1
|
Chuntakaruk H, Boonpalit K, Kinchagawat J, Nakarin F, Khotavivattana T, Aonbangkhen C, Shigeta Y, Hengphasatporn K, Nutanong S, Rungrotmongkol T, Hannongbua S. Machine learning-guided design of potent darunavir analogs targeting HIV-1 proteases: A computational approach for antiretroviral drug discovery. J Comput Chem 2024; 45:953-968. [PMID: 38174739 DOI: 10.1002/jcc.27298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
In the pursuit of novel antiretroviral therapies for human immunodeficiency virus type-1 (HIV-1) proteases (PRs), recent improvements in drug discovery have embraced machine learning (ML) techniques to guide the design process. This study employs ensemble learning models to identify crucial substructures as significant features for drug development. Using molecular docking techniques, a collection of 160 darunavir (DRV) analogs was designed based on these key substructures and subsequently screened using molecular docking techniques. Chemical structures with high fitness scores were selected, combined, and one-dimensional (1D) screening based on beyond Lipinski's rule of five (bRo5) and ADME (absorption, distribution, metabolism, and excretion) prediction implemented in the Combined Analog generator Tool (CAT) program. A total of 473 screened analogs were subjected to docking analysis through convolutional neural networks scoring function against both the wild-type (WT) and 12 major mutated PRs. DRV analogs with negative changes in binding free energy (ΔΔ G bind ) compared to DRV could be categorized into four attractive groups based on their interactions with the majority of vital PRs. The analysis of interaction profiles revealed that potent designed analogs, targeting both WT and mutant PRs, exhibited interactions with common key amino acid residues. This observation further confirms that the ML model-guided approach effectively identified the substructures that play a crucial role in potent analogs. It is expected to function as a powerful computational tool, offering valuable guidance in the identification of chemical substructures for synthesis and subsequent experimental testing.
Collapse
Affiliation(s)
- Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Kajjana Boonpalit
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jiramet Kinchagawat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Fahsai Nakarin
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | | | - Sarana Nutanong
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Supot Hannongbua
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Center of Excellence in Computational Chemistry (CECC), Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Častorálová M, Sýs J, Prchal J, Pavlů A, Prokopová L, Briki Z, Hubálek M, Ruml T. A myristoyl switch at the plasma membrane triggers cleavage and oligomerization of Mason-Pfizer monkey virus matrix protein. eLife 2024; 13:e93489. [PMID: 38517277 PMCID: PMC11014724 DOI: 10.7554/elife.93489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.
Collapse
Affiliation(s)
- Markéta Častorálová
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Jakub Sýs
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry of Czech Academy of SciencePragueCzech Republic
| | - Jan Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Anna Pavlů
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Lucie Prokopová
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Zina Briki
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of Czech Academy of SciencePragueCzech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| |
Collapse
|
3
|
Engelman AN, Kvaratskhelia M. Multimodal Functionalities of HIV-1 Integrase. Viruses 2022; 14:926. [PMID: 35632668 PMCID: PMC9144474 DOI: 10.3390/v14050926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Lin YR, Chu SM, Yu FH, Huang KJ, Wang CT. Effects of reduced gag cleavage efficiency on HIV-1 Gag-Pol package. BMC Microbiol 2022; 22:94. [PMID: 35395730 PMCID: PMC8994222 DOI: 10.1186/s12866-022-02503-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 pol, which encodes enzymes required for virus replication, is initially translated as a Gag-Pol fusion protein. Gag-Pol is incorporated into virions via interactions with Gag precursor Pr55gag. Protease (PR) embedded in Gag-Pol mediates the proteolytic processing of both Pr55gag and Gag-Pol during or soon after virus particle release from cells. Since efficient Gag-Pol viral incorporation depends on interaction with Pr55gag via its N-terminal Gag domain, the prevention of premature Gag cleavage may alleviate Gag-Pol packaging deficiencies associated with cleavage enhancement from PR. RESULTS We engineered PR cleavage-blocking Gag mutations with the potential to significantly reduce Gag processing efficiency. Such mutations may mitigate the negative effects of enhanced PR activation on virus assembly and Gag-Pol packaging due to an RT dimerization enhancer or leucine zipper dimerization motif. When co-expressed with Pr55gag, we noted that enhanced PR activation resulted in reduced Gag-Pol cis or trans incorporation into Pr55gag particles, regardless of whether or not Gag cleavage sites within Gag-Pol were blocked. CONCLUSIONS Our data suggest that the amount of HIV-1 Gag-Pol or Pol viral incorporation is largely dependent on virus particle production, and that cleavage blocking in the Gag-Pol N-terminal Gag domain does not exert significant impacts on Pol packaging.
Collapse
Affiliation(s)
- Yi-Ru Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, 112, Taipei, Taiwan
| | - Shih-Ming Chu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, 112, Taipei, Taiwan
| | - Fu-Hsien Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, 112, Taipei, Taiwan
| | - Kuo-Jung Huang
- Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Tien Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, 112, Taipei, Taiwan. .,Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Dynamics of HIV-1 Gag Processing as Revealed by Fluorescence Lifetime Imaging Microscopy and Single Virus Tracking. Viruses 2022; 14:v14020340. [PMID: 35215933 PMCID: PMC8874525 DOI: 10.3390/v14020340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/04/2022] Open
Abstract
The viral polyprotein Gag plays a central role for HIV-1 assembly, release and maturation. Proteolytic processing of Gag by the viral protease is essential for the structural rearrangements that mark the transition from immature to mature, infectious viruses. The timing and kinetics of Gag processing are not fully understood. Here, fluorescence lifetime imaging microscopy and single virus tracking are used to follow Gag processing in nascent HIV-1 particles in situ. Using a Gag polyprotein labelled internally with eCFP, we show that proteolytic release of the fluorophore from Gag is accompanied by an increase in its fluorescence lifetime. By tracking nascent virus particles in situ and analyzing the intensity and fluorescence lifetime of individual traces, we detect proteolytic cleavage of eCFP from Gag in a subset (6.5%) of viral particles. This suggests that for the majority of VLPs, Gag processing occurs with a delay after particle assembly.
Collapse
|
6
|
Co-evolution of drug resistance and broadened substrate recognition in HIV protease variants isolated from an Escherichia coli genetic selection system. Biochem J 2022; 479:479-501. [PMID: 35089310 DOI: 10.1042/bcj20210767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
A genetic selection system for activity of HIV protease is described that is based on a synthetic substrate constructed as a modified AraC regulatory protein that when cleaved stimulate L-arabinose metabolism in an Escherichia coli araC strain. Growth stimulation on selective plates was shown to depend on active HIV protease and the scissile bond in the substrate. In addition, the growth of cells correlated well with the established cleavage efficiency of the sites in the viral polyprotein, Gag, when these sites were individually introduced into the synthetic substate of the selection system. Plasmids encoding protease variants selected based on stimulation of cell growth in the presence of saquinavir or cleavage of a site not cleaved by wild-type protease, were indistinguishable with respect to both phenotypes. Also, both groups of selected plasmids encoded side chain substitutions known from clinical isolates or displayed different side chain substitutions but at identical positions. One highly frequent side chain substitution, E34V, not regarded as a major drug resistance substitution was found in variants obtained under both selective conditions and is suggested to improve protease processing of the synthetic substrate. This substitution is away from the substrate-binding cavity and together with other substitutions in the selected reading frames supports the previous suggestion of a substrate-binding site extended from the active site binding pocket itself.
