1
|
Song H, Lee YY, Park J, Lee Y. Korean Red Ginseng suppresses bisphenol A-induced expression of cyclooxygenase-2 and cellular migration of A549 human lung cancer cell through inhibition of reactive oxygen species. J Ginseng Res 2021; 45:119-125. [PMID: 33437163 PMCID: PMC7790882 DOI: 10.1016/j.jgr.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is a natural product with antiinflammatory and anticarcinogenic effects. We have previously reported that the endocrine-disrupting compound bisphenol A (BPA)-induced cyclooxygenase-2 (COX-2) via nuclear translocation of nuclear factor-kappa B (NF-κB) and activation of mitogen-activated protein kinase and promoted the migration of A549. Here, in this study, we assessed the protective effect of KRG on the BPA-induced reactive oxygen species (ROS) and expression of COX-2 and matrix metalloproteinase-9 (MMP-9) in A549 cells. METHODS The effects of KRG on the upregulation of ROS production and COX-2 and MMP-9 expression by BPA were evaluated by fluorescence-activated cell sorting (FACs) analysis, quantitative reverse transcription polymerase chain reaction, and western blotting. Antimigration ability by KRG was evaluated by migration assay in A549 cells. RESULTS KRG significantly suppressed the BPA-induced COX-2, the activity of NF-κB, the production of ROS, and the migration of A549 cells. These effects led to the downregulation of the expression of MMP-9. CONCLUSIONS Overall, our results suggest that KRG exerts an antiinflammatory effect on BPA-treated A549 cells via the suppression of ROS and downregulation of NF-κB activation and COX-2 expression which leads to a decrease in cellular migration and MMP-9 expression. These results provide a new possible therapeutic application of KRG to protect BPA-induced possible inflammatory disorders.
Collapse
Affiliation(s)
- Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Ma Z, Parris AB, Howard EW, Davis M, Cao X, Woods C, Yang X. In Utero Exposure to Bisphenol a Promotes Mammary Tumor Risk in MMTV-Erbb2 Transgenic Mice Through the Induction of ER-erbB2 Crosstalk. Int J Mol Sci 2020; 21:ijms21093095. [PMID: 32353937 PMCID: PMC7247154 DOI: 10.3390/ijms21093095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is the most common environmental endocrine disrupting chemical. Studies suggest a link between perinatal BPA exposure and increased breast cancer risk, but the underlying mechanisms remain unclear. This study aims to investigate the effects of in utero BPA exposure on mammary tumorigenesis in MMTV-erbB2 transgenic mice. Pregnant mice were subcutaneously injected with BPA (0, 50, 500 ng/kg and 250 µg/kg BW) daily between gestational days 11–19. Female offspring were examined for mammary tumorigenesis, puberty onset, mammary morphogenesis, and signaling in ER and erbB2 pathways. In utero exposure to low dose BPA (500 ng/kg) induced mammary tumorigenesis, earlier puberty onset, increased terminal end buds, and prolonged estrus phase, which was accompanied by proliferative mammary morphogenesis. CD24/49f-based FACS analysis showed that in utero exposure to 500 ng/kg BPA induced expansion of luminal and basal/myoepithelial cell subpopulations at PND 35. Molecular analysis of mammary tissues at PND 70 showed that in utero exposure to low doses of BPA induced upregulation of ERα, p-ERα, cyclin D1, and c-myc, concurrent activation of erbB2, EGFR, erbB-3, Erk1/2, and Akt, and upregulation of growth factors/ligands. Our results demonstrate that in utero exposure to low dose BPA promotes mammary tumorigenesis in MMTV-erbB2 mice through induction of ER-erbB2 crosstalk and mammary epithelial reprogramming, which advance our understanding of the mechanism associated with in utero exposure to BPA-induced breast cancer risk. The studies also support using MMTV-erbB2 mouse model for relevant studies.
