1
|
CD4 + T cell depletion does not affect the level of viremia in chronically SHIV SF162P3N-infected Chinese cynomolgus monkeys. Virology 2021; 560:76-85. [PMID: 34051477 DOI: 10.1016/j.virol.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022]
Abstract
Chronically SHIVSF162P3N-infected cynomolgus monkeys were used to determine the effects of the antibody-mediated acute CD4+ T cell depletion on viral load as well as on the immunological factors associated with disease progression. Compared with the control animals, CD4+ T cell-depleted animals with SHIV infection showed (i) little alteration in plasma viral load over the period of 22 weeks after the depletion; (ii) increased CD4+ T cell proliferation and turnover of macrophages at the early phase of the depletion, but subsequent decline to the basal levels; and (iii) little impact on the expression of the inflammatory cytokines and CC chemokines associated with disease progression. These findings indicate that the antibody-mediated acute CD4+ T cell depletion had minimal impact on plasma viral load and disease progression in chronically SHIVSF162P3N-infected cynomolgus monkeys. Future investigations are necessary to identify the key factor(s) related to the immune activation and macrophage infection during the CD4 deletion in chronic viral infection.
Collapse
|
2
|
Duong VN, Zhou L, Martínez-Jiménez MI, He L, Cosme M, Blanco L, Paintsil E, Anderson KS. Identifying the role of PrimPol in TDF-induced toxicity and implications of its loss of function mutation in an HIV+ patient. Sci Rep 2020; 10:9343. [PMID: 32518272 PMCID: PMC7283272 DOI: 10.1038/s41598-020-66153-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
A key component of antiretroviral therapy (ART) for HIV patients is the nucleoside reverse transcriptase inhibitor (NRTI) is tenofovir. Recent reports of tenofovir toxicity in patients taking ART for HIV cannot be explained solely on the basis of off-target inhibition of mitochondrial DNA polymerase gamma (Polγ). PrimPol was discovered as a primase-polymerase localized to the mitochondria with repriming and translesion synthesis capabilities and, therefore, a potential contributor to mitochondrial toxicity. We established a possible role of PrimPol in tenofovir-induced toxicity in vitro and show that tenofovir-diphosphate incorporation by PrimPol is dependent on the n-1 nucleotide. We identified and characterized a PrimPol mutation, D114N, in an HIV+ patient on tenofovir-based ART with mitochondrial toxicity. This mutant form of PrimPol, targeting a catalytic metal ligand, was unable to synthesize primers, likely due to protein instability and weakened DNA binding. We performed cellular respiration and toxicity assays using PrimPol overexpression and shRNA knockdown strains in renal proximal tubular epithelial cells. The PrimPol-knockdown strain was hypersensitive to tenofovir treatment, indicating that PrimPol protects against tenofovir-induced mitochondrial toxicity. We show that a major cellular role of PrimPol is protecting against toxicity caused by ART and individuals with inactivating mutations may be predisposed to these effects.
Collapse
Affiliation(s)
- Vincent N Duong
- Department of Pharmacology, Yale School of Medicine, 06510, New Haven, Connecticut, USA
| | - Lei Zhou
- Department of Pediatrics, Yale School of Medicine, 06510, New Haven, Connecticut, USA
| | | | - Linh He
- Department of Pharmacology, Yale School of Medicine, 06510, New Haven, Connecticut, USA
| | - Moises Cosme
- Department of Pediatrics, Yale School of Medicine, 06510, New Haven, Connecticut, USA
| | - Luis Blanco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| | - Elijah Paintsil
- Department of Pharmacology, Yale School of Medicine, 06510, New Haven, Connecticut, USA.
- Department of Pediatrics, Yale School of Medicine, 06510, New Haven, Connecticut, USA.
- Department of Epidemiology & Public Health, Yale School of Medicine, 06510, New Haven, Connecticut, USA.
| | - Karen S Anderson
- Department of Pharmacology, Yale School of Medicine, 06510, New Haven, Connecticut, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, 06510, New Haven, Connecticut, United States of America.
| |
Collapse
|
3
|
RifeMagalis B, Strickland SL, Shank SD, Autissier P, Schuetz A, Sithinamsuwan P, Lerdlum S, Fletcher JLK, de Souza M, Ananworanich J, Valcour V, Williams KC, Kosakovsky Pond SL, RattoKim S, Salemi M. Phyloanatomic characterization of the distinct T cell and monocyte contributions to the peripheral blood HIV population within the host. Virus Evol 2020; 6:veaa005. [PMID: 32355568 PMCID: PMC7185683 DOI: 10.1093/ve/veaa005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a rapidly evolving virus, allowing its genetic sequence to act as a fingerprint for epidemiological processes among, as well as within, individual infected hosts. Though primarily infecting the CD4+ T-cell population, HIV can also be found in monocytes, an immune cell population that differs in several aspects from the canonical T-cell viral target. Using single genome viral sequencing and statistical phylogenetic inference, we investigated the viral RNA diversity and relative contribution of each of these immune cell types to the viral population within the peripheral blood. Results provide evidence of an increased prevalence of circulating monocytes harboring virus in individuals with high viral load in the absence of suppressive antiretroviral therapy. Bayesian phyloanatomic analysis of three of these individuals demonstrated a measurable role for these cells, but not the circulating T-cell population, as a source of cell-free virus in the plasma, supporting the hypothesis that these cells can act as an additional conduit of virus spread.
Collapse
Affiliation(s)
- Brittany RifeMagalis
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| | - Samantha L Strickland
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | | | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences - United States Component, Bangkok 10400, Thailand
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok 10330, Thailand
| | - Pasiri Sithinamsuwan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, MD 20850, USA
| | - Sukalaya Lerdlum
- Division of Neurology, Department of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand
| | - James L K Fletcher
- Faculty of Medicine, Department of Radiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mark de Souza
- Faculty of Medicine, Department of Radiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences - United States Component, Bangkok 10400, Thailand
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok 10330, Thailand
- Faculty of Medicine, Department of Radiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Victor Valcour
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | - Silvia RattoKim
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences - United States Component, Bangkok 10400, Thailand
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok 10330, Thailand
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
4
|
Sopeyin A, Zhou L, Li M, Barakat L, Paintsil E. Dysregulation of sterol regulatory element-binding protein 2 gene in HIV treatment-experienced individuals. PLoS One 2019; 14:e0226573. [PMID: 31846498 PMCID: PMC6917281 DOI: 10.1371/journal.pone.0226573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Although antiretroviral therapy (ART) has resulted in a marked decrease in AIDS-related morbidity and mortality, the therapeutic benefit is often limited by side effects such as metabolic derangement such as lipodystrophy and hyperlipidemia and cardiovascular diseases. These side effects are pervasive in people living with HIV (PLWH). However, the underlying mechanisms are not completely understood. We investigated the effects of ART on cholesterol biosynthesis genes. This is a retrospective analysis of data and specimens collected during a cross-sectional, case-control study of ART-induced toxicity. Cases were HIV treatment-experienced individuals with HIV viral suppression and no diagnosis of ART-associated toxicity (n = 18), and controls were HIV-uninfected individuals (n = 18). The mRNA expressions of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and ATP binding cassette transporter A1 (ABCA1) were significantly upregulated in cases (HIV+) compared to controls (HIV-), as well as the corresponding protein expression level of HMGCR. We observed dysregulation between sterol regulatory element-binding protein 2 (SREBP-2, sensory control) and HMGCR and low-density lipoprotein receptor (LDLR) pathways. Dysregulation of cholesterol biosynthesis genes may predate clinical manifestation of ART-induced lipid abnormalities.
Collapse
Affiliation(s)
- Anuoluwapo Sopeyin
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lei Zhou
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Min Li
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lydia Barakat
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Elijah Paintsil
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
5
|
Appelberg KS, Wallet MA, Taylor JP, Cash MN, Sleasman JW, Goodenow MM. HIV-1 Infection Primes Macrophages Through STAT Signaling to Promote Enhanced Inflammation and Viral Replication. AIDS Res Hum Retroviruses 2017; 33:690-702. [PMID: 28142265 DOI: 10.1089/aid.2016.0273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages play important roles in HIV-1 pathogenesis as targets for viral replication and mediators of chronic inflammation. Similar to IFNγ-priming, HIV-1 primes macrophages, resulting in hyperresponsiveness to subsequent toll-like receptor (TLR) stimulation and increased inflammatory cytokine production. However, the specific molecular mechanism of HIV-1 priming and whether cells must be productively infected or if uninfected bystander cells also are primed by HIV-1 remains unclear. To explore these questions, human macrophages were primed by IFNγ or infected with HIV-1 before activation by TLR ligands. Transcriptome profiling by microarray revealed a gene expression profile for IFNγ-primed cells that was further modulated by the addition of lipopolysaccharide (LPS). HIV-1 infection elicited a gene expression profile that correlated strongly with the profile induced by IFNγ (r = .679, p = .003). Similar to IFNγ, HIV-1 enhanced TLR ligand-induced tumor necrosis factor (TNF) protein expression and release. Increased TNF production was limited to productively infected cells. Specific signal transducer and activator of transcription (STAT)1 and STAT3 inhibitors suppressed HIV-1-mediated enhancement of TLR-induced TNF expression as well as HIV-1 replication. These findings indicate that viral replication and inflammation are linked through a common IFNγ-like, STAT-dependent pathway and that HIV-1-induced STAT1 and STAT3 signaling are involved in both inflammation and HIV-1 replication. Systemic innate immune activation is a hallmark of active HIV-1 replication. Our study shows that inflammation may develop as a consequence of HIV-1 triggering STAT-IFN pathways to support viral replication.
Collapse
Affiliation(s)
- K. Sofia Appelberg
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Jared P. Taylor
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Melanie N. Cash
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - John W. Sleasman
- Division of Allergy, Department of Pediatrics, Immunology, and Pulmonary Medicine, School of Medicine, Duke University, Durham, North Carolina
| | - Maureen M. Goodenow
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Beauparlant D, Rusert P, Magnus C, Kadelka C, Weber J, Uhr T, Zagordi O, Oberle C, Duenas-Decamp MJ, Clapham PR, Metzner KJ, Günthard HF, Trkola A. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog 2017; 13:e1006255. [PMID: 28264054 PMCID: PMC5354460 DOI: 10.1371/journal.ppat.1006255] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/16/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.
