1
|
Bollimpelli VS, Reddy PBJ, Gangadhara S, Charles TP, Burton SL, Tharp GK, Styles TM, Labranche CC, Smith JC, Upadhyay AA, Sahoo A, Legere T, Shiferaw A, Velu V, Yu T, Tomai M, Vasilakos J, Kasturi SP, Shaw GM, Montefiori D, Bosinger SE, Kozlowski PA, Pulendran B, Derdeyn CA, Hunter E, Amara RR. Intradermal but not intramuscular modified vaccinia Ankara immunizations protect against intravaginal tier2 simian-human immunodeficiency virus challenges in female macaques. Nat Commun 2023; 14:4789. [PMID: 37553348 PMCID: PMC10409804 DOI: 10.1038/s41467-023-40430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Route of immunization can markedly influence the quality of immune response. Here, we show that intradermal (ID) but not intramuscular (IM) modified vaccinia Ankara (MVA) vaccinations provide protection from acquisition of intravaginal tier2 simian-human immunodeficiency virus (SHIV) challenges in female macaques. Both routes of vaccination induce comparable levels of serum IgG with neutralizing and non-neutralizing activities. The protection in MVA-ID group correlates positively with serum neutralizing and antibody-dependent phagocytic activities, and envelope-specific vaginal IgA; while the limited protection in MVA-IM group correlates only with serum neutralizing activity. MVA-ID immunizations induce greater germinal center Tfh and B cell responses, reduced the ratio of Th1 to Tfh cells in blood and showed lower activation of intermediate monocytes and inflammasome compared to MVA-IM immunizations. This lower innate activation correlates negatively with induction of Tfh responses. These data demonstrate that the MVA-ID vaccinations protect against intravaginal SHIV challenges by modulating the innate and T helper responses.
Collapse
Affiliation(s)
- Venkata S Bollimpelli
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Pradeep B J Reddy
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Tysheena P Charles
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Samantha L Burton
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Gregory K Tharp
- NHP Genomics Core Laboratory, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Tiffany M Styles
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Celia C Labranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Justin C Smith
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Amit A Upadhyay
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Traci Legere
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Ayalnesh Shiferaw
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Vijayakumar Velu
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Tianwei Yu
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Mark Tomai
- 3M Corporate Research and Materials Lab, Saint Paul, MN, USA
| | | | - Sudhir P Kasturi
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Steven E Bosinger
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Rama R Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Human Immunodeficiency Virus C.1086 Envelope gp140 Protein Boosts following DNA/Modified Vaccinia Virus Ankara Vaccination Fail To Enhance Heterologous Anti-V1V2 Antibody Response and Protection against Clade C Simian-Human Immunodeficiency Virus Challenge. J Virol 2019; 93:JVI.00934-19. [PMID: 31341049 DOI: 10.1128/jvi.00934-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
The RV144 human immunodeficiency virus type 1 (HIV-1) vaccine trial showed a strong association between anti-gp70 V1V2 scaffold (V1V2) and anti-V2 hot spot peptide (V2 HS) antibody responses and reduced risk of HIV infection. Accordingly, a primary goal for HIV vaccines is to enhance the magnitude and breadth of V1V2 and V2 HS antibody responses in addition to neutralizing antibodies. Here, we tested the immunogenicity and efficacy of HIV-1 C.1086 gp140 boosts administered sequentially after priming with CD40L-adjuvanted DNA/simian-human immunodeficiency virus (SHIV) and boosting with modified vaccinia virus Ankara (MVA)-SHIV vaccines in rhesus macaques. The DNA/MVA vaccination induced robust vaccine-specific CD4 and CD8 T cell responses with a polyfunctional profile. Two gp140 booster immunizations induced very high levels (∼2 mg/ml) of gp140 binding antibodies in serum, with strong reactivity directed against the homologous (C.1086) V1V2, V2 HS, V3, and gp41 immunodominant (ID) proteins. However, the vaccine-induced antibody showed 10-fold (peak) and 32-fold (prechallenge) weaker binding to the challenge virus (SHIV1157ipd3N4) V1V2 and failed to bind to the challenge virus V2 HS due to a single amino acid change. Point mutations in the immunogen V2 HS to match the V2 HS in the challenge virus significantly diminished the binding of vaccine-elicited antibodies to membrane-anchored gp160. Both vaccines failed to protect from infection following repeated SHIV1157ipd3N4 intrarectal challenges. However, only the protein-boosted animals showed enhanced viral control. These results demonstrate that C.1086 gp140 protein immunizations administered following DNA/MVA vaccination do not significantly boost heterologous V1V2 and V2 HS responses and fail to enhance protection against heterologous SHIV challenge.IMPORTANCE HIV, the virus that causes AIDS, is responsible for millions of infections and deaths annually. Despite intense research for the past 25 years, there remains no safe and effective vaccine available. The significance of this work is in identifying the pros and cons of adding a protein boost to an already well-established DNA/MVA HIV vaccine that is currently being tested in the clinic. Characterizing the effects of the protein boost can allow researchers going forward to design vaccines that generate responses that will be more effective against HIV. Our results in rhesus macaques show that boosting with a specific HIV envelope protein does not significantly boost antibody responses that were identified as immune correlates of protection in a moderately successful RV144 HIV vaccine trial in humans and highlight the need for the development of improved HIV envelope immunogens.
Collapse
|
3
|
Codon optimization and improved delivery/immunization regimen enhance the immune response against wild-type and drug-resistant HIV-1 reverse transcriptase, preserving its Th2-polarity. Sci Rep 2018; 8:8078. [PMID: 29799015 PMCID: PMC5967322 DOI: 10.1038/s41598-018-26281-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines require a considerable enhancement of immunogenicity. Here, we optimized a prototype DNA vaccine against drug-resistant HIV-1 based on a weak Th2-immunogen, HIV-1 reverse transcriptase (RT). We designed expression-optimized genes encoding inactivated wild-type and drug-resistant RTs (RT-DNAs) and introduced them into mice by intradermal injections followed by electroporation. RT-DNAs were administered as single or double primes with or without cyclic-di-GMP, or as a prime followed by boost with RT-DNA mixed with a luciferase-encoding plasmid (“surrogate challenge”). Repeated primes improved cellular responses and broadened epitope specificity. Addition of cyclic-di-GMP induced a transient increase in IFN-γ production. The strongest anti-RT immune response was achieved in a prime-boost protocol with electroporation by short 100V pulses done using penetrating electrodes. The RT-specific response, dominated by CD4+ T-cells, targeted epitopes at aa 199–220 and aa 528–543. Drug-resistance mutations disrupted the epitope at aa 205–220, while the CTL epitope at aa 202–210 was not affected. Overall, multiparametric optimization of RT strengthened its Th2- performance. A rapid loss of RT/luciferase-expressing cells in the surrogate challenge experiment revealed a lytic potential of anti-RT response. Such lytic CD4+ response would be beneficial for an HIV vaccine due to its comparative insensitivity to immune escape.
Collapse
|
4
|
Vzorov AN, Uryvaev LV. Requirements for the Induction of Broadly Neutralizing Antibodies against HIV-1 by Vaccination. Mol Biol 2017. [DOI: 10.1134/s0026893317060176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
HIV transmitted/founder vaccines elicit autologous tier 2 neutralizing antibodies for the CD4 binding site. PLoS One 2017; 12:e0177863. [PMID: 29020058 PMCID: PMC5636061 DOI: 10.1371/journal.pone.0177863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/04/2017] [Indexed: 01/16/2023] Open
Abstract
Here we report the construction, antigenicity and initial immunogenicity testing of DNA and modified vaccinia Ankara (MVA) vaccines expressing virus-like particles (VLPs) displaying sequential clade C Envelopes (Envs) that co-evolved with the elicitation of broadly neutralizing antibodies (bnAbs) to the CD4 binding site (CD4bs) in HIV-infected individual CH0505. The VLP-displayed Envs showed reactivity for conformational epitopes displayed on the receptor-binding form of Env. Two inoculations of the DNA-T/F vaccine, followed by 3 inoculations of the MVA-T/F vaccine and a final inoculation of the MVA-T/F plus a gp120-T/F protein vaccine elicited nAb to the T/F virus in 2 of 4 rhesus macaques (ID50 of ~175 and ~30). Neutralizing Ab plateaued at 100% neutralization and mapped to the CD4bs like the bnAbs elicited in CH0505. The nAb did not have breadth for other tier 2 viruses. Immunizations with T/F followed by directed-lineage vaccines, both with and without co-delivery of directed-lineage gp120 boosts, failed to elicit tier 2 neutralizing Ab for the CD4bs. Thus, pulsed exposures to DNA and MVA-expressed VLPs plus gp120 protein of a T/F Env can induce autologous tier 2 nAbs to the CD4bs.
Collapse
|
6
|
Chea LS, Amara RR. Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Rev Vaccines 2017; 16:973-985. [PMID: 28838267 DOI: 10.1080/14760584.2017.1371594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Despite 30 years of research on HIV, a vaccine to prevent infection and limit disease progression remains elusive. The RV144 trial showed moderate, but significant protection in humans and highlighted the contribution of antibody responses directed against HIV envelope as an important immune correlate for protection. Efforts to further build upon the progress include the use of a heterologous prime-boost regimen using DNA as the priming agent and the attenuated vaccinia virus, Modified Vaccinia Ankara (MVA), as a boosting vector for generating protective HIV-specific immunity. Areas covered: In this review, we summarize the immunogenicity of DNA/MVA vaccines in non-human primate models and describe the efficacy seen in SIV infection models. We discuss immunological correlates of protection determined by these studies and potential approaches for improving the protective immunity. Additionally, we describe the current progress of DNA/MVA vaccines in human trials. Expert commentary: Efforts over the past decade have provided the opportunity to better understand the dynamics of vaccine-induced immune responses and immune correlates of protection against HIV. Based on what we have learned, we outline multiple areas where the field will likely focus on in the next five years.
