1
|
Gao N, Chen J, Li Y, Ding Y, Han Z, Xu H, Qiao H. The CYP2E1 inhibitor Q11 ameliorates LPS-induced sepsis in mice by suppressing oxidative stress and NLRP3 activation. Biochem Pharmacol 2023:115638. [PMID: 37290597 DOI: 10.1016/j.bcp.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Sepsis is an infection-induced, multi-organ system failure with a pathophysiology related to inflammation and oxidative stress. Increasing evidence indicates that cytochrome P450 2E1 (CYP2E1) is involved in the incidence and development of inflammatory diseases. However, a role for CYP2E1 in lipopolysaccharide (LPS)-induced sepsis has not been completely explored. Here we use Cyp2e1 knockout (cyp2e1-/-) mice to determine if CYP2E1 could be a therapeutic target for sepsis. We also evaluated the ability of Q11, a new specific CYP2E1 inhibitor, to prevent and ameliorate LPS-induced sepsis in mice and in LPS-treated J774A.1 and RAW264.7 cells. Cyp2e1 deletion significantly reduced hypothermia, multi-organ dysfunction and histological abnormalities in LPS-treated mice; consistent with this finding, the CYP2E1 inhibitor Q11 significantly prolonged the survival time of septic mice and ameliorated multi-organ injury induced by LPS. CYP2E1 activity in liver correlated with indicators of multi-organ injury, such as the level of lactate dehydrogenase (LDH) and blood urea nitrogen (BUN) (P<0.05). Q11 significantly suppressed the expression of NLRP3 in tissues after LPS injection; in vitro studies revealed that activation of NLRP3 signaling and increase of ROS was attenuated by Q11 in LPS-stimulated macrophages, which was reflected by reduced expression of caspase-1 and formation of ASC specks. Overall, our results indicate that Q11 improves the survival of mice with LPS-induced sepsis and attenuates sepsis-induced multiple-organ injury, suggesting that CYP2E1 could be a therapeutic target for sepsis.
Collapse
Affiliation(s)
- Na Gao
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jingjing Chen
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchao Li
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ding
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Zixinying Han
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, Zhong Y. The Role of Cytochrome P450 Enzymes in COVID-19 Pathogenesis and Therapy. Front Pharmacol 2022; 13:791922. [PMID: 35185562 PMCID: PMC8847594 DOI: 10.3389/fphar.2022.791922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a new public health crisis threatening the world. Dysregulated immune responses are the most striking pathophysiological features of patients with severe COVID-19, which can result in multiple-organ failure and death. The cytochrome P450 (CYP) system is the most important drug metabolizing enzyme family, which plays a significant role in the metabolism of endogenous or exogenous substances. Endogenous CYPs participate in the biosynthesis or catabolism of endogenous substances, including steroids, vitamins, eicosanoids, and fatty acids, whilst xenobiotic CYPs are associated with the metabolism of environmental toxins, drugs, and carcinogens. CYP expression and activity are greatly affected by immune response. However, changes in CYP expression and/or function in COVID-19 and their impact on COVID-19 pathophysiology and the metabolism of therapeutic agents in COVID-19, remain unclear. In this analysis, we review current evidence predominantly in the following areas: firstly, the possible changes in CYP expression and/or function in COVID-19; secondly, the effects of CYPs on the metabolism of arachidonic acid, vitamins, and steroid hormones in COVID-19; and thirdly, the effects of CYPs on the metabolism of therapeutic COVID-19 drugs.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Cytochrome P450 CYP2E1 Suppression Ameliorates Cerebral Ischemia Reperfusion Injury. Antioxidants (Basel) 2021; 10:antiox10010052. [PMID: 33466250 PMCID: PMC7824747 DOI: 10.3390/antiox10010052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/23/2022] Open
Abstract
Despite existing strong evidence on oxidative markers overproduction following ischemia/reperfusion (I/R), the mechanism by which oxidative enzyme Cytochrome P450-2E1 (CYP2E1) contributes to I/R outcomes is not clear. In this study, we sought to evaluate the functional significance of CYP2E1 in I/R. CYP2E1 KO mice and controls were subjected to middle cerebral artery occlusion (MCAo-90 min) followed by 24 h of reperfusion to induce focal I/R injury as an acute stage model. Then, histological and chemical analyses were conducted to investigate the role of CYP2E1 in lesion volume, oxidative stress, and inflammation exacerbation. Furthermore, the role of CYP2E1 on the blood-brain barrier (BBB) integrity was investigated by measuring 20-hydroxyecosatetraenoic acid (20-HETE) activity, as well as, in vivo BBB transfer rate. Following I/R, the CYP2E1 KO mice exhibited a significantly lower lesion volume, and neurological deficits compared to controls (p < 0.005). Moreover, reactive oxygen species (ROS) production, apoptosis, and neurodegeneration were significantly lower in the CYP2E1(−/−) I/R group (p < 0.001). The BBB damage was significantly lower in CYP2E1(−/−) mice compared to wild-type (WT) (p < 0.001), while 20-HETE production was increased by 41%. Besides, inflammatory cytokines expression and the number of activated microglia were significantly lower in CYP2E1(−/−) mice following I/R. CYP2E1 suppression ameliorates I/R injury and protects BBB integrity by reducing both oxidative stress and inflammation.
