1
|
Liang J, Abdullah ALB, Li Y, Wang H, Xiong S, Han M. Long-term PS micro/nano-plastic exposure: Particle size effects on hepatopancreas injury in Parasesarma pictum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176530. [PMID: 39332714 DOI: 10.1016/j.scitotenv.2024.176530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
With the widespread use of plastic products, microplastics and nanoplastics have emerged as prevalent pollutants in coastal aquatic ecosystems. Parasesarma pictum, a common estuarine crab species, was selected as a model organism. P. pictum was exposed to polystyrene (PS) particles of sizes 80 nm (80PS), 500 nm (500PS), and 1000 nm (1000PS), as well as to clean seawater (CK) for 21 days. Histological and fluorescent staining results showed that PS particles of all three sizes induced hepatopancreatic nuclear pyknosis, cell junction damage, and necrosis. The degree of damage was observed as 1000PS > 80PS > 500PS. Transcriptomic analysis revealed that major differentially expressed genes (DEGs) were associated with cellular processes, membrane components, and catalytic activity. The respiratory chain disruptions and immune exhaustion induced by 1000PS were notably stronger than those by 80PS and 500PS. Additionally, necrosis caused hepatopancreas injury in P. pictum rather than apoptosis or autophagy after long-term PS particle exposure. Furthermore, PS particles of all three sizes inhibited innate immunity, while the complement pathway was not significantly affected in the 80PS group. This study elucidated potential distinctions in how plastic particles of varying sizes (nanoplastics, microplastics, and micro/nanoplastics) impact P. pictum, providing a reference for toxicological mechanism research on microplastics and nanoplastics in aquatic organisms. Future research should focus on exploring long-term effects and potential mitigation strategies for microplastics and nanoplastics of more types and a wider range of particle size pollution in aquatic environments.
Collapse
Affiliation(s)
- Ji Liang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | | | - Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Hong Wang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Sen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China
| | - Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
2
|
Zhong Y, Xia S, Wang G, Liu Q, Ma F, Yu Y, Zhang Y, Qian L, Hu L, Xie J. The interplay between mitophagy and mitochondrial ROS in acute lung injury. Mitochondrion 2024; 78:101920. [PMID: 38876297 DOI: 10.1016/j.mito.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria orchestrate the production of new mitochondria and the removal of damaged ones to dynamically maintain mitochondrial homeostasis through constant biogenesis and clearance mechanisms. Mitochondrial quality control particularly relies on mitophagy, defined as selective autophagy with mitochondria-targeting specificity. Most ROS are derived from mitochondria, and the physiological concentration of mitochondrial ROS (mtROS) is no longer considered a useless by-product, as it has been proven to participate in immune and autophagy pathway regulation. However, excessive mtROS appears to be a pathogenic factor in several diseases, including acute lung injury (ALI). The interplay between mitophagy and mtROS is complex and closely related to ALI. Here, we review the pathways of mitophagy, the intricate relationship between mitophagy and mtROS, the role of mtROS in the pathogenesis of ALI, and their effects and related progression in ALI induced by different conditions.
Collapse
Affiliation(s)
- Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Siwei Xia
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Qinxue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Fengjie Ma
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yijin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Lu Qian
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Li Hu
- Department of Anesthesiology, Second Affiliated Hospital of Jiaxing University, No.1518 North Huancheng Road, Nanhu District, Jiaxing 314000, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China.
| |
Collapse
|
3
|
Adel R, Ibrahim MFG, Elsayed SH, Yousri NA. Oxidative stress and NF-KB/iNOS inflammatory pathway as innovative biomarkers for diagnosis of drowning and differentiating it from postmortem submersion in both fresh and saltwater in rats. Int J Legal Med 2024; 138:2021-2036. [PMID: 38801418 PMCID: PMC11306576 DOI: 10.1007/s00414-024-03249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Finding a dead body in water raises an issue concerning determining the cause of death as drowning because of the complex pathophysiology of drowning. In addition, the corpse may be submersed postmortem. OBJECTIVE Evaluate the role of oxidative stress markers and NF-KB/iNOS inflammatory pathway as diagnostic biomarkers in drowning and whether they could differentiate freshwater from saltwater drowning. METHODS This study included forty-five adult male albino rats classified into five groups: control group (C), Freshwater-drowned group (FD), Freshwater postmortem submersion group (FPS), saltwater-drowned group (SD), and saltwater postmortem submersion group (SPS). After the autopsy, the rats' lungs in each group were prepared for histological, immunohistochemical (caspase 3, TNF-α, NF-kB, COX-2 & iNOS), biochemical studies; MDA, NOx, SOD, GSH, VCAM-1, COX-2; and RT-PCR for the relative quantification of NF-kB and iNOS genes expression. RESULTS Lung oxidative markers were significantly affected in drowned groups than in postmortem submersion groups. Inflammatory pathway markers were also significantly increased in the drowned groups, with concern that all markers were significantly affected more in saltwater than in freshwater drowned group. CONCLUSIONS It is concluded that the tested markers can be used accurately in diagnosing drowning and differentiating it from postmortem submersion with a better understanding of the mechanism of death in drowning as both mechanisms, inflammatory and oxidative stress, were revealed and involved.
Collapse
Affiliation(s)
- Rana Adel
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Minia University, Minya, Egypt.
| | | | - Samar Hisham Elsayed
- Medical Biochemistry Department - Faculty of Medicine, Minia University, Minya, Egypt
| | - Nada A Yousri
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Minia University, Minya, Egypt
| |
Collapse
|
4
|
Guo N, Chen J, Kong F, Gao Y, Bian J, Liu T, Hong G, Zhao Z. 5-aminolevulinic acid photodynamic therapy for chronic wound infection in rats with diabetes. Biomed Pharmacother 2024; 178:117132. [PMID: 39047418 DOI: 10.1016/j.biopha.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Recent research indicated that ulcers and peripheral vascular disease resulting from drug-resistant bacterial infections are the main causes of delayed healing in chronic diabetic wounds. 5-Aminolevulinic acid (ALA) is a second-generation endogenous photosensitizer. The therapeutic effect and mechanism of ALA-mediated photodynamic therapy (ALA-PDT) on methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in diabetic rats were investigated in this study. The results revealed the promising antibacterial effects of ALA-PDT MRSA in vitro, with a minimum inhibitory concentration and minimum bactericidal concentration of 250 and 500 μM, respectively. ALA-PDT also changed the permeability and structural integrity of bacterial cell membranes by producing reactive oxygen species. Meanwhile, ALA-PDT accelerated wound healing in MRSA-infected diabetic rats, with 5 % ALA-PDT achieving complete sterilization in 14 days and wound closure in 21 days. Treatment with 5 % ALA-PDT additionally improved the histopathological appearance of skin tissue, as well as fibrosis, inflammatory cytokine release, and angiogenesis-related protein expression. These findings indicated that ALA-PDT significantly promoted the healing of MRSA-infected wounds in diabetic rats by eliminating bacteria, inhibiting inflammation, generating granulation tissues, promoting neovascularization, and restoring damaged nerves. In addition, the healing mechanism was related to the activation of inflammatory and angiogenesis pathways through the regulation of tumor necrosis factor-alpha and interleukin-6 expression and upregulation of CD206, CD31, and VEGF. These findings underscored the potential role of ALA-PDT in promoting the healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Ning Guo
- School of Basic Medical Sciences, Hebei University, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Jingyu Chen
- Tianjin University of Traditional Chinese Medicine, China.
