1
|
Meretsky CR, Polychronis A, Liovas D, Schiuma AT. Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis. Cureus 2024; 16:e68872. [PMID: 39376883 PMCID: PMC11457798 DOI: 10.7759/cureus.68872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Tissue engineering represents a revolutionary approach in regenerative medicine, offering promising alternatives to traditional reconstructive techniques. This systematic review explores recent advances in tissue engineering, comparing their efficacy, postoperative outcomes, and patient satisfaction to conventional methods. A comprehensive literature search was conducted across PubMed, Cochrane Library, and Google Scholar, covering studies published from 2000 to 2024. Fourteen studies were selected for final analysis based on inclusion criteria focusing on outcomes such as scar quality, postoperative pain, and patient satisfaction. The review demonstrated that tissue engineering techniques consistently provided superior cosmetic outcomes with minimal scarring compared to traditional methods. Patients undergoing tissue-engineered procedures experienced mild-to-moderate postoperative pain with rapid resolution, whereas traditional techniques resulted in moderate to severe pain requiring extended management. Furthermore, patients treated with tissue engineering reported high satisfaction rates due to improved cosmetic and functional outcomes. Despite challenges such as ensuring adequate vascularization, controlling scaffold degradation, and overcoming regulatory and cost barriers, ongoing research and development are essential to fully realize the potential of these innovative therapies. Tissue engineering offers significant advantages over traditional reconstructive techniques and has the potential to profoundly improve patient care in regenerative medicine.
Collapse
Affiliation(s)
| | - Andreas Polychronis
- General Surgery, St. George's University School of Medicine, Great River, USA
| | - Dimitria Liovas
- Medicine, St. George's University School of Medicine, Great River, USA
| | | |
Collapse
|
2
|
Shashikumar U, Saraswat A, Deshmukh K, Hussain CM, Chandra P, Tsai PC, Huang PC, Chen YH, Ke LY, Lin YC, Chawla S, Ponnusamy VK. Innovative technologies for the fabrication of 3D/4D smart hydrogels and its biomedical applications - A comprehensive review. Adv Colloid Interface Sci 2024; 328:103163. [PMID: 38749384 DOI: 10.1016/j.cis.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Aditya Saraswat
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India
| | - Kalim Deshmukh
- New Technologies - Research Centre University of West Bohemia Univerzitní 2732/8, 30100, Plzeň, Czech Republic
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| |
Collapse
|
3
|
Guidotti G, Duelen R, Bloise N, Soccio M, Gazzano M, Aluigi A, Visai L, Sampaolesi M, Lotti N. The ad hoc chemical design of random PBS-based copolymers influences the activation of cardiac differentiation while altering the HYPPO pathway target genes in hiPSCs. BIOMATERIALS ADVANCES 2023; 154:213583. [PMID: 37604040 DOI: 10.1016/j.bioadv.2023.213583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Cardiac tissue engineering is a cutting-edge technology aiming to replace irreversibly damaged cardiac tissue and restore contractile functionality. However, cardiac tissue engineering porous and perfusable scaffolds to enable oxygen supply in vitro and eventually promote angiogenesis in vivo are still desirable. Two fully-aliphatic random copolymers of poly(butylene succinate) (PBS), poly(butylene succinate/Pripol), P(BSBPripol), and poly(butylene/neopentyl glycol succinate), P(BSNS), containing two different subunits, neopentyl glycol and Pripol 1009, were successfully synthesized and then electrospun in tridimentional fibrous mats. The copolymers show different thermal and mechanical behaviours as result of their chemical structure. In particular, copolymerization led to a reduction in crystallinity and consequently PBS stiffness, reaching values of elastic modulus very close to those of soft tissues. Then, to check the biological suitability, human induced Pluripotent Stem Cells (hiPSCs) were directly seeded on both PBS-based copolymeric scaffolds. The results confirmed the ability of both the scaffolds to sustain cell viability and to maintain their stemness during cell expansion. Furthermore, gene expression and immunofluorescence analysis showed that P(BSBPripol) scaffold promoted an upregulation of the early cardiac progenitor and later-stage markers with a simultaneously upregulation of HYPPO pathway gene expression, crucial for mechanosensing of cardiac progenitor cells. These results suggest that the correct ad-hoc chemical design and, in turn, the mechanical properties of the matrix, such as substrate stiffness, together with surface porosity, play a critical role in regulating the behaviour of cardiac progenitors, which ultimately offers valuable insights into the development of novel bio-inspired scaffolds for cardiac tissue regeneration.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, (PU), Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
4
|
Ashraf SS, Hosseinpour Sarmadi V, Larijani G, Naderi Garahgheshlagh S, Ramezani S, Moghadamifar S, Mohebi SL, Brouki Milan P, Haramshahi SMA, Ahmadirad N, Amini N. Regenerative medicine improve neurodegenerative diseases. Cell Tissue Bank 2023; 24:639-650. [PMID: 36527565 DOI: 10.1007/s10561-022-10062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Regenerative medicine is a subdivision of medicine that improves methods to regrow, repair or replace unhealthy cells and tissues to return to normal function. Cell therapy, gene therapy, nanomedicine as choices used to cure neurodegenerative disease. Recently, studies related to the treatment of neurodegenerative disorders have been focused on stem cell therapy and Nano-drugs beyond other than regenerative medicine. Hence, by data from experimental models and clinical trials, we review the impact of stem cell therapy, gene therapy, and nanomedicine on the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). Indeed, improved knowledge and continued research on gene therapy and nanomedicine in treating Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis lead to advancements in effective and practical treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyedeh Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Naderi Garahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ramezani
- Neuroscience Research Center, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Guilan, Iran
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soraya Moghadamifar
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyedeh Lena Mohebi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Heterogeneous porous PLLA/PCL fibrous scaffold for bone tissue regeneration. Int J Biol Macromol 2023; 235:123781. [PMID: 36849071 DOI: 10.1016/j.ijbiomac.2023.123781] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Bone tissue engineering has become one of the most promising therapeutic methods to treat bone defects. A suitable scaffolding material to regenerate new bone tissues should have a high specific surface area, high porosity and a suitable surface structure which benefit cell attachment, proliferation, and differentiation. In this study, an acetone post-treatment strategy was developed to generate heterogeneous structure. After PLLA/PCL nanofibrous membranes were electrospun and collected, they were treated with acetone to generate a highly porous structure. Meanwhile, part of PCL was extracted from the fibre and enriched on the fibre surface. The cell affinity of the nanofibrous membrane was verified by human osteoblast-like cells assay. The proliferation rate of heterogeneous samples increased 190.4 %, 265.5 % and 137.9 % at day 10 compared with pristine samples. These results demonstrated that the heterogeneous PLLA/PCL nanofibrous membranes could enhance osteoblast adhesion and proliferation. With high surface area (average surface area 36.302 m2/g) and good mechanical properties (average Young's modulus 1.65 GPa and average tensile strength 5.1 MPa), the heterogeneous PLLA/PCL membrane should have potential applications in the field of bone regeneration.