Collapse
|
7
|
Imamichi T, Bernbaum JG, Laverdure S, Yang J, Chen Q, Highbarger H, Hao M, Sui H, Dewar R, Chang W, Lane HC. Natural Occurring Polymorphisms in HIV-1 Integrase and RNase H Regulate Viral Release and Autoprocessing. J Virol 2021; 95:e0132321. [PMID: 34523971 PMCID: PMC8577372 DOI: 10.1128/jvi.01323-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, a genome-wide association study using plasma HIV RNA from antiretroviral therapy-naive patients reported that 14 naturally occurring nonsynonymous single-nucleotide polymorphisms (SNPs) in HIV derived from antiretrovirus drug-naive patients were associated with virus load (VL). Those SNPs were detected in reverse transcriptase, RNase H, integrase, envelope, and Nef. However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP and examined their replicative abilities. An HIV variant containing a Met-to-Ile change at codon 50 in integrase [HIV(IN:M50I)] was found as an impaired virus. Despite the mutation being in integrase, the virus release was significantly suppressed (P < 0.001). Transmission electron microscopy analysis revealed that abnormal bud accumulation on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins' autoprocessing in the HIV(IN:M50I) particles, although Förster resonance energy transfer (FRET) assay displayed that GagPol containing IN:M50I forms a homodimer with a similar efficiency with GagPol (wild type). The impaired maturation and replication were rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 of integrase and Asn-to-Ser change at codon 79 of RNase H. These data demonstrate that Gag and GagPol assembly, virus release, and autoprocessing are regulated by not only integrase but also RNase H. IMPORTANCE Nascent HIV-1 is a noninfectious viral particle. Cleaving Gag and GagPol polyproteins in the particle by mature HIV protease (PR), the nascent virus becomes an infectious virus. PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by self-cleavage is called autoprocessing. Here, during the evaluation of the roles of naturally emerging nonsynonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase GagPol. Other coexisting SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, recovered this defect, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - John G. Bernbaum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Helene Highbarger
- Virus Isolation and Serology Laboratory, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Robin Dewar
- Virus Isolation and Serology Laboratory, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Ghimire D, Kc Y, Timilsina U, Goel K, Nitz TJ, Wild CT, Gaur R. A single G10T polymorphism in HIV-1 subtype C Gag-SP1 regulates sensitivity to maturation inhibitors. Retrovirology 2021; 18:9. [PMID: 33836787 PMCID: PMC8033686 DOI: 10.1186/s12977-021-00553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Maturation inhibitors (MIs) potently block HIV-1 maturation by inhibiting the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a highly efficacious first-in-class MI against HIV-1 subtype B isolates, elicited sub-optimal efficacy in clinical trials due to polymorphisms in the CA-SP1 region of the Gag protein (SP1:V7A). HIV-1 subtype C inherently contains this polymorphism thus conferring BVM resistance, however it displayed sensitivity to second generation BVM analogs. RESULTS In this study, we have assessed the efficacy of three novel second-generation MIs (BVM analogs: CV-8611, CV-8612, CV-8613) against HIV-1 subtype B and C isolates. The BVM analogs were potent inhibitors of both HIV-1 subtype B (NL4-3) and subtype C (K3016) viruses. Serial passaging of the subtype C, K3016 virus strain in the presence of BVM analogs led to identification of two mutant viruses-Gag SP1:A1V and CA:I201V. While the SP1:A1V mutant was resistant to the MIs, the CA:I120V mutant displayed partial resistance and a MI-dependent phenotype. Further analysis of the activity of the BVM analogs against two additional HIV-1 subtype C strains, IndieC1 and ZM247 revealed that they had reduced sensitivity as compared to K3016. Sequence analysis of the three viruses identified two polymorphisms at SP1 residues 9 and 10 (K3016: N9, G10; IndieC1/ZM247: S9, T10). The N9S and S9N mutants had no change in MI-sensitivity. On the other hand, replacing glycine at residue 10 with threonine in K3016 reduced its MI sensitivity whereas introducing glycine at SP1 10 in place of threonine in IndieC1 and ZM247 significantly enhanced their MI sensitivity. Thus, the specific glycine residue 10 of SP1 in the HIV-1 subtype C viruses determined sensitivity towards BVM analogs. CONCLUSIONS We have identified an association of a specific glycine at position 10 of Gag-SP1 with an MI susceptible phenotype of HIV-1 subtype C viruses. Our findings have highlighted that HIV-1 subtype C viruses, which were inherently resistant to BVM, may also be similarly predisposed to exhibit a significant degree of resistance to second-generation BVM analogs. Our work has strongly suggested that genetic differences between HIV-1 subtypes may produce variable MI sensitivity that needs to be considered in the development of novel, potent, broadly-active MIs.
Collapse
Affiliation(s)
- Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Yuvraj Kc
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kriti Goel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - T J Nitz
- DFH Pharma, Gaithersburg, MD, 20886, USA
| | | | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
9
|
Wang Q, Gao H, Clark KM, Mugisha CS, Davis K, Tang JP, Harlan GH, DeSelm CJ, Presti RM, Kutluay SB, Shan L. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science 2021; 371:eabe1707. [PMID: 33542150 PMCID: PMC8029496 DOI: 10.1126/science.abe1707] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
HIV-1 has high mutation rates and exists as mutant swarms within the host. Rapid evolution of HIV-1 allows the virus to outpace the host immune system, leading to viral persistence. Approaches to targeting immutable components are needed to clear HIV-1 infection. Here, we report that the caspase recruitment domain-containing protein 8 (CARD8) inflammasome senses HIV-1 protease activity. HIV-1 can evade CARD8 sensing because its protease remains inactive in infected cells before viral budding. Premature intracellular activation of the viral protease triggered CARD8 inflammasome-mediated pyroptosis of HIV-1-infected cells. This strategy led to the clearance of latent HIV-1 in patient CD4+ T cells after viral reactivation. Thus, our study identifies CARD8 as an inflammasome sensor of HIV-1, which holds promise as a strategy for the clearance of persistent HIV-1 infection.
Collapse
Affiliation(s)
- Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Keanu Davis
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jack P Tang
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gray H Harlan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carl J DeSelm
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
10
|
Structure, Function, and Interactions of the HIV-1 Capsid Protein. Life (Basel) 2021; 11:life11020100. [PMID: 33572761 PMCID: PMC7910843 DOI: 10.3390/life11020100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.
Collapse
|
11
|
Bulut H, Hattori SI, Aoki-Ogata H, Hayashi H, Das D, Aoki M, Davis DA, Rao KV, Nyalapatla PR, Ghosh AK, Mitsuya H. Single atom changes in newly synthesized HIV protease inhibitors reveal structural basis for extreme affinity, high genetic barrier, and adaptation to the HIV protease plasticity. Sci Rep 2020; 10:10664. [PMID: 32606378 PMCID: PMC7326966 DOI: 10.1038/s41598-020-65993-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/15/2020] [Indexed: 11/30/2022] Open
Abstract
HIV-1 protease inhibitors (PIs), such as darunavir (DRV), are the key component of antiretroviral therapy. However, HIV-1 often acquires resistance to PIs. Here, seven novel PIs were synthesized, by introducing single atom changes such as an exchange of a sulfur to an oxygen, scission of a single bond in P2′-cyclopropylaminobenzothiazole (or -oxazole), and/or P1-benzene ring with fluorine scan of mono- or bis-fluorine atoms around DRV’s scaffold. X-ray structural analyses of the PIs complexed with wild-type Protease (PRWT) and highly-multi-PI-resistance-associated PRDRVRP51 revealed that the PIs better adapt to structural plasticity in PR with resistance-associated amino acid substitutions by formation of optimal sulfur bond and adaptation of cyclopropyl ring in the S2′-subsite. Furthermore, these PIs displayed increased cell permeability and extreme anti-HIV-1 potency compared to DRV. Our work provides the basis for developing novel PIs with high potency against PI-resistant HIV-1 variants with a high genetic barrier.
Collapse
Affiliation(s)
- Haydar Bulut
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, United States
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Hiromi Aoki-Ogata
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, United States
| | - Hironori Hayashi
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, 980-8575, Sendai, Miyagi, Japan
| | - Debananda Das
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, United States
| | - Manabu Aoki
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, United States
| | - David A Davis
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, United States
| | - Kalapala Venkateswara Rao
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, 47907, IN, United States
| | - Prasanth R Nyalapatla
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, 47907, IN, United States
| | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, 47907, IN, United States
| | - Hiroaki Mitsuya
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, United States. .,Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan. .,Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto, 860-8556, Japan.
| |
Collapse
|
12
|
Potempa M, Lee SK, Kurt Yilmaz N, Nalivaika EA, Rogers A, Spielvogel E, Carter CW, Schiffer CA, Swanstrom R. HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites. J Mol Biol 2018; 430:5182-5195. [PMID: 30414407 DOI: 10.1016/j.jmb.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Retroviral proteases (PRs) have a unique specificity that allows cleavage of sites with or without a P1' proline. A P1' proline is required at the MA/CA cleavage site due to its role in a post-cleavage conformational change in the capsid protein. However, the HIV-1 PR prefers to have large hydrophobic amino acids flanking the scissile bond, suggesting that PR recognizes two different classes of substrate sequences. We analyzed the cleavage rate of over 150 combinations of six different HIV-1 cleavage sites to explore rate determinants of cleavage. We found that cleavage rates are strongly influenced by the two amino acids flanking the amino acids at the scissile bond (P2-P1/P1'-P2'), with two complementary sets of rules. When P1' is proline, the P2 side chain interacts with a polar region in the S2 subsite of the PR, while the P2' amino acid interacts with a hydrophobic region of the S2' subsite. When P1' is not proline, the orientations of the P2 and P2' side chains with respect to the scissile bond are reversed; P2 residues interact with a hydrophobic face of the S2 subsite, while the P2' amino acid usually engages hydrophilic amino acids in the S2' subsite. These results reveal that the HIV-1 PR has evolved bi-functional S2 and S2' subsites to accommodate the steric effects imposed by a P1' proline on the orientation of P2 and P2' substrate side chains. These results also suggest a new strategy for inhibitor design to engage the multiple specificities in these subsites.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sook-Kyung Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amy Rogers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Maturation inhibitors facilitate virus assembly and release of HIV-1 capsid P224 mutant. Virology 2018; 521:44-50. [DOI: 10.1016/j.virol.2018.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/25/2023]
|
14
|
Bungard CJ, Williams PD, Schulz J, Wiscount CM, Holloway MK, Loughran HM, Manikowski JJ, Su HP, Bennett DJ, Chang L, Chu XJ, Crespo A, Dwyer MP, Keertikar K, Morriello GJ, Stamford AW, Waddell ST, Zhong B, Hu B, Ji T, Diamond TL, Bahnck-Teets C, Carroll SS, Fay JF, Min X, Morris W, Ballard JE, Miller MD, McCauley JA. Design and Synthesis of Piperazine Sulfonamide Cores Leading to Highly Potent HIV-1 Protease Inhibitors. ACS Med Chem Lett 2017; 8:1292-1297. [PMID: 29259750 DOI: 10.1021/acsmedchemlett.7b00386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Using the HIV-1 protease binding mode of MK-8718 and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to MK-8718.