Collapse
Affiliation(s)
- Lynette Siv Chea
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| | - Rama Rao Amara
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| |
Collapse
|
7
|
Buchbinder SP, Grunenberg NA, Sanchez BJ, Seaton KE, Ferrari G, Moody MA, Frahm N, Montefiori DC, Hay CM, Goepfert PA, Baden LR, Robinson HL, Yu X, Gilbert PB, McElrath MJ, Huang Y, Tomaras GD. Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults. PLoS One 2017; 12:e0179597. [PMID: 28727817 PMCID: PMC5519050 DOI: 10.1371/journal.pone.0179597] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Methods Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. Results All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. Conclusion This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. Trial registration ClinicalTrials.gov NCT01571960
Collapse
Affiliation(s)
- Susan P. Buchbinder
- Bridge HIV, San Francisco Department of Public Health, San Francisco, California, United States of America
- Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
- * E-mail:
| | - Nicole A. Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brittany J. Sanchez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kelly E. Seaton
- Department of Surgery, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Department of Surgery, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - M. Anthony Moody
- Department of Surgery, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Christine M. Hay
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama, Birmingham, Alabama, United States of America
| | - Lindsey R. Baden
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | | | - Xuesong Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | | |
Collapse
|
8
|
Fusion to Flaviviral Leader Peptide Targets HIV-1 Reverse Transcriptase for Secretion and Reduces Its Enzymatic Activity and Ability to Induce Oxidative Stress but Has No Major Effects on Its Immunogenic Performance in DNA-Immunized Mice. J Immunol Res 2017; 2017:7407136. [PMID: 28717654 PMCID: PMC5498913 DOI: 10.1155/2017/7407136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/13/2017] [Indexed: 01/10/2023] Open
Abstract
Reverse transcriptase (RT) is a key enzyme in viral replication and susceptibility to ART and a crucial target of immunotherapy against drug-resistant HIV-1. RT induces oxidative stress which undermines the attempts to make it immunogenic. We hypothesized that artificial secretion may reduce the stress and make RT more immunogenic. Inactivated multidrug-resistant RT (RT1.14opt-in) was N-terminally fused to the signal providing secretion of NS1 protein of TBEV (Ld) generating optimized inactivated Ld-carrying enzyme RT1.14oil. Promotion of secretion prohibited proteasomal degradation increasing the half-life and content of RT1.14oil in cells and cell culture medium, drastically reduced the residual polymerase activity, and downmodulated oxidative stress. BALB/c mice were DNA-immunized with RT1.14opt-in or parental RT1.14oil by intradermal injections with electroporation. Fluorospot and ELISA tests revealed that RT1.14opt-in and RT1.14oil induced IFN-γ/IL-2, RT1.14opt-in induced granzyme B, and RT1.14oil induced perforin production. Perforin secretion correlated with coproduction of IFN-γ and IL-2 (R = 0,97). Both DNA immunogens induced strong anti-RT antibody response. Ld peptide was not immunogenic. Thus, Ld-driven secretion inferred little change to RT performance in DNA immunization. Positive outcome was the abrogation of polymerase activity increasing safety of RT-based DNA vaccines. Identification of the molecular determinants of low cellular immunogenicity of RT requires further studies.
Collapse
|
9
|
Thompson M, Heath SL, Sweeton B, Williams K, Cunningham P, Keele BF, Sen S, Palmer BE, Chomont N, Xu Y, Basu R, Hellerstein MS, Kwa S, Robinson HL. DNA/MVA Vaccination of HIV-1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re-Emergent Virus. PLoS One 2016; 11:e0163164. [PMID: 27711228 PMCID: PMC5053438 DOI: 10.1371/journal.pone.0163164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/14/2016] [Indexed: 12/01/2022] Open
Abstract
GV-TH-01, a Phase 1 open-label trial of a DNA prime—Modified Vaccinia Ankara (MVA) boost vaccine (GOVX-B11), was undertaken in HIV infected participants on antiretroviral treatment (ART) to evaluate safety and vaccine-elicited T cell responses, and explore the ability of elicited CD8+ T cells to control viral rebound during analytical treatment interruption (TI). Nine men who began antiretroviral therapy (ART) within 18 months of seroconversion and had sustained plasma HIV-1 RNA <50 copies/mL for at least 6 months were enrolled. Median age was 38 years, median pre-ART HIV-1 RNA was 140,000 copies/ml and mean baseline CD4 count was 755/μl. Two DNA, followed by 2 MVA, inoculations were given 8 weeks apart. Eight subjects completed all vaccinations and TI. Clinical and laboratory adverse events were generally mild, with no serious or grade 4 events. Only reactogenicity events were considered related to study drug. No treatment emergent viral resistance was seen. The vaccinations did not reduce viral reservoirs and virus re-emerged in all participants during TI, with a median time to re-emergence of 4 weeks. Eight of 9 participants had CD8+ T cells that could be stimulated by vaccine-matched Gag peptides prior to vaccination. Vaccinations boosted these responses as well as eliciting previously undetected CD8+ responses. Elicited T cells did not display signs of exhaustion. During TI, temporal patterns of viral re-emergence and Gag-specific CD8+ T cell expansion suggested that vaccine-specific CD8+ T cells had been stimulated by re-emergent virus in only 2 of 8 participants. In these 2, transient decreases in viremia were associated with Gag selection in known CD8+ T cell epitopes. We hypothesize that escape mutations, already archived in the viral reservoir, plus a poor ability of CD8+ T cells to traffic to and control virus at sites of re-emergence, limited the therapeutic efficacy of the DNA/MVA vaccine. TRIAL REGISTRATION clinicaltrials.gov NCT01378156.
Collapse
Affiliation(s)
- Melanie Thompson
- AIDS Research Consortium of Atlanta, Atlanta, Georgia, United States of America
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bentley Sweeton
- AIDS Research Consortium of Atlanta, Atlanta, Georgia, United States of America
| | - Kathy Williams
- AIDS Research Consortium of Atlanta, Atlanta, Georgia, United States of America
| | - Pamela Cunningham
- Alabama Vaccine Research Clinic, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sharon Sen
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Brent E. Palmer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Nicolas Chomont
- Centre de recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | - Yongxian Xu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rahul Basu
- GeoVax, Inc., Atlanta, Georgia, United States of America
| | | | - Suefen Kwa
- GeoVax, Inc., Atlanta, Georgia, United States of America
| | | |
Collapse
|
10
|
Chamcha V, Kannanganat S, Gangadhara S, Nabi R, Kozlowski PA, Montefiori DC, LaBranche CC, Wrammert J, Keele BF, Balachandran H, Sahu S, Lifton M, Santra S, Basu R, Moss B, Robinson HL, Amara RR. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infect Dis 2016; 3:ofw034. [PMID: 27006959 PMCID: PMC4800464 DOI: 10.1093/ofid/ofw034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 11/12/2022] Open
Abstract
Background. In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods. The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results. Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions. The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques.
Collapse
Affiliation(s)
| | - Sunil Kannanganat
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Sailaja Gangadhara
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Rafiq Nabi
- Department of Microbiology , Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans
| | - Pamela A Kozlowski
- Department of Microbiology , Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans
| | | | | | - Jens Wrammert
- Department of Pediatrics , Emory University School of Medicine , Atlanta, Georgia
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Maryland
| | | | - Sujata Sahu
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Michelle Lifton
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Sampa Santra
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | | | - Bernard Moss
- Laboratory of Viral Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | | | - Rama Rao Amara
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| |
Collapse
|
11
|
Iyer SS, Gangadhara S, Victor B, Gomez R, Basu R, Hong JJ, Labranche C, Montefiori DC, Villinger F, Moss B, Amara RR. Codelivery of Envelope Protein in Alum with MVA Vaccine Induces CXCR3-Biased CXCR5+ and CXCR5- CD4 T Cell Responses in Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2015; 195:994-1005. [PMID: 26116502 DOI: 10.4049/jimmunol.1500083] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022]
Abstract
The goal of an HIV vaccine is to generate robust and durable protective Ab. Vital to this goal is the induction of CD4(+) T follicular helper (TFH) cells. However, very little is known about the TFH response to HIV vaccination and its relative contribution to magnitude and quality of vaccine-elicited Ab titers. In this study, we investigated these questions in the context of a DNA/modified vaccinia virus Ankara SIV vaccine with and without gp140 boost in aluminum hydroxide in rhesus macaques. In addition, we determined the frequency of vaccine-induced CD4(+) T cells coexpressing chemokine receptor, CXCR5 (facilitates migration to B cell follicles) in blood and whether these responses were representative of lymph node TFH responses. We show that booster modified vaccinia virus Ankara immunization induced a distinct and transient accumulation of proliferating CXCR5(+) and CXCR5(-) CD4 T cells in blood at day 7 postimmunization, and the frequency of the former but not the latter correlated with TFH and B cell responses in germinal centers of the lymph node. Interestingly, gp140 boost induced a skewing toward CXCR3 expression on germinal center TFH cells, which was strongly associated with longevity, avidity, and neutralization potential of vaccine-elicited Ab response. However, CXCR3(+) cells preferentially expressed the HIV coreceptor CCR5, and vaccine-induced CXCR3(+)CXCR5(+) cells showed a moderate positive association with peak viremia following SIV251 infection. Taken together, our findings demonstrate that vaccine regimens that elicit CXCR3-biased TFH cell responses favor Ab persistence and avidity but may predispose to higher acute viremia in the event of breakthrough infections.