Collapse
|
6
|
Ziegler ME, Sorensen AM, Banyard DA, Sayadi LR, Chnari E, Hatch MM, Tassey J, Mirzakhanyan Y, Gershon PD, Hughes CC, Evans GR, Widgerow AD. Deconstructing Allograft Adipose and Fascia Matrix: Fascia Matrix Improves Angiogenesis, Volume Retention, and Adipogenesis in a Rodent Model. Plast Reconstr Surg 2023; 151:108-117. [PMID: 36219861 PMCID: PMC10081826 DOI: 10.1097/prs.0000000000009794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Autologous fat grafting is commonly used for soft-tissue repair (approximately 90,000 cases per year in the United States), but outcomes are limited by volume loss (20% to 80%) over time. Human allograft adipose matrix (AAM) stimulates de novo adipogenesis in vivo, but retention requires optimization. The extracellular matrix derived from superficial fascia, interstitial within the adipose layer, is typically removed during AAM processing. Thus, fascia, which contains numerous important proteins, might cooperate with AAM to stimulate de novo adipogenesis, improving long-term retention compared to AAM alone. METHODS Human AAM and fascia matrix proteins (back and upper leg regions) were identified by mass spectrometry and annotated by gene ontology. A three-dimensional in vitro angiogenesis assay was performed. Finally, AAM and/or fascia (1 mL) was implanted into 6- to 8-week-old male Fischer rats. After 8 weeks, the authors assessed graft retention by gas pycnometry and angiogenesis (CD31) and adipocyte counts (hematoxylin and eosin) histologically. RESULTS Gene ontology annotation revealed an angiogenic enrichment pattern unique to the fascia, including lactadherin, collagen alpha-3(V) chain, and tenascin-C. In vitro, AAM stimulated 1.0 ± 0.17 angiogenic sprouts per bead. The addition of fascia matrix increased sprouting by 88% (2.0 ± 0.12; P < 0.001). A similar angiogenic response (CD31) was observed in vivo. Graft retention volume was 25% (0.25 ± 0.13) for AAM, significantly increasing to 60% (0.60 ± 0.14) for AAM/fascia ( P < 0.05). De novo adipogenesis was 12% (12.4 ± 7.4) for AAM, significantly increasing to 51% (51.2 ± 8.0) for AAM/fascia ( P < 0.001) by means of adipocyte quantification. CONCLUSIONS Combining fascia matrix with AAM improves angiogenesis and adipogenesis compared to AAM alone in rats. These preliminary in vitro and pilot animal studies should be further validated before definitive clinical adoption. CLINICAL RELEVANCE STATEMENT When producing an off-the-shelf adipose inducing product by adding a connective tissue fascial component (that is normally discarded) to the mix of adipose matrix, vasculogenesis is increased and, thus, adipogenesis and graft survival is improved. This is a significant advance in this line of product.
Collapse
Affiliation(s)
- Mary E. Ziegler
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | | | - Derek A. Banyard
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Lohrasb R. Sayadi
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | | | - Michaela M. Hatch
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Jade Tassey
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Christopher C.W. Hughes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA; Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, UC Irvine, USA
| | - Gregory R.D. Evans
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| | - Alan D. Widgerow
- Center for Tissue Engineering, UC Irvine Department of Plastic Surgery, Orange, CA, USA
| |
Collapse
|
7
|
Henckes NAC, Chuang L, Bosak I, Carazzai R, Garcez T, Kuhl CP, de Oliveira FDS, Loureiro Dos Santos LA, Visioli F, Cirne-Lima EO. Tissue engineering application combining epoxidized natural rubber blend and mesenchymal stem cells in in vivo response. J Biomater Appl 2022; 37:698-711. [PMID: 35733325 DOI: 10.1177/08853282221110476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate biocompatibility, integration, and tissue host response of the Poly (Lactic-co-Glycolic acid) (PLGA)/Poly (isoprene) (PI) epoxidized (PLGA/PIepox) innovative scaffold combined with adipose derived mesenchymal stem cells (ADSC). We implanted the scaffold subcutaneously on the back of 18 female rats and monitored them for up to 14 days. When compared to controls, PLGA/PIepox + ADSC demonstrated an earlier vascularization, a tendency of inflammation reduction, an adequate tissue integration, higher cell proliferation, and a tendency of expression of collagen decreasing. However, 14 days post-implantation we found similar levels of CD31, Ki67 and AE1/AE3 in PLGA/PIepox when compared to control groups. The interesting results, lead us to the assumption that PLGA/PIepox is able to provide an effective delivery system for ADSC on tissue host. This animal study assesses PLGA/PIepox + ADSC in in vivo tissue functionality and validation of use, serving as a proof of concept for future clinical translation as it presents an innovative and promising tissue engineering opportunity for the use in tissue reconstruction.
Collapse
Affiliation(s)
- Nicole Andréa Corbellini Henckes
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Chuang
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Isadora Bosak
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafael Carazzai
- Laboratório de Biomateriais e Cerâmicas Avançadas, Departamento de Materiais, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tuane Garcez
- Unidade de Experimentação Animal - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cristiana Palma Kuhl
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Dos Santos de Oliveira
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luis Alberto Loureiro Dos Santos
- Laboratório de Biomateriais e Cerâmicas Avançadas, Departamento de Materiais, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Visioli
- Unidade de Patologia Experimental - Centro de Pesquisa Experimental, 37895Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Odontologia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Elizabeth Obino Cirne-Lima
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
In Vitro Biocompatibility and Degradation Analysis of Mass-Produced Collagen Fibers. Polymers (Basel) 2022; 14:polym14102100. [PMID: 35631981 PMCID: PMC9146522 DOI: 10.3390/polym14102100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Automation and mass-production are two of the many limitations in the tissue engineering industry. Textile fabrication methods such as electrospinning are used extensively in this field because of the resemblance of the extracellular matrix to the fiber structure. However, electrospinning has many limitations, including the ability to mass-produce, automate, and reproduce products. For this reason, this study evaluates the potential use of a traditional textile method such as spinning. Apart from mass production, these methods are also easy, efficient, and cost-effective. This study uses bovine-derived collagen fibers to create yarns using the traditional ring spinning method. The collagen yarns are proven to be biocompatible. Enzymatic biodegradability was also confirmed for its potential use in vivo. The results of this study prove the safety and efficacy of the material and the fabrication method. The material encourages higher cell proliferation and migration compared to tissue culture-treated plastic plates. The process is not only simple but is also streamlined and replicable, resulting in standardized products that can be reproduced.
Collapse
|
9
|
Hao D, Lopez JM, Chen J, Iavorovschi AM, Lelivelt NM, Wang A. Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050202. [PMID: 35621480 PMCID: PMC9137730 DOI: 10.3390/bioengineering9050202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular microenvironment is a highly dynamic network of biophysical and biochemical elements, which surrounds cells and transmits molecular signals. Extracellular microenvironment controls are of crucial importance for the ability to direct cell behavior and tissue regeneration. In this review, we focus on the different components of the extracellular microenvironment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and introduce engineering approaches for these components, which can be used to achieve a higher degree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review the technologies established to engineer native-mimicking artificial components of the extracellular microenvironment for improved regenerative applications. This review presents a thorough analysis of the current research in extracellular microenvironment engineering and monitoring, which will facilitate the development of innovative tissue engineering strategies by utilizing different components of the extracellular microenvironment for regenerative medicine in the future.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Juan-Maria Lopez
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Jianing Chen
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Alexandra Maria Iavorovschi
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Nora Marlene Lelivelt
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
10
|
Jeyaraman M, Muthu S, Jeyaraman N. Challenges in the clinical translation of exosomal therapy in regenerative medicine. Regen Med 2022; 17:193-197. [PMID: 35187971 DOI: 10.2217/rme-2022-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine - Sri Lalithambigai Medical College & Hospital, Dr. MGR Educational & Research Institute, Chennai, Tamil Nadu, 600095, India
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopaedics, Government Medical College & Hospital, Dindigul, Tamil Nadu, 624304, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli, Tamil Nadu, 620002, India
| |
Collapse
|
11
|
Hodge JG, Quint C. Improved porosity of electrospun poly (Lactic-Co-Glycolic) scaffolds by sacrificial microparticles enhances cellular infiltration compared to sacrificial microfiber. J Biomater Appl 2022; 37:77-88. [PMID: 35317691 DOI: 10.1177/08853282221075890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrospinning is a technique used to fabricate nano-/microfiber scaffolds for tissue engineering applications. However, a major limitation of electrospun scaffolds is the high packing density of fibers that leads to poor cellular infiltration. Thus, incorporation of a water soluble sacrificial porogen, polyethylene oxide (PEO), was utilized to fine-tune the porous fraction of the scaffolds and decrease fiber packing density. Poly(lactic-co-glycolic) acid (PLGA) scaffolds were either co-electrospun with sacrificial PEO microfibers or co-electrosprayed with sacrificial PEO microparticles at three different extrusion rates to control the relative morphology and dose of PEO. A dose-dependent response in PLGA scaffold bulk porosity and pore area was noted as PEO content was increased. Notably, PLGA scaffolds after removal of sacrificial PEO microparticles significantly increased the porous fraction and pore area approximately 8, 10, and 14% and 46, 20, and 33 μm2, respectively, relative to the analogous PEO microfiber scaffold. The tensile properties of the more porous PLGA scaffolds after PEO microparticle removal, remained stable for all extrusion rates of PEO tested, relative to the PLGA scaffolds after PEO microfiber removal. Histological analysis revealed that removal of PEO microparticles significantly increased the depth of cellular migration through the PLGA scaffolds, relative to PEO microfiber scaffolds, with maximum migratory depths of 1120 μm versus 150 μm over 28 days, respectively. Additionally, depth of cellular infiltration responded dose-dependently in the PEO microparticle scaffolds, whereas in the PEO microfiber scaffolds there was no correlation. Further analysis with Masson's Trichrome staining and electron microscopy revealed that collagen density and depth of deposition substantially increased in PLGA scaffolds after removal of PEO microparticles relative to PEO microfibers. Thus, this study demonstrates an effective strategy to control the porous fraction of electrospun scaffolds via the incorporation of sacrificial PEO microparticles, without significant decreases in mechanical properties, thereby enhancing cellular infiltration and subsequent extracellular matrix deposition.