Collapse
Affiliation(s)
- Christopher J. Bungard
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Peter D. Williams
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Jurgen Schulz
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Catherine M. Wiscount
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - M. Katharine Holloway
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - H. Marie Loughran
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Jesse J. Manikowski
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Hua-Poo Su
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - David J. Bennett
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Lehua Chang
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xin-Jie Chu
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Alejandro Crespo
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael P. Dwyer
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Kartik Keertikar
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gregori J. Morriello
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew W. Stamford
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Sherman T. Waddell
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Bin Zhong
- WuXi AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Bin Hu
- WuXi AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Tao Ji
- WuXi AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Tracy L. Diamond
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Carolyn Bahnck-Teets
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Steven S. Carroll
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - John F. Fay
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Xu Min
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - William Morris
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jeanine E. Ballard
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Michael D. Miller
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - John A. McCauley
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| |
Collapse
|
15
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis. Nucleic Acids Res 2017; 45:10156-10167. [PMID: 28973470 PMCID: PMC5737442 DOI: 10.1093/nar/gkx690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022] Open
Abstract
Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5' adjacent base. The GGG sequence 3' adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel 'errors' in the run of A's in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template U's. cDNA with 5 A's may yield novel Gag product(s), while cDNA with an extra base, 7 A's, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
16
|
Wang M, Quinn CM, Perilla JR, Zhang H, Shirra R, Hou G, Byeon IJ, Suiter CL, Ablan S, Urano E, Nitz TJ, Aiken C, Freed EO, Zhang P, Schulten K, Gronenborn AM, Polenova T. Quenching protein dynamics interferes with HIV capsid maturation. Nat Commun 2017; 8:1779. [PMID: 29176596 PMCID: PMC5701193 DOI: 10.1038/s41467-017-01856-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/19/2017] [Indexed: 11/14/2022] Open
Abstract
Maturation of HIV-1 particles encompasses a complex morphological transformation of Gag via an orchestrated series of proteolytic cleavage events. A longstanding question concerns the structure of the C-terminal region of CA and the peptide SP1 (CA-SP1), which represents an intermediate during maturation of the HIV-1 virus. By integrating NMR, cryo-EM, and molecular dynamics simulations, we show that in CA-SP1 tubes assembled in vitro, which represent the features of an intermediate assembly state during maturation, the SP1 peptide exists in a dynamic helix-coil equilibrium, and that the addition of the maturation inhibitors Bevirimat and DFH-055 causes stabilization of a helical form of SP1. Moreover, the maturation-arresting SP1 mutation T8I also induces helical structure in SP1 and further global dynamical and conformational changes in CA. Overall, our results show that dynamics of CA and SP1 are critical for orderly HIV-1 maturation and that small molecules can inhibit maturation by perturbing molecular motions.
Collapse
Affiliation(s)
- Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
- University of Illinois, Theoretical and Computational Biophysics Group, Urbana, IL, 61801, USA.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Randall Shirra
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - In-Ja Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Sherimay Ablan
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Emiko Urano
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Peijun Zhang
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - Klaus Schulten
- University of Illinois, Theoretical and Computational Biophysics Group, Urbana, IL, 61801, USA
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
| |
Collapse
|
17
|
Folio C, Sierra N, Dujardin M, Alvarez G, Guillon C. Crystal Structure of the Full-Length Feline Immunodeficiency Virus Capsid Protein Shows an N-Terminal β-Hairpin in the Absence of N-Terminal Proline. Viruses 2017; 9:v9110335. [PMID: 29120364 PMCID: PMC5707542 DOI: 10.3390/v9110335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a member of the Retroviridae family. It is the causative agent of an acquired immunodeficiency syndrome (AIDS) in cats and wild felines. Its capsid protein (CA) drives the assembly of the viral particle, which is a critical step in the viral replication cycle. Here, the first atomic structure of full-length FIV CA to 1.67 Å resolution is determined. The crystallized protein exhibits an original tetrameric assembly, composed of dimers which are stabilized by an intermolecular disulfide bridge induced by the crystallogenesis conditions. The FIV CA displays a standard α-helical CA topology with two domains, separated by a linker shorter than other retroviral CAs. The β-hairpin motif at its amino terminal end, which interacts with nucleotides in HIV-1, is unusually long in FIV CA. Interestingly, this functional β-motif is formed in this construct in the absence of the conserved N-terminal proline. The FIV CA exhibits a cis Arg–Pro bond in the CypA-binding loop, which is absent in known structures of lentiviral CAs. This structure represents the first tri-dimensional structure of a functional, full-length FIV CA.
Collapse
Affiliation(s)
- Christelle Folio
- Equipe Rétrovirus et Biochimie Structurale, Université de Lyon, CNRS, MMSB, UMR 5086 CNRS/Université de Lyon, IBCP, Lyon 69367 CEDEX 07, France.
| | - Natalia Sierra
- Laboratorio de Moléculas Bioactivas, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay.
| | - Marie Dujardin
- Equipe Rétrovirus et Biochimie Structurale, Université de Lyon, CNRS, MMSB, UMR 5086 CNRS/Université de Lyon, IBCP, Lyon 69367 CEDEX 07, France.
| | - Guzman Alvarez
- Laboratorio de Moléculas Bioactivas, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay.
| | - Christophe Guillon
- Equipe Rétrovirus et Biochimie Structurale, Université de Lyon, CNRS, MMSB, UMR 5086 CNRS/Université de Lyon, IBCP, Lyon 69367 CEDEX 07, France.
| |
Collapse
|
18
|
Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR. Proc Natl Acad Sci U S A 2017; 114:E9855-E9862. [PMID: 29087351 DOI: 10.1073/pnas.1716098114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The conversion of immature noninfectious HIV-1 particles to infectious virions is dependent upon the sequential cleavage of the precursor group-specific antigen (Gag) polyprotein by HIV-1 protease. The precise mechanism whereby protease recognizes distinct Gag cleavage sites, located in the intrinsically disordered linkers connecting the globular domains of Gag, remains unclear. Here, we probe the dynamics of the interaction of large fragments of Gag and various variants of protease (including a drug resistant construct) using Carr-Purcell-Meiboom-Gill relaxation dispersion and chemical exchange saturation transfer NMR experiments. We show that the conformational dynamics within the flaps of HIV-1 protease that form the lid over the catalytic cleft play a significant role in substrate specificity and ordered Gag processing. Rapid interconversion between closed and open protease flap conformations facilitates the formation of a transient, sparsely populated productive complex between protease and Gag substrates. Flap closure traps the Gag cleavage sites within the catalytic cleft of protease. Modulation of flap opening through protease-Gag interactions fine-tunes the lifetime of the productive complex and hence the likelihood of Gag proteolysis. A productive complex can also be formed in the presence of a noncognate substrate but is short-lived owing to lack of optimal complementarity between the active site cleft of protease and the substrate, resulting in rapid flap opening and substrate release, thereby allowing protease to differentiate between cognate and noncognate substrates.
Collapse
|
19
|
Boonyalekha P, Meechai A, Tayapiwatana C, Kitidee K, Waraho-Zhmayev D. Design and construction of a synthetic E. coli protease inhibitor detecting biomachine. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:3580-3583. [PMID: 29060672 DOI: 10.1109/embc.2017.8037631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protease inhibitors (PIs) have been used to treat various types of symptoms or diseases. However, current PIs block the protease activity by targeting the protease active site which has been shown to be sensitive to the off-target effect due to crossreactivity with protease homologues. An alternative approach to inhibiting protease activity is to target the substrate, specifically by blocking the substrate cleavage site. We propose to employ synthetic biology approach to create a synthetic E. coli to be used as a protease inhibitor detecting biomachine that can effectively isolate intrabodies, a new generation of protease inhibitor drug. The in vivo selection system, comprised of three biological devices, i.e., protease activity detector, protease generator and protease blocking devices, is based on the ability to transport folded protein of the E. coli twin-arginine translocation (Tat) pathway and antibiotic resistance of TEM-1 β-lactamase (Bla) using as reporter protein. By linking protease degradation to antibiotic resistance, we can isolate the suitable intrabodies simply by plating cells containing appropriate devices on solid agar containing β-lactam ring antibiotics. As a proof of concept, we applied a previously isolated HIV-1 p17 intrabody (scFvp17) that binds to the C-terminus of HIV-1 matrix protein (p17) to our synthetic E. coli. This work demonstrated that binding of scFvp17 to its epitope on p17 can physically interfere with HIV-1 protease activity and inhibit proteolytic cleavage at the p17Δp24 cleavage site when expressed in the designed format. The device was optimized by varying plating conditions such as incubation temperatures, induction levels, and Carbenicillin concentrations which was used as selection pressure. The feasibility of this assay has opened the door to protease inhibitor selection which can be used for various applications such as optimization of the current protease inhibitors and selection of new ones.