Collapse
Affiliation(s)
- Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Amanda B. Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Erin W. Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Meghan Davis
- Biotechnology, Rowan-Cabarrus Community College, Kannapolis, NC 28081, USA;
| | - Xia Cao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Courtney Woods
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-704-250-5726
| |
Collapse
|
3
|
Stitzlein LM, Stang CRT, Inbody LR, Rao PSS, Schneider RA, Dudley RW. Design, synthesis, and biological evaluation of lipophilically modified bisphenol Z derivatives. Chem Biol Drug Des 2019; 94:1574-1579. [PMID: 31009169 DOI: 10.1111/cbdd.13531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 12/28/2022]
Abstract
In the present study, a small library of bisphenol Z (BPZ) derivatives was synthesized and investigated for anti-proliferative effects in cultured breast and glioblastoma cell lines. Synthesized BPZ derivatives varied in molecular size, polarity, and lipophilicity. Of the 8 derivatives tested, compounds 4 and 6, both of which displayed the highest degree of lipophilicity, were most active at inducing cell death as determined by the XTT assay. Cell membranes were interrogated using trypan blue staining and were shown to remain intact during treatments with 4 and 6. Activation of caspase enzymes (3 and/or 7) was noted to occur following treatment with compound 4. Polar BPZ derivatives, those with a substituted amine or alcohol, were devoid of any inhibitory or proliferative effects. The remaining derivatives seem to lack sufficient lipophilicity to execute an overt toxic effect. Our results suggest that increasing the lipophilic character of BPZ enhances the cytotoxic effects.
Collapse
Affiliation(s)
- Lea M Stitzlein
- College of Pharmacy, The University of Findlay, Findlay, Ohio
| | | | - Laura R Inbody
- College of Pharmacy, The University of Findlay, Findlay, Ohio
| | - P S S Rao
- College of Pharmacy, The University of Findlay, Findlay, Ohio
| | | | | |
Collapse
|
4
|
Rosin JM, Kurrasch DM. Bisphenol A and microglia: could microglia be responsive to this environmental contaminant during neural development? Am J Physiol Endocrinol Metab 2018; 315:E279-E285. [PMID: 29812986 DOI: 10.1152/ajpendo.00443.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a growing interest in the functional role of microglia in the developing brain. In our laboratory, we have become particularly intrigued as to whether fetal microglia in the embryonic brain are susceptible to maternal challenges in utero (e.g., maternal infection, stress) and, if so, whether their precocious activation could then adversely influence brain development. One such challenge that is newly arising in this field is whether microglia might be downstream targets to endocrine-disrupting chemicals, such as the plasticizer bisphenol A (BPA), which functions in part by mimicking estrogen structure and function. A growing body of evidence demonstrates that gestational exposure to BPA has adverse effects on brain development, although the exact mechanisms are still emerging. Given that microglia express estrogen receptors and steroid-producing enzymes, microglia might be an unappreciated target of BPA. Mechanistically, we propose that BPA binding to estrogen receptors within microglia initiates transcription of downstream target genes, which then leads to activation of microglia that can then perhaps adversely influence brain development. Here, we first briefly outline the current understanding of how microglia may influence brain development and then describe how this literature overlaps with our understanding of BPA's effects during similar time points. We also outline the current literature demonstrating that BPA exposure affects microglia. We conclude by discussing our thoughts on the mechanisms through which exposure to BPA could disrupt normal microglia functions, ultimately affecting brain development that could potentially lead to lasting behavioral effects and perhaps even neuroendocrine diseases such as obesity.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
5
|
Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:697-708. [PMID: 25725483 DOI: 10.1016/j.bbagrm.2015.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/31/2022]
Abstract
HOXC6 is a homeobox-containing gene associated with mammary gland development and is overexpressed in variety of cancers including breast and prostate cancers. Here, we have examined the expression of HOXC6 in breast cancer tissue, investigated its transcriptional regulation via estradiol (E2) and bisphenol-A (BPA, an estrogenic endocrine disruptor) in vitro and in vivo. We observed that HOXC6 is differentially over-expressed in breast cancer tissue. E2 induces HOXC6 expression in cultured breast cancer cells and in mammary glands of Sprague Dawley rats. HOXC6 expression is also induced upon exposure to BPA both in vitro and in vivo. Estrogen-receptor-alpha (ERα) and ER-coregulators such as MLL-histone methylases are bound to the HOXC6 promoter upon exposure to E2 or BPA and that resulted in increased histone H3K4-trimethylation, histone acetylation, and recruitment of RNA polymerase II at the HOXC6 promoter. HOXC6 overexpression induces expression of tumor growth factors and facilitates growth 3D-colony formation, indicating its potential roles in tumor growth. Our studies demonstrate that HOXC6, which is a critical player in mammary gland development, is upregulated in multiple cases of breast cancer, and is transcriptionally regulated by E2 and BPA, in vitro and in vivo.