| | - Feiyan Kong
- School of Basic Medical Sciences, Hebei University, China.
| | | | | | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Zhanjuan Zhao
- School of Basic Medical Sciences, Hebei University, China.
| |
Collapse
|
5
|
Nagaoka M, Murata T, Nagamine T, Fujise N. Methylphenidate-Associated Creatine Kinase Level Elevation. Am J Ther 2024; 31:e498-e502. [PMID: 38976538 DOI: 10.1097/mjt.0000000000001701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- Maiko Nagaoka
- Kumamoto Seimei Hospital, Kumamoto, Japan
- Health Care Center, Kumamoto University, Kumamoto, Japan
| | | | | | - Noboru Fujise
- Health Care Center, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Mailloux RJ. The emerging importance of the α-keto acid dehydrogenase complexes in serving as intracellular and intercellular signaling platforms for the regulation of metabolism. Redox Biol 2024; 72:103155. [PMID: 38615490 PMCID: PMC11021975 DOI: 10.1016/j.redox.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The α-keto acid dehydrogenase complex (KDHc) class of mitochondrial enzymes is composed of four members: pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (KGDHc), branched-chain keto acid dehydrogenase (BCKDHc), and 2-oxoadipate dehydrogenase (OADHc). These enzyme complexes occupy critical metabolic intersections that connect monosaccharide, amino acid, and fatty acid metabolism to Krebs cycle flux and oxidative phosphorylation (OxPhos). This feature also imbues KDHc enzymes with the heightened capacity to serve as platforms for propagation of intracellular and intercellular signaling. KDHc enzymes serve as a source and sink for mitochondrial hydrogen peroxide (mtH2O2), a vital second messenger used to trigger oxidative eustress pathways. Notably, deactivation of KDHc enzymes through reversible oxidation by mtH2O2 and other electrophiles modulates the availability of several Krebs cycle intermediates and related metabolites which serve as powerful intracellular and intercellular messengers. The KDHc enzymes also play important roles in the modulation of mitochondrial metabolism and epigenetic programming in the nucleus through the provision of various acyl-CoAs, which are used to acylate proteinaceous lysine residues. Intriguingly, nucleosomal control by acylation is also achieved through PDHc and KGDHc localization to the nuclear lumen. In this review, I discuss emerging concepts in the signaling roles fulfilled by the KDHc complexes. I highlight their vital function in serving as mitochondrial redox sensors and how this function can be used by cells to regulate the availability of critical metabolites required in cell signaling. Coupled with this, I describe in detail how defects in KDHc function can cause disease states through the disruption of cell redox homeodynamics and the deregulation of metabolic signaling. Finally, I propose that the intracellular and intercellular signaling functions of the KDHc enzymes are controlled through the reversible redox modification of the vicinal lipoic acid thiols in the E2 subunit of the complexes.
Collapse
Affiliation(s)
- Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
7
|
Deep SN, Seelig S, Paul S, Poddar R. Homocysteine-induced sustained GluN2A NMDA receptor stimulation leads to mitochondrial ROS generation and neurotoxicity. J Biol Chem 2024; 300:107253. [PMID: 38569938 PMCID: PMC11081806 DOI: 10.1016/j.jbc.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Homocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca2+, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death. However, the intracellular mechanisms associated with such sustained GluN2A-NMDAR stimulation and subsequent Ca2+ influx have remained unexplored. Using live-cell imaging with Fluo3-AM and biochemical approaches, we show that homocysteine-GluN2A NMDAR-induced initial Ca2+ influx triggers sequential phosphorylation and subsequent activation of the proline rich tyrosine kinase 2 (Pyk2) and Src family kinases, which in turn phosphorylates GluN2A-Tyr1325 residue of GluN2A-NMDARs to maintain channel activity. The continuity of this cycle of events leads to sustained Ca2+ influx through GluN2A-NMDAR. Our findings also show that lack of activation of the regulatory tyrosine phosphatase STEP, which can limit Pyk2 and Src family kinase activity further contributes to the maintenance of this cycle. Additional studies using live-cell imaging of neurons expressing a redox-sensitive GFP targeted to the mitochondrial matrix show that treatment with homocysteine leads to a progressive increase in mitochondrial reactive oxygen species generation, which is dependent on GluN2A-NMDAR-mediated sustained ERK MAPK activation. This later finding demonstrates a novel role of GluN2A-NMDAR in homocysteine-induced mitochondrial ROS generation and highlights the role of ERK MAPK as the intermediary signaling pathway between GluN2A-NMDAR stimulation and mitochondrial reactive oxygen species generation.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sarah Seelig
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
8
|
Zhang R, Liu C, Yu D, She D, Yu Y, Cai Y, Chen N. Melatonin protects oogenesis from hypobaric hypoxia-induced fertility damage in mice. ZYGOTE 2024; 32:161-169. [PMID: 38465746 DOI: 10.1017/s0967199424000017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Environmental hypoxia adversely affects reproductive health in humans and animals at high altitudes. Therefore, how to alleviate the follicle development disorder caused by hypoxia exposure and to improve the competence of fertility in plateau non-habituated female animals are important problems to be solved urgently. In this study, a hypobaric hypoxic chamber was used for 4 weeks to simulate hypoxic conditions in female mice, and the effects of hypoxia on follicle development, proliferation and apoptosis of granulosa cells, reactive oxygen species (ROS) levels in MII oocyte and 2-cell rate were evaluated. At the same time, the alleviating effect of melatonin on hypoxic exposure-induced oogenesis damage was evaluated by feeding appropriate amounts of melatonin daily under hypoxia for 4 weeks. The results showed that hypoxia exposure significantly increased the proportion of antral follicles in the ovary, the number of proliferation and apoptosis granulosa cells in the follicle, and the level of ROS in MII oocytes, eventually led to the decline of oocyte quality. However, these defects were alleviated when melatonin was fed under hypoxia conditions. Together, these findings suggest that hypoxia exposure impaired follicular development and reduced oocyte quality, and that melatonin supplementation alleviated the fertility reduction induced by hypoxia exposure.