Collapse
Affiliation(s)
- Smita S Iyer
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Sailaja Gangadhara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Blandine Victor
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Rosy Gomez
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Rahul Basu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Jung Joo Hong
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | | | - Francois Villinger
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| |
Collapse
|
12
|
Goepfert PA, Elizaga ML, Seaton K, Tomaras GD, Montefiori DC, Sato A, Hural J, DeRosa SC, Kalams SA, McElrath MJ, Keefer MC, Baden LR, Lama JR, Sanchez J, Mulligan MJ, Buchbinder SP, Hammer SM, Koblin BA, Pensiero M, Butler C, Moss B, Robinson HL. Specificity and 6-month durability of immune responses induced by DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis 2014; 210:99-110. [PMID: 24403557 DOI: 10.1093/infdis/jiu003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Clade B DNA and recombinant modified vaccinia Ankara (MVA) vaccines producing virus-like particles displaying trimeric membrane-bound envelope glycoprotein (Env) were tested in a phase 2a trial in human immunodeficiency virus (HIV)-uninfected adults for safety, immunogenicity, and 6-month durability of immune responses. METHODS A total of 299 individuals received 2 doses of JS7 DNA vaccine and 2 doses of MVA/HIV62B at 0, 2, 4, and 6 months, respectively (the DDMM regimen); 3 doses of MVA/HIV62B at 0, 2, and 6 months (the MMM regimen); or placebo injections. RESULTS At peak response, 93.2% of the DDMM group and 98.4% of the MMM group had binding antibodies for Env. These binding antibodies were more frequent and of higher magnitude for the transmembrane subunit (gp41) than the receptor-binding subunit (gp120) of Env. For both regimens, response rates were higher for CD4(+) T cells (66.4% in the DDMM group and 43.1% in the MMM group) than for CD8(+) T cells (21.8% in the DDMM group and 14.9% in the MMM group). Responding CD4(+) and CD8(+) T cells were biased toward Gag, and >70% produced 2 or 3 of the 4 cytokines evaluated (ie, interferon γ, interleukin 2, tumor necrosis factor α, and granzyme B). Six months after vaccination, the magnitudes of antibodies and T-cell responses had decreased by <3-fold. CONCLUSIONS DDMM and MMM vaccinations with virus-like particle-expressing immunogens elicited durable antibody and T-cell responses.
Collapse
Affiliation(s)
| | - Marnie L Elizaga
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Kelly Seaton
- Laboratory for AIDS Vaccine Research and Development, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Georgia D Tomaras
- Laboratory for AIDS Vaccine Research and Development, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - David C Montefiori
- Laboratory for AIDS Vaccine Research and Development, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Alicia Sato
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Stephen C DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center University of Washington, Seattle, Washington
| | - Spyros A Kalams
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center University of Washington, Seattle, Washington
| | - Michael C Keefer
- University of Rochester School of Medicine and Dentistry, Rochester
| | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Javier R Lama
- Asociacion Civil IMPACTA Salud y Educacion, Lima, Peru
| | - Jorge Sanchez
- Asociacion Civil IMPACTA Salud y Educacion, Lima, Peru
| | | | | | | | | | | | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
13
|
Isaguliants M, Smirnova O, Ivanov AV, Kilpelainen A, Kuzmenko Y, Petkov S, Latanova A, Krotova O, Engström G, Karpov V, Kochetkov S, Wahren B, Starodubova E. Oxidative stress induced by HIV-1 reverse transcriptase modulates the enzyme's performance in gene immunization. Hum Vaccin Immunother 2013; 9:2111-9. [PMID: 23881028 DOI: 10.4161/hv.25813] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED HIV-1 infection induces chronic oxidative stress. The resultant neurotoxicity has been associated with Tat protein. Here, we for the first time describe the induction of oxidative stress by another HIV-1 protein, reverse transcriptase (RT). Expression of HIV-1 RT in human embryonic kidney cells generated potent production of the reactive oxygen species (ROS), detected by the fluorescence-based probes. Quantitative RT-PCR demonstrated that expression of RT in HEK293 cells induced a 10- to 15-fold increased transcription of the phase II detoxifying enzymes human NAD(P)H quinone oxidoreductase (Nqo1) and heme oxygenase 1 (HO-1), indicating the induction of oxidative stress response. The capacity to induce oxidative stress and stress response appeared to be an intrinsic property of a vast variety of RTs: enzymatically active and inactivated, bearing mutations of drug resistance, following different routes of processing and presentation, expressed from viral or synthetic expression-optimized genes. The total ROS production induced by RT genes of the viral origin was found to be lower than that induced by the synthetic/expression-optimized or chimeric RT genes. However, the viral RT genes induced higher levels of ROS production and higher levels of HO-1 mRNA than the synthetic genes per unit of protein in the expressing cell. The capacity of RT genes to induce the oxidative stress and stress response was then correlated with their immunogenic performance. For this, RT genes were administered into BALB/c mice by intradermal injections followed by electroporation. Splenocytes of immunized mice were stimulated with the RT-derived and control antigens and antigen-specific proliferation was assessed by IFN-γ/IL-2 Fluorospot. RT variants generating high total ROS levels induced significantly stronger IFN-γ responses than the variants inducing lower total ROS, while high levels of ROS normalized per unit of protein in expressing cell were associated with a weak IFN-γ response. Poor gene immunogenicity was also associated with a high (per unit of protein) transcription of antioxidant response element (ARE) dependent phase II detoxifying enzyme genes, specifically HO-1. Thus, we have revealed a direct link between the propensity of the microbial proteins to induce oxidative stress and their immunogenicity.
Collapse
Affiliation(s)
- Maria Isaguliants
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden; DI Ivanovsky Institute of Virology; Moscow, Russia
| | - Olga Smirnova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Athina Kilpelainen
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Yulia Kuzmenko
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Stefan Petkov
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Anastasia Latanova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Olga Krotova
- DI Ivanovsky Institute of Virology; Moscow, Russia; Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Gunnel Engström
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Britta Wahren
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Elizaveta Starodubova
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden; Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
14
|
Mehendale S, Thakar M, Sahay S, Kumar M, Shete A, Sathyamurthi P, Verma A, Kurle S, Shrotri A, Gilmour J, Goyal R, Dally L, Sayeed E, Zachariah D, Ackland J, Kochhar S, Cox JH, Excler JL, Kumaraswami V, Paranjape R, Ramanathan VD. Safety and immunogenicity of DNA and MVA HIV-1 subtype C vaccine prime-boost regimens: a phase I randomised Trial in HIV-uninfected Indian volunteers. PLoS One 2013; 8:e55831. [PMID: 23418465 PMCID: PMC3572184 DOI: 10.1371/journal.pone.0055831] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022] Open
Abstract
Study Design A randomized, double-blind, placebo controlled phase I trial. Methods The trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of prime-boost vaccination regimens with either 2 doses of ADVAX, a DNA vaccine containing Chinese HIV-1 subtype C env gp160, gag, pol and nef/tat genes, as a prime and 2 doses of TBC-M4, a recombinant MVA encoding Indian HIV-1 subtype C env gp160, gag, RT, rev, tat, and nef genes, as a boost in Group A or 3 doses of TBC-M4 alone in Group B participants. Out of 16 participants in each group, 12 received vaccine candidates and 4 received placebos. Results Both vaccine regimens were found to be generally safe and well tolerated. The breadth of anti-HIV binding antibodies and the titres of anti-HIV neutralizing antibodies were significantly higher (p<0.05) in Group B volunteers at 14 days post last vaccination. Neutralizing antibodies were detected mainly against Tier-1 subtype B and C viruses. HIV-specific IFN-γ ELISPOT responses were directed mostly to Env and Gag proteins. Although the IFN-γ ELISPOT responses were infrequent after ADVAX vaccinations, the response rate was significantly higher in group A after 1st and 2nd MVA doses as compared to the responses in group B volunteers. However, the priming effect was short lasting leading to no difference in the frequency, breadth and magnitude of IFN-γELISPOT responses between the groups at 3, 6 and 9 months post-last vaccination. Conclusions Although DNA priming resulted in enhancement of immune responses after 1st MVA boosting, the overall DNA prime MVA boost was not found to be immunologically superior to homologous MVA boosting. Trial Registration Clinical Trial Registry CTRI/2009/091/000051
Collapse
|
15
|
Hellerstein M, Xu Y, Marino T, Lu S, Yi H, Wright ER, Robinson HL. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine. Hum Vaccin Immunother 2012; 8:1654-8. [PMID: 23111169 PMCID: PMC3601140 DOI: 10.4161/hv.21978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection.
Collapse
|
16
|
Goepfert PA, Elizaga ML, Sato A, Qin L, Cardinali M, Hay CM, Hural J, DeRosa SC, DeFawe OD, Tomaras GD, Montefiori DC, Xu Y, Lai L, Kalams SA, Baden LR, Frey SE, Blattner WA, Wyatt LS, Moss B, Robinson HL. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis 2011; 203:610-9. [PMID: 21282192 DOI: 10.1093/infdis/jiq105] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recombinant DNA and modified vaccinia virus Ankara (rMVA) vaccines represent a promising approach to an HIV/AIDS vaccine. This Phase 1 clinical trial compared the safety and immunogenicity of a rMVA vaccine administered with and without DNA vaccine priming METHODS GeoVax pGA2/JS7 DNA (D) and MVA/HIV62 (M) vaccines encode noninfectious virus-like particles. Intramuscular needle injections were used to deliver placebo, 2 doses of DNA followed by 2 doses of rMVA (DDMM), one dose of DNA followed by 2 doses of rMVA (DMM), or 3 doses of rMVA (MMM) to HIV-seronegative participants. RESULTS Local and systemic symptoms were mild or moderate. Immune response rates for CD4 + and CD8 + T cells were highest in the DDMM group and lowest in the MMM group (77% vs 43% CD4 + and 42% vs 17% CD8 +). In contrast, response rates for Env binding and neutralizing Ab were highest in the MMM group. The DMM group had intermediate response rates. A 1/10th-dose DDMM regimen induced similar T cell but reduced Ab response rates compared with the full-dose DDMM. CONCLUSIONS MVA62 was well tolerated and elicited different patterns of T cell and Ab responses when administered alone or in combination with the JS7 DNA vaccine.