Collapse
Affiliation(s)
- David Beauparlant
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Claus Kadelka
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Therese Uhr
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Osvaldo Zagordi
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Corinna Oberle
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Maria J. Duenas-Decamp
- Program in Molecular Medicine, Biotech II, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Paul R. Clapham
- Program in Molecular Medicine, Biotech II, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karin J. Metzner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Musich T, O'Connell O, Gonzalez-Perez MP, Derdeyn CA, Peters PJ, Clapham PR. HIV-1 non-macrophage-tropic R5 envelope glycoproteins are not more tropic for entry into primary CD4+ T-cells than envelopes highly adapted for macrophages. Retrovirology 2015; 12:25. [PMID: 25809903 PMCID: PMC4373511 DOI: 10.1186/s12977-015-0141-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-mac-tropic HIV-1 R5 viruses are predominantly transmitted and persist in immune tissue even in AIDS patients who carry highly mac-tropic variants in the brain. Non-mac-tropic R5 envelopes (Envs) require high CD4 levels for infection contrasting with highly mac-tropic Envs, which interact more efficiently with CD4 and mediate infection of macrophages that express low CD4. Non-mac-tropic R5 Envs predominantly target T-cells during transmission and in immune tissue where they must outcompete mac-tropic variants. Here, we investigated whether Env+ pseudoviruses bearing transmitted/founder (T/F), early and late disease non-mac-tropic R5 envelopes mediated more efficient infection of CD4+ T-cells compared to those with highly mac-tropic Envs. RESULTS Highly mac-tropic Envs mediated highest infectivity for primary T-cells, Jurkat/CCR5 cells, myeloid dendritic cells, macrophages, and HeLa TZM-bl cells, although this was most dramatic on macrophages. Infection of primary T-cells mediated by all Envs was low. However, infection of T-cells was greatly enhanced by increasing virus attachment with DEAE dextran and spinoculation, which enhanced the three Env+ virus groups to similar extents. Dendritic cell capture of viruses and trans-infection also greatly enhanced infection of primary T-cells. In trans-infection assays, non-mac-tropic R5 Envs were preferentially enhanced and those from late disease mediated levels of T-cell infection that were equivalent to those mediated by mac-tropic Envs. CONCLUSIONS Our results demonstrate that T/F, early or late disease non-mac-tropic R5 Envs do not preferentially mediate infection of primary CD4+ T-cells compared to highly mac-tropic Envs from brain tissue. We conclude that non-macrophage-tropism of HIV-1 R5 Envs in vitro is determined predominantly by a reduced capacity to target myeloid cells via low CD4 rather than a specific adaptation for T-cells entry that precludes macrophage infection.
Collapse
|
8
|
Association between HIV-1 coreceptor usage and resistance to broadly neutralizing antibodies. J Acquir Immune Defic Syndr 2015; 67:107-12. [PMID: 25072615 PMCID: PMC4175123 DOI: 10.1097/qai.0000000000000283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Recently discovered broadly neutralizing antibodies have revitalized hopes of developing a universal vaccine against HIV-1. Mainly responsible for new infections are variants only using CCR5 for cell entry, whereas CXCR4-using variants can become dominant in later infection stages. Methods: We performed a statistical analysis on two different previously published data sets. The first data set was a panel of 199 diverse HIV-1 isolates for which IC50 neutralization titers were determined for the broadly neutralizing antibodies VRC01, VRC-PG04, PG9, and PG16. The second data set contained env sequences of viral variants extracted from HIV-1–infected humanized mice treated with the antibody PGT128 and from untreated control mice. Results: For the panel of 199 diverse HIV-1 isolates, we found a statistically significant association between viral resistance to PG9 and PG16 and CXCR4 coreceptor usage (P = 0.0011 and P = 0.0010, respectively). Our analysis of viral variants from HIV-1–infected humanized mice under treatment with the broadly neutralizing antibody PGT128 indicated that certain antibodies might drive a viral population toward developing CXCR4 coreceptor usage capability (P = 0.0011 for the comparison between PGT128 and control measurement). Conclusions: These analyses highlight the importance of accounting for a possible coreceptor usage bias pertaining to the effectiveness of an HIV vaccine and to passive antibody transfer as therapeutic approach.
Collapse
|
9
|
Colón K, Vázquez-Santiago F, Rivera-Amill V, Delgado G, Massey SE, Wojna V, Noel RJ, Meléndez LM. HIV gp120 sequence variability associated with HAND in Hispanic Women. JOURNAL OF VIROLOGY & ANTIVIRAL RESEARCH 2015; 4. [PMID: 27358904 DOI: 10.4172/2324-8955.1000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE HIV-1 variants with different tropisms are associated with various neuropathologies. This study intends to determine if this correlation is determined by unique viral env sequences. We hypothesize that HIV-1 envelope gene sequence changes are associated with cognition status. METHODS Viral RNA was extracted from peripheral blood mononuclear cells (PBMCs) co-cultures derived from HIV-1 infected Hispanic women that had been characterized for HIV associated neurocognitive disorders (HAND). RESULTS Analyses of the C2V4 region of HIV gp120 demonstrated that increased sequence diversity correlates with cognition status as sequences derived from subjects with normal cognition exhibited less diversity than sequences derived from subjects with cognitive impairment. In addition, differences in V3 and V4 loop charges were also noted as well as differences in the N-glycosylation of the V4 region. CONCLUSIONS Our data suggest that the genetic signature within the C2V4 region may contribute to the pathogenesis of HAND. HIV env sequence characteristics for the isolates grouped in milder forms of HAND can provide insightful information of prognostic value to assess neurocognitive status in HIV+ subjects, particularly during the era of highly prevalent milder forms of HAND.
Collapse
Affiliation(s)
- Krystal Colón
- Department of Microbiology and Medical Zoology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Fabián Vázquez-Santiago
- Department of Basic Sciences, Microbiology Division, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce PR
| | - Vanessa Rivera-Amill
- Department of Basic Sciences, Microbiology Division, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce PR
| | | | | | - Valerie Wojna
- Specialized NeuroAIDS Program, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00936, USA; Department of Internal Medicine, Neurology Division, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Richard J Noel
- Department of Basic Sciences, Biochemistry Division, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce PR
| | - Loyda M Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| |
Collapse
|
10
|
Chikere K, Webb NE, Chou T, Borm K, Sterjovski J, Gorry PR, Lee B. Distinct HIV-1 entry phenotypes are associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies. Retrovirology 2014; 11:48. [PMID: 24957778 PMCID: PMC4230403 DOI: 10.1186/1742-4690-11-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The efficiency of CD4/CCR5 mediated HIV-1 entry has important implications for pathogenesis and transmission. The HIV-1 receptor affinity profiling (Affinofile) system analyzes and quantifies the infectivity of HIV-1 envelopes (Envs) across a spectrum of CD4/CCR5 expression levels and distills these data into a set of Affinofile metrics. The Affinofile system has shed light on how differential CD4/CCR5 usage efficiencies contributes to an array of Env phenotypes associated with cellular tropism, viral pathogenesis, and CCR5 inhibitor resistance. To facilitate more rapid, convenient, and robust analysis of HIV-1 entry phenotypes, we engineered a reporter Affinofile system containing a Tat- and Rev-dependent Gaussia luciferase-eGFP-Reporter (GGR) that is compatible with the use of pseudotyped or replication competent viruses with or without a virally encoded reporter gene. This GGR Affinofile system enabled a higher throughput characterization of CD4/CCR5 usage efficiencies associated with differential Env phenotypes. RESULTS We first validated our GGR Affinofile system on isogenic JR-CSF Env mutants that differ in their affinity for CD4 and/or CCR5. We established that their GGR Affinofile metrics reflected their differential entry phenotypes on primary PBMCs and CD4+ T-cell subsets. We then applied GGR Affinofile profiling to reveal distinct entry phenotypes associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies (BNAbs). First, we profiled a panel of reference subtype B transmitted/founder (T/F) and chronic Envs (n = 12) by analyzing the infectivity of each Env across 25 distinct combinations of CD4/CCR5 expression levels. Affinofile metrics revealed that at low CCR5 levels, our panel of subtype B T/F Envs was more dependent on high levels of CD4 for HIV-1 entry compared to chronic Envs. Next, we analyzed a reference panel of 28 acute/early subtype A-D Envs, and noted that subtype C Envs could be distinguished from the other subtypes based on their infectivity profiles and relevant Affinofile metrics. Lastly, mutations known to confer resistance to VRC01 or PG6/PG19 BNAbs, when engineered into subtypes A-D Envs, resulted in significantly decreased CD4/CCR5 usage efficiency. CONCLUSIONS GGR Affinofile profiling reveals pathophysiological phenotypes associated with varying HIV-1 entry efficiencies, and highlight the fitness costs associated with resistance to some broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kelechi Chikere
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
| | - Nicholas E Webb
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
| | - Tom Chou
- Department of Biomathematics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Katharina Borm
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Jasminka Sterjovski
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Paul R Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Benhur Lee
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, #1124, New York, NY 10029, USA
| |
Collapse
|
11
|
Williams JC, Appelberg S, Goldberger BA, Klein TW, Sleasman JW, Goodenow MM. Δ(9)-Tetrahydrocannabinol treatment during human monocyte differentiation reduces macrophage susceptibility to HIV-1 infection. J Neuroimmune Pharmacol 2014; 9:369-79. [PMID: 24562630 PMCID: PMC4019698 DOI: 10.1007/s11481-014-9527-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/02/2014] [Indexed: 10/25/2022]
Abstract
The major psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), also acts to suppress inflammatory responses. Receptors for THC, CB1, CB2, and GPR55, are differentially expressed on multiple cell types including monocytes and macrophages, which are important modulators of inflammation in vivo and target cells for HIV-1 infection. Use of recreational and medicinal marijuana is increasing, but the consequences of marijuana exposure on HIV-1 infection are unclear. Ex vivo studies were designed to investigate effects on HIV-1 infection in macrophages exposed to THC during or following differentiation. THC treatment of primary human monocytes during differentiation reduced HIV-1 infection of subsequent macrophages by replication competent or single cycle CCR5 using viruses. In contrast, treatment of macrophages with THC immediately prior to or continuously following HIV-1 exposure failed to alter infection. Specific receptor agonists indicated that the THC effect during monocyte differentiation was mediated primarily through CB2. THC reduced the number of p24 positive cells with little to no effect on virus production per infected cell, while quantitation of intracellular viral gag pinpointed the THC effect to an early event in the viral life cycle. Cells treated during differentiation with THC displayed reduced expression of CD14, CD16, and CD163 and donor dependent increases in mRNA expression of selected viral restriction factors, suggesting a fundamental alteration in phenotype. Ultimately, the mechanism of THC suppression of HIV-1 infection was traced to a reduction in cell surface HIV receptor (CD4, CCR5 and CXCR4) expression that diminished entry efficiency.