Collapse
|
6
|
Weber DN, Hoffmann RG, Hoke ES, Tanguay RL. Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:50-66. [PMID: 25424546 PMCID: PMC4246420 DOI: 10.1080/15287394.2015.958419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1, or 1 μM) or one of two control compounds (0.1 μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into three computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1-3 (= AM) and 5-8 (= PM) h postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, percent of time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced nonmonotonic effects (response curve changes direction within range of concentrations examined) on male percent of time at mirror only in AM. All treatments produced increased percent of time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions, and time of day of observation affected results.
Collapse
Affiliation(s)
- Daniel N. Weber
- Children’s Environmental Health Sciences Core Center, University of Wisconsin-Milwaukee
- To Whom Correspondence Should Be Addressed: , 600 E. Greenfield Ave, Milwaukee, WI 53204, (414) 382-1726
| | | | | | - Robert L. Tanguay
- College of Agricultural Sciences, Department of Environmental & Molecular Toxicology, Oregon State University
| |
Collapse
|
7
|
Gaitonde V, Lee K, Kirschbaum K, Sucheck SJ. Bio-Based Bisfuran: Synthesis, Crystal Structure and Low Molecular Weight Amorphous Polyester. Tetrahedron Lett 2014; 55:4141-4145. [PMID: 25045189 DOI: 10.1016/j.tetlet.2014.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Discovery of renewable monomer feedstocks for fabrication of polymeric demand is critical in achieving sustainable materials. In the present work we have synthesized bisfuran diol (BFD) monomer from furfural, over four steps. BFD was examined via X-ray crystallography to understand the molecular arrangement in space, hydrogen bonding and packing of the molecules. This data was further used to compare BFD with structurally related Bisphenol A (BPA), and its known derivatives to predict the potential estrogenic or anti-estrogenic activities in BFD. Further, BFD was reacted with succinic acid to generate polyester material, bisfuran polyester (BFPE-1). MALDI characterization of BFPE-1 indicates low molecular weight polyester and thermal analysis reveals amorphous nature of the material.
Collapse
Affiliation(s)
- Vishwanath Gaitonde
- Department of Chemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA
| | - Kyunghee Lee
- Department of Chemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA
| | - Kristin Kirschbaum
- Department of Chemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA
| | - Steven J Sucheck
- Department of Chemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA
| |
Collapse
|
8
|
Teeguarden J, Hanson-Drury S, Fisher JW, Doerge DR. Are typical human serum BPA concentrations measurable and sufficient to be estrogenic in the general population? Food Chem Toxicol 2013; 62:949-63. [DOI: 10.1016/j.fct.2013.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 11/29/2022]
|
9
|
Brieno-Enriquez MA, Reig-Viader R, Cabero L, Toran N, Martinez F, Roig I, Garcia Caldes M. Gene expression is altered after bisphenol A exposure in human fetal oocytes in vitro. Mol Hum Reprod 2011; 18:171-83. [DOI: 10.1093/molehr/gar074] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
10
|
Saili KS, Corvi MM, Weber DN, Patel AU, Das SR, Przybyla J, Anderson KA, Tanguay RL. Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology 2011; 291:83-92. [PMID: 22108044 DOI: 10.1016/j.tox.2011.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 11/07/2011] [Indexed: 01/20/2023]
Abstract
Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development. Two control compounds, 17β-estradiol (an estrogen receptor ligand) and GSK4716 (a synthetic estrogen-related receptor gamma ligand), were included. Larval toxicity assays were used to determine appropriate BPA, 17β-estradiol, and GSK4716 concentrations for behavior testing. BPA tissue uptake was analyzed using HPLC and lower doses were extrapolated using a linear regression analysis. Larval behavior tests were conducted using a ViewPoint Zebrabox. Adult learning tests were conducted using a custom-built T-maze. BPA exposure to <30μM was non-teratogenic. Neurodevelopmental BPA exposure to 0.01, 0.1, or 1μM led to larval hyperactivity or learning deficits in adult zebrafish. Exposure to 0.1μM 17β-estradiol or GSK4716 also led to larval hyperactivity. This study demonstrates the efficacy of using the zebrafish model for studying the neurobehavioral effects of low-dose developmental BPA exposure.