Collapse
Affiliation(s)
- Ruina Zhang
- School of Biological and Pharmaceutical Engineering West Anhui University, Lu'an, 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, 237012, China
| | - Cong Liu
- Center for Reproductive Medicine Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Daolun Yu
- School of Biological and Pharmaceutical Engineering West Anhui University, Lu'an, 237012, China
| | - Deyong She
- School of Biological and Pharmaceutical Engineering West Anhui University, Lu'an, 237012, China
| | - Yan Yu
- School of Biological and Pharmaceutical Engineering West Anhui University, Lu'an, 237012, China
| | - Yongping Cai
- College of Life Science, Anhui Agricultural University, Hefei, 230000, China
| | - Naifu Chen
- School of Biological and Pharmaceutical Engineering West Anhui University, Lu'an, 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, 237012, China
| |
Collapse
|
9
|
Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective Effects and Therapeutic Potential of Dichloroacetate: Targeting Metabolic Disorders in Nervous System Diseases. Int J Nanomedicine 2023; 18:7559-7581. [PMID: 38106446 PMCID: PMC10725694 DOI: 10.2147/ijn.s439728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Dichloroacetate (DCA) is an investigational drug used to treat lactic acidosis and malignant tumours. It works by inhibiting pyruvate dehydrogenase kinase and increasing the rate of glucose oxidation. Some studies have documented the neuroprotective benefits of DCA. By reviewing these studies, this paper shows that DCA has multiple pharmacological activities, including regulating metabolism, ameliorating oxidative stress, attenuating neuroinflammation, inhibiting apoptosis, decreasing autophagy, protecting the blood‒brain barrier, improving the function of endothelial progenitor cells, improving mitochondrial dynamics, and decreasing amyloid β-protein. In addition, DCA inhibits the enzyme that metabolizes it, which leads to peripheral neurotoxicity due to drug accumulation that may be solved by individualized drug delivery and nanovesicle delivery. In summary, in this review, we analyse the mechanisms of neuroprotection by DCA in different diseases and discuss the causes of and solutions to its adverse effects.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Meiyan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Hongxiang Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhengyan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Yanan Shi
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jianxin Dong
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesia, Tangdu Hospital, Fourth Military Medical University, Xian, Shanxi Province, People’s Republic of China
| | - Xi Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Haiyan Qi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
10
|
Zhou Y, Fang C, Yuan L, Guo M, Xu X, Shao A, Zhang A, Zhou D. Redox homeostasis dysregulation in noise-induced hearing loss: oxidative stress and antioxidant treatment. J Otolaryngol Head Neck Surg 2023; 52:78. [PMID: 38082455 PMCID: PMC10714662 DOI: 10.1186/s40463-023-00686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Noise exposure is an important cause of acquired hearing loss. Studies have found that noise exposure causes dysregulated redox homeostasis in cochlear tissue, which has been recognized as a signature feature of hearing loss. Oxidative stress plays a pivotal role in many diseases via very complex and diverse mechanisms and targets. Reactive oxygen species are products of oxidative stress that exert toxic effects on a variety of physiological activities and are considered significant in noise-induced hearing loss (NIHL). Endogenous cellular antioxidants can directly or indirectly counteract oxidative stress and regulate intracellular redox homeostasis, and exogenous antioxidants can complement and enhance this effect. Therefore, antioxidant therapy is considered a promising direction for NIHL treatment. However, drug experiments have been limited to animal models of NIHL, and these experiments and related observations are difficult to translate in humans; therefore, the mechanisms and true effects of these drugs need to be further analyzed. This review outlines the effects of oxidative stress in NIHL and discusses the main mechanisms and strategies of antioxidant treatment for NIHL.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengchen Guo
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
11
|
Chae SY, Kim Y, Park CW. Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants (Basel) 2023; 12:2083. [PMID: 38136203 PMCID: PMC10740440 DOI: 10.3390/antiox12122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Oxidative stress, a hallmark pathophysiological feature in diabetic kidney disease (DKD), arises from the intricate interplay between pro-oxidants and anti-oxidants. While hyperglycemia has been well established as a key contributor, lipotoxicity emerges as a significant instigator of oxidative stress. Lipotoxicity encompasses the accumulation of lipid intermediates, culminating in cellular dysfunction and cell death. However, the mechanisms underlying lipotoxic kidney injury in DKD still require further investigation. The key role of cell metabolism in the maintenance of cell viability and integrity in the kidney is of paramount importance to maintain proper renal function. Recently, dysfunction in energy metabolism, resulting from an imbalance in oxygen levels in the diabetic condition, may be the primary pathophysiologic pathway driving DKD. Therefore, we aim to shed light on the pivotal role of oxidative stress related to lipotoxicity and renal hypoxia in the initiation and progression of DKD. Multifaceted mechanisms underlying lipotoxicity, including oxidative stress with mitochondrial dysfunction, endoplasmic reticulum stress activated by the unfolded protein response pathway, pro-inflammation, and impaired autophagy, are delineated here. Also, we explore potential therapeutic interventions for DKD, targeting lipotoxicity- and hypoxia-induced oxidative stress. These interventions focus on ameliorating the molecular pathways of lipid accumulation within the kidney and enhancing renal metabolism in the face of lipid overload or ameliorating subsequent oxidative stress. This review highlights the significance of lipotoxicity, renal hypoxia-induced oxidative stress, and its potential for therapeutic intervention in DKD.
