer of cellular transformation. However, it is also known that extracellular Tax induces the production and release of cytokines, such as tumor necrosis factor-alpha and interleukin-6, which have adverse effects on cells of the central nervous system. The cellular process by which Tax exits the cell into the extracellular environment is currently unknown. In most cell types, Tax has been shown to localize primarily to the nucleus. However, Tax has also been found to accumulate in the cytoplasm. The results contained herein begin to characterize the process of Tax secretion from the cell. Specifically, cytoplasmic Tax was demonstrated to localize to organelles associated with the cellular secretory process including the endoplasmic reticulum and Golgi complex. Additionally, it was demonstrated that full-length Tax was secreted from both baby hamster kidney cells and a human kidney tumor cell line, suggesting that Tax enters the secretory pathway in a leaderless manner. Tax secretion was partially inhibited by brefeldin A, suggesting that Tax migrated from the endoplasmic reticulum to the Golgi complex. In addition, combined treatment of Tax-transfected BHK-21 cells with phorbol myristate acetate and ionomycin resulted in a small increase in the amount of Tax secreted, suggesting that a fraction of cytoplasmic Tax was present in the regulated secretory pathway. These studies begin to provide a link between Tax localization to the cytoplasm, the detection of Tax in the extracellular environment, its possible role as an extracellular effector molecule, and a potential role in neurodegenerative disease associated with HTLV-I infection.
Collapse
Affiliation(s)
- Timothy Alefantis
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
16
|
Dzwonek J, Rylski M, Kaczmarek L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett 2004; 567:129-35. [PMID: 15165905 DOI: 10.1016/j.febslet.2004.03.070] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/03/2004] [Accepted: 03/07/2004] [Indexed: 11/29/2022]
Abstract
More than 20 matrix metalloproteinases (MMPs) and four of their endogenous tissue inhibitors (TIMPs) act together to control tightly temporally restricted, focal proteolysis of extracellular matrix. In the neurons of the adult brain several components of the TIMP/MMP system are expressed and are responsive to changes in neuronal activity. Furthermore, functional studies, especially involving blocking of MMP activities, along with the identification of MMP substrates in the brain strongly suggest that this enzymatic system plays an important physiological role in adult brain neurons, possibly being pivotal for neuronal plasticity.
Collapse
Affiliation(s)
- Joanna Dzwonek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | | | | |
Collapse
|
17
|
Gardner J, Ghorpade A. Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J Neurosci Res 2004; 74:801-6. [PMID: 14648584 PMCID: PMC3857704 DOI: 10.1002/jnr.10835] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Astrocytes are intimately involved in the mechanisms of neural injury and repair. They participate in a variety of homeostatic functions and elicit repair responses as balance mechanisms. Currently, there is a growing appreciation of a more active role of astrocytes in neuronal signaling and function. One key homeostatic mechanism of astrocytes in tissue repair is maintained through their production of tissue inhibitors of metalloproteinases (TIMPs). The family of TIMPs (1-4) plays a central regulatory role as inhibitors of matrix metalloproteinases (MMPs), enzymes involved in extracellular matrix maintenance and remodeling. Recently, TIMP-1, the inducible form, has been identified as a multifunctional molecule with divergent functions. It participates in wound healing and regeneration, cell morphology and survival, tumor metastasis, angiogenesis, and inflammatory responses. An imbalance of MMP/TIMP regulation has been implicated in several inflammatory diseases of the central nervous system (CNS). Here we review the conundrums of TIMP-1 regulation in CNS pathophysiology. We propose that astrocyte-TIMP-1 may play an important role in CNS homeostasis and disease. Astrocyte TIMP-1 expression is differentially regulated in inflammatory neurodegenerative diseases and may have significant therapeutic relevance.
Collapse
Affiliation(s)
| | - Anuja Ghorpade
- Correspondence to: Dr. Anuja Ghorpade, Nebraska Medical Center, Omaha, NE 68198-5215.