Collapse
|
20
|
Zheng W, Ling L, Li Z, Wang H, Rui Y, Gao W, Wang S, Su X, Wei W, Yu XF. Conserved Interaction of Lentiviral Vif Molecules with HIV-1 Gag and Differential Effects of Species-Specific Vif on Virus Production. J Virol 2017; 91:e00064-17. [PMID: 28122978 PMCID: PMC5355596 DOI: 10.1128/jvi.00064-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
The virion infectivity factor (Vif) open reading frame is conserved among most lentiviruses. Vif molecules contribute to viral replication by inactivating host antiviral factors, the APOBEC3 cytidine deaminases. However, various species of lentiviral Vif proteins have evolved different strategies for overcoming host APOBEC3. Whether different species of lentiviral Vif proteins still preserve certain common features has not been reported. Here, we show for the first time that diverse lentiviral Vif molecules maintain the ability to interact with the human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55Gag) polyprotein. Surprisingly, bovine immunodeficiency virus (BIV) Vif, but not HIV-1 Vif, interfered with HIV-1 production and viral infectivity even in the absence of APOBEC3. Further analysis revealed that BIV Vif demonstrated an enhanced interaction with Pr55Gag compared to that of HIV-1 Vif, and BIV Vif defective for the Pr55Gag interaction lost its ability to inhibit HIV-1. The C-terminal region of capsid (CA) and the p2 region of Pr55Gag, which are important for virus assembly and maturation, were involved in the interaction. Transduction of CD4+ T cells with BIV Vif blocked HIV-1 replication. Thus, the conserved Vif-Pr55Gag interaction provides a potential target for the future development of antiviral strategies.IMPORTANCE The conserved Vif accessory proteins of primate lentiviruses HIV-1, simian immunodeficiency virus (SIV), and BIV all form ubiquitin ligase complexes to target host antiviral APOBEC3 proteins for degradation, with different cellular requirements and using different molecular mechanisms. Here, we demonstrate that BIV Vif can interfere with HIV-1 Gag maturation and suppress HIV-1 replication through interaction with the precursor of the Gag (Pr55Gag) of HIV-1 in virus-producing cells. Moreover, the HIV-1 and SIV Vif proteins are conserved in terms of their interactions with HIV-1 Pr55Gag although HIV-1 Vif proteins bind Pr55Gag less efficiently than those of BIV Vif. Our research not only sheds new light on this feature of these conserved lentiviral Vif proteins but also provides a formerly unrecognized target for the development of antiviral strategies. Since increasing the Vif-Pr55Gag interaction could potentially suppress virus proliferation, this approach could offer a new strategy for the development of HIV inhibitors.
Collapse
Affiliation(s)
- Wenwen Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Limian Ling
- Department of Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hong Wang
- School of Life Science, Tianjin University, Tianjin, China
| | - Yajuan Rui
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wenying Gao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xing Su
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C. Sci Rep 2017; 7:43711. [PMID: 28252110 PMCID: PMC5333120 DOI: 10.1038/srep43711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/26/2017] [Indexed: 12/03/2022] Open
Abstract
HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics.
Collapse
|
22
|
Ning J, Erdemci-Tandogan G, Yufenyuy EL, Wagner J, Himes BA, Zhao G, Aiken C, Zandi R, Zhang P. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat Commun 2016; 7:13689. [PMID: 27958264 PMCID: PMC5159922 DOI: 10.1038/ncomms13689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation. Two competing models—disassembly/reassembly and displacive—have been proposed for how immature spherical HIV virions transform into mature particles with conical cores. Here the authors provide evidence that both disassembly/reassembly and displacive processes occur sequentially during the maturation process.
Collapse
Affiliation(s)
- Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Ernest L Yufenyuy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
23
|
Konagaya Y, Miyakawa R, Sato M, Matsugami A, Watanabe S, Hayashi F, Kigawa T, Nishimura C. Effect of Glu12-His89 Interaction on Dynamic Structures in HIV-1 p17 Matrix Protein Elucidated by NMR. PLoS One 2016; 11:e0167176. [PMID: 27907055 PMCID: PMC5132258 DOI: 10.1371/journal.pone.0167176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
To test the existence of the salt bridge and stability of the HIV-1 p17 matrix protein, an E12A (mutated at helix 1) was established to abolish possible electrostatic interactions. The chemical shift perturbation from the comparison between wild type and E12A suggested the existence of an electrostatic interaction in wild type between E12 and H89 (located in helix 4). Unexpectedly, the studies using urea denaturation indicated that the E12A substitution slightly stabilized the protein. The dynamic structure of E12A was examined under physiological conditions by both amide proton exchange and relaxation studies. The quick exchange method of amide protons revealed that the residues with faster exchange were located at the mutated region, around A12, compared to those of the wild-type protein. In addition, some residues at the region of helix 4, including H89, exhibited faster exchange in the mutant. In contrast, the average values of the kinetic rate constants for amide proton exchange for residues located in all loop regions were slightly lower in E12A than in wild type. Furthermore, the analyses of the order parameter revealed that less flexible structures existed at each loop region in E12A. Interestingly, the structures of the regions including the alpha1-2 loop and helix 5 of E12A exhibited more significant conformational exchanges with the NMR time-scale than those of wild type. Under lower pH conditions, for further destabilization, the helix 1 and alpha2-3 loop in E12A became more fluctuating than at physiological pH. Because the E12A mutant lacks the activities for trimer formation on the basis of the analytical ultra-centrifuge studies on the sedimentation distribution of p17 (Fledderman et al. Biochemistry 49, 9551–9562, 2010), it is possible that the changes in the dynamic structures induced by the absence of the E12-H89 interaction in the p17 matrix protein contributes to a loss of virus assembly.
Collapse
Affiliation(s)
- Yuta Konagaya
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Rina Miyakawa
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Masumi Sato
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Akimasa Matsugami
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Satoru Watanabe
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center, Yokohama, Kanagawa, Japan
| | - Fumiaki Hayashi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Takanori Kigawa
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center, Yokohama, Kanagawa, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396. J Virol 2016; 90:8181-97. [PMID: 27384665 PMCID: PMC5008107 DOI: 10.1128/jvi.01075-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. IMPORTANCE Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation inhibitors are novel as they target the Gag protein, specifically by inhibiting CA-SP1 proteolytic cleavage. The lack of high-resolution structural information of the CA-SP1 target in Gag has hindered our understanding of the inhibitor-binding pocket and maturation inhibitor mode of action. Therefore, we utilized analogues of the maturation inhibitor PF-46396 as chemical tools to determine the chemical components of PF-46396 that contribute to antiviral activity and Gag binding and the relationship between these essential properties. This is the first study to report structure-activity relationships of the maturation inhibitor PF-46396. PF-46396 is chemically distinct from betulinic acid-derived maturation inhibitors; therefore, our data provide a foundation of knowledge that will aid our understanding of how structurally distinct maturation inhibitors act by similar modes of action.
Collapse
|
25
|
Bungard CJ, Williams PD, Ballard JE, Bennett DJ, Beaulieu C, Bahnck-Teets C, Carroll SS, Chang RK, Dubost DC, Fay JF, Diamond TL, Greshock TJ, Hao L, Holloway MK, Felock PJ, Gesell JJ, Su HP, Manikowski JJ, McKay DJ, Miller M, Min X, Molinaro C, Moradei OM, Nantermet PG, Nadeau C, Sanchez RI, Satyanarayana T, Shipe WD, Singh SK, Truong VL, Vijayasaradhi S, Wiscount CM, Vacca JP, Crane SN, McCauley JA. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group. ACS Med Chem Lett 2016; 7:702-7. [PMID: 27437081 DOI: 10.1021/acsmedchemlett.6b00135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.