Collapse
Affiliation(s)
- Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
- Institute for Aging and Metabolic Disease, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
12
|
Pohl F, Germann AL, Mao J, Hou S, Bakare B, Kong Thoo Lin P, Yates K, Nonet ML, Akk G, Kornfeld K, Held JM. UNC-49 is a redox-sensitive GABA A receptor that regulates the mitochondrial unfolded protein response cell nonautonomously. SCIENCE ADVANCES 2023; 9:eadh2584. [PMID: 37910615 PMCID: PMC10619936 DOI: 10.1126/sciadv.adh2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
The γ-aminobutyric acid-mediated (GABAergic) system participates in many aspects of organismal physiology and disease, including proteostasis, neuronal dysfunction, and life-span extension. Many of these phenotypes are also regulated by reactive oxygen species (ROS), but the redox mechanisms linking the GABAergic system to these phenotypes are not well defined. Here, we report that GABAergic redox signaling cell nonautonomously activates many stress response pathways in Caenorhabditis elegans and enhances vulnerability to proteostasis disease in the absence of oxidative stress. Cell nonautonomous redox activation of the mitochondrial unfolded protein response (mitoUPR) proteostasis network requires UNC-49, a GABAA receptor that we show is activated by hydrogen peroxide. MitoUPR induction by a spinocerebellar ataxia type 3 (SCA3) C. elegans neurodegenerative disease model was similarly dependent on UNC-49 in C. elegans. These results demonstrate a multi-tissue paradigm for redox signaling in the GABAergic system that is transduced via a GABAA receptor to function in cell nonautonomous regulation of health, proteostasis, and disease.
Collapse
Affiliation(s)
- Franziska Pohl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison L. Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jack Mao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sydney Hou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bayode Bakare
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Kyari Yates
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason M. Held
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Akkam N, Aljabali AAA, Akkam Y, Abo Alrob O, Al-Trad B, Alzoubi H, Tambuwala MM, Al-Batayneh KM. Investigating the fate and toxicity of green synthesized gold nanoparticles in albino mice. Drug Dev Ind Pharm 2023; 49:508-520. [PMID: 37530565 DOI: 10.1080/03639045.2023.2243334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE This study aims to investigate the acute and chronic adverse effects of ∼50 nm (nanometer) gold nanoparticles (AuNPs) synthesized using Ziziphus zizyphus leaf extract in mice. SIGNIFICANCE AuNPs have shown promise for medical applications, but their safety and biocompatibility need to be addressed. Understanding the potential adverse effects of AuNPs is crucial to ensure their safe use in medical applications. METHODS The ∼50 nm AuNPs were synthesized using Ziziphus zizyphus leaf extract and characterized using scanning electron microscopy, dynamic light scattering, and zeta potential analysis. Mice were subjected to a single intraperitoneal injection of AuNPs at a dose of 1 g/mg (grams per milligram) or a daily dose of 1 mg/kg for 28 days. Various parameters, including gold bioaccumulation, survival, behavior, body weight, and blood glucose levels, were measured. Histopathological changes and organ indices were assessed. RESULTS Gold levels in the blood and heart did not significantly increase with daily administration of AuNPs. However, there were proportional increases in gold content observed in the liver, spleen, and kidney, indicating effective tissue uptake. Histopathological alterations were predominantly observed in the kidney, suggesting potential tissue injury. CONCLUSIONS The findings of this study indicate that ∼50 nm AuNPs synthesized using Z. zizyphus leaf extract can induce adverse effects, particularly in the kidney, in mice. These results highlight the importance of addressing safety concerns when using AuNPs in medical applications. Further investigations that encompass a comprehensive set of toxicological parameters are necessary to confirm the long-term adverse effects of AuNP exposure.
Collapse
Affiliation(s)
- Nosaibah Akkam
- Department of Biological Science, Yarmouk University, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Osama Abo Alrob
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Bahaa Al-Trad
- Department of Biological Science, Yarmouk University, Irbid, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, UK
| | | |
Collapse
|
14
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Wu S, Huang R, Zhang R, Xiao C, Wang L, Luo M, Song N, Zhang J, Yang F, Liu X, Yang W. Gastrodin and Gastrodigenin Improve Energy Metabolism Disorders and Mitochondrial Dysfunction to Antagonize Vascular Dementia. Molecules 2023; 28:molecules28062598. [PMID: 36985572 PMCID: PMC10059574 DOI: 10.3390/molecules28062598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Vascular dementia (VD) is the second most common dementia syndrome worldwide, and effective treatments are lacking. Gastrodia elata Blume (GEB) has been used in traditional Chinese herbal medicine for centuries to treat cognitive impairment, ischemic stroke, epilepsy, and dizziness. Gastrodin (p-hydroxymethylphenyl-b-D-glucopyranoside, Gas) and Gastrodigenin (p-hydroxybenzyl alcohol, HBA) are the main bioactive components of GEB. This study explored the effects of Gas and HBA on cognitive dysfunction in VD and their possible molecular mechanisms. The VD model was established by bilateral common carotid artery ligation (2-vessel occlusion, 2-VO) combined with an intraperitoneal injection of sodium nitroprusside solution. One week after modeling, Gas (25 and 50 mg/kg, i.g.) and HBA (25 and 50 mg/kg, i.g.) were administered orally for four weeks, and the efficacy was evaluated. A Morris water maze test and passive avoidance test were used to observe their cognitive function, and H&E staining and Nissl staining were used to observe the neuronal morphological changes; the expressions of Aβ1-42 and p-tau396 were detected by immunohistochemistry, and the changes in energy metabolism in the brain tissue of VD rats were analyzed by targeted quantitative metabolomics. Finally, a Hippocampus XF analyzer measured mitochondrial respiration in H2O2-treated HT-22 cells. Our study showed that Gas and HBA attenuated learning memory dysfunction and neuronal damage and reduced the accumulation of Aβ1-42, P-Tau396, and P-Tau217 proteins in the brain tissue. Furthermore, Gas and HBA improved energy metabolism disorders in rats, involving metabolic pathways such as glycolysis, tricarboxylic acid cycle, and the pentose phosphate pathway, and reducing oxidative damage-induced cellular mitochondrial dysfunction. The above results indicated that Gas and HBA may exert neuroprotective effects on VD by regulating energy metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Sha Wu
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Rong Huang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ruiqin Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chuang Xiao
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Lueli Wang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Min Luo
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Na Song
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Jie Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Fang Yang
- School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (X.L.); (W.Y.)
| | - Weimin Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
- Correspondence: (X.L.); (W.Y.)
| |
Collapse
|
16
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T, Huang C. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis 2023; 38:855-872. [PMID: 36729260 PMCID: PMC10106353 DOI: 10.1007/s11011-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study comprehensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS have been widely observed in recent research, the implementation of this technique is still controversial due to regimen differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regimen would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to each stroke patient needs further exploration.