| |
Collapse
|
18
|
SURYADEVARA RADHIKA, HOLTER SPRING, BORGMANN KATHLEEN, PERSIDSKY RAISA, LABENZ-ZINK CHRISTINE, PERSIDSKY YURI, GENDELMAN HOWARDE, WU LI, GHORPADE ANUJA. Regulation of tissue inhibitor of metalloproteinase-1 by astrocytes: links to HIV-1 dementia. Glia 2003; 44:47-56. [PMID: 12951656 PMCID: PMC3820378 DOI: 10.1002/glia.10266] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuropathogenesis of HIV-1-associated dementia (HAD) revolves around the secretion of toxic molecules from infected and immune-competent mononuclear phagocytes. Astrocyte activation occurs in parallel but limited insights are available for its role in neurotoxicity and cognitive dysfunction. One means in which astrocytes may affect disease is through their production of tissue inhibitors of metalloproteinases (TIMPs). TIMPs are regulators of matrix metalloproteinases, enzymes that affect blood-brain barrier integrity through altering the extracellular matrix. We hypothesized that in response to injury and inflammation in HAD, astrocytes regulate the production of TIMP-1, the inducible type of TIMP that is important in inflammation. To address astrocyte-mediated TIMP-1 regulation in HAD, we evaluated the responses of primary human to IL-1beta and HIV-1. TIMP-1 levels in plasma, CSF, and brain tissue of control, HIV-1 infected patients without cognitive impairment, and HAD patients were also studied. Our data show that an upregulation of TIMP-1 results from astrocytes acutely activated with IL-1beta. In contrast, CSF and brain tissue samples from HAD patients showed reduced TIMP-1 levels compared to seronegative controls. MMP-2 levels in brains showed the opposite. Consistent with this, prolonged activation of astrocytes led to a reduction in TIMP-1 and MMP-2, but a sustained elevation in MMP-1. Our data suggest that in diseased brain tissue, the ability of astrocytes to counteract the destructive effects of MMP through expression of TIMP-1 is diminished by chronic activation. Our studies reveal new opportunities for repair-based therapeutic strategies in HAD.
Collapse
Affiliation(s)
- RADHIKA SURYADEVARA
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - SPRING HOLTER
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - KATHLEEN BORGMANN
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - RAISA PERSIDSKY
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - CHRISTINE LABENZ-ZINK
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - YURI PERSIDSKY
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - HOWARD E. GENDELMAN
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - LI WU
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - ANUJA GHORPADE
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Alefantis T, Barmak K, Harhaj EW, Grant C, Wigdahl B. Characterization of a nuclear export signal within the human T cell leukemia virus type I transactivator protein Tax. J Biol Chem 2003; 278:21814-22. [PMID: 12670929 DOI: 10.1074/jbc.m211576200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I transactivator protein Tax plays an integral role in the etiology of adult T cell leukemia, as expression of Tax in T lymphocytes has been shown to result in immortalization. In addition, Tax is known to interface with numerous transcription factor families, including activating transcription factor/cAMP response element-binding protein and nuclear factor-kappaB, requiring Tax to localize to both the nucleus and cytoplasm. In this report, the nucleocytoplasmic localization of Tax was examined in Jurkat, HeLa, and U-87 MG cells. The results reported herein indicate that Tax contains a leucine-rich nuclear export signal (NES) that, when fused to green fluorescent protein (GFP), can direct nuclear export via the CRM-1 pathway, as determined by leptomycin B inhibition of nuclear export. However, cytoplasmic localization of full-length Tax was not altered by treatment with leptomycin B, suggesting that native Tax utilizes another nuclear export pathway. Additional support for the presence of a functional NES has also been shown because the NES mutant Tax(L200A)-GFP localized to the nuclear membrane in the majority of U-87 MG cells. Evidence has also been provided suggesting that the Tax NES likely exists as a conditionally masked signal because the truncation mutant TaxDelta214-GFP localized constitutively to the cytoplasm. These results suggest that Tax localization may be directed by specific changes in Tax conformation or by specific interactions with cellular proteins leading to changes in the availability of the Tax NES and nuclear localization signal.
Collapse
Affiliation(s)
- Timothy Alefantis
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University Hershey, 500 University Drive, PA 17033, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
BACKGROUND Since its discovery in 1980, human T-cell lymphotropic virus type-1 (HTLV-1) has been associated with a number of neurological diseases. The distribution of HTLV-1-associated neurological disease is worldwide. In endemic areas, up to 30% of the population may be infected with HTLV-1; however, only a small percentage of infected persons develops neurological disease. REVIEW SUMMARY In 1986, HTLV-1 infection was reported in patients of chronic progressive myelopathy of uncertain etiology, and the disease entity was called HTLV-1-associated myelopathy/tropical spastic paraparesis. Recently, HTLV-1 infection has been associated with polymyositis and uveitis. Interestingly, a single patient may display more than one syndrome. Although other neurological syndromes occur in HTLV-1-infected individuals, there is not enough epidemiologic data that show a strong association. Treatment of HTLV-1-associated neurological disease is challenging, and well-controlled studies are lacking. CONCLUSION As neurologists and other scientists begin to understand the pathophysiology of HTLV-1 infection, improved therapies should be developed. Randomized trials with longer follow-up are required to understand the effect of treatment on disability and quality of life.
Collapse
Affiliation(s)
- R B Khan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|