Collapse
|
4
|
El-Ghiaty MA, Shoieb SM, El-Kadi AOS. Cytochrome P450-mediated drug interactions in COVID-19 patients: Current findings and possible mechanisms. Med Hypotheses 2020; 144:110033. [PMID: 32758877 PMCID: PMC7318945 DOI: 10.1016/j.mehy.2020.110033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
Abstract
At the end of 2019, the entire world has witnessed the birth of a new member of coronavirus family in Wuhan, China. Ever since, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has swiftly invaded every corner on the planet. By the end of April 2020, almost 3.5 million cases have been reported worldwide, with a death toll of about 250,000 deaths. It is currently well-recognized that patient’s immune response plays a pivotal role in the pathogenesis of Coronavirus Disease 2019 (COVID-19). This inflammatory element was evidenced by its elevated mediators that, in severe cases, reach their peak in a cytokine storm. Together with the reported markers of liver injury, such hyperinflammatory state may trigger significant derangements in hepatic cytochrome P450 metabolic machinery, and subsequent modulation of drug clearance that may result in unexpected therapeutic/toxic response. We hypothesize that COVID-19 patients are potentially vulnerable to a significant disease-drug interaction, and therefore, suitable dosing guidelines with therapeutic drug monitoring should be implemented to assure optimal clinical outcomes.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Qiu M, Liu J, Feng P, Su Y, Guo R, Shi F, Wang S, Zhao B. Cytochrome P450s regulates aloperine-induced pathological changes in mouse liver and kidney. Res Vet Sci 2020; 132:97-100. [PMID: 32544634 DOI: 10.1016/j.rvsc.2020.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Aloperine is a major active component in Sophora alopecuroides L that plays diverse pharmacological properties. Recent studies have indicated the potential effect of aloperine against hypertension and cancers. However, possible toxicity of aloperine has not been carefully studied in vivo. The aim of this study was to assess the effect of intraperitoneal aloperine injection on mouse liver and kidney tissues and to investigate the role of CYP450 genes in aloperine-induced toxicity. 72 BALB/c mice were randomly divided into four groups: vehicle control group (normal saline), low-dose group (4 mg/kg), medium-dose group (8 mg/kg), and high-dose group (16 mg/kg). 18 mice in each group were intraperitoneally injected with aloperine daily for 4 weeks, and were then kept for another 1 or 4 weeks without aloperine treatment. Serum was colleted for analysis of serum biochemical indexes including ALT, AST, BUN and CRE. The liver and kidney were collected for analysis of histopathologic changes and CYP450 expression and activity. Vacuolization of cytoplasm in liver cells, swelling in kidney tubular cells, increased levels of ALT, AST, BUN, and CRE, and alteration in the expression and activity of CYP450 were observed in the high-dose group after 4 weeks of treatment. However, all aloperine-induced damages were recovered to a certain degree after maintained without aloperine for 1 week, and fully recovered after maintained without aloperine for 4 weeks. These findings suggested that aloperine regulated the expression of CYP450, which was possibly involved in aloperine-induced reversible toxicity in mouse liver and kidney tissues.
Collapse
Affiliation(s)
- Mingning Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jie Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Feng
- College of Life Sciences, Yulin University, Yulin, Shaanxi 719000, China
| | - Yongxia Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangyun Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Tunctan B, Senol SP, Temiz-Resitoglu M, Guden DS, Sahan-Firat S, Falck JR, Malik KU. Eicosanoids derived from cytochrome P450 pathway of arachidonic acid and inflammatory shock. Prostaglandins Other Lipid Mediat 2019; 145:106377. [PMID: 31586592 DOI: 10.1016/j.prostaglandins.2019.106377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock, the most common form of vasodilatory shock, is a subset of sepsis in which circulatory and cellular/metabolic abnormalities are severe enough to increase mortality. Inflammatory shock constitutes the hallmark of sepsis, but also a final common pathway of any form of severe long-term tissue hypoperfusion. The pathogenesis of inflammatory shock seems to be due to circulating substances released by pathogens (e.g., bacterial endotoxins) and host immuno-inflammatory responses (e.g., changes in the production of histamine, bradykinin, serotonin, nitric oxide [NO], reactive nitrogen and oxygen species, and arachidonic acid [AA]-derived eicosanoids mainly through NO synthase, cyclooxygenase, and cytochrome P450 [CYP] pathways, and proinflammatory cytokine formation). Therefore, refractory hypotension to vasoconstrictors with end-organ hypoperfusion is a life threatening feature of inflammatory shock. This review summarizes the current knowledge regarding the role of eicosanoids derived from CYP pathway of AA in animal models of inflammatory shock syndromes with an emphasis on septic shock in addition to potential therapeutic strategies targeting specific CYP isoforms responsible for proinflammatory/anti-inflammatory mediator production.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| |
Collapse
|
7
|
Iaccarino N, Amato J, Pagano B, Di Porzio A, Micucci M, Bolelli L, Aldini R, Novellino E, Budriesi R, Randazzo A. Impact of phytosterols on liver and distal colon metabolome in experimental murine colitis model: an explorative study. J Enzyme Inhib Med Chem 2019; 34:1041-1050. [PMID: 31074304 PMCID: PMC6522980 DOI: 10.1080/14756366.2019.1611802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Phytosterols are known to reduce plasma cholesterol levels and thereby reduce cardiovascular risk. Studies conducted on human and animal models have demonstrated that these compounds have also anti-inflammatory effects. Recently, an experimental colitis model (dextran sulphate sodium-induced) has shown that pre-treatment with phytosterols decreases infiltration of inflammatory cells and accelerates mucosal healing. This study aims to understand the mechanism underlying the colitis by analysing the end-products of the metabolism in distal colon and liver excised from the same mice used in the previous work. In particular, an unsupervised gas chromatography-mass spectrometry (GC-MS) and NMR based metabolomics approach was employed to identify the metabolic pathways perturbed by the dextran sodium sulphate (DSS) insult (i.e. Krebs cycle, carbohydrate, amino acids, and nucleotide metabolism). Interestingly, phytosterols were able to restore the homeostatic equilibrium of the hepatic and colonic metabolome.
Collapse
Affiliation(s)
- Nunzia Iaccarino
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Jussara Amato
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Bruno Pagano
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Anna Di Porzio
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Matteo Micucci
- b Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Luca Bolelli
- b Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Rita Aldini
- b Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Ettore Novellino
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Roberta Budriesi
- b Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Antonio Randazzo
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| |
Collapse
|
8
|
Tao JH, Duan JA, Zhang W, Jiang S, Guo JM, Wei DD. Polysaccharides From Chrysanthemum morifolium Ramat Ameliorate Colitis Rats via Regulation of the Metabolic Profiling and NF-κ B/TLR4 and IL-6/JAK2/STAT3 Signaling Pathways. Front Pharmacol 2018; 9:746. [PMID: 30042683 PMCID: PMC6049019 DOI: 10.3389/fphar.2018.00746] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Studies have indicated that Chrysanthemum polysaccharides (CP) could prominently ameliorate colitis rats, but its possible mechanism remains unclear. In this study, the underlying mechanism of CP was explored by the metabolic profiling analysis and correlated signaling pathways. TNBS/ethanol induced colitis was used to investigate the intervention efficacy following oral administration of CP. The levels of cytokines such as TNF-α, IL-6, IFN-γ and IL-1β, and the activities of SOD, MPO, and MDA were determined. We also performed western-blot for p65, TLR4, p-JAK2, and STAT3 protein expression in the colon tissue to probe their mechanisms of correlated signaling pathways. What’s more, the metabolic changes in plasma and urine from colitis rats were investigated based on UPLC-Q-TOF/MS combined with MetabolynxTM software. The potential biomarkers and metabolic pathways were also tentatively confirmed. The metabolic profiles of plasma and urine were clearly improved in model rats after oral administration of CP. Thirty-two (17 in serum and 15 in urine) potential biomarkers were identified. The endogenous metabolites were mainly involved in linoleic acid, retinol, arachidonic acid, glycerophospholipid and primary bile acid metabolism in plasma, and nicotinate and nicotinamide, ascorbate and aldarate, histidine and β-alanine metabolism in urine. After polysaccharides intervention, these markers turned back to normal level at some extent. Meanwhile, the elevated expression levels of pp65, TLR4, p-STAT3, and p-JAK2 were significantly decreased after treatment. Results suggested that CP would be a potential prebiotics for alleviation of TNBS-induced colitis. The study paved the way for the further exploration of the pathogenesis, early diagnosis and curative drug development of the colitis.