Collapse
Affiliation(s)
- Julie C. Williams
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Campus Box 103633, Gainesville, FL, 32610
| | - Sofia Appelberg
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Campus Box 103633, Gainesville, FL, 32610
| | - Bruce A. Goldberger
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Campus Box 103633, Gainesville, FL, 32610
| | - Thomas W. Klein
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| | - John W. Sleasman
- University of South Florida, College of Medicine, St. Petersburg, FL
| | - Maureen M. Goodenow
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Campus Box 103633, Gainesville, FL, 32610
| |
Collapse
|
12
|
Entry Inhibitors of Human Immunodeficiency Virus. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Antiretroviral therapy-induced mitochondrial toxicity: potential mechanisms beyond polymerase-γ inhibition. Clin Pharmacol Ther 2014; 96:110-20. [PMID: 24637942 PMCID: PMC4065195 DOI: 10.1038/clpt.2014.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
Abstract
We hypothesized that competition between nucleotide reverse-transcriptase inhibitor triphosphate and endogenous deoxyribonucleotide triphosphate (dNTP) may lead to depletion of dNTP pools and mitochondrial dysfunction independent of polymerase-γ (pol-γ) inhibition. We collected peripheral blood mononuclear cells from 75 adults (25 cases: HIV-infected patients with mitochondrial toxicity, 25 HIV-infected positive controls, and 25 HIV-negative controls). We observed statistically significant individual and group differences in ribonucleotide (RN) and deoxyribonucleotide (dRN) pools. The median values for the RN pools were 10,062 (interquartile range (IQR): 7,090-12,590), 4,360 (IQR: 3,058-6,838), and 2,968 (IQR: 2,538-4,436) pmol/10(6) cells for negative controls, positive controls, and cases, respectively. Cases had significantly higher absolute mitochondrial DNA copy number as compared with negative controls (P < 0.05). Moreover, cases had significantly higher expression levels of pol-γ, nucleotide transporters, cellular kinases, and adenosine triphosphate (ATP)-binding cassette (ABC) proteins as compared with controls. Antiretroviral therapy (ART) perturbs RN and dRN pools. Depletion of RN and dRN pools may be associated with ART-induced mitochondrial toxicity independent of pol-γ inhibition.
Collapse
|
14
|
Gorry PR, Francella N, Lewin SR, Collman RG. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J Leukoc Biol 2014; 95:71-81. [PMID: 24158961 PMCID: PMC3868190 DOI: 10.1189/jlb.0713368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023] Open
Abstract
Myeloid cells residing in the CNS and lymphoid tissues are targets for productive HIV-1 replication, and their infection contributes to the pathological manifestations of HIV-1 infection. The Envs can adopt altered configurations to overcome entry restrictions in macrophages via a more efficient and/or altered mechanism of engagement with cellular receptors. This review highlights evidence supporting an important role for macrophages in HIV-1 pathogenesis and persistence, which need to be considered for strategies aimed at achieving a functional or sterilizing cure. We also highlight that the molecular mechanisms underlying HIV-1 tropism for macrophages are complex, involving enhanced and/or altered interactions with CD4, CCR5, and/or CXCR4, and that the nature of these interactions may depend on the anatomical location of the virus.
Collapse
Affiliation(s)
- Paul R. Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia; and
| | - Nicholas Francella
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sharon R. Lewin
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Inhibition of dual/mixed tropic HIV-1 isolates by CCR5-inhibitors in primary lymphocytes and macrophages. PLoS One 2013; 8:e68076. [PMID: 23874501 PMCID: PMC3706609 DOI: 10.1371/journal.pone.0068076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/25/2013] [Indexed: 11/21/2022] Open
Abstract
Background Dual/mixed-tropic HIV-1 strains are predominant in a significant proportion of patients, though little information is available regarding their replication-capacity and susceptibility against CCR5-antagonists in-vitro. The aim of the study was to analyze the replication-capacity and susceptibility to maraviroc of HIV-1 clinical isolates with different tropism characteristics in primary monocyte-derived-macrophages (MDM), peripheral-blood-mononuclear-cells (PBMC), and CD4+T-lymphocytes. Methods Twenty-three HIV-1 isolates were phenotipically and genotipically characterized as R5, X4 or dual (discriminated as R5+/X4, R5/X4, R5/X4+). Phenotypic-tropism was evaluated by multiple-cycles-assay on U87MG-CD4+-CCR5+−/CXCR4+-expressing cells. Genotypic-tropism prediction was obtained using Geno2Pheno-algorithm (false-positive-rate [FPR] = 10%). Replication-capacity and susceptibility to maraviroc were investigated in human-primary MDM, PBMC and CD4+T-cells. AMD3100 was used as CXCR4-inhibitor. Infectivity of R5/Dual/X4-viruses in presence/absence of maraviroc was assessed also by total HIV-DNA, quantified by real-time polymerase-chain-reaction. Results Among 23 HIV-1 clinical isolates, phenotypic-tropism-assay distinguished 4, 17 and 2 viruses with R5-tropic, dual/mixed-, and X4-tropic characteristics, respectively. Overall, viruses defined as R5+/X4-tropic were found with the highest prevalence (10/23, 43.5%). The majority of isolates efficiently replicated in both PBMC and CD4+T-cells, regardless of their tropism, while MDM mainly sustained replication of R5- or R5+/X4-tropic isolates; strong correlation between viral-replication and genotypic-FPR-values was observed in MDM (rho = 0.710;p-value = 1.4e-4). In all primary cells, maraviroc inhibited viral-replication of isolates not only with pure R5- but also with dual/mixed tropism (mainly R5+/X4 and, to a lesser extent R5/X4 and R5/X4+). Finally, no main differences by comparing the total HIV-DNA with the p24-production in presence/absence of maraviroc were found. Conclusions Maraviroc is effective in-vitro against viruses with dual-characteristics in both MDM and lymphocytes, despite the potential X4-mediated escape. This suggests that the concept of HIV-entry through one of the two coreceptors “separately” may require revision, and that the use of CCR5-antagonists in patients with dual/mixed-tropic viruses may be a therapeutic-option that deserves further investigations in different clinical settings.
Collapse
|
16
|
Wang T, Xu Y, Zhu H, Andrus T, Ivanov SB, Pan C, Dolores J, Dann GC, Zhou M, Forte D, Yang Z, Holte S, Corey L, Zhu T. Successful isolation of infectious and high titer human monocyte-derived HIV-1 from two subjects with discontinued therapy. PLoS One 2013; 8:e65071. [PMID: 23741458 PMCID: PMC3669022 DOI: 10.1371/journal.pone.0065071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/20/2013] [Indexed: 12/13/2022] Open
Abstract
Background HIV-1 DNA in blood monocytes is considered a viral source of various HIV-1 infected tissue macrophages, which is also known as “Trojan horse” hypothesis. However, whether these DNA can produce virions has been an open question for years, due to the inability of isolating high titer and infectious HIV-1 directly from monocytes. Results In this study, we demonstrated successful isolation of two strains of M-HIV-1 (1690 M and 1175 M) from two out of four study subjects, together with their in vivo controls, HIV-1 isolated from CD4+ T-cells (T-HIV-1), 1690 T and 1175 T. All M- and T- HIV-1 isolates were detected CCR5-tropic. Both M- HIV-1 exhibited higher levels of replication in monocyte-derived macrophages (MDM) than the two T- HIV-1. Consistent with our previous reports on the subject 1175 with late infection, compartmentalized env C2-V3-C3 sequences were identified between 1175 M and 1175 T. In contrast, 1690 M and 1690 T, which were isolated from subject 1690 with relatively earlier infection, showed homogenous env C2-V3-C3 sequences. However, multiple reverse transcriptase (RT) inhibitor resistance-associated variations were detected in the Gag-Pol region of 1690 M, but not of 1690 T. By further measuring HIV DNA intracellular copy numbers post-MDM infection, 1690 M was found to have significantly higher DNA synthesis efficiency than 1690 T in macrophages, indicating a higher RT activity, which was confirmed by AZT inhibitory assays. Conclusions These results suggested that the M- and T- HIV-1 are compartmentalized in the two study subjects, respectively. Therefore, we demonstrated that under in vitro conditions, HIV-1 infected human monocytes can productively release live viruses while differentiating into macrophages.
Collapse
Affiliation(s)
- Tong Wang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
- Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Younong Xu
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Haiying Zhu
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Thomas Andrus
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Sergei B. Ivanov
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Charlotte Pan
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jazel Dolores
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gregory C. Dann
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michael Zhou
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Dominic Forte
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Zihuan Yang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Sarah Holte
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lawrence Corey
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Division of Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Tuofu Zhu
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Division of Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
17
|
Mocchetti I, Campbell LA, Harry GJ, Avdoshina V. When human immunodeficiency virus meets chemokines and microglia: neuroprotection or neurodegeneration? J Neuroimmune Pharmacol 2013; 8:118-31. [PMID: 22527632 PMCID: PMC3427402 DOI: 10.1007/s11481-012-9353-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/01/2012] [Indexed: 12/26/2022]
Abstract
Chemokines are chemotactic cytokines that were originally discovered as promoters of leukocyte proliferation and mobility. In recent years, however, evidence has demonstrated constitutive expression of chemokines and chemokine receptors in a variety of cells in the central and peripheral nervous system and has proposed a role for chemokines in neurodegenerative diseases characterized by inflammation and microglia proliferation. In addition, chemokine receptors, and in particular CXCR4 and CCR5, mediate human immunodeficiency virus type 1 (HIV) infection of immunocompetent cells as well as microglia. Subsequently, HIV, through a variety of mechanisms, promotes synapto-dendritic alterations and neuronal loss that ultimately lead to motor and cognitive impairments. These events are accompanied by microglia activation. Nevertheless, a microglia-mediated mechanism of neuronal degeneration alone cannot fully explain some of the pathological features of HIV infected brain such as synaptic simplification. In this article, we present evidence that some of the microglia responses to HIV are beneficial and neuroprotective. These include the ability of microglia to release anti-inflammatory cytokines, to remove dying cells and to promote axonal sprouting.