Collapse
Affiliation(s)
- Christopher J. Bungard
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Peter D. Williams
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Jeanine E. Ballard
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - David J. Bennett
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Christian Beaulieu
- Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - Carolyn Bahnck-Teets
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Steve S. Carroll
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Ronald K. Chang
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - David C. Dubost
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - John F. Fay
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Tracy L. Diamond
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Thomas J. Greshock
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Li Hao
- Albany Molecular Research Singapore Research Center, 61 Science Park Road #05-01, The Galen Singapore
Science Park II, Singapore 117525
| | - M. Katharine Holloway
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | | | - Jennifer J. Gesell
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Hua-Poo Su
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Jesse J. Manikowski
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Daniel J. McKay
- Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - Mike Miller
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Xu Min
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Carmela Molinaro
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Oscar M. Moradei
- Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - Philippe G. Nantermet
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Christian Nadeau
- Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - Rosa I. Sanchez
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Tummanapalli Satyanarayana
- Albany Molecular Research Singapore Research Center, 61 Science Park Road #05-01, The Galen Singapore
Science Park II, Singapore 117525
| | - William D. Shipe
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Sanjay K. Singh
- Albany Molecular Research Singapore Research Center, 61 Science Park Road #05-01, The Galen Singapore
Science Park II, Singapore 117525
| | - Vouy Linh Truong
- Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - Sivalenka Vijayasaradhi
- Albany Molecular Research Singapore Research Center, 61 Science Park Road #05-01, The Galen Singapore
Science Park II, Singapore 117525
| | - Catherine M. Wiscount
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| | - Joseph P. Vacca
- Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - Sheldon N. Crane
- Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - John A. McCauley
- Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, United States
| |
Collapse
|
26
|
Bacheler LT, Paul M, Otto MJ, Jadhav PK, Stone BA, Miller JA. An Assay for HIV RNA in Infected Cell Lysates, and its use for the Rapid Evaluation of Antiviral Efficacy. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A rapid, high-capacity assay for evaluating the potency of anti-HIV compounds was devised. This assay measures cell associated viral RNA levels 3 days after infection of susceptible T-cell lines grown in individual microtitre plate wells. Viral RNA was quantified by a sandwich hybridization assay, the first step of which was performed directly in crude infected cell lysates prepared in guanidinium isothio-cyanate. Levels of cell-associated viral RNA were shown to correlate with the yield of infectious virus and this correlation formed the basis of the test. Antiviral potencies of a large series of compounds tested in this RNA hybridization assay correlated closely with potency values determined by a sensitive but slower and more labour-intensive yield-reduction assay. Both laboratory strains and selected clinical isolates of HIV can be detected in this RNA hybridization assay.
Collapse
Affiliation(s)
- L. T. Bacheler
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - M. Paul
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - M. J. Otto
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - P. K. Jadhav
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - B. A. Stone
- Nucleic Acid Technology, Research and Development Division, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - J. A. Miller
- Nucleic Acid Technology, Research and Development Division, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| |
Collapse
|
27
|
Billich A, Billich S, Rosenwirth B. Assay Systems for HIV-1 Proteinase and Their Use for Evaluation of Inhibitors. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029100200201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A. Billich
- Sandoz Forschungsinstitut GmbH, Department of AntiRetroviral Therapy, Brunnerstr. 59, A-1235 Vienna, Austria
| | - S. Billich
- Sandoz Forschungsinstitut GmbH, Department of AntiRetroviral Therapy, Brunnerstr. 59, A-1235 Vienna, Austria
| | - B. Rosenwirth
- Sandoz Forschungsinstitut GmbH, Department of AntiRetroviral Therapy, Brunnerstr. 59, A-1235 Vienna, Austria
| |
Collapse
|
28
|
The Race against Protease Activation Defines the Role of ESCRTs in HIV Budding. PLoS Pathog 2016; 12:e1005657. [PMID: 27280284 PMCID: PMC4900648 DOI: 10.1371/journal.ppat.1005657] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/03/2016] [Indexed: 11/26/2022] Open
Abstract
HIV virions assemble on the plasma membrane and bud out of infected cells using interactions with endosomal sorting complexes required for transport (ESCRTs). HIV protease activation is essential for maturation and infectivity of progeny virions, however, the precise timing of protease activation and its relationship to budding has not been well defined. We show that compromised interactions with ESCRTs result in delayed budding of virions from host cells. Specifically, we show that Gag mutants with compromised interactions with ALIX and Tsg101, two early ESCRT factors, have an average budding delay of ~75 minutes and ~10 hours, respectively. Virions with inactive proteases incorporated the full Gag-Pol and had ~60 minutes delay in budding. We demonstrate that during budding delay, activated proteases release critical HIV enzymes back to host cytosol leading to production of non-infectious progeny virions. To explain the molecular mechanism of the observed budding delay, we modulated the Pol size artificially and show that virion release delays are size-dependent and also show size-dependency in requirements for Tsg101 and ALIX. We highlight the sensitivity of HIV to budding “on-time” and suggest that budding delay is a potent mechanism for inhibition of infectious retroviral release. ESCRTs are implicated in cellular processes which require fission of budding membranes. Likely the most studied of these processes is the HIV-ESCRT interactions. The canonical view is that interference with ESCRT recruitment results in a late budding arrest of virions at the plasma membrane and this mechanistic view of ESCRTs has shaped our understanding of their function in almost all cell biology. In this manuscript, we present a full kinetic analysis of HIV virion release under all known mutations in Gag that affect HIV-ESCRT interactions. Our data show that contrary to the canonical view, a defect in ESCRT recruitment does not inhibit virion budding, however it creates a delay. We further show that during budding delay, activated proteases release critical HIV enzymes back to host cytosol, leading to budding of non-infectious progeny virions. We suggest that budding delay is a potent mechanism for inhibition of infectious retroviral release and can be the basis for developing antiviral treatments which slow the budding process and therefore disproportionally affect infectious retroviral release. We also suggest that such budding delay may be one of the mechanisms underlying cellular innate immune responses which inhibit the spread of retroviral infection.
Collapse
|
29
|
Wang D, Lu W, Li F. Pharmacological intervention of HIV-1 maturation. Acta Pharm Sin B 2015; 5:493-9. [PMID: 26713265 PMCID: PMC4675807 DOI: 10.1016/j.apsb.2015.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/25/2015] [Indexed: 11/27/2022] Open
Abstract
Despite significant advances in antiretroviral therapy, increasing drug resistance and toxicities observed among many of the current approved human immunodeficiency virus (HIV) drugs indicate a need for discovery and development of potent and safe antivirals with a novel mechanism of action. Maturation inhibitors (MIs) represent one such new class of HIV therapies. MIs inhibit a late step in the HIV-1 Gag processing cascade, causing defective core condensation and the release of non-infectious virus particles from infected cells, thus blocking the spread of the infection to new cells. Clinical proof-of-concept for the MIs was established with betulinic acid derived bevirimat, the prototype HIV-1 MI. Despite the discontinuation of its further clinical development in 2010 due to a lack of uniform patient response caused by naturally occurring drug resistance Gag polymorphisms, several second-generation MIs with improved activity against viruses exhibiting Gag polymorphism mediated resistance have been recently discovered and are under clinical evaluation in HIV/AID patients. In this review, current understanding of HIV-1 MIs is described and recent progress made toward elucidating the mechanism of action, target identification and development of second-generation MIs is reviewed.
Collapse
Key Words
- BMS, Bristol-Myers Squibb
- Bevirimat
- CA, capsid
- GSK, GlaxoSmithKline
- Gag processing
- Gag-drug interaction
- HIV, human immunodeficiency virus
- HIV-1 maturation inhibitors
- MA, matrix
- MI, maturation inhibitor
- PI, protease inhibitor
- PR, protease
- SIV, Simian immunodeficiency virus
- SP1, spacer protein 1
Collapse
|
30
|
Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain. J Virol 2015; 90:768-79. [PMID: 26512081 DOI: 10.1128/jvi.01640-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6(Gag)), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6(Gag) significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6(Gag) confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are frequently observed in viruses derived from patients on protease inhibitor (PI) therapy. However, the reason that these duplications arise and their consequences for virus replication remain to be established. In this study, we examined the effect of PTAP duplication on PI resistance in the context of wild-type protease or protease bearing PI resistance mutations. We observe that PTAP duplication markedly enhances resistance to a panel of PIs. Biochemical analysis reveals that the PTAP duplication reverses a Gag processing defect imposed by the PI resistance mutations in the context of PI treatment. The results provide a long-sought explanation for why PTAP duplications arise in PI-treated patients.
Collapse
|
31
|
Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors. Antimicrob Agents Chemother 2015; 60:190-7. [PMID: 26482309 DOI: 10.1128/aac.02121-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1.