Collapse
Affiliation(s)
- Jin-Hua Tao
- School of Pharmacy, Nantong University, Nantong, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Hu N, Huang Y, Gao X, Li S, Yan Z, Wei B, Yan R. Effects of dextran sulfate sodium induced experimental colitis on cytochrome P450 activities in rat liver, kidney and intestine. Chem Biol Interact 2017; 271:48-58. [PMID: 28438436 DOI: 10.1016/j.cbi.2017.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 11/29/2022]
Abstract
Dextran sulfate sodium (DSS) induced experimental colitis presents a histologic resemblance to human ulcerative colitis (UC). Altered cytochrome P450s (CYPs) have been reported in this model and patients with UC. In this study, six CYPs activities were quantitatively determined in microsomes of liver (RLMs), kidney (RRMs) and intestine (RIMs) from rats with colitis at acute (5% DSS for 7 days, UCA) and remission (7-day DSS treatment followed by 7-day cessation, UCR) phases and compared with normal rats. Generally, CYPs activities varied with isoform, organ, and disease status. Hepatic CYP1A2, 2B1, 2C6/11, 2E1 and 3A1/2 activities were reduced by acute colitis and completely or partially restored after DSS was halted. Although DSS treatment decreased the Vmax of renal CYP2C6/11 and increased that of CYP2D2, their CLint, in vitro were comparable among normal, acute and remission stages. DSS treatment changed the kinetics of CYP3A1/2-mediated nifedipine metabolism in RRMs from biphasic to classical kinetics. Notably, CYP2D2 activity was elevated in liver and kidney in acute UC, while enhanced in liver and decreased in kidney in remission. In intestine, CYP3A1/2 activity was increased in UCA and further enhanced after DSS withdrawal. These findings highlight the necessity of quantifying enzyme activity for precision drug therapy.
Collapse
Affiliation(s)
- Nan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Pharmacy, The First People's Hospital of Changzhou, Changzhou, Jiang Su, China
| | - Yanjuan Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xuejiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Sai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhixiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; UM Zhuhai Research Institute, No.1 Software Road, Zhuhai Hi-tech Zone, Guangdong, China.
| |
Collapse
|
10
|
Shvedova AA, Kisin ER, Yanamala N, Farcas MT, Menas AL, Williams A, Fournier PM, Reynolds JS, Gutkin DW, Star A, Reiner RS, Halappanavar S, Kagan VE. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part Fibre Toxicol 2016; 13:28. [PMID: 27278671 PMCID: PMC4898310 DOI: 10.1186/s12989-016-0140-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/02/2016] [Indexed: 12/31/2022] Open
Abstract
Background Cellulose-based materials have been used for centuries to manufacture different goods derived from forestry and agricultural sources. In the growing field of nanocellulose applications, its uniquely engineered properties are instrumental for inventive products coming to competitive markets. Due to their high aspect ratio and stiffness, it is speculated that cellulose nanocrystals (CNC) may cause similar pulmonary toxicity as carbon nanotubes and asbestos, thus posing a potential negative impact on public health and the environment. Methods The present study was undertaken to investigate the pulmonary outcomes induced by repeated exposure to respirable CNC. C57BL/6 female and male mice were exposed by pharyngeal aspiration to CNC (40 μg/mouse) 2 times a week for 3 weeks. Several biochemical endpoints and pathophysiological outcomes along with gene expression changes were evaluated and compared in the lungs of male and female mice. Results Exposure to respirable CNC caused pulmonary inflammation and damage, induced oxidative stress, elevated TGF-β and collagen levels in lung, and impaired pulmonary functions. Notably, these effects were markedly more pronounced in females compared to male mice. Moreover, sex differences in responses to pulmonary exposure to CNC were also detected at the level of global mRNA expression as well as in inflammatory cytokine/chemokine activity. Conclusions Overall, our results indicate that there are considerable differences in responses to respirable CNC based on gender with a higher pulmonary toxicity observed in female mice. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0140-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna A Shvedova
- Health Effects Laboratory Division, NIOSH, Exposure Assessment Branch, 1095 Willowdale Road, Morgantown, WV, 26505, USA. .,Department of Physiology & Pharmacology, School of Medicine/WVU, Morgantown, WV, USA.
| | - Elena R Kisin
- Health Effects Laboratory Division, NIOSH, Exposure Assessment Branch, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Naveena Yanamala
- Health Effects Laboratory Division, NIOSH, Exposure Assessment Branch, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Mariana T Farcas
- Health Effects Laboratory Division, NIOSH, Exposure Assessment Branch, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Autumn L Menas
- Health Effects Laboratory Division, NIOSH, Exposure Assessment Branch, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON, K1A 0 K9, Canada
| | - Philip M Fournier
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey S Reynolds
- Engineering and Controls Technology Branch, NIOSH/CDC, Morgantown, WV, USA
| | - Dmitriy W Gutkin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard S Reiner
- Forest Products Laboratory, USDA Forest Service, Madison, WI, USA
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON, K1A 0 K9, Canada
| | - Valerian E Kagan
- Free Radical Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Sun H, Yan Y, Xu C, Wan H, Liu D. Suppression of Hepatic Cyp1a2 by Total Ginsenosides in Lipopolysaccharide-Treated Mice and Primary Mouse Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2386-2393. [PMID: 26923348 DOI: 10.1021/acs.jafc.5b06170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The roots of Panax ginseng (ginseng) have been extensively used in traditional Chinese medicine. However, herb-drug interactions between ginseng and other co-administered drugs are not fully understood concerning the effect of ginseng on drug metabolism and clearance. The current study aimed to elucidate the effect of total ginsenosides, a typical ginseng extract, on the regulation of Cyp1a2, a key enzyme to regulate drug metabolism under the normal and inflammatory conditions in mice. Female C57BL/6J mice treated with vehicle and lipopolysaccharide (LPS) were intragastrically administered ginseng extract for 7 days before hepatic P450 expression was analyzed. Primary mouse hepatocytes were also employed to further explore the effects of total ginsenosides on Cyp1a2 expression. The results showed that total ginsenosides in P. ginseng extract exhibited a concentration-dependent suppression on Cyp1a2 mRNA and protein level in both mice and primary mouse hepatocytes. Notably, the inhibitory effects of total ginsenosides on Cyp1a2 mRNA and protein expression were further enhanced following LPS treatment. Therefore, future research is warranted to investigate the role of ginsenosides in the regulation of hepatic CYP450s. Moreover, consumption of ginseng as food or supplement should be monitored for patients on combinational therapy, especially those with inflammatory diseases.