Collapse
Affiliation(s)
- Italo Mocchetti
- Department of Neuroscience, Georgetown University Medical Center, Research Building, Room EP04 Box 571464, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
18
|
Chikere K, Chou T, Gorry PR, Lee B. Affinofile profiling: how efficiency of CD4/CCR5 usage impacts the biological and pathogenic phenotype of HIV. Virology 2013; 435:81-91. [PMID: 23217618 DOI: 10.1016/j.virol.2012.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 11/25/2022]
Abstract
HIV-1 envelope (Env) uses CD4 and a coreceptor (CCR5 and/or CXCR4) for viral entry. The efficiency of receptor/coreceptor mediated entry has important implications for HIV pathogenesis and transmission. The advent of CCR5 inhibitors in clinical use also underscores the need for quantitative and predictive tools that can guide therapeutic management. Historically, measuring the efficiency of CD4/CCR5 mediated HIV entry has relied on surrogate and relatively slow throughput assays that cannot adequately capture the full spectrum of Env phenotypes. In this review, we discuss the details of the Affinofile receptor affinity profiling system that has provided a quantitative and higher throughput method to characterize viral entry efficiency as a function of CD4 and CCR5 expression levels. We will then review how the Affinofile system has been used to reveal the distinct pathophysiological properties associated with Env entry phenotypes and discuss potential shortcomings of the current system.
Collapse
Affiliation(s)
- Kelechi Chikere
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, United States
| | | | | | | |
Collapse
|
19
|
O'Connell O, Repik A, Reeves JD, Gonzalez-Perez MP, Quitadamo B, Anton ED, Duenas-Decamp M, Peters P, Lin R, Zolla-Pazner S, Corti D, Wallace A, Wang S, Kong XP, Lu S, Clapham PR. Efficiency of bridging-sheet recruitment explains HIV-1 R5 envelope glycoprotein sensitivity to soluble CD4 and macrophage tropism. J Virol 2013; 87:187-98. [PMID: 23055568 PMCID: PMC3536387 DOI: 10.1128/jvi.01834-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/07/2012] [Indexed: 01/09/2023] Open
Abstract
HIV-1 R5 viruses vary extensively in their capacity to infect macrophages. R5 viruses that confer efficient infection of macrophages are able to exploit low levels of CD4 for infection and predominate in brain tissue, where macrophages are a major target for infection. HIV-1 R5 founder viruses that are transmitted were reported to be non-macrophage-tropic. Here, we investigated the sensitivities of macrophage-tropic and non-macrophage-tropic R5 envelopes to neutralizing antibodies. We observed striking differences in the sensitivities of Env(+) pseudovirions to soluble CD4 (sCD4) and to neutralizing monoclonal antibodies (MAbs) that target the CD4 binding site. Macrophage-tropic R5 Envs were sensitive to sCD4, while non-macrophage-tropic Envs were significantly more resistant. In contrast, all Envs were sensitive to VRC01 regardless of tropism, while MAb b12 conferred an intermediate neutralization pattern where all the macrophage-tropic and about half of the non-macrophage-tropic Envs were sensitive. CD4, b12, and VRC01 share binding specificities on the outer domain of gp120. However, these antibodies differ in their ability to induce conformational changes on the trimeric envelope and in specificity for residues on the V1V2 loop stem and β20-21 junction that are targets for CD4 in recruiting the bridging sheet. These distinct specificities of CD4, b12, and VRC01 likely explain the observed differences in Env sensitivity to inhibition by these reagents and provide an insight into the envelope mechanisms that control macrophage tropism. We present a model where the efficiency of bridging-sheet recruitment by CD4 is a major determinant of HIV-1 R5 envelope sensitivity to soluble CD4 and macrophage tropism.
Collapse
Affiliation(s)
- Olivia O'Connell
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Alexander Repik
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Maria Paz Gonzalez-Perez
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Briana Quitadamo
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Maria Duenas-Decamp
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Paul Peters
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rongheng Lin
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Susan Zolla-Pazner
- Department of Pathology, New York University Langone School of Medicine, New York, New York, USA
| | | | - Aaron Wallace
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiang-Peng Kong
- Department of Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- China-U.S. Vaccine Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Paul R. Clapham
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
20
|
Zhuang K, Finzi A, Toma J, Frantzell A, Huang W, Sodroski J, Cheng-Mayer C. Identification of interdependent variables that influence coreceptor switch in R5 SHIV(SF162P3N)-infected macaques. Retrovirology 2012; 9:106. [PMID: 23237529 PMCID: PMC3528637 DOI: 10.1186/1742-4690-9-106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
Background We previously reported that adoption of an “open” envelope glycoprotein (Env) to expose the CD4 binding site for efficient receptor binding and infection of cell targets such as macrophages that express low levels of the receptor represents an early event in the process of coreceptor switch in two rapidly progressing (RP) R5 SHIVSF162P3N-infected rhesus macaques, releasing or reducing Env structural constraints that have been suggested to limit the pathways available for a change in coreceptor preference. Here we extended these studies to two additional RP monkeys with coreceptor switch and three without to confirm and identify additional factors that facilitated the process of phenotypic conversion. Results We found that regardless of coreceptor switching, R5 viruses in SHIVSF162P3N-infected RP macaques evolved over time to infect macrophages more efficiently; this was accompanied by increased sCD4 sensitivity, with structural changes in the CD4 binding site, the V3 loop and/or the fusion domain of their Envs that are suggestive of better CD4 contact, CCR5 usage and/or virus fusion. However, sCD4-sensitive variants with improved CD4 binding were observed only in RPs with coreceptor switch. Furthermore, cumulative viral load was higher in RPs with than in those without phenotypic switch, with the latter maintaining a longer period of seroconversion. Conclusions Our data suggest that the increased virus replication in the RPs with R5-to-X4 conversion increased the rate of virus evolution and reduction in the availability of target cells with optimal CD4 expression heightened the competition for binding to the receptor. In the absence of immunological restrictions, variants that adopt an “open” Env to expose the CD4 binding site for better CD4 use are selected, allowing structural changes that confer CXCR4-use to be manifested. Viral load, change in target cell population during the course of infection and host immune response therefore are interdependent variables that influence R5 virus evolution and coreceptor switch in SHIVSF162P3N-infected rhesus macaques. Because an "open" Env conformation also renders the virus more susceptible to antibody neutralization, our findings help to explain the infrequent and late appearance of X4 virus in HIV-1 infection when the immune system deteriorates.
Collapse
Affiliation(s)
- Ke Zhuang
- Aaron Diamond AIDS Research Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Salimi H, Roche M, Webb N, Gray LR, Chikere K, Sterjovski J, Ellett A, Wesselingh SL, Ramsland PA, Lee B, Churchill MJ, Gorry PR. Macrophage-tropic HIV-1 variants from brain demonstrate alterations in the way gp120 engages both CD4 and CCR5. J Leukoc Biol 2012; 93:113-26. [PMID: 23077246 DOI: 10.1189/jlb.0612308] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BR-derived HIV-1 strains have an exceptional ability to enter macrophages via mechanisms involving their gp120 Env that remain incompletely understood. Here, we used cell-based affinity-profiling methods and mathematical modeling to generate quantitative VERSA metrics that simultaneously measure Env-CD4 and Env-CCR5 interactions. These metrics were analyzed to distinguish the phenotypes of M-tropic and non-M-tropic CCR5-using HIV-1 variants derived from autopsy BRs and LNs, respectively. We show that highly M-tropic Env variants derived from brain can be defined by two distinct and simultaneously occurring phenotypes. First, BR-derived Envs demonstrated an enhanced ability to interact with CD4 compared with LN-derived Envs, permitting entry into cells expressing scant levels of CD4. Second, BR-derived Envs displayed an altered mechanism of engagement between CD4-bound gp120 and CCR5 occurring in tandem. With the use of epitope mapping, mutagenesis, and structural studies, we show that this altered mechanism is characterized by increased exposure of CD4-induced epitopes in gp120 and by a more critical interaction between BR-derived Envs and the CCR5 N-terminus, which was associated with the predicted presence of additional atomic contacts formed at the gp120-CCR5 N-terminus interface. Our results suggest that BR-derived HIV-1 variants with highly efficient macrophage entry adopt conformations in gp120 that simultaneously alter the way in which the Env interacts with CD4 and CCR5.
Collapse
Affiliation(s)
- Hamid Salimi
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gonzalez-Perez MP, O'Connell O, Lin R, Sullivan WM, Bell J, Simmonds P, Clapham PR. Independent evolution of macrophage-tropism and increased charge between HIV-1 R5 envelopes present in brain and immune tissue. Retrovirology 2012; 9:20. [PMID: 22420378 PMCID: PMC3362761 DOI: 10.1186/1742-4690-9-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/15/2012] [Indexed: 01/05/2023] Open
Abstract
Background Transmitted HIV-1 clade B or C R5 viruses have been reported to infect macrophages inefficiently, while other studies have described R5 viruses in late disease with either an enhanced macrophage-tropism or carrying envelopes with an increased positive charge and fitness. In contrast, our previous data suggested that viruses carrying non-macrophage-tropic R5 envelopes were still predominant in immune tissue of AIDS patients. To further investigate the tropism and charge of HIV-1 viruses in late disease, we evaluated the properties of HIV-1 envelopes amplified from immune and brain tissues of AIDS patients with neurological complications. Results Almost all envelopes amplified were R5. There was clear compartmentalization of envelope sequences for four of the five subjects. However, strong compartmentalization of macrophage-tropism in brain was observed even when brain and immune tissue envelope sequences were not segregated. R5 envelopes from immune tissue of four subjects carried a higher positive charge compared to brain envelopes. We also confirm a significant correlation between macrophage tropism and sensitivity to soluble CD4, a weak association with sensitivity to the CD4 binding site antibody, b12, but no clear relationship with maraviroc sensitivity. Conclusions Our study shows that non-macrophage-tropic R5 envelopes carrying gp120s with an increased positive charge were predominant in immune tissue in late disease. However, highly macrophage-tropic variants with lower charged gp120s were nearly universal in the brain. These results are consistent with HIV-1 R5 envelopes evolving gp120s with an increased positive charge in immune tissue or sites outside the brain that likely reflect an adaptation for increased replication or fitness for CD4+ T-cells. Our data are consistent with the presence of powerful pressures in brain and in immune tissues selecting for R5 envelopes with very different properties; high macrophage-tropism, sCD4 sensitivity and low positive charge in brain and non-macrophage-tropism, sCD4 resistance and high positive charge in immune tissue.