Collapse
Affiliation(s)
- Xuyi Wu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mei Zhou
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tianle Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Legaz I, Barrera-Pérez E, Sibón A, Martínez-Díaz F, Pérez-Cárceles MD. Combining Oxidative Stress Markers and Expression of Surfactant Protein A in Lungs in the Diagnosis of Seawater Drowning. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010159. [PMID: 36676108 PMCID: PMC9863041 DOI: 10.3390/life13010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVES The diagnosis of seawater drowning (SWD) remains one of the most complex and contentious. It is one of the leading causes of unintentional death around the world. In most cases, the forensic pathologist must reach an accurate diagnosis from the autopsy findings and a series of complementary tests such as histopathological, biological, and chemical studies. Despite the lung being the most affected organ in death by submersion, there are few studies on this type of death's impact on this organ. The aim was to investigate human lung cadavers of forensic cases due to different causes of death, the concentration of the oxidative stress markers malondialdehyde (MDA) and γ-glutamyl-l-cysteinyl glycine (GSH), and the relationship with the expression of surfactant protein A (SP-A) to try to discriminate SWD from other types of causes of death. MATERIALS AND METHODS A total of 93 forensic autopsy cases were analyzed. Deaths were classified into three major groups based on the scene, cause of death, and autopsy findings (external foam, frothy fluid in airways, overlapping medial edges of the lungs): (a) drowning in seawater (n = 35), (b) other asphyxia (n = 33), such as hangings (n = 23), suffocations (n = 6), and strangulation (n = 4), and (c) other causes (n = 25), such as multiple suffocations. Oxidative stress markers (MDA and GSH) and the immunohistochemical expression of SP-A were determined in both lungs. RESULTS MDA levels were statistically higher in both lungs in cases of SWD than in other causes of death (p = 0.023). Similarly, significantly higher levels of GSH were observed in SWD compared to the rest of the deaths (p = 0.002), which was more significant in the right lung. Higher immunohistochemical expression of SP-A was obtained in the cases of SWD than in the other causes of death, with higher levels in both lungs. The correlation analysis between the levels of oxidative stress (MDA and GSH) in the lung tissue and the expression level of SP-A showed positive and significant results in SWD, both in the alveolar membrane and the alveolar space. CONCLUSIONS Determining the levels of MDA and GSH in lung tissue and the expression level of SP-A can be of great importance in diagnosing SWD and the circumstances of death. A better understanding of the physiology of submersion is essential for its possible repercussions in adopting measures in the approach to patients who have survived a submersion process. It is also necessary for forensic pathology to correctly interpret the events that lead to submersion.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30110 Murcia, Spain
- Correspondence: ; Tel.: +34-868883957; Fax: +34-868834307
| | | | - Agustín Sibón
- Institute of Legal Medicine and Forensic Science, 11010 Cádiz, Spain
| | | | - María D. Pérez-Cárceles
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30110 Murcia, Spain
| |
Collapse
|
18
|
Eaton L, Wang T, Roy M, Pamenter ME. Naked Mole-Rat Cortex Maintains Reactive Oxygen Species Homeostasis During In Vitro Hypoxia or Ischemia and Reperfusion. Curr Neuropharmacol 2023; 21:1450-1461. [PMID: 35339183 PMCID: PMC10324332 DOI: 10.2174/1570159x20666220327220929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal injury during acute hypoxia, ischemia, and following reperfusion are partially attributable to oxidative damage caused by deleterious fluctuations of reactive oxygen species (ROS). In particular, mitochondrial superoxide (O2•-) production is believed to upsurge during lowoxygen conditions and also following reperfusion, before being dismutated to H2O2 and released into the cell. However, disruptions of redox homeostasis may be beneficially attenuated in the brain of hypoxia-tolerant species, such as the naked mole-rat (NMR, Heterocephalus glaber). As such, we hypothesized that ROS homeostasis is better maintained in the brain of NMRs during severe hypoxic/ ischemic insults and following reperfusion. We predicted that NMR brain would not exhibit substantial fluctuations in ROS during hypoxia or reoxygenation, unlike previous reports from hypoxiaintolerant mouse brain. To test this hypothesis, we measured cortical ROS flux using corrected total cell fluorescence measurements from live brain slices loaded with the MitoSOX red superoxide (O2•-) indicator or chloromethyl 2',7'-dichlorodihydrofluorescein diacetate (CM-H2-DCFDA; which fluoresces with whole-cell hydrogen peroxide (H2O2) production) during various low-oxygen treatments, exogenous oxidative stress, and reperfusion. We found that NMR cortex maintained ROS homeostasis during low-oxygen conditions, while mouse cortex exhibited a ~40% increase and a ~30% decrease in mitochondrial O2•- and cellular H2O2 production, respectively. Mitochondrial ROS homeostasis in NMRs was only disrupted following sodium cyanide application, which was similarly observed in mice. Our results suggest that NMRs have evolved strategies to maintain ROS homeostasis during acute bouts of hypoxia and reoxygenation, potentially as an adaptation to life in an intermittently hypoxic environment.
Collapse
Affiliation(s)
- Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tina Wang
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Maria Roy
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
19
|
Homeostasis of carbohydrates and reactive oxygen species is critically changed in the brain of middle-aged mice: molecular mechanisms and functional reasons. BBA ADVANCES 2023; 3:100077. [PMID: 37082254 PMCID: PMC10074963 DOI: 10.1016/j.bbadva.2023.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
The brain is an organ that consumes a lot of energy. In the brain, energy is required for synaptic transmission, numerous biosynthetic processes and axonal transport in neurons, and for many supportive functions of glial cells. The main source of energy in the brain is glucose and to a lesser extent lactate and ketone bodies. ATP is formed at glucose catabolism via glycolysis and oxidative phosphorylation in mitochondrial electron transport chain (ETC) within mitochondria being the main source of ATP. With age, brain's energy metabolism is disturbed, involving a decrease in glycolysis and mitochondrial dysfunction. The latter is accompanied by intensified generation of reactive oxygen species (ROS) in ETC leading to oxidative stress. Recently, we have found that crucial changes in energy metabolism and intensity of oxidative stress in the mouse brain occur in middle age with minor progression in old age. In this review, we analyze the metabolic changes and functional causes that lead to these changes in the aging brain.