Collapse
Affiliation(s)
- Katerine S Saili
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang SH, Morgan AA, Nguyen HP, Moore H, Figard BJ, Schug KA. Quantitative determination of bisphenol A from human saliva using bulk derivatization and trap-and-elute liquid chromatography coupled to electrospray ionization mass spectrometry. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1243-1251. [PMID: 21337609 DOI: 10.1002/etc.498] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/30/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
Endocrine disruptors cause adverse health effects as a result of their ability to shift the hormonal balance that is essential to the body. Bisphenol A (BPA) is an endocrine disruptor that has garnered much attention because of its presence in many consumer materials, which generates a significant risk for exposure. A method is presented for rapid detection of oral exposure to BPA directly from human saliva. Saliva was chosen because it serves as a noninvasive sampling route to detect BPA exposure; however, it is one of many complex biological matrices that have traditionally posed problems in quantitative analysis. Such analyses usually require extensive sample preparation to reduce interferences contributed by the sample matrix. Three validated methods are presented here that feature a streamlined sample-preparation strategy (bulk derivatization) prior to accurate and sensitive analysis by trap-and-elute liquid chromatography coupled to electrospray ionization mass spectrometry. Validated methods include standard addition calibration with variable injection volumes and multiple injection loading, as well as with incorporation of an internal standard. Reported limits of detection reached as low as 49.0 pg/ml (2.9 pg loaded on-column; equivalent to parts per trillion in saliva) among the presented methods with good accuracy and precision throughout. A proof-of-concept study is demonstrated to show that the final validated method has potential application to specific studies for trace-level BPA detection from real samples.
Collapse
Affiliation(s)
- Samuel H Yang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zhang X, Chang H, Wiseman S, He Y, Higley E, Jones P, Wong CK, Al-Khedhairy A, Giesy JP, Hecker M. Bisphenol A Disrupts Steroidogenesis in Human H295R Cells. Toxicol Sci 2011; 121:320-7. [DOI: 10.1093/toxsci/kfr061] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Molecular and biochemical effects of a kola nut extract on androgen receptor-mediated pathways. J Toxicol 2010; 2009:530279. [PMID: 20107586 PMCID: PMC2811344 DOI: 10.1155/2009/530279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 06/05/2008] [Indexed: 12/19/2022] Open
Abstract
The low incidence of prostate cancer in Asians has been attributed to chemopreventative properties of certain chemicals found in their diet. This study characterized the androgenic and chemopreventative properties of the Jamaican bush tea “Bizzy,” using androgen receptor positive and negative cell lines. Exposure of prostate cells to Biz-2 resulted in a growth inhibition (GI50) of 15 ppm in LNCaP cells and 3.6 ppm in DU145 cells. Biz-2 elicited a 2-fold increase in the mRNA of the anti-apoptotic gene Bcl2, with a 10-fold increase in that of the proapoptotic gene Bax. We observed a 2.4- to 7.5-fold change in apoptotic cells in both cell lines. Biz-2 at 10 ppm elicited a time- and dose-dependent stimulation of both the protein and mRNA levels of several androgen-regulated genes. Biz-2 caused a 36% decrease in PSA secretion and a significant increase in PSA mRNA. The relative binding affinity (IC50) of Biz-2 for AR was 2- to 5-fold lower than that of the synthetic androgen R1881. Biz-2 was found to be a specific ligand for the AR in that the natural ligand, DHT, and the anti-androgen, flutamide, displaced Biz-2 bound to AR and inhibited Biz-2-induced transcription and PSA secretion. This study provided evidence that Biz-2 extract possesses the ability to modulate prostate cancer cell biology in an AR-dependent manner.