Collapse
Affiliation(s)
- Maria Paz Gonzalez-Perez
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2377, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Duncan CJA, Sattentau QJ. Viral determinants of HIV-1 macrophage tropism. Viruses 2011; 3:2255-79. [PMID: 22163344 PMCID: PMC3230851 DOI: 10.3390/v3112255] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 01/23/2023] Open
Abstract
Macrophages are important target cells for HIV-1 infection that play significant roles in the maintenance of viral reservoirs and other aspects of pathogenesis. Understanding the determinants of HIV-1 tropism for macrophages will inform HIV-1 control and eradication strategies. Tropism for macrophages is both qualitative (infection or not) and quantitative (replication capacity). For example many R5 HIV-1 isolates cannot infect macrophages, but for those that can the macrophage replication capacity can vary by up to 1000-fold. Some X4 viruses are also capable of replication in macrophages, indicating that cellular tropism is partially independent of co-receptor preference. Preliminary data obtained with a small number of transmitted/founder viruses indicate inefficient macrophage infection, whereas isolates from later in disease are more frequently tropic for macrophages. Thus tropism may evolve over time, and more macrophage tropic viruses may be implicated in the pathogenesis of advanced HIV-1 infection. Compartmentalization of macrophage-tropic brain-derived envelope glycoproteins (Envs), and non-macrophage tropic non-neural tissue-derived Envs points to adaptation of HIV-1 quasi-species in distinct tissue microenvironments. Mutations within and adjacent to the Env-CD4 binding site have been identified that determine macrophage tropism at the entry level, but post-entry molecular determinants of macrophage replication capacity involving HIV-1 accessory proteins need further definition.
Collapse
|
24
|
Zhuang K, Finzi A, Tasca S, Shakirzyanova M, Knight H, Westmoreland S, Sodroski J, Cheng-Mayer C. Adoption of an "open" envelope conformation facilitating CD4 binding and structural remodeling precedes coreceptor switch in R5 SHIV-infected macaques. PLoS One 2011; 6:e21350. [PMID: 21760891 PMCID: PMC3132741 DOI: 10.1371/journal.pone.0021350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022] Open
Abstract
A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIV(SF162P3N)-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more "open" envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an "open" envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4(low) cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch.
Collapse
Affiliation(s)
- Ke Zhuang
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Andres Finzi
- Division of AIDS, Department of Cancer Immunology and AIDS, Department of Pathology, Dana-Faber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Silvana Tasca
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Madina Shakirzyanova
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Heather Knight
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Susan Westmoreland
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Joseph Sodroski
- Division of AIDS, Department of Cancer Immunology and AIDS, Department of Pathology, Dana-Faber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| |
Collapse
|
25
|
Meléndez LM, Colon K, Rivera L, Rodriguez-Franco E, Toro-Nieves D. Proteomic analysis of HIV-infected macrophages. J Neuroimmune Pharmacol 2011; 6:89-106. [PMID: 21153888 PMCID: PMC3028070 DOI: 10.1007/s11481-010-9253-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/23/2010] [Indexed: 12/21/2022]
Abstract
Mononuclear phagocytes (monocytes, macrophages, and microglia) play an important role in innate immunity against pathogens including HIV. These cells are also important viral reservoirs in the central nervous system and secrete inflammatory mediators and toxins that affect the tissue environment and function of surrounding cells. In the era of antiretroviral therapy, there are fewer of these inflammatory mediators. Proteomic approaches including surface enhancement laser desorption ionization, one- and two-dimensional difference in gel electrophoresis, and liquid chromatography tandem mass spectrometry have been used to uncover the proteins produced by in vitro HIV-infected monocytes, macrophages, and microglia. These approaches have advanced the understanding of novel mechanisms for HIV replication and neuronal damage. They have also been used in tissue macrophages that restrict HIV replication to understand the mechanisms of restriction for future therapies. In this review, we summarize the proteomic studies on HIV-infected mononuclear phagocytes and discuss other recent proteomic approaches that are starting to be applied to this field. As proteomic instruments and methods evolve to become more sensitive and quantitative, future studies are likely to identify more proteins that can be targeted for diagnosis or therapy and to uncover novel disease mechanisms.
Collapse
Affiliation(s)
- Loyda M Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan 00935, Puerto Rico.
| | | | | | | | | |
Collapse
|
26
|
Abstract
DESIGN the origin and evolution of HIV-1 in breast milk is unclear, despite the continuing significance of this tissue as a transmitting compartment. To elucidate the evolutionary trajectory of viral populations in a transient mucosal compartment, longitudinal sequences of the envelope glycoprotein (gp120) region from plasma and breast milk spanning the first year after delivery were analyzed in six women infected by HIV-1 subtype C. METHODS multiple phylogenetic algorithms were used to elucidate the evolutionary history and spatial structure of virus populations between tissues. RESULTS overall persistent mixing of viral sequences between plasma and breast milk indicated that breast milk is not a distinct genetic viral compartment. Unexpectedly, longitudinal phylogenies showed multiple lineages defined by long branches that included virus from both the breast milk and the plasma. Plasma was unlikely the anatomical origin of the most recent common ancestor (MRCA) in at least three of the patients, although in other women, the temporal origin of the MRCA of the viral populations following delivery occurred well before the onset of breast milk production. CONCLUSIONS these findings suggest that during pregnancy/lactation, a viral variant distinct from the plasma virus initially seeds the breast milk, followed by subsequent gene flow between the plasma and breast milk tissues. This study indicates the potential for reactivation or reintroduction of distinct lineages during major immunological disruptions during the course of natural infection.
Collapse
|
27
|
A conserved determinant in the V1 loop of HIV-1 modulates the V3 loop to prime low CD4 use and macrophage infection. J Virol 2010; 85:2397-405. [PMID: 21159865 DOI: 10.1128/jvi.02187-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The CD4 binding site (CD4bs) on the HIV-1 envelope plays a major role in determining the capacity of R5 viruses to infect primary macrophages. Thus, envelope determinants within or proximal to the CD4bs have been shown to control the use of low CD4 levels on macrophages for infection. These residues affect the affinity for CD4 either directly or indirectly by altering the exposure of CD4 contact residues. Here, we describe a single amino acid determinant in the V1 loop that also modulates macrophage tropism. Thus, we identified an E153G substitution that conferred high levels of macrophage infectivity for several heterologous R5 envelopes, while the reciprocal G153E substitution abrogated infection. Shifts in macrophage tropism were associated with dramatic shifts in sensitivity to the V3 loop monoclonal antibody (MAb), 447-52D and soluble CD4, as well as more modest changes in sensitivity to the CD4bs MAb, b12. These observations are consistent with an altered conformation or exposure of the V3 loop that enables the envelope to use low CD4 levels for infection. The modest shifts in b12 sensitivity suggest that residue 153 impacts on the exposure of the CD4bs. However, the more intense shifts in sCD4 sensitivity suggest additional mechanisms that likely include an increased ability of the envelope to undergo conformational changes following binding to suboptimal levels of cell surface CD4. In summary, we show that a conserved determinant in the V1 loop modulates the V3 loop to prime low CD4 use and macrophage infection.
Collapse
|
28
|
Determinants of individual variation in intracellular accumulation of anti-HIV nucleoside analog metabolites. Antimicrob Agents Chemother 2010; 55:895-903. [PMID: 21078952 DOI: 10.1128/aac.01303-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Individual variation in response to antiretroviral therapy is well-known, but it is not clear if demographic characteristics such as gender, age, and ethnicity are responsible for the variation. To optimize anti-HIV therapy and guide antiretroviral drug discovery, determinants that cause variable responses to therapy need to be evaluated. We investigated the determinants of intracellular concentrations of nucleoside analogs using peripheral blood mononuclear cells from 40 healthy donors. We observed individual differences in the concentrations of the intracellular nucleoside analogs; the mean concentrations of the triphosphate metabolite of ethynylstavudine (4'-Ed4T), zidovudine (AZT), and lamivudine (3TC) were 0.71 pmol/10(6) cells (minimum and maximum, 0.10 and 3.00 pmol/10(6) cells, respectively), 0.88 pmol/10(6) cells (minimum and maximum, 0.10 and 15.18 pmol/10(6) cells, respectively), and 1.70 pmol/10(6) cells (minimum and maximum, 0.20 and 7.73 pmol/10(6) cells, respectively). Gender and ethnicity had no effect on the concentration of 4'-Ed4T and 3TC metabolites. There was a trend for moderation of the concentrations of AZT metabolites by gender (P = 0.17 for gender·metabolite concentration). We observed variability in the activity and expression of cellular kinases. There was no statistically significant correlation between thymidine kinase 1 (TK-1) activity or expression and thymidine analog metabolite concentrations. The correlation between the activity of deoxycytidine kinase (dCK) and the 3TC monophosphate metabolite concentration showed a trend toward significance (P = 0.1). We observed an inverse correlation between the multidrug-resistant protein 2 (MRP2) expression index and the concentrations of AZT monophosphate, AZT triphosphate, and total AZT metabolites. Our findings suggest that the observed variation in clinical response to nucleoside analogs may be due partly to the individual differences in the intracellular concentrations, which in turn may be affected by the cellular kinases involved in the phosphorylation pathway and ATP-binding cassette (ABC) transport proteins.
Collapse
|
29
|
Biesinger T, White R, Yu Kimata MT, Wilson BK, Allan JS, Kimata JT. Relative replication capacity of phenotypic SIV variants during primary infections differs with route of inoculation. Retrovirology 2010; 7:88. [PMID: 20942954 PMCID: PMC2964591 DOI: 10.1186/1742-4690-7-88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/13/2010] [Indexed: 01/08/2023] Open
Abstract
Background Previous studies of human and simian immunodeficiency virus (HIV and SIV) have demonstrated that adaptive mutations selected during the course of infection alter viral replicative fitness, persistence, and pathogenicity. What is unclear from those studies is the impact of transmission on the replication and pathogenicity of the founding virus population. Using the SIV-macaque model, we examined whether the route of infection would affect the establishment and replication of two SIVmne variants of distinct in vitro and in vivo biological characteristics. For these studies, we performed dual-virus inoculations of pig-tailed macaques via intrarectal or intravenous routes with SIVmneCl8, a miminally pathogenic virus, and SIVmne027, a highly pathogenic variant that replicates more robustly in CD4+ T cells. Results The data demonstrate that SIVmne027 is the dominant virus regardless of the route of infection, indicating that the capacity to replicate efficiently in CD4+ T cells is important for fitness. Interestingly, in comparison to intravenous co-infection, intrarectal inoculation enabled greater relative replication of the less pathogenic virus, SIVmneCl8. Moreover, a higher level of SIVmneCl8 replication during primary infection of the intrarectally inoculated macaques was associated with lower overall plasma viral load and slower decline in CD4+ T cells, even though SIVmne027 eventually became the dominant virus. Conclusions These results suggest that the capacity to replicate in CD4+ T cells is a significant determinant of SIV fitness and pathogenicity. Furthermore, the data also suggest that mucosal transmission may support early replication of phenotypically diverse variants, while slowing the rate of CD4+ T cell decline during the initial stages of infection.