Collapse
|
32
|
Laco GS. HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance. Biochimie 2015; 118:90-103. [PMID: 26300060 DOI: 10.1016/j.biochi.2015.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022]
Abstract
A key target in the treatment of HIV-1/AIDS has been the viral protease. Here we first studied in silico the evolution of protease resistance. Primary active site resistance mutations were found to weaken interactions between protease and both inhibitor and substrate P4-P4' residues. We next studied the effects of secondary resistance mutations, often distant from the active site, on protease binding to inhibitors and substrates. Those secondary mutations contributed to the rise of multi-drug resistance while also enhancing viral replicative capacity. Here many secondary resistance mutations were found in the HIV-1 protease substrate-grooves, one on each face of the symmetrical protease dimer. The protease active site binds substrate P4-P4' residues, while the substrate-groove allows the protease to bind residues P12-P5/P5'-P12', for a total of twenty-four residues. The substrate-groove secondary resistance mutations were found to compensate for the loss of interactions between the inhibitor resistant protease active site and substrate P4-P4' residues, due to primary resistance mutations, by increasing interactions with substrate P12-P5/P5'-P12' residues. In vitro experiments demonstrated that a multi-drug resistant protease with substrate-groove resistance mutations was slower than wild-type protease in cleaving a peptide substrate, which did not allow for substrate-groove interactions, while it had similar activity as wild-type protease when using a Gag polyprotein in which cleavage-site P12-P5/P5'-P12' residues could be bound by the protease substrate-grooves. When the Gag MA/CA cleavage site P12-P5/P5'-P12' residues were mutated the multi-drug resistant protease cleaved the mutant Gag significantly slower, indicating the importance of the protease S-grooves in binding to substrate.
Collapse
Affiliation(s)
- Gary S Laco
- Laboratory of Computational and Molecular Biochemistry, The Roskamp Institute, Sarasota, FL, USA.
| |
Collapse
|
33
|
Potempa M, Nalivaika E, Ragland D, Lee SK, Schiffer CA, Swanstrom R. A Direct Interaction with RNA Dramatically Enhances the Catalytic Activity of the HIV-1 Protease In Vitro. J Mol Biol 2015; 427:2360-78. [PMID: 25986307 DOI: 10.1016/j.jmb.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 01/09/2023]
Abstract
Though the steps of human immunodeficiency virus type 1 (HIV-1) virion maturation are well documented, the mechanisms regulating the proteolysis of the Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) remain obscure. One proposed mechanism argues that the maturation intermediate p15NC must interact with RNA for efficient cleavage by the PR. We investigated this phenomenon and found that processing of multiple substrates by the HIV-1 PR was enhanced in the presence of RNA. The acceleration of proteolysis occurred independently from the substrate's ability to interact with nucleic acid, indicating that a direct interaction between substrate and RNA is not necessary for enhancement. Gel-shift assays demonstrated the HIV-1 PR is capable of interacting with nucleic acids, suggesting that RNA accelerates processing reactions by interacting with the PR rather than the substrate. All HIV-1 PRs examined have this ability; however, the HIV-2 PR does not interact with RNA and does not exhibit enhanced catalytic activity in the presence of RNA. No specific sequence or structure was required in the RNA for a productive interaction with the HIV-1 PR, which appears to be principally, though not exclusively, driven by electrostatic forces. For a peptide substrate, RNA increased the kinetic efficiency of the HIV-1 PR by an order of magnitude, affecting both turnover rate (k(cat)) and substrate affinity (K(m)). These results suggest that an allosteric binding site exists on the HIV-1 PR and that HIV-1 PR activity during maturation could be regulated in part by the juxtaposition of the enzyme with virion-packaged RNA.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellen Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Debra Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sook-Kyung Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Hohlfeld K, Wegner JK, Kesteleyn B, Linclau B, Unge J. Disubstituted Bis-THF Moieties as New P2 Ligands in Nonpeptidal HIV-1 Protease Inhibitors (II). J Med Chem 2015; 58:4029-38. [PMID: 25897791 DOI: 10.1021/acs.jmedchem.5b00358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of darunavir analogues featuring a substituted bis-THF ring as P2 ligand have been synthesized and evaluated. Very high affinity protease inhibitors (PIs) with an interesting activity on wild-type HIV and a panel of multi-PI resistant HIV-1 mutants containing clinically observed, primary mutations were identified using a cell-based assay. Crystal structure analysis was conducted on a number of PI analogues in complex with HIV-1 protease.
Collapse
Affiliation(s)
- Konrad Hohlfeld
- †University of Southampton, School of Chemistry, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Jörg Kurt Wegner
- ‡Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Bart Kesteleyn
- ‡Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Bruno Linclau
- †University of Southampton, School of Chemistry, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Johan Unge
- §Lund University, MAX-lab, Ole Römers väg 1, SE-223 63 Lund, Sweden
| |
Collapse
|
35
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
36
|
Abstract
UNLABELLED HIV-1 assembles at the plasma membrane of virus-producing cells as an immature, noninfectious particle. Processing of the Gag and Gag-Pol polyproteins by the viral protease (PR) activates the viral enzymes and results in dramatic structural rearrangements within the virion--termed maturation--that are a prerequisite for infectivity. Despite its fundamental importance for viral replication, little is currently known about the regulation of proteolysis and about the dynamics and structural intermediates of maturation. This is due mainly to the fact that HIV-1 release and maturation occur asynchronously both at the level of individual cells and at the level of particle release from a single cell. Here, we report a method to synchronize HIV-1 proteolysis in vitro based on protease inhibitor (PI) washout from purified immature virions, thereby temporally uncoupling virus assembly and maturation. Drug washout resulted in the induction of proteolysis with cleavage efficiencies correlating with the off-rate of the respective PR-PI complex. Proteolysis of Gag was nearly complete and yielded the correct products with an optimal half-life (t(1/2)) of ~5 h, but viral infectivity was not recovered. Failure to gain infectivity following PI washout may be explained by the observed formation of aberrant viral capsids and/or by pronounced defects in processing of the reverse transcriptase (RT) heterodimer associated with a lack of RT activity. Based on our results, we hypothesize that both the polyprotein processing dynamics and the tight temporal coupling of immature particle assembly and PR activation are essential for correct polyprotein processing and morphological maturation and thus for HIV-1 infectivity. IMPORTANCE Cleavage of the Gag and Gag-Pol HIV-1 polyproteins into their functional subunits by the viral protease activates the viral enzymes and causes major structural rearrangements essential for HIV-1 infectivity. This proteolytic maturation occurs concomitant with virus release, and investigation of its dynamics is hampered by the fact that virus populations in tissue culture contain particles at all stages of assembly and maturation. Here, we developed an inhibitor washout strategy to synchronize activation of protease in wild-type virus. We demonstrated that nearly complete Gag processing and resolution of the immature virus architecture are accomplished under optimized conditions. Nevertheless, most of the resulting particles displayed irregular morphologies, Gag-Pol processing was not faithfully reconstituted, and infectivity was not recovered. These data show that HIV-1 maturation is sensitive to the dynamics of processing and also that a tight temporal link between virus assembly and PR activation is required for correct polyprotein processing.
Collapse
|
37
|
Chandel N, Ayasolla K, Lan X, Rai P, Mikulak J, Husain M, Malhotra A, McGowan J, Singhal PC. Renin modulates HIV replication in T cells. J Leukoc Biol 2014; 96:601-9. [PMID: 24970860 DOI: 10.1189/jlb.2a0414-192r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV is known to subvert cellular machinery to enhance its replication. Recently, HIV has been reported to enhance TC renin expression. We hypothesized that HIV induces and maintains high renin expression to promote its own replication in TCs. Renin enhanced HIV replication in TCs in a dose-dependent manner. (P)RR-deficient TCs, as well as those lacking renin, displayed attenuated NF-κB activity and HIV replication. TCs treated with renin and Hpr displayed activation of the (P)RR-PLZF protein signaling cascade. Renin, HIV, and Hpr activated the PI3K pathway. Both renin and Hpr cleaved Agt (a renin substrate) to Ang I and also cleaved Gag polyproteins (protease substrate) to p24. Furthermore, aliskiren, a renin inhibitor, reduced renin- and Hpr-induced cleavage of Agt and Gag polyproteins. These findings indicate that renin contributes to HIV replication in TCs via the (P)RR-PLZF signaling cascade and through cleavage of the Gag polyproteins.
Collapse
Affiliation(s)
- Nirupama Chandel
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Kamesh Ayasolla
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Xiqian Lan
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Partab Rai
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mohammad Husain
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Ashwani Malhotra
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Joseph McGowan
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Pravin C Singhal
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| |
Collapse
|
38
|
Wang W, Naiyer N, Mitra M, Li J, Williams MC, Rouzina I, Gorelick RJ, Wu Z, Musier-Forsyth K. Distinct nucleic acid interaction properties of HIV-1 nucleocapsid protein precursor NCp15 explain reduced viral infectivity. Nucleic Acids Res 2014; 42:7145-59. [PMID: 24813443 PMCID: PMC4066767 DOI: 10.1093/nar/gku335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) maturation, three different forms of nucleocapsid (NC) protein—NCp15 (p9 + p6), NCp9 (p7 + SP2) and NCp7—appear successively. A mutant virus expressing NCp15 shows greatly reduced infectivity. Mature NCp7 is a chaperone protein that facilitates remodeling of nucleic acids (NAs) during reverse transcription. To understand the strict requirement for NCp15 processing, we compared the chaperone function of the three forms of NC. NCp15 anneals tRNA to the primer-binding site at a similar rate as NCp7, whereas NCp9 is the most efficient annealing protein. Assays to measure NA destabilization show a similar trend. Dynamic light scattering studies reveal that NCp15 forms much smaller aggregates relative to those formed by NCp7 and NCp9. Nuclear magnetic resonance studies suggest that the acidic p6 domain of HIV-1 NCp15 folds back and interacts with the basic zinc fingers. Neutralizing the acidic residues in p6 improves the annealing and aggregation activity of NCp15 to the level of NCp9 and increases the protein–NA aggregate size. Slower NCp15 dissociation kinetics is observed by single-molecule DNA stretching, consistent with the formation of electrostatic inter-protein contacts, which likely contribute to the distinct aggregate morphology, irregular HIV-1 core formation and non-infectious virus.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Nada Naiyer
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Mithun Mitra
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jialin Li
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Zhengrong Wu
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Abstract
UNLABELLED Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. IMPORTANCE Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations.