Collapse
|
14
|
Chapin RE, Adams J, Boekelheide K, Gray LE, Hayward SW, Lees PSJ, McIntyre BS, Portier KM, Schnorr TM, Selevan SG, Vandenbergh JG, Woskie SR. NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. ACTA ACUST UNITED AC 2008; 83:157-395. [PMID: 18613034 DOI: 10.1002/bdrb.20147] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Downregulation of peritoneal macrophage activity in mice exposed to bisphenol A during pregnancy and lactation. Arch Pharm Res 2008; 30:1476-81. [PMID: 18087818 DOI: 10.1007/bf02977374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bisphenol A (BPA) is an environmental endocrine disrupter that is known to be transferred to the fetus via the placenta and to the neonate via milk. In this study, we investigated BPA-induced alterations of the activities of murine peritoneal macrophages in dams and 7 week old offspring of dams exposed to BPA from gestational day 7 until lactation on day 21 after delivery, i.e. 34-36 days. BPA was administered in drinking water at three doses, 15, 75, and 300 mg/L. Dams were sacrificed 21 days after delivery and offspring at the age of 7 weeks. Peritoneal macrophages were cultured in the presence of LPS or LPS plus IFN-gamma for 2 or 4 days. We found that nitric oxide (NO) production by maternal macrophages was significantly decreased in a BPA-dose dependent manner. However, while a significant reduction of NO production by macrophages in the offspring was observed at BPA concentrations of 75 mg/L and 300 mg/L in drinking water, this effect was not seen at the lowest concentration of 15 mg/L. Similar inhibition of tumor necrosis factor-alpha (TNF-alpha) production was observed with macrophages from both BPA-exposed dams and offspring. Thus, our results suggest that exposure to BPA during gestation and lactation induces downregulation of the activities of macrophages in both dams and offspring.
Collapse
|
16
|
Lee YM, Seong MJ, Lee JW, Lee YK, Kim TM, Nam SY, Kim DJ, Yun YW, Kim TS, Han SY, Hong JT. Estrogen receptor independent neurotoxic mechanism of bisphenol A, an environmental estrogen. J Vet Sci 2007; 8:27-38. [PMID: 17322771 PMCID: PMC2872694 DOI: 10.4142/jvs.2007.8.1.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bisphenol A (BPA), a ubiquitous environmental contaminant, has been shown to cause developmental toxicity and carcinogenic effects. BPA may have physiological activity through estrogen receptor (ER) -α and -β, which are expressed in the central nervous system. We previously found that exposure of BPA to immature mice resulted in behavioral alternation, suggesting that overexposure of BPA could be neurotoxic. In this study, we further investigated the molecular neurotoxic mechanisms of BPA. BPA increased vulnerability (decrease of cell viability and differentiation, and increase of apoptotic cell death) of undifferentiated PC12 cells and cortical neuronal cells isolated from gestation 18 day rat embryos in a concentration-dependent manner (more than 50 µM). The ER antagonists, ICI 182,780, and tamoxifen, did not block these effects. The cell vulnerability against BPA was not significantly different in the PC12 cells overexpressing ER-α and ER-β compared with PC12 cells expressing vector alone. In addition, there was no difference observed between BPA and 17-β estradiol, a well-known agonist of ER receptor in the induction of neurotoxic responses. Further study of the mechanism showed that BPA significantly activated extracellular signal-regulated kinase (ERK) but inhibited anti-apoptotic nuclear factor kappa B (NF-κB) activation. In addition, ERK-specific inhibitor, PD 98,059, reversed BPA-induced cell death and restored NF-κB activity. This study demonstrated that exposure to BPA can cause neuronal cell death which may eventually be related with behavioral alternation in vivo. However, this neurotoxic effect may not be directly mediated through an ER receptor, as an ERK/NF-κB pathway may be more closely involved in BPA-induced neuronal toxicity.
Collapse
Affiliation(s)
- Yoot Mo Lee
- College of Pharmacy and CBITRC, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu J, Carr S, Rinaldi K, Chandler W. Screening estrogenic oxidized by-products by combining ER binding and ultrafiltration. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 20:269-278. [PMID: 21783600 DOI: 10.1016/j.etap.2005.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 01/25/2005] [Indexed: 05/31/2023]
Abstract
Ozonation and chlorination of 17β-estradiol (E2), 17α-ethynylestradiol (EE2), bisphenol A (BPA), and nonylphenol (NP) were performed to evaluate the estrogenic activity of the by-products of these endocrine disrupting chemicals (EDCs). After 15min oxidation, samples were extracted using solid phase extraction (SPE) cartridges, and tested in vitro to measure the estrogenic activities of the oxidized products. MCF-7 cell proliferation assay showed that chlorinated BPA solution displayed slightly stronger estrogenicity than BPA, while chlorinated NP retained about one-tenth of its bioactivity. The estrogenic mono-, di-, tri-, and tetra-ClBPAs and di-ClNP were screened out from the corresponding chlorinated products by a combined application of estrogen receptor (ER) binding with ultrafiltration and identified by high performance liquid chromatography coupled with mass spectrometry (LC/MS). Ozonation of the above four estrogens and chlorination of E2 and EE2 significantly decreased their estrogenic activities under the applied conditions.