Collapse
Affiliation(s)
- Jacob G Hodge
- Department of Bioengineering, 199644University of Kansas School of Engineering, Lawrence, KS, USA
| | - Clay Quint
- Department of Surgery, 20118South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
12
|
Savvidis S, Gerli MF, Pellegrini M, Massimi L, Hagen CK, Endrizzi M, Atzeni A, Ogunbiyi OK, Turmaine M, Smith ES, Fagiani C, Selmin G, Urbani L, Durkin N, Shibuya S, De Coppi P, Olivo A. Monitoring tissue engineered constructs and protocols with laboratory-based x-ray phase contrast tomography. Acta Biomater 2022; 141:290-299. [PMID: 35051630 DOI: 10.1016/j.actbio.2022.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering (TE) aims to generate bioengineered constructs which can offer a surgical treatment for many conditions involving tissue or organ loss. Construct generation must be guided by suitable assessment tools. However, most current tools (e.g. histology) are destructive, which restricts evaluation to a single-2D anatomical plane, and has no potential for assessing constructs prior to or following their implantation. An alternative can be provided by laboratory-based x-ray phase contrast computed tomography (PC-CT), which enables the extraction of 3D density maps of an organ's anatomy. In this work, we developed a semi-automated image processing pipeline dedicated to the analysis of PC-CT slices of oesophageal constructs. Visual and quantitative (density and morphological) information is extracted on a volumetric basis, enabling a comprehensive evaluation of the regenerated constructs. We believe the presented tools can enable the successful regeneration of patient-specific oesophagus, and bring comparable benefit to a wide range of TE applications. STATEMENT OF SIGNIFICANCE: Phase contrast computed tomography (PC-CT) is an imaging modality which generates high resolution volumetric density maps of biological tissue. In this work, we demonstrate the use of PC-CT as a new tool for guiding the progression of an oesophageal tissue engineering (TE) protocol. Specifically, we developed a semi-automated image-processing pipeline which analyses the oesophageal PC-CT slices, extracting visual and quantitative (density and morphological) information. This information was proven key for performing a comprehensive evaluation of the regenerated constructs, and cannot be obtained through existing assessment tools primarily due to their destructive nature (e.g. histology). This work paves the way for using PC-CT in a wide range of TE applications which can be pivotal for unlocking the potential of this field.
Collapse
|
13
|
Hsu YJ, Wei SY, Lin TY, Fang L, Hsieh YT, Chen YC. A strategy to engineer vascularized tissue constructs by optimizing and maintaining the geometry. Acta Biomater 2022; 138:254-272. [PMID: 34774782 DOI: 10.1016/j.actbio.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Abstract
The success of engineered tissues is limited by the need for rapid perfusion of a functional vascular network that can control tissue engraftment and promote survival after implantation. Diabetic conditions pose an additional challenge, because high glucose and lipid concentrations cause an aggressive oxidative environment that impairs vessel remodeling and stabilization and impedes integration of engineered constructs into surrounding tissues. Thus, to achieve rapid vasculogenesis, angiogenesis, and anastomosis, hydrogels incorporating cells in their structure have been developed to facilitate formation of functional vascular networks within implants. However, their transport diffusivity decreases with increasing thickness, preventing the formation of a thick vascularized tissue. To address this, we used diffusion-based computational simulations to optimize the geometry of hydrogel structures. The results show that the micro-patterned constructs improved diffusion, thus supporting cell viability, and spreading while retaining their mechanical properties. Thick cell-laden bulk, linear, or hexagonal infill patterned hydrogels were implanted; and structural stability due to skin mobility was improved by the protective spacer. Larger and thicker perfused vascular networks formed in the hexagonal structures (∼17 mm diameter, ∼1.5 mm thickness) in both normal and diabetic mice on day 3, and they became functional and uniformly distributed on day 7. Moreover, transplanted islets were rapidly integrated subcutaneously in this engineered functional vascular bed, which significantly enhanced islet viability and insulin secretion. In summary, we developed a promising strategy for generating large, thick vascularized tissue constructs, which may support transplanted islet cells. These constructs showed potential for engineering other vascularized tissues in regenerative therapy. STATEMENT OF SIGNIFICANCE: Diffusion-based computational simulations were used to optimize the geometry of hydrogel structures, i.e., hexagonal cell-laden hydrogels. To maintain the hydrogel's structural integrity, a spacer was designed and co-implanted subcutaneously to increase the permeability of explants. The spacer provides the structural integrity to improve the permeability of the implanted hydrogel. Otherwise, the implanted hydrogel may be easily squeezed and deformed by compression from the skin mobility of mice. Here, we successfully developed a cell-based strategy for rapidly generating large, functional vasculature (diameter ∼17 mm and thickness ∼1.5 mm) in both normal and diabetic mice and demonstrated its advantages over currently available methods in a clinically-relevant animal model. This concept could serve as a basis for engineering and repairing other tissues in animals.
Collapse
|
14
|
Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, Saidin S, Ramakrishna S, Ismail AF, Faudzi AAM. A review on 3D printing in tissue engineering applications. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.