Collapse
|
20
|
Xu XJ, Pan T, Fan HJ, Wang X, Yu JZ, Zhang HF, Xiao BG, Li ZY, Zhang B, Ma CG, Chai Z. Neuroprotective effect of hyperoside in MPP +/MPTP -induced dopaminergic neurodegeneration. Metab Brain Dis 2022; 38:1035-1050. [PMID: 36576692 DOI: 10.1007/s11011-022-01153-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the pathological loss of nigrostriatal dopaminergic neurons, which causes an insufficient release of dopamine (DA) and then induces motor and nonmotor symptoms. Hyperoside (HYP) is a lignan component with anti-inflammatory, antioxidant, and neuroprotective effects. In this study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active neurotoxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) were used to induce dopaminergic neurodegeneration. The results showed that HYP (100 µg/mL) reduced MPTP-mediated cytotoxicity of SH-SY5Y cells in vitro, and HYP [25 mg/(kg d)] alleviated MPTP-induced motor symptoms in vivo. HYP treatment reduced the contents of nitric oxide (NO), H2O2, and malondialdehyde (MDA), as well as the mitochondrial damage of dopaminergic neurons, both in vitro and in vivo. Meanwhile, HYP treatment elevated the levels of neurotrophic factors such as glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and recombinant cerebral dopamine neurotrophic factor in vivo, but not in vitro. Finally, Akt signaling was activated after the administration of HYP in MPP+/MPTP-induced dopaminergic neurodegeneration. However, the blockage of the Akt pathway with Akt inhibitor did not abolish the neuroprotective effect of HYP on DA neurons. These results showed that HYP protected the dopaminergic neurons from the MPP+- and MPTP-induced injuries, which did not rely on the Akt pathway.
Collapse
Affiliation(s)
- Xing-Jie Xu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Tao Pan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Hui-Jie Fan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Xu Wang
- Department of Traditional Chinese Medicine, Shanxi Pharmaceutical Vocational College, 030031, Taiyuan, China
| | - Jie-Zhong Yu
- Department of Neurology, the First Affiliated Hospital, Shanxi Datong University, 037048, Datong, China
| | - Hai-Fei Zhang
- Department of Neurology, the First Affiliated Hospital, Shanxi Datong University, 037048, Datong, China
| | - Bao-Guo Xiao
- Huashan Hospital, Fudan University, 200025, Shanghai, China
| | - Zhen-Yu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, 030006, Taiyuan, China
| | - Bo Zhang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
- Health Commission of Shanxi Province, 030001, Taiyuan, China.
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
| |
Collapse
|
21
|
Yang L, Zhu H, Li M, Yu Q. The Tricalbin-Family Endoplasmic Reticulum-Plasma Membrane Tethering Proteins Attenuate ROS-Involved Caspofungin Sensitivity in Candida albicans. Microbiol Spectr 2022; 10:e0207922. [PMID: 36445092 PMCID: PMC9769562 DOI: 10.1128/spectrum.02079-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
The endoplasmic reticulum-plasma membrane (ER-PM) contacts are one kind of important membrane contact structures in eukaryotic cells, which mediate material and message exchange between the ER and the PM. However, the specific types and functions of ER-PM tethering proteins are poorly understood in the human fungal pathogen Candida albicans. In this study, we observed that the two tricalbin-family proteins, i.e., Tcb1 and Tcb3, were colocalized with the ER-PM contacts in C. albicans. Deletion of the tricalbin-encoding genes TCB1 and TCB3 remarkably reduced ER-PM contacts, suggesting that tricalbins are ER-PM tethering proteins of C. albicans. Stress sensitivity assays showed that the TCB-deleted strains, including tcb1Δ/Δ, tcb3Δ/Δ, and tcb1Δ/Δ tcb3Δ/Δ, exhibited hypersensitivity to cell wall stress induced by caspofungin. Further investigation revealed that caspofungin induced drastic reactive oxygen species (ROS) accumulation in the mutants, which was attributed to enhanced oxidation of Ero1 in the ER lumen. Removal of intracellular ROS by the ROS scavenger vitamin C rescued the growth of the mutants under caspofungin treatment, indicating that Ero1 oxidation-related ROS accumulation was involved in caspofungin hypersensitivity of the mutants. Moreover, deletion of the TCB genes decreased secretion of extracellular aspartyl proteinases, reduced transport of the cell wall protein Hwp1 from the cytoplasm to the cell wall, and attenuated virulence of the fungal pathogen. This study sheds a light on the role of ER-PM tethering proteins in maintenance of cell wall integrity and virulence in fungal pathogens. IMPORTANCE The endoplasmic reticulum-plasma membrane contacts are important membrane contact structures in eukaryotic cells, functioning in material and message exchange between the ER and the PM. We observed that the two tricalbin-family endoplasmic reticulum-plasma membrane contact proteins are required for tolerance to caspofungin-induced cell wall stress in the pathogenic fungus Candida albicans. The tricalbin mutants exhibited hypersensitivity to cell wall stress induced by caspofungin. Further investigation revealed that Ero1 oxidation-related reactive species oxygen accumulation was involved in caspofungin hypersensitivity of the tricalbin mutants. Moreover, loss of tricalbins reduced secretion of extracellular aspartyl proteinases, decreased transport of the cell wall proteins from the cytoplasm to the cell wall, and attenuated virulence of the fungal pathogen. This study uncovers the role of ER-PM tethering proteins in sustaining protein secretion, maintenance of cell wall integrity and virulence in fungal pathogens.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
22
|
Jagirdar G, Elsner M, Scharf C, Simm S, Borucki K, Peter D, Lalk M, Methling K, Linnebacher M, Krohn M, Wolke C, Lendeckel U. Re-Expression of Tafazzin Isoforms in TAZ-Deficient C6 Glioma Cells Restores Cardiolipin Composition but Not Proliferation Rate and Alterations in Gene Expression. Front Genet 2022; 13:931017. [PMID: 35957687 PMCID: PMC9358009 DOI: 10.3389/fgene.2022.931017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Tafazzin—an acyltransferase—is involved in cardiolipin (CL) remodeling. CL is associated with mitochondrial function, structure and more recently with cell proliferation. Various tafazzin isoforms exist in humans. The role of these isoforms in cardiolipin remodeling is unknown. Aim of this study was to investigate if specific isoforms like Δ5 can restore the wild type phenotype with respect to CL composition, cellular proliferation and gene expression profile. In addition, we aimed to determine the molecular mechanism by which tafazzin can modulate gene expression by applying promoter analysis and (Ingenuity Pathway Analyis) IPA to genes regulated by TAZ-deficiency. Expression of Δ5 and rat full length TAZ in C6-TAZ- cells could fully restore CL composition and—as proven for Δ5—this is naturally associated with restoration of mitochondrial respiration. A similar restoration of CL-composition could not be observed after re-expression of an enzymatically dead full-length rat TAZ (H69L; TAZMut). Re-expression of only rat full length TAZ could restore proliferation rate. Surprisingly, the Δ5 variant failed to restore wild-type proliferation. Further, as expected, re-expression of the TAZMut variant completely failed to reverse the gene expression changes, whereas re-expression of the TAZ-FL variant largely did so and the Δ5 variant to somewhat less extent. Very likely TAZ-deficiency provokes substantial long-lasting changes in cellular lipid metabolism which contribute to changes in proliferation and gene expression, and are not or only very slowly reversible.