Collapse
Affiliation(s)
- Jianghua Liu
- San Jose Creek Water Quality Control Laboratory, Sanitation Districts of Los Angeles County, 1965 Workman Mill Road, Whittier, CA 90601, USA
| | | | | | | |
Collapse
|
18
|
Byun JA, Heo Y, Kim YO, Pyo MY. Bisphenol A-induced downregulation of murine macrophage activities in vitro and ex vivo. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:19-24. [PMID: 21783458 DOI: 10.1016/j.etap.2004.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 02/25/2004] [Indexed: 05/31/2023]
Abstract
Bisphenol A (BPA) is known to have detrimental effects on the reproductive system, but the toxicity of BPA on immune responses has not been systematically investigated. We investigated the effects of BPA exposure on the activities of murine peritoneal macrophages through evaluation of BPA-induced alteration of nitric oxide (NO) production, tumor necrosis factor-α (TNF-α) synthesis, and expression of co-stimulatory molecules B7. Macrophages were examined ex vivo from mice orally treated with various doses of BPA for 5 consecutive days per week for 4 weeks followed by culture for 2 or 4 days in the presence of lipopolysaccharides (LPS). Macrophages from naive mice were also stimulated with LPS ± BPA for 2 or 4 days. NO production was decreased with the in vitro exposure to 1, 10 and 100μM BPA. NO production was lower in the BPA-exposed mice than the control mice with all doses. In vitro, BPA suppressed TNF-α secretion with significant reduction at 10 and 100μM BPA. Similar findings were observed with the macrophages from the BPA-exposed mice. This study provides the substantial evidence on BPA-induced alteration in macrophage activity.
Collapse
Affiliation(s)
- Jung-A Byun
- College of Pharmacy, Sookmyung Women's University, 53-12 Chungpa-dong 2 Ka, Yongsan-ku, Seoul 140-742, Korea
| | | | | | | |
Collapse
|
19
|
Kassi E, Papoutsi Z, Fokialakis N, Messari I, Mitakou S, Moutsatsou P. Greek plant extracts exhibit selective estrogen receptor modulator (SERM)-like properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:6956-6961. [PMID: 15537303 DOI: 10.1021/jf0400765] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To prevent bone loss that occurs with increasing age, nutritional and pharmacological factors are needed. Traditional therapeutic agents (selective estrogen receptor modulators or SERMs, biphosphonates, calcitonin) may have serious side effects or contraindications. In an attempt to find food components potentially acting as SERMs, we submitted four plant aqueous extracts derived from Greek flora (Sideritis euboea, Sideritis clandestina, Marticaria chamomilla, and Pimpinella anisum) in a series of in vitro biological assays reflective of SERM profile. We examined their ability (a) to stimulate the differentiation and mineralization of osteoblastic cell culture by histochemical staining for alkaline phosphatase and Alizarin Red-S staining, (b) to induce, like antiestrogens, the insulin growth factor binding protein 3 (IGFBP3) in MCF-7 breast cancer cells, and (c) to proliferate cervical adenocarcinoma (HeLa) cells by use of MTT assay. Our data reveal that all the plant extracts studied at a concentration range 10-100 microg/mL stimulate osteoblastic cell differentiation and exhibit antiestrogenic effect on breast cancer cells without proliferative effects on cervical adenocarcinoma cells. The presence of estradiol inhibited the antiestrogenic effect induced by the extracts on MCF-7 cells, suggesting an estrogen receptor-related mechanism. In conclusion, the aqueous extracts derived from Sideritis euboea, Sideritis clandestina, Marticaria chamomilla, and Pimpinella anisum may form the basis to design "functional foods" for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Eva Kassi
- Department of Biological Chemistry, Medical School, University of Athens, 115 27 Athens, Greece
| | | | | | | | | | | |
Collapse
|
20
|