Collapse
Affiliation(s)
- Haiyan Sun
- Department of Applied Biotechnology, Shenzhen Polytechnic , Shenzhen, Guangdong 518055, People's Republic of China
| | - Yijing Yan
- Department of Applied Biotechnology, Shenzhen Polytechnic , Shenzhen, Guangdong 518055, People's Republic of China
| | - Chenshu Xu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Hongxia Wan
- Department of Applied Biotechnology, Shenzhen Polytechnic , Shenzhen, Guangdong 518055, People's Republic of China
| | - Dong Liu
- Department of Applied Biotechnology, Shenzhen Polytechnic , Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
12
|
Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content. THE PHARMACOGENOMICS JOURNAL 2015; 16:375-87. [PMID: 26323597 PMCID: PMC4775436 DOI: 10.1038/tpj.2015.58] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 05/19/2015] [Accepted: 06/23/2015] [Indexed: 02/01/2023]
Abstract
Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration.
Collapse
|
13
|
Huang Y, Hu N, Gao X, Yan Z, Li S, Jing W, Yan R. Alterations of testosterone metabolism in microsomes from rats with experimental colitis induced by dextran sulfate sodium. Chem Biol Interact 2015; 232:38-48. [DOI: 10.1016/j.cbi.2015.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 01/22/2023]
|
14
|
Konstandi M, Johnson EO, Lang MA. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci Biobehav Rev 2014; 45:149-67. [DOI: 10.1016/j.neubiorev.2014.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
|
15
|
Mimche SM, Nyagode BA, Merrell MD, Lee CM, Prasanphanich NS, Cummings RD, Morgan ET. Hepatic cytochrome P450s, phase II enzymes and nuclear receptors are downregulated in a Th2 environment during Schistosoma mansoni infection. Drug Metab Dispos 2013; 42:134-40. [PMID: 24163175 DOI: 10.1124/dmd.113.054957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inflammation and infection downregulate the activity and expression of cytochrome P450s (P450s) and other drug metabolizing enzymes (DMEs) involved in hepatic drug clearance. Schistosoma mansoni infection was reported to cause a downregulation of hepatic P450-dependent activities in mouse liver, but little is known about the specific enzymes affected or whether phase II DMEs are also affected. Here we describe the effect of murine schistosomiasis on the expression of hepatic P450s, NADPH-cytochrome P450 reductase (Cpr), phase II drug metabolizing enzymes, and nuclear receptors at 30 and 45 days postinfection (dpi). Although the hepatic expression of some of these genes was altered at 30 dpi, we observed substantial changes in the expression of the majority of P450 mRNAs and proteins measured, Cpr protein, as well as many of the UDP-glucuronosyltransferases and sulfotransferases at 45 dpi. S. mansoni infection also altered nuclear receptor expression, inducing mRNA levels at 30 dpi and depressing levels at 45 dpi. S. mansoni evoked a T helper 2 (Th2) inflammatory response at 45 dpi, as indicated by the induction of hepatic Th2 cytokine mRNAs [interleukins 4, 5, and 13], whereas the hepatic proinflammatory response was relatively weak. Thus, chronic schistosomiasis markedly and selectively alters the expression of multiple DMEs, which may be associated with Th2 cytokine release. This would represent a novel mechanism of DME regulation in disease states. These findings have important implications for drug testing in infected mice, whereas the relevance to humans with schistosomiasis needs to be determined.
Collapse
Affiliation(s)
- Sylvie M Mimche
- Departments of Pharmacology (S.M.M., B.A.N., M.D.M., C.-M.L., E.T.M.) and Biochemistry (N.S.P., R.D.C.), Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | | | | |
Collapse
|
16
|
Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab 2013; 13:1327-44. [PMID: 22746301 DOI: 10.2174/138920012803341302] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 04/04/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022]
Abstract
Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions.
Collapse
Affiliation(s)
- Adarsh Gandhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
17
|
Dong F, Zhang L, Hao F, Tang H, Wang Y. Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy. J Proteome Res 2013; 12:2958-66. [PMID: 23651354 DOI: 10.1021/pr4002383] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interplay between genetic mutation and environmental factors is believed to contribute to the etiology of inflammatory bowel disease (IBD). While focused attention has been paid to the aforementioned research, time-specific and organ-specific metabolic changes associated with IBD are still lacking. Here, we induced acute ulcerative colitis in mice by providing water containing 3% dextran sulfate sodium (DSS) for 7 days and investigated the metabolic changes of plasma, urine, and a range of biological tissues by employing a (1)H nuclear magnetic resonance (NMR)-based metabonomics approach with complementary information on serum clinical chemistry and histopathology. We found that DSS-induced acute ulcerative colitis leads to significant elevations in the levels of amino acids in plasma and decreased levels in the membrane-related metabolites and a range of nucleotides, nucleobases, and nucleosides in the colon. In addition, acute-colitis-induced elevations in the levels of nucleotides in the liver were observed, accompanied by reduced levels of glucose. DSS-induced acute colitis also resulted in increased levels of oxidized glutathione and attenuated levels of taurine in the spleen. Furthermore, acute colitis resulted in depletion in the levels of gut microbial cometabolites in urine along with an increase in citric acid cycle intermediates. These findings suggest that DSS-induced acute colitis causes a disturbance of lipid and energy metabolism, damage to the colon and liver, a promoted antioxidative and anti-inflammatory response, and perturbed gut microbiotal communities. The information obtained here provided details of the time-dependent and holistic metabolic changes in the development of the DSS-induced acute ulcerative colitis, which could be useful in discovery of novel therapeutic targets for management of IBD.