Collapse
Affiliation(s)
- Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kannanganat S, Nigam P, Velu V, Earl PL, Lai L, Chennareddi L, Lawson B, Wilson RL, Montefiori DC, Kozlowski PA, Moss B, Robinson HL, Amara RR. Preexisting vaccinia virus immunity decreases SIV-specific cellular immunity but does not diminish humoral immunity and efficacy of a DNA/MVA vaccine. THE JOURNAL OF IMMUNOLOGY 2010; 185:7262-73. [PMID: 21076059 DOI: 10.4049/jimmunol.1000751] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The influence of preexisting immunity to viral vectors is a major issue for the development of viral-vectored vaccines. In this study, we investigate the effect of preexisting vaccinia virus immunity on the immunogenicity and efficacy of a DNA/modified vaccinia Ankara (MVA) SIV vaccine in rhesus macaques using a pathogenic intrarectal SIV251 challenge. Preexisting immunity decreased SIV-specific CD8 and CD4 T cell responses but preserved the SIV-specific humoral immunity. In addition, preexisting immunity did not diminish the control of an SIV challenge mediated by the DNA/MVA vaccine. The peak and set point viremia was 150- and 17-fold lower, respectively, in preimmune animals compared with those of control animals. The peak and set point viremia correlated directly with colorectal virus at 2 wk postchallenge suggesting that early control of virus replication at the site of viral challenge was critical for viral control. Factors that correlated with early colorectal viral control included 1) the presence of anti-SIV IgA in rectal secretions, 2) high-avidity binding Ab for the native form of Env, and 3) low magnitude of vaccine-elicited SIV-specific CD4 T cells displaying the CCR5 viral coreceptor. The frequency of SIV-specific CD8 T cells in blood and colorectal tissue at 2 wk postchallenge did not correlate with early colorectal viral control. These results suggest that preexisting vaccinia virus immunity may not limit the potential of recombinant MVA vaccines to elicit humoral immunity and highlight the importance of immunodeficiency virus vaccines achieving early control at the mucosal sites of challenge.
Collapse
Affiliation(s)
- Sunil Kannanganat
- Department of Microbiology and Immunology, Vaccine Research Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ongkudon CM, Ho J, Danquah MK. Mitigating the looming vaccine crisis: production and delivery of plasmid-based vaccines. Crit Rev Biotechnol 2010; 31:32-52. [DOI: 10.3109/07388551.2010.483460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Abstract
DNA-based vaccines to induce antigen-specific inhibition of immune responses in human autoimmune diseases represent the inverse of what Jenner intended when he invented vaccination. Jenner's vaccine induced antigen-specific immunity to small pox. DNA vaccines for autoimmunity have been developed in preclinical settings, and now tested in human trials. The first two clinical trials, one in relapsing remitting multiple sclerosis, and the other in type 1 diabetes indicate that specific inhibition of antigen-specific antibody and T-cell responses is attainable in humans. Further development of this approach is ongoing. This new version of immunization termed 'inverse vaccination' when applied to autoimmune diseases, may allow targeted reduction of unwanted antibody and T-cell responses to autoantigens, while leaving the remainder of the immune system intact. The method of specifically reducing a pathological adaptive autoimmune response is termed inverse vaccination.
Collapse
Affiliation(s)
- L Steinman
- Department of Neurology and Neurological Science, Interdepartmental Program in Immunology, Stanford University, Stanford, CA94305, USA.
| |
Collapse
|
20
|
Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, Branum K, Lockey TD, Howlett N, Freiden P, Flynn P, Hurwitz JL. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials. Viruses 2010; 2:435-467. [PMID: 20407589 PMCID: PMC2855973 DOI: 10.3390/v2020435] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 12/21/2022] Open
Abstract
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of `original antigenic sin' is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.
Collapse
Affiliation(s)
- Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Karen S. Slobod
- Early Development, Novartis Vaccines and Diagnostics, 350 Mass Ave. Cambridge, MA 02139, USA; E-Mail: (K.S.S.)
| | - Kristen Branum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Timothy D. Lockey
- Department of Therapeutics, Production and Quality, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (T.D.L.)
| | - Nanna Howlett
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Patricia Flynn
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pediatrics, University of Tennessee, Memphis, TN 38163, USA
| | - Julia L. Hurwitz
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pathology, University of Tennessee, Memphis, TN 38163, USA
| |
Collapse
|
21
|
Ramanathan VD, Kumar M, Mahalingam J, Sathyamoorthy P, Narayanan PR, Solomon S, Panicali D, Chakrabarty S, Cox J, Sayeed E, Ackland J, Verlinde C, Vooijs D, Loughran K, Barin B, Lombardo A, Gilmour J, Stevens G, Smith MS, Tarragona-Fiol T, Hayes P, Kochhar S, Excler JL, Fast P. A Phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C-modified vaccinia Ankara virus vaccine candidate in Indian volunteers. AIDS Res Hum Retroviruses 2009; 25:1107-16. [PMID: 19943789 DOI: 10.1089/aid.2009.0096] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recombinant modified vaccinia Ankara virus vaccine candidate (TBC-M4) expressing HIV-1 subtype C env, gag, tat-rev, and nef-RT genes was tested in a randomized, double-blind, dose escalation Phase I trial in 32 HIV-uninfected healthy volunteers who received three intramuscular injections of TBC-M4 at 0, 1, and 6 months of 5 x 10(7) plaque-forming units (pfu) (low dosage, LD) (n = 12) or 2.5 x 10(8) pfu (high dosage, HD) (n = 12) or placebo (n = 8). Local and systemic reactogenicity was experienced by approximately 67% and 83% of vaccine recipients, respectively. The reactogenicity events were mostly mild in severity. Severe but transient systemic reactogenicity was seen in one volunteer of the HD group. No vaccine-related serious adverse events or events suggesting perimyocarditis were seen. A higher frequency of local reactogenicity events was observed in the HD group. Cumulative HIV-specific IFN-gamma ELISPOT responses were detected in frozen PBMCs from 9/11 (82%), 12/12 (100%), and 1/8 (13%) volunteers after the third injection of the LD, HD, and placebo groups, respectively. Most of the responses were to gag and env proteins (maximum of 430 SFU/10(6) PBMCs) persisting across multiple time points. HIV-specific ELISA antibody responses were detected in 10/11, 12/12, and 0/8 volunteers post-third vaccination, in the LD, HD, and placebo groups, respectively. No neutralizing activity against HIV-1 subtype C isolates was detected. TBC-M4 appears to be generally safe and well-tolerated. The immune response detected was dose dependent, modest in magnitude, and directed mostly to env and gag proteins, suggesting further evaluation of this vaccine in a prime-boost regimen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Josephine Cox
- International AIDS Vaccine Initiative, New York, New York 10038
| | - Eddy Sayeed
- International AIDS Vaccine Initiative, New York, New York 10038
| | - James Ackland
- International AIDS Vaccine Initiative, New York, New York 10038
| | - Carl Verlinde
- International AIDS Vaccine Initiative, New York, New York 10038
| | - Dani Vooijs
- International AIDS Vaccine Initiative, New York, New York 10038
| | | | - Burc Barin
- EMMES Corporation, Rockville Maryland 20850
| | - Angela Lombardo
- International AIDS Vaccine Initiative, New York, New York 10038
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| | | | | | | | | | | | | | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York 10038
| |
Collapse
|
22
|
Kim JH, Skountzou I, Compans R, Jacob J. Original antigenic sin responses to influenza viruses. THE JOURNAL OF IMMUNOLOGY 2009; 183:3294-301. [PMID: 19648276 DOI: 10.4049/jimmunol.0900398] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.
Collapse
Affiliation(s)
- Jin Hyang Kim
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
23
|
Gudmundsdotter L, Nilsson C, Brave A, Hejdeman B, Earl P, Moss B, Robb M, Cox J, Michael N, Marovich M, Biberfeld G, Sandström E, Wahren B. Recombinant Modified Vaccinia Ankara (MVA) effectively boosts DNA-primed HIV-specific immune responses in humans despite pre-existing vaccinia immunity. Vaccine 2009; 27:4468-74. [PMID: 19450644 DOI: 10.1016/j.vaccine.2009.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 04/27/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
The presence of vector-specific immune responses may hamper the induction of responses to a foreign antigen encoded by the vector. We evaluated the impact of pre-existing immunity to vaccinia virus on the induction of HIV-specific responses after immunization of healthy volunteers with a HIV-1 DNA prime-MVA boost vaccine. Following three priming immunizations with HIV-1 DNA plasmids, the volunteers were boosted with a single injection of recombinant MVA encoding HIV-1 proteins. Pre-existing immunity to vaccinia virus did not reduce the proportion of individuals who responded to HIV-1, but did lower the magnitude of responses. Our results suggest that vaccinia-based vectors can be used to efficiently induce immune responses to vectored HIV-1 antigens, even in individuals with pre-existing immunity to vaccinia virus.
Collapse
Affiliation(s)
- Lindvi Gudmundsdotter
- Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Elucidating and minimizing the loss by recombinant vaccinia virus of human immunodeficiency virus gene expression resulting from spontaneous mutations and positive selection. J Virol 2009; 83:7176-84. [PMID: 19420086 DOI: 10.1128/jvi.00687-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
While characterizing modified vaccinia virus recombinants (rMVAs) containing human immunodeficiency virus env and gag-pol genes, we detected nonexpressing mutants by immunostaining individual plaques. In many cases, the numbers of mutants increased during successive passages, indicating strong selection pressure. This phenomenon provided an opportunity to investigate the formation of spontaneous mutations in vaccinia virus, which encodes its own cytoplasmic replication system, and a challenge to reduce the occurrence of mutations for vaccine production. Analysis of virus from individual plaques indicated that loss of expression was due to frameshift mutations, mostly by addition or deletion of a single nucleotide in runs of four to six Gs or Cs, and large deletions that included MVA DNA flanking the recombinant gene. Interruption of the runs of Gs and Cs by silent codon alterations and moving the recombinant gene to a site between essential, highly conserved MVA genes eliminated or reduced frameshifts and viable deletion mutants, respectively. The rapidity at which nonexpressing mutants accumulated depended on the individual env and gag-pol genes and their suppressive effects on virus replication. Both the extracellular and transmembrane domains contributed to the selection of nonexpressing Env mutants. Stability of an unstable Env was improved by swapping external or transmembrane domains with a more stable Env. Most dramatically, removal of the transmembrane and cytoplasmic domains stabilized even the most highly unstable Env. Understanding the causes of instability and taking preemptive actions will facilitate the development of rMVA and other poxviruses as human and veterinary recombinant vaccines.