Collapse
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Madeeha Sadia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering , NED University of Engineering and Technology , Karachi , Pakistan
| | - Saravana Kumar Jaganathan
- Department of Engineering, Faculty of Science and Engineering , University of Hull , Hull HU6 7RX , UK
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Zahran Khudzari
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Eko Supriyanto
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering , Center for Nanofibers & Nanotechnology Initiative, National University of Singapore , Singapore , Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Athif Mohd Faudzi
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| |
Collapse
|
15
|
Yin B, Ni J, Witherel CE, Yang M, Burdick JA, Wen C, Wong SHD. Harnessing Tissue-derived Extracellular Vesicles for Osteoarthritis Theranostics. Theranostics 2022; 12:207-231. [PMID: 34987642 PMCID: PMC8690930 DOI: 10.7150/thno.62708] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic whole-joint disease characterized by low-grade systemic inflammation, degeneration of joint-related tissues such as articular cartilage, and alteration of bone structures that can eventually lead to disability. Emerging evidence has indicated that synovium or articular cartilage-secreted extracellular vesicles (EVs) contribute to OA pathogenesis and physiology, including transporting and enhancing the production of inflammatory mediators and cartilage degrading proteinases. Bioactive components of EVs are known to play a role in OA include microRNA, long non-coding RNA, and proteins. Thus, OA tissues-derived EVs can be used in combination with advanced nanomaterial-based biosensors for the diagnostic assessment of OA progression. Alternatively, mesenchymal stem cell- or platelet-rich plasma-derived EVs (MSC-EVs or PRP-EVs) have high therapeutic value for treating OA, such as suppressing the inflammatory immune microenvironment, which is often enriched by pro-inflammatory immune cells and cytokines that reduce chondrocytes apoptosis. Moreover, those EVs can be modified or incorporated into biomaterials for enhanced targeting and prolonged retention to treat OA effectively. In this review, we explore recently reported OA-related pathological biomarkers from OA joint tissue-derived EVs and discuss the possibility of current biosensors for detecting EVs and EV-related OA biomarkers. We summarize the applications of MSC-EVs and PRP-EVs and discuss their limitations for cartilage regeneration and alleviating OA symptoms. Additionally, we identify advanced therapeutic strategies, including engineered EVs and applying biomaterials to increase the efficacy of EV-based OA therapies. Finally, we provide our perspective on the future of EV-related diagnosis and therapeutic potential for OA treatment.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Junguo Ni
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | | | - Mo Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, PA 16802, USA.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| | - Chunyi Wen
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,Research Institute of Smart Ageing, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| |
Collapse
|
16
|
Lipid-assisted synthesis of magnesium-loaded hydroxyapatite as a potential bone healing material. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Genetic profiling of human bone marrow and adipose tissue-derived mesenchymal stem cells reveals differences in osteogenic signaling mediated by graphene. J Nanobiotechnology 2021; 19:285. [PMID: 34551771 PMCID: PMC8459567 DOI: 10.1186/s12951-021-01024-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In the last decade, graphene surfaces have consistently supported osteoblast development of stem cells, holding promise as a therapeutic implant for degenerative bone diseases. However, until now no study has specifically examined the genetic changes when stem cells undergo osteogenic differentiation on graphene. RESULTS In this study, we provide a detailed overview of gene expressions when human mesenchymal stem cells (MSCs) derived from either adipose tissue (AD-MSCs) or bone marrow (BM-MSCs), are cultured on graphene. Genetic expressions were measured using osteogenic RT2 profiler PCR arrays and compared either over time (7 or 21 days) or between each cell source at each time point. Genes were categorized as either transcriptional regulation, osteoblast-related, extracellular matrix, cellular adhesion, BMP and SMAD signaling, growth factors, or angiogenic factors. Results showed that both MSC sources cultured on low oxygen graphene surfaces achieved osteogenesis by 21 days and expressed specific osteoblast markers. However, each MSC source cultured on graphene did have genetically different responses. When compared between each other, we found that genes of BM-MSCs were robustly expressed, and more noticeable after 7 days of culturing, suggesting BM-MSCs initiate osteogenesis at an earlier time point than AD-MSCs on graphene. Additionally, we found upregulated angiogenic markers in both MSCs sources, suggesting graphene could simultaneously attract the ingrowth of blood vessels in vivo. Finally, we identified several novel targets, including distal-less homeobox 5 (DLX5) and phosphate-regulating endopeptidase homolog, X-linked (PHEX). CONCLUSIONS Overall, this study shows that graphene genetically supports differentiation of both AD-MSCs and BM-MSCs but may involve different signaling mechanisms to achieve osteogenesis. Data further demonstrates the lack of aberrant signaling due to cell-graphene interaction, strengthening the application of specific form and concentration of graphene nanoparticles in bone tissue engineering.
Collapse
|
18
|
Conta G, Libanori A, Tat T, Chen G, Chen J. Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007502. [PMID: 34014583 DOI: 10.1002/adma.202007502] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Current solutions developed for the purpose of in and on body (IOB) electrical stimulation (ES) lack autonomous qualities necessary for comfortable, practical, and self-dependent use. Consequently, recent focus has been placed on developing self-powered IOB therapeutic devices capable of generating therapeutic ES for human use. With the recent invention of the triboelectric nanogenerator (TENG), harnessing passive human biomechanical energy to develop self-powered systems has allowed for the introduction of novel therapeutic ES solutions. TENGs are especially effective at providing ES for IOB therapeutic systems given their bioconformability, low cost, simple manufacturability, and self-powering capabilities. Due to the key role of naturally induced electrical signals in many physiological functions, TENG-induced ES holds promise to provide a novel paradigm in therapeutic interventions. The aim here is to detail research on IOB TENG devices applied for ES-based therapy in the fields of regenerative medicine, neurology, rehabilitation, and pharmaceutical engineering. Furthermore, considering TENG-produced ES can be measured for sensing applications, this technology is paving the way to provide a fully autonomous personalized healthcare system, capable of IOB energy generation, sensing, and therapeutic intervention. Considering these grounds, it seems highly relevant to review TENG-ES research and applications, as they could constitute the foundation and future of personalized healthcare.
Collapse
Affiliation(s)
- Giorgio Conta
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Zahid M, Lodhi M, Rehan ZA, Tayyab H, Javed T, Shabbir R, Mukhtar A, EL Sabagh A, Adamski R, Sakran MI, Siuta D. Sustainable Development of Chitosan/ Calotropis procera-Based Hydrogels to Stimulate Formation of Granulation Tissue and Angiogenesis in Wound Healing Applications. Molecules 2021; 26:3284. [PMID: 34072397 PMCID: PMC8198538 DOI: 10.3390/molecules26113284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/31/2023] Open
Abstract
The formation of new scaffolds to enhance healing magnitude is necessarily required in biomedical applications. Granulation tissue formation is a crucial stage of wound healing in which granulation tissue grows on the surface of a wound by the formation of connective tissue and blood vessels. In the present study, porous hydrogels were synthesized using chitosan incorporating latex of the Calotropis procera plant by using a freeze-thaw cycle to stimulate the formation of granulation tissue and angiogenesis in wound healing applications. Structural analysis through Fourier transform infrared (FTIR) spectroscopy confirmed the interaction between chitosan and Calotropis procera. Latex extract containing hydrogel showed slightly higher absorption than the control during water absorption analysis. Thermogravimetric analysis showed high thermal stability of the 60:40 combination of chitosan (CS) and Calotropis procera as compared to all other treatments and controls. A fabricated scaffold application on a chick chorioallantoic membrane (CAM) showed that all hydrogels containing latex extract resulted in a significant formation of blood vessels and regeneration of cells. Overall, the formation of connective tissues and blood capillaries and healing magnitude decreased in ascending order of concentration of extract.
Collapse
Affiliation(s)
- Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Maria Lodhi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Zulfiqar Ahmad Rehan
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Hamna Tayyab
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.)
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.)
| | - Ahmed Mukhtar
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33156, Egypt;
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Mohamed I. Sakran
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
20
|
Namestnikov M, Pleniceanu O, Dekel B. Mixing Cells for Vascularized Kidney Regeneration. Cells 2021; 10:1119. [PMID: 34066487 PMCID: PMC8148539 DOI: 10.3390/cells10051119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
The worldwide rise in prevalence of chronic kidney disease (CKD) demands innovative bio-medical solutions for millions of kidney patients. Kidney regenerative medicine aims to replenish tissue which is lost due to a common pathological pathway of fibrosis/inflammation and rejuvenate remaining tissue to maintain sufficient kidney function. To this end, cellular therapy strategies devised so far utilize kidney tissue-forming cells (KTFCs) from various cell sources, fetal, adult, and pluripotent stem-cells (PSCs). However, to increase engraftment and potency of the transplanted cells in a harsh hypoxic diseased environment, it is of importance to co-transplant KTFCs with vessel forming cells (VFCs). VFCs, consisting of endothelial cells (ECs) and mesenchymal stem-cells (MSCs), synergize to generate stable blood vessels, facilitating the vascularization of self-organizing KTFCs into renovascular units. In this paper, we review the different sources of KTFCs and VFCs which can be mixed, and report recent advances made in the field of kidney regeneration with emphasis on generation of vascularized kidney tissue by cell transplantation.
Collapse
Affiliation(s)
- Michael Namestnikov
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
- ediatric Nephrology Division, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
| | - Oren Pleniceanu
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
- The Kidney Research Lab, Institute of Nephrology and Hypertension, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
| |
Collapse
|
21
|
Song H, Zhao J, Cheng J, Feng Z, Wang J, Momtazi-Borojeni AA, Liang Y. Extracellular Vesicles in chondrogenesis and Cartilage regeneration. J Cell Mol Med 2021; 25:4883-4892. [PMID: 33942981 PMCID: PMC8178250 DOI: 10.1111/jcmm.16290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs), mainly exosomes and microvesicles, are bilayer lipids containing biologically active information, including nucleic acids and proteins. They are involved in cell communication and signalling, mediating many biological functions including cell growth, migration and proliferation. Recently, EVs have received great attention in the field of tissue engineering and regenerative medicine. Many in vivo and in vitro studies have attempted to evaluate the chondrogenesis potential of these microstructures and their roles in cartilage regeneration. EVs derived from mesenchymal stem cells (MSCs) or chondrocytes have been found to induce chondrocyte proliferation and chondrogenic differentiation of stem cells in vitro. Preclinical studies have shown that exosomes derived from MSCs have promising results in cartilage repair and in cell‐free therapy of osteoarthritis. This review will focus on the in vitro and in vivo chondrogenesis and cartilage regeneration of EVs as well as their potential in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Hong Song
- Department of Orthopedics, Guizhou Province Orthopedics Hospital, Guiyang, Guizhou, China
| | - Jiasong Zhao
- Department of International Ward, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Cheng
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Zhijie Feng
- Department of Geriatric Orthopaedics, Tangshan City Second Hospital, Hebei Province, Tangshan, China
| | - Jianhua Wang
- Department Bone Microsurgery, Sanya people's Hospital, Sanya, China
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yimin Liang
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, China
| |
Collapse
|
22
|
Sedlakova V, McTiernan C, Cortes D, Suuronen EJ, Alarcon EI. 3D Bioprinted Cardiac Tissues and Devices for Tissue Maturation. Cells Tissues Organs 2021; 211:406-419. [PMID: 33677445 DOI: 10.1159/000512792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.