Collapse
Affiliation(s)
- Gayatri Jagirdar
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head, and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Daniela Peter
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology, and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Mathias Krohn
- Department of General Surgery, Molecular Oncology, and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
- *Correspondence: Uwe Lendeckel,
| |
Collapse
|
23
|
Tsai CY, Wu JCC, Wu CJ, Chan SHH. Protective role of VEGF/VEGFR2 signaling against high fatality associated with hepatic encephalopathy via sustaining mitochondrial bioenergetics functions. J Biomed Sci 2022; 29:47. [PMID: 35786324 PMCID: PMC9251935 DOI: 10.1186/s12929-022-00831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background The lack of better understanding of the pathophysiology and cellular mechanisms associated with high mortality seen in hepatic encephalopathy (HE), a neurological complication arising from acute hepatic failure, remains a challenging medical issue. Clinical reports showed that the degree of baroreflex dysregulation is related to the severity of HE. Furthermore, mitochondrial dysfunction in the rostral ventrolateral medulla (RVLM), a key component of the baroreflex loop that maintains blood pressure and sympathetic vasomotor tone, is known to underpin impairment of baroreflex. Realizing that in addition to angiogenic and vasculogenic effects, by acting on its key receptor (VEGFR2), vascular endothelial growth factor (VEGF) elicits neuroprotection via maintenance of mitochondrial function, the guiding hypothesis of the present study is that the VEGF/VEGFR2 signaling plays a protective role against mitochondrial dysfunction in the RVLM to ameliorate baroreflex dysregulation that underpins the high fatality associated with HE. Methods Physiological, pharmacological and biochemical investigations were carried out in proof-of-concept experiments using an in vitro model of HE that involved incubation of cultured mouse hippocampal neurons with ammonium chloride. This was followed by corroboratory experiments employing a mouse model of HE, in which adult male C57BL/6 mice and VEGFR2 wild-type and heterozygous mice received an intraperitoneal injection of azoxymethane, a toxin used to induce acute hepatic failure. Results We demonstrated that VEGFR2 is present in cultured neurons, and observed that whereas recombinant VEGF protein maintained cell viability, gene-knockdown of vegfr2 enhanced the reduction of cell viability in our in vitro model of HE. In our in vivo model of HE, we found that VEGFR2 heterozygous mice exhibited shorter survival rate and time when compared to wild-type mice. In C57BL/6 mice, there was a progressive reduction in VEGFR2 mRNA and protein expression, mitochondrial membrane potential and ATP levels, alongside augmentation of apoptotic cell death in the RVLM, accompanied by a decrease in baroreflex-mediated sympathetic vasomotor tone and hypotension. Immunoneutralization of VEGF exacerbated all those biochemical and physiological events. Conclusions Our results suggest that, acting via VEGFR2, the endogenous VEGF plays a protective role against high fatality associated with HE by amelioration of the dysregulated baroreflex-mediated sympathetic vasomotor tone through sustaining mitochondrial bioenergetics functions and eliciting antiapoptotic action in the RVLM. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00831-0.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Jacqueline C C Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chiung-Ju Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Eaton L, Pamenter ME. What to do with low O 2: Redox adaptations in vertebrates native to hypoxic environments. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111259. [PMID: 35724954 DOI: 10.1016/j.cbpa.2022.111259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are important cellular signalling molecules but sudden changes in redox balance can be deleterious to cells and lethal to the whole organism. ROS production is inherently linked to environmental oxygen availability and many species live in variable oxygen environments that can range in both severity and duration of hypoxic exposure. Given the importance of redox homeostasis to cell and animal viability, it is not surprising that early studies in species adapted to various hypoxic niches have revealed diverse strategies to limit or mitigate deleterious ROS changes. Although research in this area is in its infancy, patterns are beginning to emerge in the suites of adaptations to different hypoxic environments. This review focuses on redox adaptations (i.e., modifications of ROS production and scavenging, and mitigation of oxidative damage) in hypoxia-tolerant vertebrates across a range of hypoxic environments. In general, evidence suggests that animals adapted to chronic lifelong hypoxia are in homeostasis, and do not encounter major oxidative challenges in their homeostatic environment, whereas animals exposed to seasonal chronic anoxia or hypoxia rapidly downregulate redox balance to match a hypometabolic state and employ robust scavenging pathways during seasonal reoxygenation. Conversely, animals adapted to intermittent hypoxia exposure face the greatest degree of ROS imbalance and likely exhibit enhanced ROS-mitigation strategies. Although some progress has been made, research in this field is patchy and further elucidation of mechanisms that are protective against environmental redox challenges is imperative for a more holistic understanding of how animals survive hypoxic environments.
Collapse
Affiliation(s)
- Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
26
|
Lénárt K, Bankó C, Ujlaki G, Póliska S, Kis G, Csősz É, Antal M, Bacso Z, Bai P, Fésüs L, Mádi A. Tissue Transglutaminase Knock-Out Preadipocytes and Beige Cells of Epididymal Fat Origin Possess Decreased Mitochondrial Functions Required for Thermogenesis. Int J Mol Sci 2022; 23:5175. [PMID: 35563567 PMCID: PMC9105016 DOI: 10.3390/ijms23095175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Beige adipocytes with thermogenic function are activated during cold exposure in white adipose tissue through the process of browning. These cells, similar to brown adipocytes, dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). Recently, we have shown that tissue transglutaminase (TG2) knock-out mice have decreased cold tolerance in parallel with lower utilization of their epididymal adipose tissue and reduced browning. To learn more about the thermogenic function of this fat depot, we isolated preadipocytes from the epididymal adipose tissue of wild-type and TG2 knock-out mice and differentiated them in the beige direction. Although differentiation of TG2 knock-out preadipocytes is phenotypically similar to the wild-type cells, the mitochondria of the knock-out beige cells have multiple impairments including an altered electron transport system generating lower electrochemical potential difference, reduced oxygen consumption, lower UCP1 protein content, and a higher portion of fragmented mitochondria. Most of these differences are present in preadipocytes as well, and the differentiation process cannot overcome the functional disadvantages completely. TG2 knock-out beige adipocytes produce more iodothyronine deiodinase 3 (DIO3) which may inactivate thyroid hormones required for the establishment of optimal mitochondrial function. The TG2 knock-out preadipocytes and beige cells are both hypometabolic as compared with the wild-type controls which may also be explained by the lower expression of solute carrier proteins SLC25A45, SLC25A47, and SLC25A42 which transport acylcarnitine, Co-A, and amino acids into the mitochondrial matrix. As a consequence, the mitochondria in TG2 knock-out beige adipocytes probably cannot reach the energy-producing threshold required for normal thermogenic functions, which may contribute to the decreased cold tolerance of TG2 knock-out mice.