Collapse
|
25
|
Zhao J, Lai L, Amara RR, Montefiori DC, Villinger F, Chennareddi L, Wyatt LS, Moss B, Robinson HL. Preclinical studies of human immunodeficiency virus/AIDS vaccines: inverse correlation between avidity of anti-Env antibodies and peak postchallenge viremia. J Virol 2009; 83:4102-11. [PMID: 19224993 PMCID: PMC2668498 DOI: 10.1128/jvi.02173-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/07/2009] [Indexed: 11/20/2022] Open
Abstract
A major challenge for human immunodeficiency virus (HIV)/AIDS vaccines is the elicitation of anti-Env antibodies (Ab) capable of neutralizing the diversity of isolates in the pandemic. Here, we show that high-avidity, but nonneutralizing, Abs can have an inverse correlation with peak postchallenge viremia for a heterologous challenge. Vaccine studies were conducted in rhesus macaques using DNA priming followed by modified vaccinia Ankara boosting with HIV type 1 (HIV-1) immunogens that express virus-like particles displaying CCR5-tropic clade B (strain ADA) or clade C (IN98012) Envs. Rhesus granulocyte-macrophage colony-stimulating factor was used as an adjuvant for enhancing the avidity of anti-Env Ab responses. Challenge was with simian/human immunodeficiency virus (SHIV)-162P3, a CCR5-tropic clade B chimera of SIV and HIV-1. Within the groups receiving the clade B vaccine, a strong inverse correlation was found between the avidity of anti-Env Abs and peak postchallenge viremia. This correlation required the use of native but not gp120 or gp140 forms of Env for avidity assays. The high-avidity Ab elicited by the ADA Env had excellent breadth for the Envs of incident clade B but not clade C isolates, whereas the high-avidity Ab elicited by the IN98012 Env had excellent breadth for incident clade C but not clade B isolates. High-avidity Ab elicited by a SHIV vaccine with a dual-tropic clade B Env (89.6) had limited breadth for incident isolates. Our results suggest that certain Envs can elicit nonneutralizing but high-avidity Ab with broad potential for blunting incident infections of the same clade.
Collapse
Affiliation(s)
- Jun Zhao
- Emory Vaccine Center, Atlanta, Georgia 30329, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Design, construction, and characterization of a multigenic modified vaccinia Ankara candidate vaccine against human immunodeficiency virus type 1 subtype C/B'. J Acquir Immune Defic Syndr 2008; 47:412-21. [PMID: 18209682 DOI: 10.1097/qai.0b013e3181651bb2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The rapid spread of HIV-1 underscores the urgent need to develop an effective vaccine. Using modified vaccinia Ankara (MVA) as a vector, we designed and constructed a multigenic candidate vaccine against a recombinant C/B' subtype of HIV-1 that is dominant in southwest China. Five HIV-1 genes (gag, pol, DeltaV2env, tat, and nef) were introduced into 2 separate regions of the MVA genome using modified single- and dual-promoter insertion vectors. Recombinant MVA was selected by immunofluorescence double-staining and foci purification. The end product is a single recombinant MVA, termed ADMVA, that expresses HIV-1 DeltaV2Env and fusion proteins Gag-Pol and Nef-Tat. By in vitro analyses, all expected HIV-1 proteins were expressed in infected chicken embryo fibroblasts and various human cell lines. Additionally, 2 sequential intramuscular injections of 10(6) 50% tissue infectious culture dose (TCID50) of ADMVA into BALB/c and B6 x B10 mice elicited broad cell-mediated immune responses against all 5 viral proteins as determined by interferon-gamma enzyme immunospot assays. The number of spot-forming cells was in the range of 200 to 800 per million splenocytes, and both CD4 and CD8 T-cell responses were detected. Moreover, high serum titers (>1:20,000) of antibodies against HIV-1 gp120 were also elicited. The magnitude of immune responses correlated with the dose of ADMVA, and the vaccine caused no overt adverse consequences, up to 10(7) TCID50 per injection. ADMVA has since been advanced into clinical trials. A phase 1 study has been completed, and a prime-boost with ADVAX (see accompanying article) is now underway.
Collapse
|
27
|
Schoenly KA, Weiner DB. Human immunodeficiency virus type 1 vaccine development: recent advances in the cytotoxic T-lymphocyte platform "spotty business". J Virol 2008; 82:3166-80. [PMID: 17989174 PMCID: PMC2268479 DOI: 10.1128/jvi.01634-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kimberly A Schoenly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
28
|
Burgers WA, Shephard E, Monroe JE, Greenhalgh T, Binder A, Hurter E, Van Harmelen JH, Williamson C, Williamson AL. Construction, characterization, and immunogenicity of a multigene modified vaccinia Ankara (MVA) vaccine based on HIV type 1 subtype C. AIDS Res Hum Retroviruses 2008; 24:195-206. [PMID: 18240957 DOI: 10.1089/aid.2007.0205] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Candidate vaccines composed of a DNA construct to prime the immune system, followed by modified vaccinia Ankara (MVA) containing matching genes as a booster vaccination, have produced encouraging immune responses in human volunteers. This study presents the detailed construction and characterization of a recombinant MVA that will be tested in combination with a DNA vaccine in Phase I clinical trials in South Africa and the United States. To match recently transmitted viruses in the southern African region and to maximize epitope coverage, the vaccines were constructed to contain five HIV-1 subtype C genes, namely gag, reverse transcriptase, tat, and nef (grttn), expressed as a polyprotein, and a truncated env (gp150). An initial recombinant MVA construct containing wild-type env was found to be genetically unstable, and thus a human codon-optimized gene was used. Grttn and gp150 were inserted into two different sites in MVA yielding a double recombinant, SAAVI MVA-C. The recombinant MVA was shown to be genetically stable and high level expression of the transgenes was observed. Env retained infectivity in a functional infectivity assay despite a point mutation that arose during virus generation. Mice inoculated with SAAVI MVA-C at various doses developed high levels of Gag, RT, and Env-specific CD8(+) and CD4(+) T cells, and some of these responses could be boosted by a second inoculation. An accompanying paper describes the immunogenicity of SAAVI MVA-C when given in combination with SAAVI DNA-C.
Collapse
Affiliation(s)
- Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Enid Shephard
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- MRC/UCT Liver Research Centre, University of Cape Town, Cape Town, South Africa
| | | | | | - Anke Binder
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Etienne Hurter
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Joanne H. Van Harmelen
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
29
|
Shephard E, Burgers WA, Van Harmelen JH, Monroe JE, Greenhalgh T, Williamson C, Williamson AL. A multigene HIV type 1 subtype C modified vaccinia Ankara (MVA) vaccine efficiently boosts immune responses to a DNA vaccine in mice. AIDS Res Hum Retroviruses 2008; 24:207-17. [PMID: 18240963 DOI: 10.1089/aid.2007.0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Heterologous prime-boost vaccine strategies have generated high frequencies of antigen-specific T cells in preclinical and clinical trials of candidate HIV vaccines. We have developed a DNA (SAAVI DNA-C) and MVA (SAAVI MVA-C) vaccine based on HIV-1 subtype C for testing in clinical trials. Both vaccines contain five subtype C genes: gag, reverse transcriptase, tat, and nef, expressed as a polyprotein, and a truncated env (gp150). The individual vaccines induced CD8(+) and CD4(+) T cells specific for the vaccine-expressed antigens in BALB/c mice. Combining the vaccines in a DNA prime and MVA boost regimen increased the cumulative peptide response compared to the DNA vaccine alone 10-fold, to over 6000 SFU/10(6) splenocytes in the IFN-gamma ELISPOT assay. Th1 cytokine IFN-gamma and TNF-alpha levels from HIV-specific CD8(+) and CD4(+) T cells increased 20- and 8-fold, respectively, with a SAAVI MVA-C boost. Effector and effector memory RT- and Env-specific memory CD8(+) T cell subsets were boosted after MVA immunization, and over time the cells returned to an intermediate memory phenotype similar to that prior to the boost. Immunization of guinea pigs with the DNA-MVA combination induced high titers of antibodies to gp120, although neutralizing activity was weak or absent. The demonstration that these vaccines induce potent cellular immune responses merits their testing in clinical trials.
Collapse
Affiliation(s)
- Enid Shephard
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- MRC/UCT Liver Research Centre, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Joanne H. Van Harmelen
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
30
|
Correlation of immunogenicities and in vitro expression levels of recombinant modified vaccinia virus Ankara HIV vaccines. Vaccine 2007; 26:486-93. [PMID: 18155813 DOI: 10.1016/j.vaccine.2007.11.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/05/2007] [Accepted: 11/15/2007] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to correlate the in vitro level of HIV Env expression by recombinant modified vaccinia virus Ankara (rMVA) with immunogenicity in mice. A 5-fold difference in Env synthesis was achieved at the translational level by the presence or absence of an out-of-frame initiation codon upstream of the env gene. This perturbation had no effect on the size or processing of Env. In contrast to the variation in Env synthesis, the rMVAs produced similar amounts of HIV Gag, which were expressed from identical cassettes. Mice immunized with the higher Env expressing rMVAs had about 15-fold higher titers of Env antibodies and several fold higher frequencies of Env-specific CD8+ and CD4+ T cells than mice immunized with the low expresser. The greater immune response achieved by high expression was maintained over a 100-fold dose range. Importantly, enhanced Env immune responses did not come at the expense of lower Gag T cell responses. These data suggest that for high immunogenicity, rMVAs should be engineered to produce the most recombinant protein that can be achieved without compromising the growth and stability of the rMVA.