Collapse
Affiliation(s)
- Tasha Biesinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
30
|
HIV coreceptor tropism in antiretroviral treatment-naive patients newly diagnosed at a late stage of HIV infection. AIDS 2010; 24:2051-8. [PMID: 20601851 DOI: 10.1097/qad.0b013e32833c93e6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE A substantial number of HIV infections worldwide are diagnosed at a late stage of disease. Mortality in late presenters is high, and their treatment is a specific challenge. We have determined the relative proportions of HIV-1 strains of different coreceptor tropism (CRT) in this group of patients and investigated the impact of CRT on progression markers such as CD4 cell counts and viral load, and on the clinical presentation of the patients. DESIGN AND METHODS Plasma samples from 50 treatment-naive patients with a late HIV diagnosis (CD4 cell counts of <200 cells/microl at the time of diagnosis) were analyzed. HIV strains were sequenced, and for CRT determination, the internet tool geno2pheno[coreceptor] was used, with a 20% false-positive rate as the cutoff. Differences in progression markers, patient characteristics and HIV subtype distribution between the R5-infected and X4/DM-infected patient groups were evaluated statistically. RESULTS CRT predictions indicated that 62% of the patients had only R5-tropic strains. CRT was not associated with CD4 cell counts or viral load at the time of diagnosis. Only in very late presenters (CD4 cell counts <50 cells/microl) was there a significant difference in disease stage at the time of presentation, showing that patients with R5 more often were at Centers for Disease Control and Prevention stage C3 compared with those with X4/DM strains (P = 0.04). CONCLUSION A substantial number of patients diagnosed at a late stage of HIV-1 infection may be infected exclusively with R5-tropic virus strains, making this specific patient group a possible candidate for coreceptor antagonist treatment.
Collapse
|
31
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl) 2010; 2:103-22. [PMID: 22096389 PMCID: PMC3218690 DOI: 10.2147/hiv.s6882] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Even though the treatment of human immunodeficiency virus (HIV)-infected individuals with highly active antiretroviral therapy (HAART) provides a complete control of plasma viremia to below detectable levels (<40 copies/mL plasma), there is an unequal distribution of all antiretroviral drugs across diverse cellular and anatomic compartments in vivo. The main consequence of this is the acquisition of resistance by HIV to all known classes of currently prescribed antiretroviral drugs and the establishment of HIV reservoirs in vivo. HIV has a distinct advantage of surviving in the host via both pre-and postintegration latency. The postintegration latency is caused by inert and metabolically inactive provirus, which cannot be accessed either by the immune system or the therapeutics. This integrated provirus provides HIV with a safe haven in the host where it is incessantly challenged by its immune selection pressure and also by HAART. Thus, the provirus is one of the strategies for viral concealment in the host and the provirus can be rekindled, through unknown stimuli, to create progeny for productive infection of the host. Thus, the reservoir establishment remains the biggest impediment to HIV eradication from the host. This review provides an overview of HIV reservoir sites and discusses both the virtues and problems associated with therapies/strategies targeting these reservoir sites in vivo.
Collapse
Affiliation(s)
- Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Bin Wang
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Maly Soedjono
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Yung Shwen Ho
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| | - Viviane Conceicao
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, The University of Sydney, Westmead, NSW, Sydney, Australia
| |
Collapse
|
33
|
Richards KH, Aasa-Chapman MM, McKnight A, Clapham PR. Modulation of HIV-1 macrophage-tropism among R5 envelopes occurs before detection of neutralizing antibodies. Retrovirology 2010; 7:48. [PMID: 20507591 PMCID: PMC2890664 DOI: 10.1186/1742-4690-7-48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/27/2010] [Indexed: 11/10/2022] Open
Abstract
HIV-1 R5 viruses vary widely in their capacity to infect primary macrophages. R5 macrophage-tropism is associated with an increased envelope:CD4 affinity that partly results from an increased exposure of CD4 contact residues on gp120 and allows the use of low levels of CD4 for infection. The selective pressures in vivo that modulate R5 macrophage-tropism are not understood. It is possible that different R5 variants adapt for replication in either T-cells (high CD4) or in macrophages (low CD4). However, other selective pressures in vivo (e.g. neutralizing antibodies) may also impact R5 tropism. Here, we measured macrophage infectivity conferred by gp120 sequences amplified sequentially from subjects in London followed from the acute stage of infection. We report wide variation in the capacity of these envelopes to confer macrophage infection in the complete absence of both autologous and heterologous neutralizing antibodies. Our data show that the variation in macrophage tropism observed at early times cannot have been influenced by neutralizing antibodies.
Collapse
Affiliation(s)
- Kathryn H Richards
- Program in Molecular Medicine and Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
34
|
Jakobsen MR, Ellett A, Churchill MJ, Gorry PR. Viral tropism, fitness and pathogenicity of HIV-1 subtype C. Future Virol 2010. [DOI: 10.2217/fvl.09.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of studies on HIV-1 pathogenesis have been conducted on subtype B HIV-1 (B-HIV) strains. However, B-HIV strains constitute the minority of HIV-1 cases worldwide, and are not common in regions that stand to benefit the most from advances in HIV-1 research such as southern Africa and Asia, where the HIV-1 pandemic is at its worst. The majority of individuals with HIV-1 are infected with subtype C HIV-1 (C-HIV) and reside in Southern Africa and Central Asia. Relatively little is known about C-HIV, but current evidence suggests the pathogenesis of C-HIV is distinct from B-HIV and other HIV-1 subtypes. This article summarizes what is currently known about the viral tropism, fitness and pathogenicity of C-HIV, and compares and contrasts these features to B-HIV. A thorough understanding of the molecular pathogenesis of C-HIV is important for a targeted approach to developing vaccines and novel drugs optimized for effectiveness in populations that are most in need.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Infectious Diseases, Aarhus University Hospital, Skejby, Brendstrupgaardvej 100, 8200 Aarhus N, Denmark
| | - Anne Ellett
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Melissa J Churchill
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul R Gorry
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Medicine, Monash University, Melbourne, Victoria, Australia and Department of Microbiology & Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The interaction of the beta-chemokine receptor CCR5 with the HIV-1 envelope glycoprotein gp120 is critical for viral entry. Therefore, CCR5 seems to be a promising target for inhibition of HIV-1 replication. A number of attempts have been made to identify small-molecule CCR5 antagonists as novel antiretroviral agents. This review focuses on recent advances of CCR5 antagonists in antiviral activity, safety, and pharmacokinetics in vitro and in vivo. RECENT FINDINGS Following the discovery of the first small-molecule CCR5 antagonist, TAK-779, a variety of molecules have been identified as novel CCR5 antagonists, such as SCH-C, vicriviroc, maraviroc, aplaviroc, TAK-220, and TAK-652. All compounds are orally bioavailable and have proved to be highly potent and selective inhibitors of CCR5 using (R5) HIV-1 replication in cell cultures. Their biochemical and pharmacokinetic profiles, however, differ. Clinical studies of three compounds (vicriviroc, maraviroc, and aplaviroc) have been performed, and considerable reduction of plasma viral load in R5 HIV-1-infected patients has been achieved. SUMMARY CCR5 antagonists are a novel class of antiretroviral agents and they are active against a wide range of R5 HIV-1. Most of the CCR5 antagonists subjected to clinical trials are well tolerated and have shown efficacy in HIV-1-infected patients.
Collapse
|
36
|
Wade J, Sterjovski J, Gray L, Roche M, Chiavaroli L, Ellett A, Jakobsen MR, Cowley D, Pereira CDF, Saksena N, Wang B, Purcell DFJ, Karlsson I, Fenyö EM, Churchill M, Gorry PR. Enhanced CD4+ cellular apoptosis by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with progressive HIV-1 infection. Virology 2009; 396:246-55. [PMID: 19913863 DOI: 10.1016/j.virol.2009.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/05/2009] [Accepted: 10/18/2009] [Indexed: 12/20/2022]
Abstract
CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains cause CD4+ T-cell loss in most infected individuals, but mechanisms underlying cytopathicity of R5 viruses are poorly understood. We investigated mechanisms contributing to R5 envelope glycoprotein (Env)-mediated cellular apoptosis by constructing a panel of retroviral vectors engineered to co-express GFP and R5 Envs derived from two HIV-1-infected subjects spanning asymptomatic (Early, E-R5 Envs) to late stages of infection (Late, L-R5 Envs). The L-R5 Envs induced significantly more cellular apoptosis than E-R5 Envs, but only in Env-expressing (GFP-positive) cells, and only in cells where CD4 and CCR5 levels were limiting. Studies with fusion-defective Env mutants showed induction of apoptosis required membrane-fusing events. Our results provide evidence for an intracellular mechanism of R5 Env-induced apoptosis of CD4+ cells that requires membrane fusion. Furthermore, they contribute to a better understanding of mechanisms involved in CD4+ T-cell loss in subjects experiencing progressive R5 HIV-1 infection.
Collapse
Affiliation(s)
- Jessica Wade
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Genetic determinants in HIV-1 Gag and Env V3 are related to viral response to combination antiretroviral therapy with a protease inhibitor. AIDS 2009; 23:1631-40. [PMID: 19625947 DOI: 10.1097/qad.0b013e32832e0599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify novel viral determinants in HIV-1 protease, Gag, and envelope V3 that relate to outcomes to initial protease inhibitor-based antiretroviral therapy. DESIGN A longitudinal cohort study of protease inhibitor-naive, HIV-infected individuals was designed to identify genetic variables in viral Gag and envelope sequences associated with response to antiretroviral therapy. METHODS Genetic and statistical models, including amino acid profiles, phylogenetic analyses, receiver operating characteristic analyses, and covariation analyses, were used to evaluate viral sequences and clinical variables from individuals who developed immune reconstitution with or without suppression of viral replication. RESULTS Pretherapy chemokine (C-X-C motif) receptor 4-using V3 regions had significant associations with viral failure (P = 0.04). Amino acid residues in protease covaried with Gag residues, particularly in p7(NC), independent of cleavage sites. Pretherapy V3 charge combined with p6(Pol) and p2/p7(NC) cleavage site genotypes produced the best three-variable model to predict viral suppression in 88% of individuals. Combinations of baseline CD4 cell percentage with genetic determinants in Gag-protease predicted viral fitness in 100% of individuals who failed to suppress viral replication. CONCLUSION Baseline genetic determinants in Gag p6(Pol) and p2/p7(NC), as well as envelope, provide novel combinations of biomarkers for predicting emergence of viral resistance to initial therapy regimens.