Collapse
Affiliation(s)
- Fangcong Dong
- Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Trivedi PP, Jena GB. Ulcerative colitis-induced hepatic damage in mice: studies on inflammation, fibrosis, oxidative DNA damage and GST-P expression. Chem Biol Interact 2012; 201:19-30. [PMID: 23261717 DOI: 10.1016/j.cbi.2012.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 12/08/2012] [Indexed: 12/12/2022]
Abstract
There exists a close relationship between ulcerative colitis and various hepatic disorders. The present study was aimed to evaluate the hepatocellular damage in experimental colitis model. Ulcerative colitis was induced in Swiss mice by cyclic treatment with 3% w/v dextran sulfate sodium in drinking water. The severity of colitis was assessed on the basis of disease activity index and colon histology. The effect of ulcerative colitis on the liver was assessed using various biochemical parameters, histological evaluation, sirius red staining, immunohistochemical staining with peroxisome proliferator-activated receptor γ, 8-oxo-7,8-dihydro-2'-deoxyguanosine and placental glutathione S-transferase, comet assay (alkaline and modified), Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assay and western blot analysis to detect the protein expression of nuclear factor kappa B, cyclooxygenase-2, nuclear erythroid 2-related factor 2 and NADPH: quinone oxidoreductase-1. Dextran sulfate sodium induced severe colitis in mice as evident from an elevated disease activity index and histological abnormalities. Ulcerative colitis increased the permeability of colon as apparent from a significant reduction in the expression of tight junction protein, occludin. Further, the bacterial translocation assay as well as the analysis of lipopolysaccharide level revealed the existence of various bacterial species in the liver of ulcerative colitis-induced mice. There was a significant increase in the plasma alanine and aspartate transaminases and liver triglyceride levels, expression of peroxisome proliferator-activated receptor γ, inflammatory markers, oxidative stress, fibrosis, oxidative DNA damage and apoptosis in the liver of mice. Moreover, there was an increase in the expression of nuclear factor kappa B and cyclooxygenase-2 and a reduction in the expression of nuclear erythroid 2-related factor 2 and NADPH: quinone oxidoreductase-1 in the liver of severe ulcerative colitis-induced mice. The results of the present study provide evidence that ulcerative colitis is accompanied with hepatic damage in mice.
Collapse
Affiliation(s)
- P P Trivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| | | |
Collapse
|
19
|
Ghose R, Guo T, Vallejo JG, Gandhi A. Differential role of Toll-interleukin 1 receptor domain-containing adaptor protein in Toll-like receptor 2-mediated regulation of gene expression of hepatic cytokines and drug-metabolizing enzymes. Drug Metab Dispos 2011; 39:874-81. [PMID: 21303924 DOI: 10.1124/dmd.110.037382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pharmacological activities of drugs are impaired during inflammation because of reduced expression of hepatic drug-metabolizing enzyme genes (DMEs) and their regulatory nuclear receptors (NRs): pregnane X receptor (PXR), constitutive androstane receptor (CAR), and retinoid X receptor (RXRα). We have shown that a component of Gram-positive bacteria, lipoteichoic acid (LTA) induces proinflammatory cytokines and reduces gene expression of hepatic DMEs and NRs. LTA is a Toll-like receptor 2 (TLR2) ligand, which initiates signaling by recruitment of Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) to the cytoplasmic TIR domain of TLR2. To determine the role of TIRAP in TLR2-mediated regulation of DME genes, TLR2(+/+), TLR2(-/-), TIRAP(+/+), and TIRAP(-/-) mice were given LTA injections. RNA levels of the DMEs (Cyp3a11, Cyp2b10, and sulfoaminotransferase), xenobiotic NRs (PXR and CAR), and nuclear protein levels of the central NR RXRα were reduced ∼ 50 to 60% in LTA-treated TLR2(+/+) but not in TLR2(-/-) mice. Induction of hepatic cytokines (interleukin-1β, tumor necrosis factor-α, and interleukin-6), c-Jun NH(2)-terminal kinase, and nuclear factor-κΒ was blocked in TLR2(-/-) mice. As expected, expression of hepatic DMEs and NRs was reduced by LTA in TIRAP(+/+) but not in TIRAP(-/-) mice. Of interest, cytokine RNA levels were induced in the livers of both the TIRAP(+/+) and TIRAP(-/-) mice, whereas LTA-mediated induction of serum cytokines was attenuated in TIRAP(-/-) mice. LTA-mediated down-regulation of DME genes was attenuated in hepatocytes from TLR2(-/-) or TIRAP(-/-) mice and in small interfering RNA-treated hepatocytes. Thus, the effect of TLR2 on DME genes in hepatocytes was mediated by TIRAP, whereas TIRAP was not involved in mediating the effects of TLR2 on cytokine expression in the liver.
Collapse
Affiliation(s)
- Romi Ghose
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 1441 Moursund St., Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
20
|
Nyagode BA, Lee CM, Morgan ET. Modulation of hepatic cytochrome P450s by Citrobacter rodentium infection in interleukin-6- and interferon-{gamma}-null mice. J Pharmacol Exp Ther 2010; 335:480-8. [PMID: 20719939 DOI: 10.1124/jpet.110.171488] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
After infection with Citrobacter rodentium, murine hepatic cytochrome P450 (P450) mRNAs are selectively regulated. Several serum proinflammatory cytokines are elevated, the most abundant being interleukin-6 (IL6). To elucidate the role of cytokines in the regulation of P450s during infection, we orally infected wild-type, IL6(-/-), or interferon-γ(-/-) [IFNγ(-/-)] female C57BL/6J mice with C. rodentium and analyzed hepatic P450 expression 7 days later. The majority of P450 mRNAs were equally affected by infection in each genotype, indicating that IL6 and IFNγ are not the primary mediators of P450 down-regulation in this disease model. The down-regulation of CYP3A11 and CYP3A13 and induction of CYP2D9 mRNAs were attenuated in the IL6(-/-) mice, suggesting a role of IL6 in the regulation of only these P450s. Similar evidence implicated IFNγ in the regulation of CYP2D9, CYP2D22, CYP3A11, CYP3A25, and CYP4F18 mRNAs in C. rodentium infection and CYP2B9, CYP2D22, and CYP2E1 in the bacterial lipopolysaccharide model of inflammation. This is the first indication of an in vivo role for IFNγ in hepatic P450 regulation in disease states. The deficiency of IL6 or IFNγ affected serum levels of the other cytokines. Moreover, experiments in cultured hepatocytes demonstrated that tumor necrosis factor α (TNFα) is the most potent and efficacious of the cytokines tested in the regulation of murine P450 expression. It is therefore possible that part of the IFNγ(-/-) and IL6(-/-) phenotypes could be attributed to the reduced levels of TNFα and part of the IFNγ(-/-) phenotype could be caused by reduced levels of IL6.