Collapse
|
40
|
Understanding HIV-1 protease autoprocessing for novel therapeutic development. Future Med Chem 2014; 5:1215-29. [PMID: 23859204 DOI: 10.4155/fmc.13.89] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the infected cell, HIV-1 protease (PR) is initially synthesized as part of the GagPol polyprotein. PR autoprocessing is a virus-specific process by which the PR domain embedded in the precursor catalyzes proteolytic reactions responsible for liberation of free mature PRs, which then recognize and cleave at least ten different peptide sequences in the Gag and GagPol polyproteins. Despite extensive structure and function studies of the mature PRs as well as the successful development of ten US FDA-approved catalytic-site inhibitors, the precursor autoprocessing mechanism remains an intriguing yet-to-be-solved puzzle. This article discusses current understanding of the autoprocessing mechanism, in an effort to prompt the development of novel anti-HIV drugs that selectively target precursor autoprocessing.
Collapse
|
41
|
CryoEM analysis of capsid assembly and structural changes upon interactions with a host restriction factor, TRIM5α. Methods Mol Biol 2014; 1087:13-28. [PMID: 24158810 DOI: 10.1007/978-1-62703-670-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
After virus fusion with a target cell, the viral core is released into the host cell cytoplasm and undergoes a controlled disassembly process, termed uncoating, before or as reverse transcription takes place. The cellular protein TRIM5α is a host cell restriction factor that blocks HIV-1 infection in rhesus macaque cells by targeting the viral capsid and inducing premature uncoating. The molecular mechanism of the interaction between capsid and TRIM5α remains unclear. Here, we describe an approach that utilizes cryo-electron microscopy (cryoEM) to examine the structural changes exerted on HIV-1 capsid (CA) assembly by TRIM5α binding. The TRIM5α interaction sites on CA assembly were further dissected by combining cryoEM with pair-wise cysteine mutations that crosslink CA either within a CA hexamer or between CA hexamers. Based on the structural information from cryoEM and crosslinking results from in vitro CA assemblies and purified intact HIV-1 cores, we demonstrate that direct binding of TRIM5α CC-SPRY domains to the viral capsid results in disruption and fragmentation of the surface lattice of HIV-1 capsid, specifically at inter-hexamer interfaces. The method described here can be easily adopted to study other important interactions in multi-protein complexes.
Collapse
|
42
|
Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:520-6. [PMID: 24373876 DOI: 10.1016/j.bbapap.2013.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 11/22/2022]
Abstract
The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein. The myristyl group attached to the N-terminus on the p17 matrix protein functions as an anchor for binding to the plasma membrane. Biochemical studies revealed that two regions are important for its function: D14-L31 and V84-V88. Here, the dynamic structures of the p17 matrix protein were studied using NMR for relaxation and amide proton exchange experiments at the physiological pH of 7.0. The results revealed that the α12-loop, which includes the 14-31 region, was relatively flexible, and that helix 4, including the 84-88 region, was the most protected helix in this protein. However, the residues in the α34-loop near helix 4 had a low order parameter and high exchange rate of amide protons, indicating high flexibility. This region is probably flexible because this loop functions as a hinge for optimizing the interactions between helices 3 and 4. The C-terminal long region of K113-Y132 adopted a disordered structure. Furthermore, the C-terminal helix 5 appeared to be slightly destabilized due to the flexible C-terminal tail based on the order parameters. Thus, the dynamic structure of the p17 matrix protein may be related to its multiple functions.
Collapse
|
43
|
Bocanegra R, Alfonso C, Rodríguez-Huete A, Fuertes MÁ, Jiménez M, Rivas G, Mateu MG. Association equilibrium of the HIV-1 capsid protein in a crowded medium reveals that hexamerization during capsid assembly requires a functional C-domain dimerization interface. Biophys J 2013; 104:884-93. [PMID: 23442967 DOI: 10.1016/j.bpj.2012.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 01/12/2023] Open
Abstract
Polymerization of the intact capsid protein (CA) of HIV-1 into mature capsidlike particles at physiological ionic strength in vitro requires macromolecularly crowded conditions that approach those inside the virion, where the mature capsid is assembled in vivo. The capsid is organized as a hexameric lattice. CA subunits in each hexamer are connected through interfaces that involve the CA N-terminal domain (NTD); pairs of CA subunits belonging to different hexamers are connected through a different interface that involves the C-terminal domain (CTD). At physiological ionic strength in noncrowded conditions, CA subunits homodimerize through this CTD-CTD interface, but do not hexamerize through the other interfaces (those involving the NTD). Here we have investigated whether macromolecular crowding conditions are able to promote hexamerization of the isolated NTD and/or full-length CA (with an inactive CTD-CTD interface to prevent polymerization). The oligomerization state of the proteins was determined using analytical ultracentrifugation in the absence or presence of high concentrations of an inert macromolecular crowding agent. Under the same conditions that promoted efficient assembly of intact CA dimers, neither NTD nor CA with an inactive CTD-CTD interface showed any tendency to form hexamers or any other oligomer. This inability to hexamerize was observed even in macromolecularly crowded conditions. The results indicate that a functional CTD-CTD interface is strictly required for hexamerization of HIV-1 CA through the other interfaces. Together with previous results, these observations suggest that establishment of NTD-CTD interactions involved in CA hexamerization during mature HIV-1 capsid assembly requires a homodimerization-dependent conformational switching of CTD.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Tubular crystals and helical arrays: structural determination of HIV-1 capsid assemblies using iterative helical real-space reconstruction. Methods Mol Biol 2013; 955:381-99. [PMID: 23132072 DOI: 10.1007/978-1-62703-176-9_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helical structures are important in many different life forms and are well-suited for structural studies by cryo-EM. A unique feature of helical objects is that a single projection image contains all the views needed to perform a three-dimensional (3D) crystallographic reconstruction. Here, we use HIV-1 capsid assemblies to illustrate the detailed approaches to obtain 3D density maps from helical objects. Mature HIV-1 particles contain a conical- or tubular-shaped capsid that encloses the viral RNA genome and performs essential functions in the virus life cycle. The capsid is composed of capsid protein (CA) oligomers which are helically arranged on the surface. The N-terminal domain (NTD) of CA is connected to its C-terminal domain (CTD) through a flexible hinge. Structural analysis of two- and three-dimensional crystals provided molecular models of the capsid protein (CA) and its oligomer forms. We determined the 3D density map of helically assembled HIV-1 CA hexamers at 16 Å resolution using an iterative helical real-space reconstruction method. Docking of atomic models of CA-NTD and CA-CTD dimer into the electron density map indicated that the CTD dimer interface is retained in the assembled CA. Furthermore, molecular docking revealed an additional, novel CTD trimer interface.
Collapse
|
45
|
Waki K, Durell SR, Soheilian F, Nagashima K, Butler SL, Freed EO. Structural and functional insights into the HIV-1 maturation inhibitor binding pocket. PLoS Pathog 2012; 8:e1002997. [PMID: 23144615 PMCID: PMC3493477 DOI: 10.1371/journal.ppat.1002997] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/12/2012] [Indexed: 01/15/2023] Open
Abstract
Processing of the Gag precursor protein by the viral protease during particle release triggers virion maturation, an essential step in the virus replication cycle. The first-in-class HIV-1 maturation inhibitor dimethylsuccinyl betulinic acid [PA-457 or bevirimat (BVM)] blocks HIV-1 maturation by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. A structurally distinct molecule, PF-46396, was recently reported to have a similar mode of action to that of BVM. Because of the structural dissimilarity between BVM and PF-46396, we hypothesized that the two compounds might interact differentially with the putative maturation inhibitor-binding pocket in Gag. To test this hypothesis, PF-46396 resistance was selected for in vitro. Resistance mutations were identified in three regions of Gag: around the CA-SP1 cleavage site where BVM resistance maps, at CA amino acid 201, and in the CA major homology region (MHR). The MHR mutants are profoundly PF-46396-dependent in Gag assembly and release and virus replication. The severe defect exhibited by the inhibitor-dependent MHR mutants in the absence of the compound is also corrected by a second-site compensatory change far downstream in SP1, suggesting structural and functional cross-talk between the HIV-1 CA MHR and SP1. When PF-46396 and BVM were both present in infected cells they exhibited mutually antagonistic behavior. Together, these results identify Gag residues that line the maturation inhibitor-binding pocket and suggest that BVM and PF-46396 interact differentially with this putative pocket. These findings provide novel insights into the structure-function relationship between the CA MHR and SP1, two domains of Gag that are critical to both assembly and maturation. The highly conserved nature of the MHR across all orthoretroviridae suggests that these findings will be broadly relevant to retroviral assembly. Finally, the results presented here provide a framework for increased structural understanding of HIV-1 maturation inhibitor activity.