Collapse
|
38
|
A quantitative affinity-profiling system that reveals distinct CD4/CCR5 usage patterns among human immunodeficiency virus type 1 and simian immunodeficiency virus strains. J Virol 2009; 83:11016-26. [PMID: 19692480 DOI: 10.1128/jvi.01242-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The affinity of human immunodeficiency virus (HIV) envelope for CD4 and CCR5 appears to be associated with aspects of R5 virus (virus using the CCR5 coreceptor) pathogenicity. However, entry efficiency results from complex interactions between the viral envelope glycoprotein and both CD4 and CCR5, which limits attempts to correlate viral pathogenicity with surrogate measures of envelope CD4 and CCR5 affinities. Here, we present a system that provides a quantitative and comprehensive characterization of viral entry efficiency as a direct interdependent function of both CD4 and CCR5 levels. This receptor affinity profiling system also revealed heretofore unappreciated complexities underlying CD4/CCR5 usage. We first developed a dually inducible cell line in which CD4 and CCR5 could be simultaneously and independently regulated within a physiologic range of surface expression. Infection by multiple HIV type 1 (HIV-1) and simian immunodeficiency virus isolates could be examined simultaneously for up to 48 different combinations of CD4/CCR5 expression levels, resulting in a distinct usage pattern for each virus. Thus, each virus generated a unique three-dimensional surface plot in which viral infectivity varied as a function of both CD4 and CCR5 expression. From this functional form, we obtained a sensitivity vector along with corresponding metrics that quantified an isolate's overall efficiency of CD4/CCR5 usage. When applied to viral isolates with well-characterized sensitivities to entry/fusion inhibitors, the vector metrics were able to encapsulate their known biological phenotypes. The application of the vector metrics also indicated that envelopes derived from elite suppressors had overall-reduced entry efficiencies compared to those of envelopes derived from chronically infected viremic progressors. Our affinity-profiling system may help to refine studies of R5 virus tropism and pathogenesis.
Collapse
|
39
|
Human immunodeficiency virus type 1 V1-to-V5 envelope variants from the chronic phase of infection use CCR5 and fuse more efficiently than those from early after infection. J Virol 2009; 83:9694-708. [PMID: 19625411 DOI: 10.1128/jvi.00925-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein modifications over the course of infection have been associated with coreceptor switching and antibody neutralization resistance, but the effect of the changes on replication and host cell receptor usage remains unclear. To examine this question, unique early- and chronic-stage infection envelope V1-to V5 (V1-V5) segments from eight HIV-1 subtype A-infected subjects were incorporated into an isogenic background to construct replication-competent recombinant viruses. In all subjects, viruses with chronic-infection V1-V5 segments showed greater replication capacity than those with early-infection V1-V5 domains in cell lines with high levels of both the CD4 and the CCR5 receptors. Viruses with chronic-infection V1-V5s demonstrated a significantly increased ability to replicate in cells with low CCR5 receptor levels and greater resistance to CCR5 receptor and fusion inhibitors compared to those with early-infection V1-V5 segments. These properties were associated with sequence changes in the envelope V1-V3 segments. Viruses with the envelope segments from the two infection time points showed no significant difference in their ability to infect cells with low CD4 receptor densities, in their sensitivity to soluble CD4, or in their replication capacity in monocyte-derived macrophages. Our results suggest that envelope changes, primarily in the V1-V3 domains, increase both the ability to use the CCR5 receptor and fusion kinetics. Thus, envelope modifications over time within a host potentially enhance replication capacity.
Collapse
|
40
|
Brown JN, Kohler JJ, Coberley CR, Sleasman JW, Goodenow MM. HIV-1 activates macrophages independent of Toll-like receptors. PLoS One 2008; 3:e3664. [PMID: 19048100 PMCID: PMC2585009 DOI: 10.1371/journal.pone.0003664] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022] Open
Abstract
Background Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1). Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. Methodology/Principal Findings To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK), and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR) pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1β, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. Conclusions/Significance HIV-1 induced a primed, proinflammatory state, M1HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute to immune pathogenesis, and provide important targets for therapeutic approaches.
Collapse
Affiliation(s)
- Joseph N. Brown
- Division of Rheumatology, Immunology and Infectious Diseases, Departments of Pathology, Immunology, and Laboratory Medicine, and Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - James J. Kohler
- Division of Rheumatology, Immunology and Infectious Diseases, Departments of Pathology, Immunology, and Laboratory Medicine, and Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Carter R. Coberley
- Division of Rheumatology, Immunology and Infectious Diseases, Departments of Pathology, Immunology, and Laboratory Medicine, and Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - John W. Sleasman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida College of Medicine and All Children's Hospital, St. Petersburg, Florida, United States of America
| | - Maureen M. Goodenow
- Division of Rheumatology, Immunology and Infectious Diseases, Departments of Pathology, Immunology, and Laboratory Medicine, and Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
41
|
Cavarelli M, Karlsson I, Zanchetta M, Antonsson L, Plebani A, Giaquinto C, Fenyö EM, De Rossi A, Scarlatti G. HIV-1 with multiple CCR5/CXCR4 chimeric receptor use is predictive of immunological failure in infected children. PLoS One 2008; 3:e3292. [PMID: 18820725 PMCID: PMC2538568 DOI: 10.1371/journal.pone.0003292] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 09/07/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5(broad) viruses), was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT) of HIV-1 and pediatric disease progression. METHODOLOGY/PRINCIPAL FINDINGS Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting) and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5(narrow) phenotype (n = 20), but R5(broad) and R5X4 viruses were also found in seven and one case, respectively. The presence of R5(broad) and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3) or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5(broad) phenotype, however, the presence of the R5(broad) virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5(broad) viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5(broad) phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn's viral variant. CONCLUSIONS/SIGNIFICANCE Our results show that R5(broad) viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5(narrow) phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infection.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Viral Evolution and Transmission Unit, DIBIT, Fondazione Centro San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Church JD, Huang W, Mwatha A, Toma J, Stawiski E, Donnell D, Guay LA, Mmiro F, Musoke P, Jackson JB, Parkin N, Eshleman SH. HIV-1 tropism and survival in vertically infected Ugandan infants. J Infect Dis 2008; 197:1382-8. [PMID: 18444795 DOI: 10.1086/587492] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) may utilize the CXCR4 coreceptor (X4 virus), the CCR5 coreceptor (R5 virus), or both (dual/mixed [DM] virus). We analyzed HIV-1 coreceptor tropism in Ugandan infants enrolled in the HIVNET (HIV Network for Prevention Trials) 012 trial. METHODS Plasma or serum was analyzed using a commercial coreceptor tropism assay. HIV env subtype was determined by phylogenetic methods. RESULTS Tropism results were obtained for 57 samples from infants collected 6-14 weeks after birth. Fifty-two infants had only R5 virus, and 5 had either X4 or DM virus. The mothers of those 5 infants also had X4 or DM virus. In infants, subtype D infection was associated with high-level infectivity in CCR5-bearing cells and also with the detection of X4 or DM strains. High-level infectivity in CCR5-bearing cells was associated with decreased infant survival, but infection with X4 or DM virus was not. HIV clones from infants with DM viral populations showed different patterns of coreceptor use. V3 loop sequence-based algorithms predicted the tropism of some, but not all, env clones. CONCLUSIONS Complex patterns of HIV tropism were found in HIV-infected newborn infants. Subtype D infection was associated with X4 virus and with high-level replication in CCR5-bearing cells. High-level replication of R5 virus was associated with decreased infant survival.
Collapse
|
43
|
Lamers SL, Salemi M, McGrath MS, Fogel GB. Prediction of R5, X4, and R5X4 HIV-1 coreceptor usage with evolved neural networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2008; 5:291-300. [PMID: 18451438 PMCID: PMC3523352 DOI: 10.1109/tcbb.2007.1074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The HIV-1 genome is highly heterogeneous. This variation affords the virus a wide range of molecular properties, including the ability to infect cell types, such as macrophages and lymphocytes, expressing different chemokine receptors on the cell surface. In particular, R5 HIV-1 viruses use CCR5 as co-receptor for viral entry, X4 viruses use CXCR4, whereas some viral strains, known as R5X4 or D-tropic, have the ability to utilize both co-receptors. X4 and R5X4 viruses are associated with rapid disease progression to AIDS. R5X4 viruses differ in that they have yet to be characterized by the examination of the genetic sequence of HIV-1 alone. In this study, a series of experiments was performed to evaluate different strategies of feature selection and neural network optimization. We demonstrate the use of artificial neural networks trained via evolutionary computation to predict viral co-receptor usage. The results indicate identification of R5X4 viruses with predictive accuracy of 75.5%.
Collapse
Affiliation(s)
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida (UF-COM) Gainesville, 1600 S.W. Archer Road, Gainesville, FL 32610
| | - Michael S. McGrath
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0874
| | - Gary B. Fogel
- Natural Selection, Inc., 9330 Scranton Rd., Suite 150, San Diego, CA 92121
| |
Collapse
|
44
|
Peters PJ, Duenas-Decamp MJ, Sullivan WM, Brown R, Ankghuambom C, Luzuriaga K, Robinson J, Burton DR, Bell J, Simmonds P, Ball J, Clapham PR. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors. Retrovirology 2008; 5:5. [PMID: 18205925 PMCID: PMC2268948 DOI: 10.1186/1742-4690-5-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 01/18/2008] [Indexed: 11/13/2022] Open
Abstract
Background HIV-1 R5 viruses cause most of the AIDS cases worldwide and are preferentially transmitted compared to CXCR4-using viruses. Furthermore, R5 viruses vary extensively in capacity to infect macrophages and highly macrophage-tropic variants are frequently identified in the brains of patients with dementia. Here, we investigated the sensitivity of R5 envelopes to a range of inhibitors and antibodies that block HIV entry. We studied a large panel of R5 envelopes, derived by PCR amplification without culture from brain, lymph node, blood and semen. These R5 envelopes conferred a wide range of macrophage tropism and included highly macrophage-tropic variants from brain and non-macrophage-tropic variants from lymph node. Results R5 macrophage-tropism correlated with sensitivity to inhibition by reagents that inhibited gp120:CD4 interactions. Thus, increasing macrophage-tropism was associated with increased sensitivity to soluble CD4 and to IgG-CD4 (PRO 542), but with increased resistance to the anti-CD4 monoclonal antibody (mab), Q4120. These observations were highly significant and are consistent with an increased affinity of envelope for CD4 for macrophage-tropic envelopes. No overall correlations were noted between R5 macrophage-tropism and sensitivity to CCR5 antagonists or to gp41 specific reagents. Intriguingly, there was a relationship between increasing macrophage-tropism and increased sensitivity to the CD4 binding site mab, b12, but decreased sensitivity to 2G12, a mab that binds a glycan complex on gp120. Conclusion Variation in R5 macrophage-tropism is caused by envelope variation that predominantly influences sensitivity to reagents that block gp120:CD4 interactions. Such variation has important implications for therapy using viral entry inhibitors and for the design of envelope antigens for vaccines.