Collapse
|
31
|
Berry N, Stebbings R, Brown S, Christian P, Thorstensson R, Ahmed RK, Davis L, Ferguson D, D'Arcy N, Elsley W, Hull R, Lines J, Wade-Evans A, Stott J, Almond N. Immunological responses and viral modulatory effects of vaccination with recombinant modified vaccinia virus Ankara (rMVA) expressing structural and regulatory transgenes of simian immunodeficiency virus (SIVmac32H/J5M). J Med Primatol 2007; 36:80-94. [PMID: 17493138 DOI: 10.1111/j.1600-0684.2007.00216.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The immunogenicity and protective efficacy of recombinant modified vaccinia virus Ankara (rMVA) vectors expressing structural (gag/pol, env) and regulatory (tat, rev, nef) genes of SIVmac251/32H-J5 (rMVA-J5) were assessed. METHODS Immunization with rMVA constructs (2.5 x 10(7) IU) 32, 20 and 8 weeks pre-challenge was compared with 32 and 20 weeks but with a final boost 8 weeks pre-challenge with 2 x 10(6) fixed-inactivated HSC-F4 cells infected with SIVmac32H. Controls received rMVA vectors expressing an irrelevant transgene or were naïve challenge controls. All received 10 MID(50) SIVmac32H/J5 intravenously. RESULTS Vaccinates immunized with rMVA-J5 exhibited significant, albeit transient, control of peak primary viraemia despite inconsistent and variable immune responses elicted by vaccination. Humoral and cellular responses to Env were most consistent, with lower responses to Nef, Rev and Tat. Increasing titres of anti-vaccinia neutralizing antibodies reflected the number and dose of rMVA inoculations. CONCLUSIONS Improved combinations of viral vectors are required to elicit appropriate immune responses to control viral replication.
Collapse
Affiliation(s)
- N Berry
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nigam P, Earl PL, Americo JL, Sharma S, Wyatt LS, Edghill-Spano Y, Chennareddi LS, Silvera P, Moss B, Robinson HL, Amara RR. DNA/MVA HIV-1/AIDS vaccine elicits long-lived vaccinia virus-specific immunity and confers protection against a lethal monkeypox challenge. Virology 2007; 366:73-83. [PMID: 17507071 PMCID: PMC2072046 DOI: 10.1016/j.virol.2007.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/05/2007] [Accepted: 04/09/2007] [Indexed: 11/17/2022]
Abstract
Modified vaccinia Ankara (MVA) is being tested in humans as an alternative to the current smallpox vaccine Dryvax. Here, we compare the magnitude and longevity of protective immune responses elicited by a DNA/MVA HIV-1 vaccine with those elicited by Dryvax using a monkeypox virus/macaque model. The DNA/MVA vaccine elicited similar levels of vaccinia virus (VV)-specific antibody and 5-10-fold lower levels of VV-specific cellular responses than Dryvax. This MVA-elicited cellular and humoral immunity was long-lived. A subset of the DNA/MVA- and Dryvax-vaccinated macaques were subjected to a lethal monkeypox virus challenge at 3 years after vaccination. All of the vaccinated monkeys survived, whereas the unvaccinated controls succumbed to monkeypox. The viral control correlated with early postchallenge levels of monkeypox-specific neutralizing antibody but not with VV-specific cellular immune response. Thus, our results demonstrate the elicitation of long lasting protective immunity for a lethal monkeypox challenge by a DNA/MVA HIV-1 vaccine.
Collapse
Affiliation(s)
- Pragati Nigam
- Emory Vaccine Center, Department of Microbiology and Immunology, and Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, NE, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Demberg T, Florese RH, Heath MJ, Larsen K, Kalisz I, Kalyanaraman VS, Lee EM, Pal R, Venzon D, Grant R, Patterson LJ, Korioth-Schmitz B, Buzby A, Dombagoda D, Montefiori DC, Letvin NL, Cafaro A, Ensoli B, Robert-Guroff M. A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol 2007; 81:3414-27. [PMID: 17229693 PMCID: PMC1866031 DOI: 10.1128/jvi.02453-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute/NIH, 41 Medlars Drive, Building 41, Bethesda, MD 20892-5065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Young KR, McBurney SP, Karkhanis LU, Ross TM. Virus-like particles: designing an effective AIDS vaccine. Methods 2007; 40:98-117. [PMID: 16997718 DOI: 10.1016/j.ymeth.2006.05.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 05/05/2006] [Indexed: 01/10/2023] Open
Abstract
Viruses that infect eukaryotic organisms have the unique characteristic of self-assembling into particles. The mammalian immune system is highly attuned to recognizing and attacking these viral particles following infection. The use of particle-based immunogens, often delivered as live-attenuated viruses, has been an effective vaccination strategy for a variety of viruses. The development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge, since HIV infects cells of the immune system causing severe immunodeficiency resulting in the syndrome known as AIDS. In addition, the ability of the virus to adapt to immune pressure and reside in an integrated form in host cells presents hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes against different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immune responses. However, while these vaccines stimulate immunity, challenged animals rarely clear the viral infection and the degree of attenuation directly correlates with protection from disease. Further, a live-attenuated vaccine has the potential to revert to a pathogenic form. Alternatively, virus-like particles (VLPs) mimic the viral particle without causing an immunodeficiency disease. VLPs are self-assembling, non-replicating, non-pathogenic particles that are similar in size and conformation to intact virions. A variety of VLPs for lentiviruses are currently in preclinical and clinical trials. This review focuses on our current status of VLP-based AIDS vaccines, regarding issues of purification and immune design for animal and clinical trials.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | |
Collapse
|
35
|
Peters BS, Jaoko W, Vardas E, Panayotakopoulos G, Fast P, Schmidt C, Gilmour J, Bogoshi M, Omosa-Manyonyi G, Dally L, Klavinskis L, Farah B, Tarragona T, Bart PA, Robinson A, Pieterse C, Stevens W, Thomas R, Barin B, McMichael AJ, McIntyre JA, Pantaleo G, Hanke T, Bwayo J. Studies of a prophylactic HIV-1 vaccine candidate based on modified vaccinia virus Ankara (MVA) with and without DNA priming: effects of dosage and route on safety and immunogenicity. Vaccine 2006; 25:2120-7. [PMID: 17250931 DOI: 10.1016/j.vaccine.2006.11.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/05/2006] [Accepted: 11/07/2006] [Indexed: 01/20/2023]
Abstract
BACKGROUND Two parallel studies evaluated safety and immunogenicity of a prophylactic HIV-1 vaccine in 192 HIV-seronegative, low-risk volunteers. Modified vaccinia virus Ankara (MVA) and plasmid DNA (pTHr) expressed HIV-1 clade A gag p24 and p17 fused to a string of 25 overlapping CD8+ T cell epitopes (HIVA). METHODS These studies compared intramuscular, subcutaneous, and intradermal MVA at dosage levels ranging from 5x10(6)-2.5x10(8) pfu. In Study IAVI-010, DNA vaccine was given as a prime at months 0 and 1, followed by MVA as a boost at months 5 and 8. In Study IAVI-011, MVA alone was given at months 0 and 2. Regular safety monitoring was performed. Immunogenicity was measured by the interferon (IFN)-gamma ELISPOT assay on peripheral blood mononuclear cells (PBMC). RESULTS No serious adverse events were attributed to either vaccine; most adverse events were mild or moderate, although MVA resulted in some severe local reactions. Five vaccine recipients had at least one positive IFN-gamma ELISPOT response, but none were sustained. CONCLUSION This HIV-1 vaccine candidate was in general safe and well-tolerated. Local reactions were common, but tolerable. Detectable immune responses were infrequent.
Collapse
|
36
|
McBurney SP, Young KR, Ross TM. Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. Virology 2006; 358:334-46. [PMID: 17011011 DOI: 10.1016/j.virol.2006.08.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/07/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
Virally regulated HIV-1 particles were expressed from DNA plasmids encoding Gag, protease, reverse transcriptase, Vpu, Tat, Rev, and Env. The sequences for integrase, Vpr, Vif, Nef, and the long terminal repeats (LTRs) were deleted. Mutations were engineered into the VLP genome to produce particles deficient in activities associated with viral reverse transcriptase, RNase H, and RNA packaging. Each plasmid efficiently secreted particles from primate cells in vitro and particles were purified from the supernatants and used as immunogens. Mice (BALB/c) were vaccinated intranasally (day 1 and weeks 3 and 6) with purified VLPs and the elicited immunity was compared to particles without Env (Gag(p55)), to soluble monomeric Env(gp120), or to soluble trimerized Env(gp140). Only mice vaccinated with VLPs had robust anti-Env cellular immunity. In contrast, all mice had high titer anti-Env serum antibody (IgG). However, VLP-vaccinated mice had antisera that detected a broader number of linear Env peptides, had anti-Env mucosal IgA and IgG, as well as higher titers of serum neutralizing antibodies. VLPs elicited high titer antibodies that recognized linear regions in V4-C5 and the ectodomain of gp41, but did not recognize V3. These lentiviral VLPs are effective mucosal immunogens that elicit broader immunity against Env determinants in both the systemic and mucosal immune compartments than soluble forms of Env.