Collapse
Affiliation(s)
- Veronika Sedlakova
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Christopher McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - David Cortes
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada, .,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada,
| |
Collapse
|
23
|
Barajaa MA, Nair LS, Laurencin CT. Bioinspired Scaffold Designs for Regenerating Musculoskeletal Tissue Interfaces. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:451-483. [PMID: 33344758 PMCID: PMC7747886 DOI: 10.1007/s40883-019-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
The musculoskeletal system works at a very advanced level of synchrony, where all the physiological movements of the body are systematically performed through well-organized actions of bone in conjunction with all the other musculoskeletal soft tissues, such as ligaments, tendons, muscles, and cartilage through tissue-tissue interfaces. Interfaces are structurally and compositionally complex, consisting of gradients of extracellular matrix components, cell phenotypes as well as biochemical compositions and are important in mediating load transfer between the distinct orthopedic tissues during body movement. When an injury occurs at interface, it must be re-established to restore its function and stability. Due to the structural and compositional complexity found in interfaces, it is anticipated that they presuppose a concomitant increase in the complexity of the associated regenerative engineering approaches and scaffold designs to achieve successful interface regeneration and seamless integration of the engineered orthopedic tissues. Herein, we discuss the various bioinspired scaffold designs utilized to regenerate orthopedic tissue interfaces. First, we start with discussing the structure-function relationship at the interface. We then discuss the current understanding of the mechanism underlying interface regeneration, followed by discussing the current treatment available in the clinic to treat interface injuries. Lastly, we comprehensively discuss the state-of-the-art scaffold designs utilized to regenerate orthopedic tissue interfaces.
Collapse
Affiliation(s)
- Mohammed A Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
24
|
Abstract
Regenerative therapies aim to develop novel treatments to restore tissue function. Several strategies have been investigated including the use of biomedical implants as three-dimensional artificial matrices to fill the defect side, to replace damaged tissues or for drug delivery. Bioactive implants are used to provide growth environments for tissue formation for a variety of applications including nerve, lung, skin and orthopaedic tissues. Implants can either be biodegradable or non-degradable, should be nontoxic and biocompatible, and should not trigger an immunological response. Implants can be designed to provide suitable surface area-to-volume ratios, ranges of porosities, pore interconnectivities and adequate mechanical strengths. Due to their broad range of properties, numerous biomaterials have been used for implant manufacture. To enhance an implant’s bioactivity, materials can be functionalised in several ways, including surface modification using proteins, incorporation of bioactive drugs, growth factors and/or cells. These strategies have been employed to create local bioactive microenvironments to direct cellular responses and to promote tissue regeneration and controlled drug release. This chapter provides an overview of current bioactive biomedical implants, their fabrication and applications, as well as implant materials used in drug delivery and tissue regeneration. Additionally, cell- and drug-based bioactivity, manufacturing considerations and future trends will be discussed.
Collapse
|
25
|
Zhao H, Zhang X, Zhou D, Weng Y, Qin W, Pan F, Lv S, Zhao X. Collagen, polycaprolactone and attapulgite composite scaffolds for in vivo bone repair in rabbit models. ACTA ACUST UNITED AC 2020; 15:045022. [PMID: 32224507 DOI: 10.1088/1748-605x/ab843f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although numerous materials have been explored as bone scaffolds, many of them are limited by their low osteoconductivity and high biodegradability. Therefore, new materials are desired to induce bone cell proliferation and facilitate bone formation. Attapulgite (ATP) is a hydrated silicate that exists in nature as a fibrillar clay mineral and is well known for its large specific surface area, high viscosity, and high absorption capacity, and therefore has the potential to be a new type of bone repair material due to its unique physicochemical properties. In this study, composite scaffolds composed of collagen/polycaprolactone/attapulgite (CPA) or collagen/polycaprolactone (CP) were fabricated through a salt-leaching method. The morphology, composition, microstructure, physical, and mechanical characteristics of the CPA and CP scaffolds were assessed. Cells from the mouse multipotent mesenchymal precursor cell line (D1 cells) were cocultured with the scaffolds, and cell adhesion, proliferation, and gene expression on the CPA and CP scaffolds were analyzed. Adult rabbits with radius defects were used to evaluate the performance of these scaffolds in repairing bone defects over 4-12 weeks. The experimental results showed that the cells demonstrated excellent attachment ability on the CPA scaffolds, as well as remarkable upregulation of the levels of osteoblastic markers such as Runx2, Osterix, collagen 1, osteopontin, and osteocalcin. Furthermore, results from radiography, micro-computed tomography, histological and immunohistochemical analysis demonstrated that abundant new bones were formed on the CPA scaffolds. Ultimately, these results demonstrated that CPA composite scaffolds show excellent potential in bone tissue engineering applications, with the capacity to be used as effective bone regeneration and repair scaffolds in clinical applications.
Collapse
Affiliation(s)
- Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00157-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Biodegradable Polylactide Scaffolds with Pharmacological Activity by Means of Ultrasound Micromolding Technology. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrasound micromolding technology has been applied to get microporous polylactide scaffolds from the subsequent leaching of incorporated NaCl salts. A small amount of water-soluble polyethylene glycol (PEG) was required in order to improve the leaching process and get compact pieces with interconnected pores. Distribution of polymers in the processed specimens was quite homogeneous due to the small PEG content, although it was more concentrated in the regions close to the feeding channels due to its higher viscosity. Hydrophobic drugs like triclosan could be incorporated causing a minimum degradation during ultrasound processing and suffering an insignificant solubilization during the leaching step. Final scaffolds showed clear bactericide or bacteriostatic effects before and after 10 h of exposure. Cell proliferation of MDCK epithelial cells was higher for TCS loaded porous scaffolds (200%) than for unloaded samples (170%) and non-porous polylactide (PLA) specimens (100%, control). Micrographs showed the absence of non-inhibition areas in both the specimens and the container, confirming the biocompatibility of PLA specimens.
Collapse
|
28
|
Dias JR, Ribeiro N, Baptista-Silva S, Costa-Pinto AR, Alves N, Oliveira AL. In situ Enabling Approaches for Tissue Regeneration: Current Challenges and New Developments. Front Bioeng Biotechnol 2020. [PMID: 32133354 DOI: 10.3389/fbioe.2020.00085.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In situ tissue regeneration can be defined as the implantation of tissue-specific biomaterials (by itself or in combination with cells and/or biomolecules) at the tissue defect, taking advantage of the surrounding microenvironment as a natural bioreactor. Up to now, the structures used were based on particles or gels. However, with the technological progress, the materials' manipulation and processing has become possible, mimicking the damaged tissue directly at the defect site. This paper presents a comprehensive review of current and advanced in situ strategies for tissue regeneration. Recent advances to put in practice the in situ regeneration concept have been mainly focused on bioinks and bioprinting techniques rather than the combination of different technologies to make the real in situ regeneration. The limitation of conventional approaches (e.g., stem cell recruitment) and their poor ability to mimic native tissue are discussed. Moreover, the way of advanced strategies such as 3D/4D bioprinting and hybrid approaches may contribute to overcome the limitations of conventional strategies are highlighted. Finally, the future trends and main research challenges of in situ enabling approaches are discussed considering in vitro and in vivo evidence.