Collapse
Affiliation(s)
- Beatrice A Nyagode
- Department of Pharmacology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
21
|
Ueyama J, Nadai M, Zhao YL, Kanazawa H, Takagi K, Kondo T, Takagi K, Wakusawa S, Abe F, Saito H, Miyamoto KI, Hasegawa T. Effect of thalidomide on endotoxin-induced decreases in activity and expression of hepatic cytochrome P450 3A2. Biol Pharm Bull 2008; 31:1596-600. [PMID: 18670095 DOI: 10.1248/bpb.31.1596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thalidomide has been reported to inhibit the production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) that are involved in the down-regulation of hepatic cytochrome P450 (CYP) induced by endotoxin. In the present study, we investigated the effects of thalidomide on endotoxin-induced decreases in the activity and expression of hepatic CYP3A2 in rats. Thalidomide (50 mg/kg) was administered orally 22 h and 2 h before intraperitoneal injection of endotoxin (1 mg/kg). Twenty-four hours after the injection of endotoxin, antipyrine clearance experiments were conducted, in which the rats were sacrificed and protein levels of hepatic CYP3A2 were measured. There were no significant differences in the histopathological changes in the liver between the endotoxin-treated and endotoxin plus thalidomide-treated rats. Thalidomide had no effect on the systemic clearance of antipyrine, which is a proper indicator for hepatic CYP3A2 activity, whereas it enhanced endotoxin-induced decrease in the systemic clearance of antipyrine. Western blot analysis revealed that thalidomide had no effect on the protein levels of hepatic CYP3A2, whereas it enhanced the down-regulation of hepatic CYP3A2 by endotoxin. However, there were no significant differences in the concentrations of TNF-alpha and NO in plasma between the endotoxin-treated and endotoxin plus thalidomide-treated rats. The present findings suggest that thalidomide enhances endotoxin-induced decreases in the activity and expression of hepatic CYP3A2.
Collapse
Affiliation(s)
- Jun Ueyama
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Karlsson A, Jägervall A, Pettersson M, Andersson AK, Gillberg PG, Melgar S. Dextran sulphate sodium induces acute colitis and alters hepatic function in hamsters. Int Immunopharmacol 2007; 8:20-7. [PMID: 18068096 DOI: 10.1016/j.intimp.2007.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/01/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Dextran sulphate sodium (DSS)-induced colitis in rodents is an experimental model for human inflammatory bowel disease (IBD). The aim of this study was to characterize the effect of DSS in hamster colon and liver. DSS (2-5%) was administrated in the drinking water for 4-6 days. Clinical symptoms were recorded daily, inflammatory and fatty acid-related metabolic markers were assessed in plasma, colon and liver. Six days of 3 or 5% DSS induced a severe wasting disease, whereas 2.5% DSS induced a colonic inflammation without severe systemic adverse effects. The systemic inflammatory response was characterized by an inverse production of albumin and the acute phase protein haptoglobin. The colonic inflammatory response was confined to the proximal colon, manifested by a high macroscopic inflammatory score, increased colon weight and expression of IL-1beta, IL-6 and iNOS, infiltration of inflammatory cells and epithelial disruption. In contrast, only a low/mild inflammatory response was observed in the distal colon of DSS-exposed hamsters. Significant hepatic-related metabolic alterations were also observed, with elevation of plasma triglycerides and increased liver expression of lipoprotein lipase and reduced expression of acyl-CoA oxidase and cytochrome P450A. Although liver weight was significantly reduced, no histopathological signs of inflammation or tissue damage were observed. In summary, hamsters exposed to 2.5% DSS for 6 days develop acute colitis resembling murine DSS-induced colitis. In addition, DSS-exposed hamster showed alterations in hepatic fatty acids metabolism resembling human IBD, suggesting that the model can potentially be used for target discovery and validation of hepatic-related metabolic alterations.
Collapse
Affiliation(s)
- Agneta Karlsson
- Department of Integrative Pharmacology, AstraZeneca R&D Mölndal, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Ganter B, Snyder RD, Halbert DN, Lee MD. Toxicogenomics in drug discovery and development: mechanistic analysis of compound/class-dependent effects using the DrugMatrix® database. Pharmacogenomics 2006; 7:1025-44. [PMID: 17054413 DOI: 10.2217/14622416.7.7.1025] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A range of genomics technologies are increasingly becoming integrated with existing scientific disciplines to broaden and strengthen existing capabilities and open new avenues of research in drug discovery and development. Examples of these new research fields are proteomics, pharmacogenomics, metabolomics and toxicogenomics. Here we review the application of toxicogenomics to improve the evaluation of drug safety, mechanism of action and toxicity in the drug discovery and development process.
Collapse
Affiliation(s)
- Brigitte Ganter
- Iconix Biosciences, 325 E. Middlefield Road, Mountain View, California, USA
| | | | | | | |
Collapse
|
25
|
Renton KW. Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol 2006; 1:629-40. [PMID: 16863429 DOI: 10.1517/17425255.1.4.629] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The expression and activity of cytochrome P450 (CYP) is altered during periods of infectious disease or when an inflammatory response is activated. Most of the major forms of CYP are affected in this manner and this leads to a decrease in the capacity of the liver and other organs to handle drugs, chemicals and some endogenous compounds. The loss in drug metabolism is predominantly an effect resulting from the production of cytokines and the modulation of the transcription factors that control the expression of specific CYP forms. In clinical medicine numerous examples have been reported indicating the occurrence of compromised drug clearance and changes to pharmacokinetics during disease states with an inflammatory component or during infections. For any drug that is metabolised by CYP and has a narrow therapeutic index, there is a significant risk in placing patients in a position where an infection or inflammatory response might lead to aberrant drug handling and an adverse drug response.