Papoutsi Z, Kassi E, Papaevangeliou D, Pratsinis H, Zoumpourlis V, Halabalaki M, Mitakou S, Kalofoutis A, Moutsatsou P. Plant 2-arylobenzofurans demonstrate a selective estrogen receptor modulator profile. Steroids 2004; 69:727-34. [PMID: 15579325 DOI: 10.1016/j.steroids.2004.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/18/2004] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
We have isolated from the plant Onobrychis ebenoides three novel arylobenzofurans with binding affinity for the estrogen receptor. In this study, we evaluated these arylobenzofurans, namely ebenfuran I, ebenfuran II and ebenfuran III for their potential selective estrogen receptor modulator (SERM)-like properties. We examined their ability, (1) to induce the insulin growth factor binding protein-3 (IGFBP-3) in MCF-7 breast cancer cells, (2) to stimulate differentiation and mineralization of osteoblastic cell culture by histochemical staining for alkaline phosphatase, Alizarin Red-S staining and calcium levels in the supernatants and (3) to inhibit cell proliferation of cervical adenocarcinoma (Hela) cells by use of the MTT assay. An estrogen receptor mediated effect was investigated by carrying out chloramphenicol acetyl transferase (CAT) assay on transient MCF-7 transfectants. Estradiol and the "pure" antiestrogen ICI 182780 were included to serve as control samples of the estrogenic and antiestrogenic effect respectively. Our data reveal that ebenfuran II is a highly potent SERM, exhibiting antiestrogenic activity in breast cancer cells via the estrogen receptor, estrogenic effect on osteoblasts and no stimulatory effect on cervix adenocarcinoma cells. In conclusion, our study is the first to demonstrate that plant derived arylobenzofurans show a SERM profile and may be considered for the prevention and treatment of diseases such as breast cancer, cervical cancer and osteoporosis.
Collapse
Affiliation(s)
- Zoi Papoutsi
- Laboratory of Biological Chemistry, Department of Biological Chemistry, Medical School, National University of Athens, 75 M. Asias Str., Goudi, GR-115 27 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shibata N, Matsumoto J, Nakada K, Yuasa A, Yokota H. Male-specific suppression of hepatic microsomal UDP-glucuronosyl transferase activities toward sex hormones in the adult male rat administered bisphenol A. Biochem J 2002; 368:783-8. [PMID: 12230427 PMCID: PMC1223039 DOI: 10.1042/bj20020804] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Revised: 08/19/2002] [Accepted: 09/16/2002] [Indexed: 11/17/2022]
Abstract
Various adverse effects of endocrine disruptors on the reproductive organs of male animals have been reported. We found that UDP-glucuronosyltransferase (UGT) activities towards bisphenol A, testosterone and oestradiol were significantly decreased in liver microsomes prepared from adult male Wistar rats administered with the endocrine disruptor bisphenol A (1 mg/2 days for 2 or 4 weeks). However, suppression of the transferase activities was not observed in female rats, even after bisphenol A treatment for 4 weeks. Diethylstilbestrol, which is well known as an endocrine disruptor, had the same effects, but p -cumylphenol had no effect on UGT activities towards sex hormones. Co-administration of an anti-oestrogen, tamoxifen, inhibited the suppression of the transferase activities by bisphenol A. Western blotting analysis showed that the amount of UGT2B1, an isoform of UGT which glucuronidates bisphenol A, was decreased in the rat liver microsomes by the treatment. Northern blotting analysis also indicated that UGT2B1 mRNA in the liver was decreased by bisphenol A treatment. The suppression of UGT activities, UGT2B1 protein and UGT2B1 mRNA expression did not occur in female rats. The results indicate that bisphenol A treatment reduces the mRNA expression of UGT2B1 and other UGT isoforms that mediate the glucuronidation of sex hormones in adult male rats, and this suggests that the endocrine balance may be disrupted by suppression of glucuronidation.
Collapse
Affiliation(s)
- Noriaki Shibata
- Department of Veterinary Biochemistry, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | |
Collapse
|