Collapse
Affiliation(s)
- Sean P McBurney
- Center for Vaccine Research for Emerging Diseases and Biodefense, University of Pittsburgh School of Medicine, 9047 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
37
|
Appay V, Jandus C, Voelter V, Reynard S, Coupland SE, Rimoldi D, Lienard D, Guillaume P, Krieg AM, Cerottini JC, Romero P, Leyvraz S, Rufer N, Speiser DE. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. THE JOURNAL OF IMMUNOLOGY 2006; 177:1670-8. [PMID: 16849476 DOI: 10.4049/jimmunol.177.3.1670] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Neoplasm
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/virology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Movement/immunology
- Clone Cells
- CpG Islands/immunology
- Cytomegalovirus/immunology
- Epitopes, T-Lymphocyte/immunology
- Herpesvirus 4, Human/immunology
- Humans
- Immunophenotyping
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- MART-1 Antigen
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/prevention & control
- Melanoma/secondary
- Neoplasm Proteins/immunology
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Cells, Cultured
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Victor Appay
- Multidisciplinary Oncology Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mulligan MJ, Russell ND, Celum C, Kahn J, Noonan E, Montefiori DC, Ferrari G, Weinhold KJ, Smith JM, Amara RR, Robinson HL. Excellent safety and tolerability of the human immunodeficiency virus type 1 pGA2/JS2 plasmid DNA priming vector vaccine in HIV type 1 uninfected adults. AIDS Res Hum Retroviruses 2006; 22:678-83. [PMID: 16831092 DOI: 10.1089/aid.2006.22.678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A vaccine consisting of DNA priming followed by recombinant modified vaccinia Ankara (rMVA) boosting has achieved long-term control of a pathogenic challenge with a chimera of simian and human immunodeficiency viruses (SHIV-89.6P) in rhesus macaques. Based on these results, clade B HIV-1 DNA and rMVA immunogens have been developed for trials in humans. We conducted a first-time in humans phase I safety trial using the pGA2/JS2 (JS2) HIV-1 DNA priming vector expressing Gag, Pol, Env, Tat, Rev, and Vpu. Thirty HIV-uninfected adults were vaccinated with 0.3 or 3 mg of JS2 DNA, or a saline placebo, by intramuscular injection at months 0 and 2. Both doses of DNA were safe and well-tolerated with no differences between the control, 0.3 mg, or 3 mg groups (n = 6, 12, and 12, respectively) through 12 months of postvaccination follow- up. A chromium-release assay using fresh peripheral blood mononuclear cells (PBMCs) and a validated IFN-gamma ELISpot assay with frozen PBMCs failed to detect CD4(+) or CD8(+) HIV-1-specific T cell responses. HIV-specific neutralizing antibodies were also not detected. The vaccine is being further developed as a priming vector for a combined DNA plus rMVA prime/boost HIV vaccination regimen.
Collapse
|
39
|
Li F, Malhotra U, Gilbert PB, Hawkins NR, Duerr AC, McElrath JM, Corey L, Self SG. Peptide selection for human immunodeficiency virus type 1 CTL-based vaccine evaluation. Vaccine 2006; 24:6893-904. [PMID: 16890329 DOI: 10.1016/j.vaccine.2006.06.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 05/30/2006] [Accepted: 06/07/2006] [Indexed: 11/30/2022]
Abstract
Dozens of human immunodeficiency virus-type 1 (HIV-1) vaccine candidates specifically designed to elicit cytotoxic T-lymphocyte (CTL) responses have entered the pipeline of clinical trials. Evaluating the immunogenicity and potential efficacy of these HIV-1 vaccine candidates is challenging in the face of the extensive viral genetic diversity of circulating strains. Standardized peptide reagents to define the magnitude and potential breadth of the T-cell response, especially to circulating strains of HIV-1, are needed. For this purpose we developed a biometric approach based on T-cell recognition pattern for defining standardized reagents. Circulating strains in the Los Alamos database were evaluated and standardized algorithms to define all potential T-cell epitopes (PTEs) were generated. While many unique PTEs could be identified, a finite number based upon prevalence of circulating strains in the database, which we define as vaccine-important PTEs (VIPs), were used to select a common standardized panel of HIV-1 peptides for CTL-based vaccine evaluation. The usability of PTE peptide set was manifested by detection of Nef-specific CTL responses in HIV-1 subtype B infections.
Collapse
Affiliation(s)
- Fusheng Li
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu J, Hellerstein M, McDonnel M, Amara RR, Wyatt LS, Moss B, Robinson HL. Dose-response studies for the elicitation of CD8 T cells by a DNA vaccine, used alone or as the prime for a modified vaccinia Ankara boost. Vaccine 2006; 25:2951-8. [PMID: 17360078 DOI: 10.1016/j.vaccine.2006.05.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 05/16/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Here, we conduct dose-response studies in mice for the elicitation of CD8 T cells by a DNA vaccine that expresses HIV Gag. For DNA doses ranging from 1 to 100 microg, the studies revealed greater than 10-fold increases in anti-Gag CD8 T cells following a DNA prime or a DNA prime and a constant modified vaccinia Ankara (MVA) boost. These results are in contrast to dose-response studies for MVA vectors expressing Gag, where only 2-3-fold increases in anti-Gag CD8 T cells were elicited by 100-fold increases in dose.
Collapse
Affiliation(s)
- Jinyan Liu
- Yerkes National Primate Research Center and Emory Vaccine Center of Emory University, Atlanta, GA, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Rodriguez-Chavez IR, Allen M, Hill EL, Sheets RL, Pensiero M, Bradac JA, D'Souza MP. Current advances and challenges in HIV-1 vaccines. Curr HIV/AIDS Rep 2006; 3:39-47. [PMID: 16522258 DOI: 10.1007/s11904-006-0007-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in science, which have aided HIV-1 vaccine development, include an improved understanding of HIV-1 envelope structure and function, expansion of the pipeline with innovative vaccine strategies, promising multi-gene and multi-clade vaccines that elicit cellular immunity, conduct of clinical trials in a global network, and development of validated techniques that enable simultaneous measurement of multiple T cell vaccine-induced immune responses in humans. A common feature of several preventive vaccine strategies now in early clinical trials is their ability in nonhuman primates to attenuate clinical disease rather than completely prevent HIV-1 infection. One vaccine concept has been tested in large-scale clinical trials, two are currently in efficacy trials, and one more is poised to enter efficacy trial in the next few years. Simultaneously, expanded efforts continue to identify new designs that induce mucosal immunity as well as broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Isaac R Rodriguez-Chavez
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Burgers WA, van Harmelen JH, Shephard E, Adams C, Mgwebi T, Bourn W, Hanke T, Williamson AL, Williamson C. Design and preclinical evaluation of a multigene human immunodeficiency virus type 1 subtype C DNA vaccine for clinical trial. J Gen Virol 2006; 87:399-410. [PMID: 16432028 DOI: 10.1099/vir.0.81379-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the design and preclinical development of a multigene human immunodeficiency virus type 1 (HIV-1) subtype C DNA vaccine are described, developed as part of the South African AIDS Vaccine Initiative (SAAVI). Genetic variation remains a major obstacle in the development of an HIV-1 vaccine and recent strategies have focused on constructing vaccines based on the subtypes dominant in the developing world, where the epidemic is most severe. The vaccine, SAAVI DNA-C, contains an equimolar mixture of two plasmids, pTHr.grttnC and pTHr.gp150CT, which express a polyprotein derived from Gag, reverse transcriptase (RT), Tat and Nef, and a truncated Env, respectively. Genes included in the vaccine were obtained from individuals within 3 months of infection and selection was based on closeness to a South African subtype C consensus sequence. All genes were codon-optimized for increased expression in humans. The genes have been modified for safety, stability and immunogenicity. Tat was inactivated through shuffling of gene fragments, whilst maintaining all potential epitopes; the active site of RT was mutated; 124 aa were removed from the cytoplasmic tail of gp160; and Nef and Gag myristylation sites were inactivated. Following vaccination of BALB/c mice, high levels of cytotoxic T lymphocytes were induced against multiple epitopes and the vaccine stimulated strong CD8+ gamma interferon responses. In addition, high titres of antibodies to gp120 were induced in guinea pigs. This vaccine is the first component of a prime-boost regimen that is scheduled for clinical trials in humans in the USA and South Africa.
Collapse
Affiliation(s)
- Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town (UCT), Observatory, Cape Town 7925, South Africa
| | - Joanne H van Harmelen
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town (UCT), Observatory, Cape Town 7925, South Africa
| | - Enid Shephard
- MRC/UCT Liver Research Centre, UCT, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town (UCT), Observatory, Cape Town 7925, South Africa
| | - Craig Adams
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town (UCT), Observatory, Cape Town 7925, South Africa
| | - Thandiswa Mgwebi
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town (UCT), Observatory, Cape Town 7925, South Africa
| | - William Bourn
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town (UCT), Observatory, Cape Town 7925, South Africa
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, UK
| | - Anna-Lise Williamson
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town (UCT), Observatory, Cape Town 7925, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town (UCT), Observatory, Cape Town 7925, South Africa
| |
Collapse
|
43
|
Cristillo AD, Wang S, Caskey MS, Unangst T, Hocker L, He L, Hudacik L, Whitney S, Keen T, Chou THW, Shen S, Joshi S, Kalyanaraman VS, Nair B, Markham P, Lu S, Pal R. Preclinical evaluation of cellular immune responses elicited by a polyvalent DNA prime/protein boost HIV-1 vaccine. Virology 2005; 346:151-68. [PMID: 16325880 DOI: 10.1016/j.virol.2005.10.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/19/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
While DNA vaccines have been shown to prime cellular immune responses, levels are often low in nonhuman primates or humans. Hence, efforts have been directed toward boosting responses by combining DNA with different vaccination modalities. To this end, a polyvalent DNA prime/protein boost vaccine, consisting of codon optimized HIV-1 env (A, B, C, E) and gag (C) and homologous gp120 proteins in QS-21, was evaluated in rhesus macaques and BALB/c mice. Humoral and cellular responses, detected following DNA immunization, were increased following protein boost in macaques and mice. In dissecting cellular immune responses in mice, protein-enhanced responses were found to be mediated by CD4+ and CD8+ T cells with a Th1 cytokine bias. Our study reveals that, in addition to augmenting humoral responses, protein boosting of DNA-primed animals augments cellular immune responses mediated by CD8+ CTL, CD4+ T-helper cells and Th1 cytokines; thus, offering much promise in controlling HIV-1 in vaccinees.