Collapse
Affiliation(s)
- Kenneth W Renton
- Dalhousie University, Department of Pharmacology, Faculty of Medicine, Halifax, Nova Scotia, B3H 4H7, Canada.
| |
Collapse
|
26
|
Kalitsky-Szirtes J, Shayeganpour A, Brocks DR, Piquette-Miller M. Suppression of drug-metabolizing enzymes and efflux transporters in the intestine of endotoxin-treated rats. Drug Metab Dispos 2004; 32:20-7. [PMID: 14709616 DOI: 10.1124/dmd.32.1.20] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Infection and inflammation impose a suppression in the expression and activity of several drug transporters and drug-metabolizing enzymes in liver. In the intestine, cytochrome P450 3A (CYP3A), P-glycoprotein (PGP/mdr1), and the multidrug resistance-associated protein 2 (MRP2) are important barriers to the absorption of many clinically important drugs; thus, the expression and activity of these proteins were examined in inflammation. Transport and metabolism were determined in jejunum segments isolated at 24 h from endotoxin-treated or control rats (n = 8) mounted in Ussing chambers. Transport and metabolism of (3)H-digoxin, 5-carboxyfluorescein (5-CF), amiodarone (AM), and 7-benzyloxyquinoline (7-BQ) were measured for 90 min in the presence and absence of inhibitors. Reverse transcription-polymerase chain reaction was used to measure mRNA levels. As compared with controls, levels of mdr1a and mrp2 mRNA were significantly decreased by approximately 50% in the jejunum of LPS-treated rats. Corresponding reductions in the basolateral-->apical efflux of digoxin, AM, and 5-CF were observed, resulting in significant increases in the apical-->basolateral absorption of these compounds. Intestinal CYP3A mRNA levels and CYP3A-mediated metabolism of 7-BQ and AM were also decreased by approximately 50 to 70% (p < 0.05) in the LPS group. Mannitol permeability and lactate dehydrogenase release were not altered. These studies indicate that endotoxin-induced inflammation imposes a reduction in the intestinal expression and activity of PGP, mrp2, and CYP3A in rats, which elicits corresponding changes in the intestinal transport and metabolism of their substrates. Hence, infection and inflammatory diseases may impose variability in drug bioavailability through alterations in the intestinal expression and activity of drug transporters and metabolic enzymes.
Collapse
Affiliation(s)
- J Kalitsky-Szirtes
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 2S2
| | | | | | | |
Collapse
|
27
|
James LP, Lamps LW, McCullough S, Hinson JA. Interleukin 6 and hepatocyte regeneration in acetaminophen toxicity in the mouse. Biochem Biophys Res Commun 2003; 309:857-63. [PMID: 13679052 DOI: 10.1016/j.bbrc.2003.08.085] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To determine the importance of IL-6 in acetaminophen (APAP) toxicity, wild type (WT) and IL-6 knock out (KO) mice were dosed with APAP (300 mg/kg i.p.) and sacrificed at 4 and 24h. No differences were found between the two groups by analysis of serum AST levels or histopathology. Also, the relative amounts of APAP protein binding and nitrotyrosine formation were equal. Subsequently, WT and KO mice were dosed with APAP (300 mg/kg i.p.) and sacrificed at 24, 48, and 72 h. AST normalized by 48 h in the WT mice, but not until 72 h in the KO mice. The severity of the histopathological alterations was comparable in the two groups of mice; however, fewer regenerating hepatocytes were present in the KO mice. Immunohistochemistry for proliferating cell nuclear antigen (PCNA) showed reduced staining in the KO mice. Pretreatment of KO mice with IL-6 lowered AST and normalized PCNA staining in the IL-6 KO mice. These data suggest that IL-6 is important in hepatocyte regeneration following APAP toxicity in the mouse.
Collapse
Affiliation(s)
- Laura P James
- Department of Pediatrics, Univerisity of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | | | | | |
Collapse
|
28
|
Masubuchi Y, Horie T. Resistance to indomethacin-induced down-regulation of hepatic cytochrome P450 enzymes in the mice with non-functional Toll-like receptor 4. J Hepatol 2003; 39:349-56. [PMID: 12927920 DOI: 10.1016/s0168-8278(03)00244-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Repetitive indomethacin administration induces down-regulation of hepatic cytochrome P450 (CYP) enzymes. We tested the hypothesis that an increase in intestinal permeability by indomethacin-induced intestinal injury leads to entry of bacterial endotoxin and reaching into liver via the portal vein, resulting in down-regulations of CYPs. METHODS C3H/HeJ mice, which are resistant to endotoxin, have a mutation in Toll-like receptor 4 gene. The sensitivity to indomethacin-induced impairment of hepatic CYPs in the lipopolysaccharide (LPS)-resistant mice was examined along with LPS-sensitive (C3H/He) mice. RESULTS Treatment of the LPS-sensitive mice with intraperitoneal indomethacin (5 mg/kg per day, 3 days) significantly decreased enzyme activities for CYP3A11, CYP2D9 and CYP1A2 but not CYP2E1. The LPS-resistant mice were resistant to the indomethacin-induced impairment of CYP2D9. The mice were also less sensitive to the effects on CYP3A11 and CYP1A2, but the activities for these isozymes in the indomethacin-treated mice were still lower than in untreated mice. Immunoblot analysis with anti-CYP3A2 and anti-CYP2D2 sera indicated that indomethacin-induced decreases in expression of the proteins recognized by the antibodies were attenuated in the LPS-resistant mice. CONCLUSIONS We conclude that Toll-like receptor 4 is involved in the indomethacin-induced down-regulation of hepatic CYP enzymes, indicating the pivotal role of gut-derived endotoxin in the hepatic effects.