Collapse
Affiliation(s)
- Juliana R Dias
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Nilza Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Ana Rita Costa-Pinto
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Ana L Oliveira
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| |
Collapse
|
29
|
Kim JH, Kim I, Seol YJ, Ko IK, Yoo JJ, Atala A, Lee SJ. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun 2020; 11:1025. [PMID: 32094341 PMCID: PMC7039897 DOI: 10.1038/s41467-020-14930-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/11/2020] [Indexed: 01/20/2023] Open
Abstract
A bioengineered skeletal muscle construct that mimics structural and functional characteristics of native skeletal muscle is a promising therapeutic option to treat extensive muscle defect injuries. We previously showed that bioprinted human skeletal muscle constructs were able to form multi-layered bundles with aligned myofibers. In this study, we investigate the effects of neural cell integration into the bioprinted skeletal muscle construct to accelerate functional muscle regeneration in vivo. Neural input into this bioprinted skeletal muscle construct shows the improvement of myofiber formation, long-term survival, and neuromuscular junction formation in vitro. More importantly, the bioprinted constructs with neural cell integration facilitate rapid innervation and mature into organized muscle tissue that restores normal muscle weight and function in a rodent model of muscle defect injury. These results suggest that the 3D bioprinted human neural-skeletal muscle constructs can be rapidly integrated with the host neural network, resulting in accelerated muscle function restoration. 3D bioprinting of skeletal muscle using primary human muscle progenitor cells results in correct muscle architecture, but functional restoration in rodent models is limited. Here the authors include human neural stem cells into bioprinted skeletal muscle and observe improved architecture and function in vivo.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ickhee Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Young-Joon Seol
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
30
|
Dias JR, Ribeiro N, Baptista-Silva S, Costa-Pinto AR, Alves N, Oliveira AL. In situ Enabling Approaches for Tissue Regeneration: Current Challenges and New Developments. Front Bioeng Biotechnol 2020; 8:85. [PMID: 32133354 PMCID: PMC7039825 DOI: 10.3389/fbioe.2020.00085] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
In situ tissue regeneration can be defined as the implantation of tissue-specific biomaterials (by itself or in combination with cells and/or biomolecules) at the tissue defect, taking advantage of the surrounding microenvironment as a natural bioreactor. Up to now, the structures used were based on particles or gels. However, with the technological progress, the materials' manipulation and processing has become possible, mimicking the damaged tissue directly at the defect site. This paper presents a comprehensive review of current and advanced in situ strategies for tissue regeneration. Recent advances to put in practice the in situ regeneration concept have been mainly focused on bioinks and bioprinting techniques rather than the combination of different technologies to make the real in situ regeneration. The limitation of conventional approaches (e.g., stem cell recruitment) and their poor ability to mimic native tissue are discussed. Moreover, the way of advanced strategies such as 3D/4D bioprinting and hybrid approaches may contribute to overcome the limitations of conventional strategies are highlighted. Finally, the future trends and main research challenges of in situ enabling approaches are discussed considering in vitro and in vivo evidence.
Collapse
Affiliation(s)
- Juliana R. Dias
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Nilza Ribeiro
- CBQF – Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF – Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Ana Rita Costa-Pinto
- CBQF – Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Ana L. Oliveira
- CBQF – Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa1, Porto, Portugal
| |
Collapse
|
31
|
Asadian M, Chan KV, Norouzi M, Grande S, Cools P, Morent R, De Geyter N. Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E119. [PMID: 31936372 PMCID: PMC7023287 DOI: 10.3390/nano10010119] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
This paper provides a comprehensive overview of nanofibrous structures for tissue engineering purposes and the role of non-thermal plasma technology (NTP) within this field. Special attention is first given to nanofiber fabrication strategies, including thermally-induced phase separation, molecular self-assembly, and electrospinning, highlighting their strengths, weaknesses, and potentials. The review then continues to discuss the biodegradable polyesters typically employed for nanofiber fabrication, while the primary focus lies on their applicability and limitations. From thereon, the reader is introduced to the concept of NTP and its application in plasma-assisted surface modification of nanofibrous scaffolds. The final part of the review discusses the available literature on NTP-modified nanofibers looking at the impact of plasma activation and polymerization treatments on nanofiber wettability, surface chemistry, cell adhesion/proliferation and protein grafting. As such, this review provides a complete introduction into NTP-modified nanofibers, while aiming to address the current unexplored potentials left within the field.
Collapse
Affiliation(s)
- Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Ke Vin Chan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Mohammad Norouzi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada;
| | - Silvia Grande
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Pieter Cools
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| |
Collapse
|
32
|
Mndlovu H, du Toit LC, Kumar P, Choonara YE, Marimuthu T, Kondiah PPD, Pillay V. Bioplatform Fabrication Approaches Affecting Chitosan-Based Interpolymer Complex Properties and Performance as Wound Dressings. Molecules 2020; 25:E222. [PMID: 31935794 PMCID: PMC6982769 DOI: 10.3390/molecules25010222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 02/05/2023] Open
Abstract
Chitosan can form interpolymer complexes (IPCs) with anionic polymers to form biomedical platforms (BMPs) for wound dressing/healing applications. This has resulted in its application in various BMPs such as gauze, nano/microparticles, hydrogels, scaffolds, and films. Notably, wound healing has been highlighted as a noteworthy application due to the remarkable physical, chemical, and mechanical properties enabled though the interaction of these polyelectrolytes. The interaction of chitosan and anionic polymers can improve the properties and performance of BMPs. To this end, the approaches employed in fabricating wound dressings was evaluated for their effect on the property-performance factors contributing to BMP suitability in wound dressing. The use of chitosan in wound dressing applications has had much attention due to its compatible biological properties. Recent advancement includes the control of the degree of crosslinking and incorporation of bioactives in an attempt to enhance the physicochemical and physicomechanical properties of wound dressing BMPs. A critical issue with polyelectrolyte-based BMPs is that their effective translation to wound dressing platforms has yet to be realised due to the unmet challenges faced when mimicking the complex and dynamic wound environment. Novel BMPs stemming from the IPCs of chitosan are discussed in this review to offer new insight into the tailoring of physical, chemical, and mechanical properties via fabrication approaches to develop effective wound dressing candidates. These BMPs may pave the way to new therapeutic developments for improved patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (H.M.); (L.C.d.T.); (P.K.); (Y.E.C.); (T.M.); (P.P.D.K.)
| |
Collapse
|
33
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|
34
|
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019; 9:E750. [PMID: 31752393 PMCID: PMC6920773 DOI: 10.3390/biom9110750] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal;
| | | |
Collapse
|
35
|
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
|
36
|
Targeted Near-Infrared Fluorescence Imaging for Regenerative Medicine. Tissue Eng Regen Med 2019; 16:433-442. [PMID: 31624699 DOI: 10.1007/s13770-019-00219-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background Advances in tissue engineering and regenerative medicine over the last three decades have made great progress in the development of diagnostic and therapeutic methodologies for damaged tissues. However, regenerative medicine is still not the first line of treatment for patients due to limited understanding of the tissue regeneration process. Therefore, it is prerequisite to develop molecular imaging strategies combined with appropriate contrast agents to validate the therapeutic progress of damaged tissues. Methods The goal of this review is to discuss the progress in the development of near-infrared (NIR) contrast agents and their biomedical applications for labeling cells and scaffolds, as well as monitoring the treatment progress of native tissue in living organisms. We also discuss the design consideration of NIR contrast agents for tissue engineering and regenerative medicine in terms of their physicochemical and optical properties. Results The use of NIR imaging system and targeted contrast agents can provide high-resolution and high sensitivity imaging to track/monitor the in vivo fate of administered cells, the degradation rate of implanted scaffolds, and the tissue growth and integration of surrounding cells during the therapeutic period. Conclusion NIR fluorescence imaging techniques combined with targeted contrast agents can play a significant role in regenerative medicine by monitoring the therapeutic efficacy of implanted cells and scaffolds which would enhance the development of cell therapies and promote their successful clinical translations.