Collapse
Affiliation(s)
- Anthony D Cristillo
- Advanced BioScience Laboratories, Department of Cell Biology, 5510 Nicholson Lane, Kensington, MD 20895, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rajcáni J, Mosko T, Rezuchová I. Current developments in viral DNA vaccines: shall they solve the unsolved? Rev Med Virol 2005; 15:303-25. [PMID: 15906276 DOI: 10.1002/rmv.467] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review describes the mechanisms of immune response following DNA vaccination. The efficacy of DNA vaccines in animal models is highlighted, especially in viral diseases against which no widely accepted vaccination is currently available. Emphasis is given to possible therapeutic vaccination in chronic infections due to persisting virus genomes, such as recurrent herpes (HSV-1 and HSV-2), pre-AIDS (HIV-1) and/or chronic hepatitis B (HBV). In these, the problem of introducing foreign viral DNA may not be of crucial importance, since the immunised subject is already a viral DNA (or provirus) carrier. The DNA-based immunisation strategies may overcome several problems of classical viral vaccines. Novel DNA vaccines could induce immunity against multiple viral epitopes including the conservative type common ones, which do not undergo antigenic drifts. Within the immunised host, they mimic the effect of live attenuated viral vaccines when continuously expressing the polypeptide in question. For this reason they directly stimulate the antigen-presenting cells, especially dendritic cells. The antigen encoded by plasmid elicits T helper cell activity (Th1 and Th2 type responses), primes the cytotoxic T cell memory and may induce a satisfactory humoral response. The efficacy of DNA vaccines can be improved by adding plasmids encoding immunomodulatory cytokines and/or their co-receptors.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
45
|
Ellenberger D, Wyatt L, Li B, Buge S, Lanier N, Rodriguez IV, Sariol CA, Martinez M, Monsour M, Vogt J, Smith J, Otten R, Montefiori D, Kraiselburd E, Moss B, Robinson H, McNicholl J, Butera S. Comparative immunogenicity in rhesus monkeys of multi-protein HIV-1 (CRF02_AG) DNA/MVA vaccines expressing mature and immature VLPs. Virology 2005; 340:21-32. [PMID: 16023165 DOI: 10.1016/j.virol.2005.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 05/13/2005] [Accepted: 06/09/2005] [Indexed: 11/22/2022]
Abstract
We developed an AIDS vaccine for Western and West-Central Africa founded on HIV-1 subtype CRF02_AG. Rhesus macaques were primed with Gag-Pol-Env-expressing plasmid DNA and boosted with a recombinant modified vaccinia virus Ankara (rMVA), expressing matched proteins. Two DNA vaccine constructs (IC1-90 and IC48) that differed by point mutations in gag and pol were compared. IC1-90 produces primarily immature (core comprises unprocessed Pr55Gag) HIV-like particles (VLPs) and IC48 produces mature VLP with processed Pr55Gag, immature VLP, and intracellular protein aggregates. Both vaccines raised significant cellular responses for Gag, Pol, and Env. Approximate twofold higher ELISPOT responses to Gag and Env epitopes were observed for IC48 animals than for IC1-90 animals at the peak post-MVA effector (P = 0.028) and late memory (P = 0.051) phases, respectively. Greater breadth for IC48-primed animals was observed than for IC1-90-primed animals at peak response (P = 0.03). Our results indicated that the vaccines elicited high frequency T cell responses and primed anti-Env antibody. They also suggest that expression of different forms of VLP has a significant effect on elicited cellular and humoral immunity.
Collapse
Affiliation(s)
- Dennis Ellenberger
- Laboratory Branch, Centers for Disease Control and Prevention, Mail Stop G-19, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Espino AM, Osuna A, Gil R, Hillyer GV. Fasciola hepatica: humoral and cytokine responses to a member of the saposin-like protein family following delivery as a DNA vaccine in mice. Exp Parasitol 2005; 110:374-83. [PMID: 15907838 DOI: 10.1016/j.exppara.2005.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/23/2005] [Accepted: 03/29/2005] [Indexed: 11/29/2022]
Abstract
The humoral and cellular responses to DNA vaccination of BALB/c mice with a novel antigen from the Fasciola hepatica saposin-like protein family (FhSAP-2) have been investigated. Two constructs were produced containing the FhSAP-2 DNA sequence, one intended for extracellular secretion of FhSAP-2 protein, and one expressing FhSAP-2 in the cytoplasm of a transfected cell. The constructs were tested in HEK 293T cells, with the secretory construct producing less detectable FhSAP-2 relative to cytoplasmic construct when observed by fluorescence. The size of expressed protein was confirmed by Western blot of cell lysate, but FhSAP-2 was undetectable in cell supernatants. Both, secretory and cytoplasmic constructs as well as FhSAP-2 recombinant protein were tested in mice. The antibody response elicited in mice vaccinated with the rFhSAP-2 induced high levels of IgG(1), IgG(2), and IgE as well as high levels of IL-10 and IFNgamma indicating a mixed Th1/Th2 response. Vaccination of mice intramuscularly with the cytoplasmic FhSAP-2 construct resulted in a dominant IgG(2a) isotype antibody as well as a dominant IFNgamma cytokine, with significant IgE, IgG(1), and IL-10 responses also present, suggesting a mixed Th1/Th2 profile. Isotype and cytokine profiles elicited by the FhSAP-2 secretory construct were similar to those obtained with the cytoplasmic construct but at levels that were significantly lower. The results demonstrate that FhSAP-2 can be delivered as a DNA vaccine construct and induces a stronger Th1 response than the recombinant protein alone. This could result in an improvement in the immunoprophylactic potential of this candidate vaccine against F. hepatica.
Collapse
Affiliation(s)
- Ana M Espino
- Laboratory of Molecular Parasitology and Immunology, Department of Microbiology, University of Puerto Rico, School of Medicine.
| | | | | | | |
Collapse
|
47
|
Abstract
Vaccination, or the deliberate induction of protective immunity by administering nonpathogenic forms of a microbe or its antigens to induce a memory immune response, is the world's most cost-effective medical procedure for preventing morbidity and mortality caused by infectious disease. Historically, most vaccines have worked by eliciting long-lived plasma cells. These cells produce antibodies that limit disease by neutralizing a toxin or blocking the spread of the infectious agent. For these 'B cell vaccines,' the immunological marker, or correlate, for protection is the titer of protective antibodies. With the discovery of HIV/AIDS, vaccine development has been confronted by an agent that is not easily blocked by antibody. To overcome this, researchers who are developing HIV/AIDS vaccines have turned to the elicitation of cellular immunity, or 'T cell vaccines,' which recognize and kill infected cells.
Collapse
Affiliation(s)
- Harriet L Robinson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.
| | | |
Collapse
|
48
|
Amara RR, Sharma S, Patel M, Smith JM, Chennareddi L, Herndon JG, Robinson HL. Studies on the cross-clade and cross-species conservation of HIV-1 Gag-specific CD8 and CD4 T cell responses elicited by a clade B DNA/MVA vaccine in macaques. Virology 2005; 334:124-33. [PMID: 15749128 DOI: 10.1016/j.virol.2005.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 12/30/2004] [Accepted: 01/21/2005] [Indexed: 11/20/2022]
Abstract
Here, we evaluate the T cell responses raised by our HIV-1 clade B DNA/MVA vaccine for recognition of a HIV-1 circulating recombinant form (CRF) AG Gag sequence (CRF-02). The cross-clade activity for the AG sequence was better conserved for CD8 than CD4 T cells. CD8 T cells exhibited 75% conservation for height and 83% conservation for breadth, whereas CD4 responses exhibited 45% conservation for height and 50% conservation for breadth. Five CD8 epitopes and 8 CD4 epitopes were mapped. Three of the 5 CD8 epitopes and 2 of the 8 CD4 epitopes were conserved across multiple HIV-1 clades. Impressively, all of the CD8 epitopes and half of the CD4 epitopes have been reported for human infections. Our results demonstrate that the clade B DNA/MVA HIV vaccine elicits T cell responses against epitopes that are conserved in multiple clades and recognized by humans and macaques.
Collapse
Affiliation(s)
- Rama Rao Amara
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Smith JM, Amara RR, Wyatt LS, Ellenberger DL, Li B, Herndon JG, Patel M, Sharma S, Chennareddi L, Butera S, McNicholl J, McClure HM, Moss B, Robinson HL. Studies in macaques on cross-clade T cell responses elicited by a DNA/MVA AIDS vaccine, better conservation of CD8 than CD4 T cell responses. AIDS Res Hum Retroviruses 2005; 21:140-4. [PMID: 15725752 DOI: 10.1089/aid.2005.21.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the unknowns faced by an HIV/AIDS vaccine is the ability of a single clade vaccine to protect against the multiple genetic subtypes and recombinant forms of HIV-1 present in the current pandemic. Here, we use a macaque model to investigate the ability of our clade B vaccine that consists of DNA priming and modified vaccinia Ankara (MVA) virus boosting to elicit T cell responses that recognize an A/G recombinant of HIV-1. To test for cross-reactive T cells, intracellular cytokine staining was conducted using five pools of Gag and six pools of Env peptides representing B or A/G sequences. Studies using the peptide pools revealed essentially complete conservation of the CD8 response but only approximately 50% conservation of the CD4 response. Thus, the ability of an HIV vaccine for one clade to protect against other clades may be more limited by the ability to provide CD4 T cell help than the ability to elicit CD8 effector functions.
Collapse
Affiliation(s)
- James M Smith
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Traditional successful antiviral vaccines have relied mostly on live-attenuated viruses. Live-attenuated HIV vaccine candidates are not ideal as they pose risks of reversion, recombination or mutations. Other current HIV vaccine candidates have difficulties generating broadly effective neutralising antibodies and cytotoxic T cell immune responses to primary HIV isolates. Virus-like-particles (VLPs) have been demonstrated to be safe to administer to animals and human patients as well as being potent and efficient stimulators of cellular and humoral immune responses. Therefore, VLPs are being considered as possible HIV vaccines. Chimeric HIV-1 VLPs constructed with either HIV or SIV capsid protein plus HIV immune epitopes and immuno-stimulatory molecules have further improved on early VLP designs, leading to enhanced immune stimulation. The administration of VLP vaccines via mucosal surfaces has also emerged as a promising strategy with which to elicit mucosal and systemic humoral and cellular immune responses. Additionally, new information on antigen processing and the presentation of particulate antigens by dendritic cells (DCs) has created new strategies for improved VLP vaccine candidates. This paper reviews the field of HIV-1 VLP vaccine development, focusing on recent studies that will likely uncover promising prospects for new HIV vaccines.
Collapse
Affiliation(s)
- Linh X Doan
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|