Collapse
Affiliation(s)
- Yasuhiro Masubuchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | |
Collapse
|
29
|
Sachdeva K, Yan B, Chichester CO. Lipopolysaccharide and cecal ligation/puncture differentially affect the subcellular distribution of the pregnane X receptor but consistently cause suppression of its target genes CYP3A. Shock 2003; 19:469-74. [PMID: 12744492 DOI: 10.1097/01.shk.0000048903.46342.ec] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The repressed expression of cytochrome P450 (CYP) enzymes in septic patients contributes significantly to therapeutic failures. Mice treated with sepsis-inducing agent lipopolysaccharide (LPS) sequentially express reduced mRNA levels of the pregnane X receptor (PXR) and its target genes Cyp3a(s), suggesting that reduction of Cyp expression is associated with the repression of PXR. The present study was undertaken to determine whether septic rats induced by LPS and cecal ligation/puncture (CLP) express reduced levels of rat PXR protein and whether the subcellular distribution of PXR is altered in septic conditions. Rats were treated with LPS (55 vs. 1 mg/kg) or underwent CLP, and the expression of CYP3A and PXR was determined. In LPS-treated rats, the expression of CYP3A enzymes was consistently decreased regardless of the doses used. In contrast, high dose and repeated low dose of LPS caused significant decreases on the nuclear PXR, whereas the opposite was true with the cytosolic PXR. When rats were administered with only a single low dose of LPS, both nuclear and cytosolic PXR levels were significantly increased. In the CLP model, rats undergoing CLP for 30 h expressed significantly lower levels of CYP3A but the PXR levels were not significantly altered. In addition, when rats were treated with dexamethasone, a significant induction of CYP3A was detected. However, such an induction was markedly antagonized by the treatment with LPS. The differential changes on the levels of the nuclear PXR and CYP3A between LPS and CLP models suggest that PXR plays negligible roles in the constitutive expression of CYP3A. The antagonism of LPS against dexamethasone-mediated CYP3A induction suggests that endotoxemia minimizes the inducibility of PXR target genes.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Cecum/pathology
- Cecum/physiology
- Cytochrome P-450 CYP3A
- Dexamethasone/pharmacology
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Lipopolysaccharides/toxicity
- Oxidoreductases, N-Demethylating/genetics
- Pregnane X Receptor
- Punctures
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/drug effects
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
- Suppression, Genetic/drug effects
Collapse
Affiliation(s)
- Karuna Sachdeva
- Department of Biomedical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
30
|
Yang LQ, Li SJ, Cao YF, Man XB, Yu WF, Wang HY, Wu MC. Different alterations of cytochrome P450 3A4 isoform and its gene expression in livers of patients with chronic liver diseases. World J Gastroenterol 2003; 9:359-63. [PMID: 12532467 PMCID: PMC4611347 DOI: 10.3748/wjg.v9.i2.359] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether parenchymal cells or hepatic cytochrome P450 protein was changed in chronic liver diseases, and to compare the difference of CYP3A4 enzyme and its gene expression between patients with hepatic cirrhosis and obstructive jaundice, and to investigate the pharmacologic significance behind this difference.
METHODS: Liver samples were obtained from patients undergoing hepatic surgery with hepatic cirrhosis (n = 6) and obstructive jaundice (n = 6) and hepatic angeioma (controls, n = 6). CYP3A4 activity and protein were determined by Nash and western bloting using specific polychonal antibody, respectively. Total hepatic RNA was extracted and CYP3A4cDNA probe was prepared according the method of random primer marking, and difference of cyp3a4 expression was compared among those patients by Northern blotting.
RESULTS: Compared to control group, the CYP3A4 activity and protein in liver tissue among patients with cirrhosis were evidently reduced. (P < 0.01) Northern blot showed the same change in its mRNA levels. In contrast, the isoenzyme and its gene expression were not changed among patients with obstructive jaundice.
CONCLUSION: Hepatic levels of P450s and its CYP3A4 isoform activity were selectively changed in different chronic liver diseases. CYP3A4 isoenzyme and its activity declined among patients with hepatic cirrhosis as expression of cyp3a4 gene was significantly reduced. Liver's ability to eliminate many clinical therateutic drug substrates would decline consequently, These findings may have practical implications for the use of drugs in patients with cirrhosis and emphasize the need to understand the metabolic fate of therapeutic compounds. Elucidation of the reasons for these different changes in hepatic CYP3A4 may provide insight into more fundamental aspects and mechanisms of imparied liver function.
Collapse
Affiliation(s)
- Li-Qun Yang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai 200438, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Van Ess PJ, Mattson MP, Blouin RA. Enhanced induction of cytochrome P450 enzymes and CAR binding in TNF (p55(-/-)/p75(-/-)) double receptor knockout mice following phenobarbital treatment. J Pharmacol Exp Ther 2002; 300:824-30. [PMID: 11861787 DOI: 10.1124/jpet.300.3.824] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phenobarbital (PB) is a well characterized inducer of cytochrome P450 (P450) 2B and 3A subfamilies. Several proinflammatory cytokines have been shown to negatively modulate the induction of P450 by PB. In addition, PB is known to elicit an inflammatory mitogenic effect on the liver. To date, no studies have evaluated the PB induction profile of hepatic P450 in the absence of an intact tumor necrosis factor-alpha (TNFalpha) response. To test the hypothesis that endogenous TNFalpha signaling modulates hepatic P450 induction by PB in vivo, PB induction was examined in TNF (p55(-/-)/p75(-/-)) double receptor knockout mice (ko-TNF) and wild-type mice (wt-TNF). CYP2B- and CYP3A-associated activities and protein content were induced to a significantly greater extent (p < 0.05) in ko-TNF mice compared with wt-TNF mice. In parallel with enhanced CYP2B induction, an apparent elevation in the nuclear accumulation of the principal regulatory protein for transcription of CYP2B genes, the constitutively activated receptor (CAR), was detected in ko-TNF nuclear extracts following PB treatment. Additionally, nuclear factor kappa-B binding was induced by PB in wt-TNF mice, but not in ko-TNF mice, indicating that the hepatic inflammatory response following PB treatment differed between wt-TNF and ko-TNF mice. These data demonstrate that endogenous TNFalpha signaling modulates PB induction of hepatic CYP2B and CYP3A isoforms in vivo. Further, the data presented herein suggest that endogenous TNFalpha signaling influences PB induction of CYP2B through inhibition of CAR nuclear accumulation.
Collapse
Affiliation(s)
- Peter J Van Ess
- College of Pharmacy, Division of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | | | |
Collapse
|
32
|
Yoo JY, Huso DL, Nathans D, Desiderio S. Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell 2002; 108:331-44. [PMID: 11853668 DOI: 10.1016/s0092-8674(02)00636-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alternative splicing of the gene for Stat3, a transcription factor activated by the IL-6 family of cytokines, produces two isoforms: Stat3alpha and a dominant-negative variant, Stat3beta. Stat3beta-deficient mice were generated by gene targeting. Despite intact expression and phosphorylation of Stat3alpha, overall Stat3 activity was impaired in Stat3beta(-/-) cells. Global comparison of transcription in Stat3beta(+/+) and Stat3beta(-/-) cells revealed stable differences. Stat3beta-deficient mice exhibit diminished recovery from endotoxic shock and hyperresponsiveness of a subset of endotoxin-inducible genes in liver. The hepatic response to endotoxin in wild-type mice is accompanied by a transient increase in the ratio of Stat3beta to Stat3alpha. These findings indicate a critical role for Stat3beta in the control of systemic inflammation.
Collapse
Affiliation(s)
- Joo-Yeon Yoo
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|