Collapse
|
37
|
Elkasabgy NA, Mahmoud AA. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech 2019; 20:256. [PMID: 31332631 DOI: 10.1208/s12249-019-1470-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023] Open
Abstract
Designing scaffolds with optimum properties is an essential factor for tissue engineering success. They can be seeded with isolated cells or loaded with drugs to stimulate the body ability to repair or regenerate the injured tissues by acting as centers for new tissue formation. Recently, scaffolds gained a significant interest as principal candidates for tissue engineering due to overcoming the autograft or allograft's associated problems. The advancement of the tissue engineering field relies mainly on the introduction of new biomaterials for scaffolds' fabrication. This review presents and criticizes different scaffolds' fabrication techniques with particular emphasis on the fibrous, injectable in situ forming, foam, 3D freeze-dried, 3D printed, and 4D scaffolds. This article highlights on scaffolds' composition which would be beneficial for developing scaffolds that could potentially help to meet the demand for both drug delivery and tissue regeneration.
Collapse
|
38
|
Rozhina E, Batasheva S, Gomzikova M, Naumenko E, Fakhrullin R. Multicellular spheroids formation: The synergistic effects of halloysite nanoclay and cationic magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Shamsoddin E, Houshmand B, Golabgiran M. Biomaterial selection for bone augmentation in implant dentistry: A systematic review. J Adv Pharm Technol Res 2019; 10:46-50. [PMID: 31041181 PMCID: PMC6474167 DOI: 10.4103/japtr.japtr_327_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the present study, a systematic review was conducted to evaluate the biomaterials and their effectiveness for bone augmentation in implant dentistry. The databases of Cochrane Library, Google Scholar, PubMed (National Center for Biotechnology Information), and Scopus were searched for published studies between 2006 and March 30, 2018. We only included clinical studies in this research. Due to a lack of quantitative evidence and the vast heterogeneity of the biomaterials, implant surgery sites, implant types, follow-up periods, and various implant placement techniques (1-stage or 2-stage), we could not manage to do a meta-analysis on the 13 included studies. Several techniques can result in vertical bone augmentation. Complications can be seen in vertical bone augmentation and especially in the autogenous bone grafting; however, some biomaterials showed promising results to be practical substitutes for autogenous bone. Bio-Oss and beta-tricalcium phosphate are our second-level candidates for vertical bone augmentation due to their promising clinical results with the least infection and immunologic response risk. The gold standard, however, remains the autogenous bone graft. Further clinical studies in the future with exact report of bone measures are needed to develop new comparisons and quantitative analyses.
Collapse
Affiliation(s)
- Erfan Shamsoddin
- Student, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Houshmand
- Department of Periodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Golabgiran
- Private Practitioner, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Miceli V, Pampalone M, Vella S, Carreca AP, Amico G, Conaldi PG. Comparison of Immunosuppressive and Angiogenic Properties of Human Amnion-Derived Mesenchymal Stem Cells between 2D and 3D Culture Systems. Stem Cells Int 2019; 2019:7486279. [PMID: 30911299 PMCID: PMC6397962 DOI: 10.1155/2019/7486279] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
The secretion of potential therapeutic factors by mesenchymal stem cells (MSCs) has aroused much interest given the benefits that it can bring in the field of regenerative medicine. Indeed, the in vitro multipotency of these cells and the secretive capacity of both angiogenic and immunomodulatory factors suggest a role in tissue repair and regeneration. However, during culture, MSCs rapidly lose the expression of key transcription factors associated with multipotency and self-renewal, as well as the ability to produce functional paracrine factors. In our study, we show that a three-dimensional (3D) culture method is effective to induce MSC spheroid formation, to maintain the multipotency and to improve the paracrine activity of a specific population of human amnion-derived MSCs (hAMSCs). The regenerative potential of both 3D culture-derived conditioned medium (3D CM) and their exosomes (EXO) was assessed against 2D culture products. In particular, tubulogenesis assays revealed increased capillary maturation in the presence of 3D CM compared with both 2D CM and 2D EXO. Furthermore, 3D CM had a greater effect on inhibition of PBMC proliferation than both 2D CM and 2D EXO. To support this data, hAMSC spheroids kept in our 3D culture system remained viable and multipotent and secreted considerable amounts of both angiogenic and immunosuppressive factors, which were detected at lower levels in 2D cultures. This work reveals the placenta as an important source of MSCs that can be used for eventual clinical applications as cell-free therapies.
Collapse
Affiliation(s)
- Vitale Miceli
- 1Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Mariangela Pampalone
- 1Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- 2Ri.MED Foundation, Palermo, Italy
| | | | | | - Giandomenico Amico
- 1Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- 2Ri.MED Foundation, Palermo, Italy
| | | |
Collapse
|
41
|
Jazayeri HE, Kang S, Masri RM, Kuhn L, Fahimipour F, Vanevenhoven R, Thompson G, Gheisarifar M, Tahriri M, Tayebi L. Advancements in craniofacial prosthesis fabrication: A narrative review of holistic treatment. J Adv Prosthodont 2018; 10:430-439. [PMID: 30584472 PMCID: PMC6302084 DOI: 10.4047/jap.2018.10.6.430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023] Open
Abstract
The treatment of craniofacial anomalies has been challenging as a result of technological shortcomings that could not provide a consistent protocol to perfectly restore patient-specific anatomy. In the past, wax-up and impression-based maneuvers were implemented to achieve this clinical end. However, with the advent of computer-aided design and computer-aided manufacturing (CAD/CAM) technology, a rapid and cost-effective workflow in prosthetic rehabilitation has taken the place of the outdated procedures. Because the use of implants is so profound in different facets of restorative dentistry, their placement for craniofacial prosthesis retention has also been widely popular and advantageous in a variety of clinical settings. This review aims to effectively describe the well-rounded and interdisciplinary practice of craniofacial prosthesis fabrication and retention by outlining fabrication, osseointegrated implant placement for prosthesis retention, a myriad of clinical examples in the craniofacial complex, and a glimpse of the future of bioengineering principles to restore bioactivity and physiology to the previously defected tissue.
Collapse
Affiliation(s)
- Hossein E Jazayeri
- Oral and Maxillofacial Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Steve Kang
- Oral and Maxillofacial Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Radi M Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Lauren Kuhn
- Department of Oral Rehabilitation, Division of Endodontics, Medical University of South Carolina, Charleston, SC, USA
| | | | - Rabecca Vanevenhoven
- Division of Oral and Maxillofacial Surgery and Dentistry, New York Presbyterian Weill Cornell Medical Center, New York City, NY, USA
| | - Geoffrey Thompson
- Department of Prosthodontics, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Maryam Gheisarifar
- Department of Prosthodontics, Marquette University School of Dentistry, Milwaukee, WI, USA
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
42
|
Recent Advances in Nanocomposites Based on Aliphatic Polyesters: Design, Synthesis, and Applications in Regenerative Medicine. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last decade, biopolymer matrices reinforced with nanofillers have attracted great research efforts thanks to the synergistic characteristics derived from the combination of these two components. In this framework, this review focuses on the fundamental principles and recent progress in the field of aliphatic polyester-based nanocomposites for regenerative medicine applications. Traditional and emerging polymer nanocomposites are described in terms of polymer matrix properties and synthesis methods, used nanofillers, and nanocomposite processing and properties. Special attention has been paid to the most recent nanocomposite systems developed by combining alternative copolymerization strategies with specific nanoparticles. Thermal, electrical, biodegradation, and surface properties have been illustrated and correlated with the nanoparticle kind, content, and shape. Finally, cell-polymer (nanocomposite) interactions have been described by reviewing analysis methodologies such as primary and stem cell viability, adhesion, morphology, and differentiation processes.
Collapse
|
43
|
Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018; 132:296-332. [PMID: 29990578 DOI: 10.1016/j.addr.2018.07.004] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
3D bioprinting is a pioneering technology that enables fabrication of biomimetic, multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate cytoarchitecture, structure-function hierarchy, and tissue-specific compositional and mechanical heterogeneity. Given the huge demand for organ transplantation, coupled with limited organ donors, bioprinting is a potential technology that could solve this crisis of organ shortage by fabrication of fully-functional whole organs. Though organ bioprinting is a far-fetched goal, there has been a considerable and commendable progress in the field of bioprinting that could be used as transplantable tissues in regenerative medicine. This paper presents a first-time review of 3D bioprinting in regenerative medicine, where the current status and contemporary issues of 3D bioprinting pertaining to the eleven organ systems of the human body including skeletal, muscular, nervous, lymphatic, endocrine, reproductive, integumentary, respiratory, digestive, urinary, and circulatory systems were critically reviewed. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro drug testing models, and personalized medicine. While there is a substantial progress in the field of bioprinting in the recent past, there is still a long way to go to fully realize the translational potential of this technology. Computational studies for study of tissue growth or tissue fusion post-printing, improving the scalability of this technology to fabricate human-scale tissues, development of hybrid systems with integration of different bioprinting modalities, formulation of new bioinks with tuneable mechanical and rheological properties, mechanobiological studies on cell-bioink interaction, 4D bioprinting with smart (stimuli-responsive) hydrogels, and addressing the ethical, social, and regulatory issues concerning bioprinting are potential futuristic focus areas that would aid in successful clinical translation of this technology.