Collapse
Affiliation(s)
- Kayoko Waki
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Stewart R. Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ferri Soheilian
- Electron Microscope Laboratory, Advanced Technology Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Kunio Nagashima
- Electron Microscope Laboratory, Advanced Technology Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Scott L. Butler
- Antiviral Biology, Pfizer Global Research & Development, Sandwich Laboratories, Sandwich, Kent, United Kingdom
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Role of the SP2 domain and its proteolytic cleavage in HIV-1 structural maturation and infectivity. J Virol 2012; 86:13708-16. [PMID: 23055560 DOI: 10.1128/jvi.01704-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HIV-1 buds as an immature, noninfectious virion. Proteolysis of its main structural component, Gag, is required for morphological maturation and infectivity and leads to release of four functional domains and the spacer peptides SP1 and SP2. The N-terminal cleavages of Gag and the separation of SP1 from CA are all essential for viral infectivity, while the roles of the two C-terminal cleavages and the role of SP2, separating the NC and p6 domains, are less well defined. We have analyzed HIV-1 variants with defective cleavage at either or both sites flanking SP2, or largely lacking SP2, regarding virus production, infectivity, and structural maturation. Neither the presence nor the proteolytic processing of SP2 was required for particle release. Viral infectivity was almost abolished when both cleavage sites were defective and severely reduced when the fast cleavage site between SP2 and p6 was defective. This correlated with an increased proportion of irregular core structures observed by cryo-electron tomography, although processing of CA was unaffected. Mutation of the slow cleavage site between NC and SP2 or deletion of most of SP2 had only a minor effect on infectivity and did not induce major alterations in mature core morphology. We speculate that not only separation of NC and p6 but also the processing kinetics in this region are essential for successful maturation, while SP2 itself is dispensable.
Collapse
|
47
|
Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1 proteolytic processing and virion assembly. J Biol Chem 2012; 287:40867-74. [PMID: 23043111 DOI: 10.1074/jbc.r112.399444] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 has been the target of intensive research at the molecular and biochemical levels for >25 years. Collectively, this work has led to a detailed understanding of viral replication and the development of 24 approved drugs that have five different targets on various viral proteins and one cellular target (CCR5). Although most drugs target viral enzymatic activities, our detailed knowledge of so much of the viral life cycle is leading us into other types of inhibitors that can block or disrupt protein-protein interactions. Viruses have compact genomes and employ a strategy of using a small number of proteins that can form repeating structures to enclose space (i.e. condensing the viral genome inside of a protein shell), thus minimizing the need for a large protein coding capacity. This creates a relatively small number of critical protein-protein interactions that are essential for viral replication. For HIV-1, the Gag protein has the role of a polyprotein precursor that contains all of the structural proteins of the virion: matrix, capsid, spacer peptide 1, nucleocapsid, spacer peptide 2, and p6 (which contains protein-binding domains that interact with host proteins during budding). Similarly, the Gag-Pro-Pol precursor encodes most of the Gag protein but now includes the viral enzymes: protease, reverse transcriptase (with its associated RNase H activity), and integrase. Gag and Gag-Pro-Pol are the substrates of the viral protease, which is responsible for cleaving these precursors into their mature and fully active forms (see Fig. 1A).
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
48
|
Byeon IJL, Hou G, Han Y, Suiter CL, Ahn J, Jung J, Byeon CH, Gronenborn AM, Polenova T. Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies. J Am Chem Soc 2012; 134:6455-66. [PMID: 22428579 PMCID: PMC3325613 DOI: 10.1021/ja300937v] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The capsid protein (CA) of human immunodeficiency virus 1 (HIV-1) assembles into a cone-like structure that encloses the viral RNA genome. Interestingly, significant heterogeneity in shape and organization of capsids can be observed in mature HIV-1 virions. In vitro, CA also exhibits structural polymorphism and can assemble into various morphologies, such as cones, tubes, and spheres. Many intermolecular contacts that are critical for CA assembly are formed by its C-terminal domain (CTD), a dimerization domain, which was found to adopt different orientations in several X-ray and NMR structures of the CTD dimer and full-length CA proteins. Tyr145 (Y145), residue two in our CTD construct used for NMR structure determination, but not present in the crystallographic constructs, was found to be crucial for infectivity and engaged in numerous interactions at the CTD dimer interface. Here we investigate the origin of CA structural plasticity using solid-state NMR and solution NMR spectroscopy. In the solid state, the hinge region connecting the NTD and CTD is flexible on the millisecond time scale, as evidenced by the backbone motions of Y145 in CA conical assemblies and in two CTD constructs (137-231 and 142-231), allowing the protein to access multiple conformations essential for pleimorphic capsid assemblies. In solution, the CTD dimer exists as two major conformers, whose relative populations differ for the different CTD constructs. In the longer CTD (144-231) construct that contains the hinge region between the NTD and CTD, the populations of the two conformers are likely determined by the protonation state of the E175 side chain that is located at the dimer interface and within hydrogen-bonding distance of the W184 side chain on the other monomer. At pH 6.5, the major conformer exhibits the same dimer interface as full-length CA. In the short CTD (150-231) construct, no pH-dependent conformational shift is observed. These findings suggest that the presence of structural plasticity at the CTD dimer interface permits pleiotropic HIV-1 capsid assembly, resulting in varied capsid morphologies.
Collapse
Affiliation(s)
- In-Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Guangjin Hou
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Yun Han
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Christopher L. Suiter
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jinwoo Ahn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jinwon Jung
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Chang-Hyeock Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
49
|
Lee SK, Potempa M, Kolli M, Özen A, Schiffer CA, Swanstrom R. Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 Gag and Gag-Pro-Pol polyprotein precursors by viral protease. J Biol Chem 2012; 287:13279-90. [PMID: 22334652 DOI: 10.1074/jbc.m112.339374] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of the human immunodeficiency virus type 1 (HIV-1) Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) is essential for the production of infectious particles. However, the determinants governing the rates of processing of these substrates are not clearly understood. We studied the effect of substrate context on processing by utilizing a novel protease assay in which a substrate containing HIV-1 matrix (MA) and the N-terminal domain of capsid (CA) is labeled with a FlAsH (fluorescein arsenical hairpin) reagent. When the seven cleavage sites within the Gag and Gag-Pro-Pol polyproteins were placed at the MA/CA site, the rates of cleavage changed dramatically compared with that of the cognate sites in the natural context reported previously. The rate of processing was affected the most for three sites: CA/spacer peptide 1 (SP1) (≈10-fold increase), SP1/nucleocapsid (NC) (≈10-30-fold decrease), and SP2/p6 (≈30-fold decrease). One of two multidrug-resistant (MDR) PR variants altered the pattern of processing rates significantly. Cleavage sites within the Pro-Pol region were cleaved in a context-independent manner, suggesting for these sites that the sequence itself was the determinant of rate. In addition, a chimera consisting of SP1/NC P4-P1 and MA/CA P1'-P4' residues (ATIM↓PIVQ) abolished processing by wild type and MDR proteases, and the reciprocal chimera consisting of MA/CA P4-P1 and SP1/NC P1'-4' (SQNY↓IQKG) was cleaved only by one of the MDR proteases. These results suggest that complex substrate interactions both beyond the active site of the enzyme and across the scissile bond contribute to defining the rate of processing by the HIV-1 PR.
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Department of Biochemistry and Biophysics, and the University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
50
|
Waheed AA, Freed EO. HIV type 1 Gag as a target for antiviral therapy. AIDS Res Hum Retroviruses 2012; 28:54-75. [PMID: 21848364 DOI: 10.1089/aid.2011.0230] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gag proteins of HIV-1 are central players in virus particle assembly, release, and maturation, and also function in the establishment of a productive infection. Despite their importance throughout the replication cycle, there are currently no approved antiretroviral therapies that target the Gag precursor protein or any of the mature Gag proteins. Recent progress in understanding the structural and cell biology of HIV-1 Gag function has revealed a number of potential Gag-related targets for possible therapeutic intervention. In this review, we summarize our current understanding of HIV-1 Gag and suggest some approaches for the development of novel antiretroviral agents that target Gag.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| |
Collapse
|