Collapse
Affiliation(s)
- Paul J Peters
- Center for AIDS Research, Program in Molecular Medicine and Department of Molecular Genetics and Microbiology, 373 Plantation Street, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sterjovski J, Churchill MJ, Ellett A, Gray LR, Roche MJ, Dunfee RL, Purcell DFJ, Saksena N, Wang B, Sonza S, Wesselingh SL, Karlsson I, Fenyo EM, Gabuzda D, Cunningham AL, Gorry PR. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS. Retrovirology 2007; 4:89. [PMID: 18076768 PMCID: PMC2225424 DOI: 10.1186/1742-4690-4-89] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 12/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CCR5-restricted (R5) human immunodeficiency virus type 1 (HIV-1) variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env) determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA) and AIDS (A) R5 Envs, respectively. RESULTS Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362), a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs) residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. CONCLUSION Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.
Collapse
Affiliation(s)
- Jasminka Sterjovski
- Macfarlane Burnet Institute for Medical Research & Public Health, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Salemi M, Burkhardt BR, Gray RR, Ghaffari G, Sleasman JW, Goodenow MM. Phylodynamics of HIV-1 in lymphoid and non-lymphoid tissues reveals a central role for the thymus in emergence of CXCR4-using quasispecies. PLoS One 2007; 2:e950. [PMID: 17895991 PMCID: PMC1978532 DOI: 10.1371/journal.pone.0000950] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 09/06/2007] [Indexed: 01/04/2023] Open
Abstract
Background During HIV-1 infection coreceptor switch from CCR5- (R5)- to CXCR4 (X4)-using viruses is associated with disease progression. X4 strains of HIV-1 are highly cytopathic to immature thymocytes. Virtually no studies have evaluated the HIV-1 quasispecies present in vivo within thymic and lymphoid tissues or the evolutionary relationship between R5 and X4 viruses in tissues and peripheral blood. Methodology/Principal Findings High-resolution phylodynamic analysis was applied to virus envelope quasispecies in longitudinal peripheral blood mononuclear cells (PBMCs) and lymphoid and non-lymphoid tissues collected post mortem from therapy naïve children with AIDS. There were three major findings. First, continued evolution of R5 viruses in PBMCs, spleen and lymph nodes involved multiple bottlenecks, independent of coreceptor switch, resulting in fitter quasispecies driven by positive selection. Second, evolution of X4 strains appeared to be a sequential process requiring the initial fixation of positively selected mutations in V1-V2 and C2 domains of R5 variants before the emergence of high charge V3 X4 variants. Third, R5 viruses persisted after the emergence of CXCR4-using strains, which were found predominantly but not exclusively in the thymus. Conclusions/Significance Our data indicate that the evolution of X4 strains is a multi-step, temporally structured process and that the thymus may play an important role in the evolution/amplification of coreceptor variants. Development of new therapeutic protocols targeting virus in the thymus could be important to control HIV-1 infection prior to advanced disease.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- * To whom correspondence should be addressed. E-mail: (MS); (MG)
| | - Brant R. Burkhardt
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Rebecca R. Gray
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Anthropology, University of Florida, Gainesville, Florida, United States of America
| | - Guity Ghaffari
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Pediatrics, Division of Immunology, Rheumatology, and Infectious Diseases, University of Florida, Gainesville, Florida, United States of America
| | - John W. Sleasman
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of South Florida and All Children's Hospital, St. Petersburg, Florida, United States of America
| | - Maureen M. Goodenow
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Pediatrics, Division of Immunology, Rheumatology, and Infectious Diseases, University of Florida, Gainesville, Florida, United States of America
- * To whom correspondence should be addressed. E-mail: (MS); (MG)
| |
Collapse
|
47
|
Gorry PR, McPhee DA, Wesselingh SL, Churchill MJ. Macrophage Tropism and Cytopathicity of HIV-1 Variants Isolated Sequentially from a Long-Term Survivor Infected with nef-Deleted Virus. Open Microbiol J 2007; 1:1-7. [PMID: 19088897 PMCID: PMC2589664 DOI: 10.2174/1874285800701010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 11/25/2022] Open
Abstract
Long-term survival of human immunodeficiency virus type 1 (HIV-1) infection has been noted in rare cohorts of individuals infected with nef-deleted virus. Enhanced macrophage tropism and cytopathicity contribute to pathogenicity of wild type HIV-1. To better understand the pathogenesis of nef-deleted HIV-1, we analyzed the replication capacity and macrophage cytopathicity of nef-deleted HIV-1 isolated sequentially from a long-term survivor during progression to AIDS (n=6 isolates). Compared with controls, all nef-deleted viruses replicated to low levels in peripheral blood mononu-clear cells and monocyte-derived macrophages (MDM). One nef-deleted virus that was isolated on the development of AIDS caused high levels of syncytia in MDM similar to control viruses, but five viruses isolated from earlier times prior to AIDS onset caused only minimal cytopathicity. Together, these results suggest that enhanced cytopathicity of nef-deleted HIV-1 for MDM can occur independently of replication capacity, and may contribute to the pathogenesis of nef-deleted HIV-1 infection.
Collapse
Affiliation(s)
- Paul R Gorry
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
48
|
Walker PR, Ketunuti M, Choge IA, Meyers T, Gray G, Holmes EC, Morris L. Polymorphisms in Nef associated with different clinical outcomes in HIV type 1 subtype C-infected children. AIDS Res Hum Retroviruses 2007; 23:204-15. [PMID: 17331028 DOI: 10.1089/aid.2006.0080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) negative factor, or Nef, has a variety of functions that are important in viral pathogenesis. Sequence analysis has identified nef mutations that are linked to the rate of disease progression in adults and children infected with HIV-1 subtype B. Here we have sequenced and analyzed HIV-1 subtype C nef sequences from 34 children with rapid (RP) or slow progressing (SP) disease and identified polymorphisms associated with disease stage including motifs involved in specific pathogenic functions. Unlike subtype B, insertions and deletions in the N-terminal variable region were observed exclusively in SP children (8 out of 25). Strong positive selection pressures were found in sites of known functional importance among SP sequences, whereas RP had strong negative selection across the gene. A lineage analysis of selection pressures indicated weaker pressure across the nef gene in SP sequences bearing a deletion in region 8-12, suggesting this deletion has functional importance in vivo. Together these results suggest a differential adaptation of certain Nef functions related to disease progression, some of which may be attributable to immune-imposed pressures. These data broadly reflect previous studies on subtype B, corroborate the decreased cytopathicity of SP viruses, but also highlight potential subtype differences that require further investigation.
Collapse
Affiliation(s)
- Polly R Walker
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Baba M, Miyake H, Wang X, Okamoto M, Takashima K. Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652. Antimicrob Agents Chemother 2006; 51:707-15. [PMID: 17116673 PMCID: PMC1797735 DOI: 10.1128/aac.01079-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TAK-652, a novel small-molecule chemokine receptor antagonist, is a highly potent and selective inhibitor of CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) replication in vitro. Since TAK-652 is orally bioavailable and has favorable pharmacokinetic profiles in humans, it is considered a promising candidate for an entry inhibitor of HIV-1. To investigate the resistance to TAK-652, peripheral blood mononuclear cells were infected with the R5 HIV-1 primary isolate KK and passaged in the presence of escalating concentrations of the compound for more than 1 year. After 67 weeks of cultivation, the escape virus emerged even in the presence of a high concentration of TAK-652. This virus displayed more than 200,000-fold resistance to TAK-652 compared with the wild type. The escape virus appeared to have cross-resistance to the structurally related compound TAK-779 but retained full susceptibility to TAK-220, which is from a different class of CCR5 antagonists. Furthermore, the escape virus was unable to use CXCR4 as a coreceptor. Analysis for Env amino acid sequences of escape viruses at certain points of passage revealed that amino acid changes accumulated with an increasing number of passages. Several amino acid changes not only in the V3 region but also in other Env regions seemed to be required for R5 HIV-1 to acquire complete resistance to TAK-652.
Collapse
Affiliation(s)
- Masanori Baba
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan.
| | | | | | | | | |
Collapse
|
50
|
Peters PJ, Dueñas-Decamp MJ, Sullivan WM, Clapham PR. Variation of macrophage tropism among HIV-1 R5 envelopes in brain and other tissues. J Neuroimmune Pharmacol 2006; 2:32-41. [PMID: 18040824 DOI: 10.1007/s11481-006-9042-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/15/2006] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus (HIV)-positive individuals frequently suffer from progressive encephelopathy, which is characterized by sensory neuropathy, sensory myelopathy, and dementia. Our group and others have reported the presence of highly macrophage-tropic R5 variants of HIV-1 in brain tissue of patients with neurological complications. These variants are able to exploit low amounts of CD4 and/or CCR5 for infection and potentially confer an expanded tropism for any cell types that express low CD4 and/or CCR5. In contrast to the brain-derived envelopes, we found that envelopes from lymph node tissue, blood, or semen were predominantly non-macrophage-tropic and required high amounts of CD4 for infection. Nevertheless, where tested, the non-macrophage-tropic envelopes conferred efficient replication in primary CD4(+) T-cell cultures. Determinants of R5 macrophage tropism appear to involve changes in the CD4 binding site, although further unknown determinants are also involved. The variation of R5 envelopes also affects their sensitivity to inhibition by ligands and entry inhibitors that target CD4 and CCR5. In summary, HIV-1 R5 viruses vary extensively in macrophage tropism. In the brain, highly macrophage-tropic variants may represent neurotropic or neurovirulent viruses. In addition, variation in R5 macrophage tropism may also have implications (1) for transmission, depending on what role macrophages or cells that express low CD4 and/or CCR5 play in the establishment of infection in a new host, and (2) for pathogenesis and depletion of CD4(+) T cells (i.e., do highly macrophage-tropic variants confer a broader tropism among CD4(+) T-cell populations late in disease and contribute to their depletion?).
Collapse
Affiliation(s)
- Paul J Peters
- Center for AIDS Research, Program in Molecular Medicine and Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 373 Plantation Street Biotech II Suite 315, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|