Collapse
|
44
|
Liao X, Li SH, Xie GH, Xie S, Xiao LL, Song JX, Liu HW. Preconditioning With Low-Level Laser Irradiation Enhances the Therapeutic Potential of Human Adipose-derived Stem Cells in a Mouse Model of Photoaged Skin. Photochem Photobiol 2018; 94:780-790. [PMID: 29457847 DOI: 10.1111/php.12912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Xuan Liao
- Department of Plastic Surgery; The First Affiliated Hospital of Jinan University; Innovative Technology Research Institute of Tissue Repair and Regeneration; Key Laboratory of Regenerative Medicine; Ministry of Education; Guangzhou Guangdong China
| | - Sheng-Hong Li
- Department of Plastic Surgery; The First Affiliated Hospital of Jinan University; Innovative Technology Research Institute of Tissue Repair and Regeneration; Key Laboratory of Regenerative Medicine; Ministry of Education; Guangzhou Guangdong China
| | - Guang-Hui Xie
- Department of Plastic Surgery; The First Affiliated Hospital of Jinan University; Innovative Technology Research Institute of Tissue Repair and Regeneration; Key Laboratory of Regenerative Medicine; Ministry of Education; Guangzhou Guangdong China
| | - Shan Xie
- Department of Plastic Surgery; The First Affiliated Hospital of Jinan University; Innovative Technology Research Institute of Tissue Repair and Regeneration; Key Laboratory of Regenerative Medicine; Ministry of Education; Guangzhou Guangdong China
| | - Li-Ling Xiao
- Department of Plastic Surgery; The First Affiliated Hospital of Jinan University; Innovative Technology Research Institute of Tissue Repair and Regeneration; Key Laboratory of Regenerative Medicine; Ministry of Education; Guangzhou Guangdong China
| | - Jian-Xing Song
- Department of Plastic Surgery; Changhai Hospital; The Second Military Medical University; Shanghai China
| | - Hong-Wei Liu
- Department of Plastic Surgery; The First Affiliated Hospital of Jinan University; Innovative Technology Research Institute of Tissue Repair and Regeneration; Key Laboratory of Regenerative Medicine; Ministry of Education; Guangzhou Guangdong China
| |
Collapse
|
45
|
Bandyopadhyay A, Dewangan VK, Vajanthri KY, Poddar S, Mahto SK. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Erten E, Arslan YE. The Great Harmony in Translational Medicine: Biomaterials and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:21-39. [DOI: 10.1007/5584_2018_231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Gupta S, Gupta MK. Possible role of nanocarriers in drug delivery against cervical cancer. NANO REVIEWS & EXPERIMENTS 2017; 8:1335567. [PMID: 30410707 PMCID: PMC6167030 DOI: 10.1080/20022727.2017.1335567] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 02/08/2023]
Abstract
Introduction: Cervical cancer is the second most common cancer and the largest cancer killer among women in most developing countries including India. Although, various drugs have been developed for cervical cancer, treatment with these drugs often results in a number of undesirable side effects, toxicity and multidrug resistance (MDR). Also, the outcomes for cervical cancer patients remain poor after surgery and chemo radiation. Methods: A literature search (for drugs and delivery systems against cervical cancer) was performed on PubMed and through Google. The present review discuss about various methods including its current conventional treatment with special reference to recent advances in delivery systems encapsulating various anticancer drugs and natural plant products for targeting towards cervical cancer. The role of photothermal therapy, gene therapy and radiation therapy against cervical cancer is also discussed. Results: Systemic/targeted drug delivery systems including liposomes, nanoparticles, hydrogels, dendrimers etc. and localized drug delivery systems like cervical patches, films, rings etc. are safer than the conventional chemotherapy which has further been proved by the several drug delivery systems undergoing clinical trials. Conclusion: Novel approaches for the aggressive treatment of cervical cancer will optimistically result in decreased side effects as well as toxicity, frequency of administration of existing drugs, to overcome MDR and to increase the survival rates.
Collapse
Affiliation(s)
- Swati Gupta
- B. S. Anangpuria Institute of Pharmacy, Pt B. D. Sharma University of Health Sciences, Faridabad, India
| | - Manish K. Gupta
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, India
| |
Collapse
|
48
|
Badia J, Gil-Castell O, Ribes-Greus A. Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Dew L, English WR, Chong CK, MacNeil S. Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis. Tissue Eng Part A 2016; 22:1317-1326. [PMID: 27676406 PMCID: PMC5175441 DOI: 10.1089/ten.tea.2016.0131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
One of the main challenges currently faced by tissue engineers is the loss of tissues postimplantation due to delayed neovascularization. Several strategies are under investigation to create vascularized tissue, but none have yet overcome this problem. In this study, we produced a decellularized natural vascular scaffold from rat intestine to use as an in vitro platform for neovascularization studies for tissue-engineered constructs. Decellularization resulted in almost complete (97%) removal of nuclei and DNA, while collagen, glycosaminoglycan, and laminin content were preserved. Decellularization did, however, result in the loss of elastin and fibronectin. Some proangiogenic factors were retained, as fragments of decellularized intestine were able to stimulate angiogenesis in the chick chorioallantoic membrane assay. We demonstrated that decellularization left perfusable vascular channels intact, and these could be repopulated with human dermal microvascular endothelial cells. Optimization of reendothelialization of the vascular channels showed that this was improved by continuous perfusion of the vasculature and further improved by infusion of human dermal fibroblasts into the intestinal lumen, from where they invaded into the decellularized tissue. Finally we explored the ability of the perfused cells to form new vessels. In the absence of exogenous angiogenic stimuli, Dll4, a marker of endothelial capillary-tip cell activation during sprouting angiogenesis, was absent, indicating that the reformed vasculature was largely quiescent. However, after addition of vascular endothelial growth factor A, Dll4-positive endothelial cells could be detected, demonstrating that this engineered vascular construct maintained its capacity for neovascularization. In summary, we have demonstrated how a natural xenobiotic vasculature can be used as an in vitro model platform to study neovascularization and provide information on factors that are critical for efficient reendothelialization of decellularized tissue.
Collapse
Affiliation(s)
- Lindsey Dew
- Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - William R. English
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Chuh K. Chong
- Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sheila MacNeil
- Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
50
|
Patel N, Kim B, Zaid W, Spagnoli D. Tissue Engineering for Vertical Ridge Reconstruction. Oral Maxillofac Surg Clin North Am 2016; 29:27-49. [PMID: 27890226 DOI: 10.1016/j.coms.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article provides an overview of basic tissue engineering principles as they are applied to vertical ridge defects and reconstructive techniques for these types of deficiencies. Presented are multiple clinical cases ranging from office-based dentoalveolar procedures to the more complex reconstruction of postresection mandibular defects. Several different types of regenerative tissue constructs are presented; either used alone or in combination with traditional reconstructive techniques and procedures, such as maxillary sinus augmentation, Le Fort I osteotomy, and microvascular free tissue transfer. The goal is to also familiarize the reconstructive surgeon to potential future strategies in vertical alveolar ridge augmentation.
Collapse
Affiliation(s)
- Neel Patel
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Ave, Box 220, Room 5303, New Orleans, LA 70119, USA.
| | - Beomjune Kim
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 220, Room 5303, New Orleans, LA, USA
| | - Waleed Zaid
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 220, Room 5303, New Orleans, LA, USA
| | - Daniel Spagnoli
- Private Practice, Brunswick Oral and Maxillofacial Surgery, 621-B North Fodale Avenue, Southport, NC 28461, USA
| |
Collapse
|