Collapse
Affiliation(s)
- Kinga Lénárt
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Csaba Bankó
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Gyula Ujlaki
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.U.); (P.B.)
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - Gréta Kis
- Department of Anatomy, Histology Embryology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.K.); (M.A.)
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - Miklós Antal
- Department of Anatomy, Histology Embryology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.K.); (M.A.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Péter Bai
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.U.); (P.B.)
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - András Mádi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| |
Collapse
|
27
|
Combined drug triads for synergic neuroprotection in retinal degeneration. Biomed Pharmacother 2022; 149:112911. [DOI: 10.1016/j.biopha.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
|
28
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
29
|
Zhang R, Liu C, Yang L, Ji T, Zhang N, Dong X, Chen X, Ma J, Gao W, Huang S, Chen L. NOX2-derived hydrogen peroxide impedes the AMPK/Akt-mTOR signaling pathway contributing to cell death in neuronal cells. Cell Signal 2022; 94:110330. [PMID: 35390465 DOI: 10.1016/j.cellsig.2022.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Oxidative stress is closely related to the pathogenesis of Parkinson's disease (PD), a typical neurodegenerative disease. NADPH oxidase 2 (NOX2) is involved in hydrogen peroxide (H2O2) generation. Recently, we have reported that treatment with H2O2 and PD toxins, including 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenylpyridin-1-ium (MPP+) and rotenone, induces neuronal apoptosis by inhibiting the mTOR pathway. Here, we show that treatment with 6-OHDA, MPP+ or rotenone induced H2O2 generation by upregulating the levels of NOX2 and its regulatory proteins (p22phox, p40phox, p47phox, p67phox, and Rac1), leading to apoptotic cell death in PC12 cells and primary neurons. Inhibition of NOX2 with apocynin or diphenyleneiodonium, or knockdown of NOX2 powerfully attenuated PD toxins-evoked NOX2 and H2O2, thereby hindering activation of AMPK, inhibition of Akt/mTOR, and induction of apoptosis in neuronal cells. Pretreatment with catalase, a H2O2-scavenging enzyme, blocked the effects of PD toxins on NOX2-dependent H2O2 production, AMPK/Akt/mTOR signaling and apoptosis in the cells. Similar effects were also seen in the cells pretreated with Mito-TEMPO, a mitochondria-selective superoxide scavenger, implying a mitochondrial H2O2-dependent mechanism involved. Further research revealed that ectopic expression of constitutively active Akt or dominant negative AMPKα, or inhibition of AMPK with compound C suppressed PD toxins-induced expression of NOX2 and its regulatory proteins, as well as consequential H2O2 production and apoptosis in the cells. Taken together, these results indicate that certain PD toxins can impede the AMPK/Akt-mTOR signaling pathway leading to neuronal apoptosis by eliciting NOX2-derived H2O2 production. Our findings suggest that neuronal loss in PD may be prevented by regulating the NOX2, AMPK/Akt-mTOR signaling and/or applying antioxidants to ameliorate oxidative stress.
Collapse
Affiliation(s)
- Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China,; College of Life Sciences, Anhui Medical University, Anhui 230032, PR China
| | - Chunxiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China,; Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, PR China
| | - Liu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Tong Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Nana Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Xin Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Jing Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wei Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China,.
| |
Collapse
|
30
|
da Silva Navarro SM, de Almeida FJS, Luckachaki MD, de Oliveira MR. Sesamol prevents mitochondrial impairment and pro-inflammatory alterations in the human neuroblastoma SH-SY5Y cells: role for Nrf2. Metab Brain Dis 2022; 37:607-617. [PMID: 35000053 DOI: 10.1007/s11011-021-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
Mitochondria are a primary source and a target of reactive oxygen species (ROS). Increased mitochondrial production of ROS is associated with bioenergetics decline, cell death, and inflammation. Here we investigated whether a pretreatment (for 24 h) with sesamol (SES; at 12.5-50 µM) would be efficient in preventing the mitochondrial collapse induced by hydrogen peroxide (H2O2, at 300 µM) in the human neuroblastoma SH-SY5Y cell line. We have found that a pretreatment with SES at 25 µM decreased the effects of H2O2 on lipid peroxidation, protein carbonylation, and protein nitration in membranes obtained from the mitochondria isolated from the SH-SY5Y cells. In this regard, SES pretreatment decreased the production of superoxide anion radical (O2-•) by the mitochondria of H2O2-treated cells. SES also prevented the mitochondrial dysfunction induced by H2O2, as assessed by analyzing the activity of the complexes I and V. The H2O2-induced reduction in the production of adenosine triphosphate (ATP) was also prevented by SES. The levels of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well as the activity of the transcription factor nuclear factor-κB (NF-κB) were downregulated by the SES pretreatment in the H2O2-challenged cells. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor abolished the protection induced by SES regarding mitochondrial function and inflammation. Thus, SES depends on Nrf2 to promote mitochondrial protection in cells facing redox impairment.
Collapse
Affiliation(s)
- Sônia Mendes da Silva Navarro
- Departamento de Química, Instituto de Ciências Exatas E da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
- Programa de Pós-Graduação Em Química (PPGQ), Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | | | - Matheus Dargesso Luckachaki
- Departamento de Química, Instituto de Ciências Exatas E da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Marcos Roberto de Oliveira
- Departamento de Química, Instituto de Ciências Exatas E da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
- Programa de Pós-Graduação Em Química (PPGQ), Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
31
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
32
|
Pluta R, Kiś J, Januszewski S, Jabłoński M, Czuczwar SJ. Cross-Talk between Amyloid, Tau Protein and Free Radicals in Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer’s Disease Proteinopathy. Antioxidants (Basel) 2022; 11:antiox11010146. [PMID: 35052650 PMCID: PMC8772936 DOI: 10.3390/antiox11010146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 02/04/2023] Open
Abstract
Recent years have seen remarkable progress in research into free radicals oxidative stress, particularly in the context of post-ischemic recirculation brain injury. Oxidative stress in post-ischemic tissues violates the integrity of the genome, causing DNA damage, death of neuronal, glial and vascular cells, and impaired neurological outcome after brain ischemia. Indeed, it is now known that DNA damage and repair play a key role in post-stroke white and gray matter remodeling, and restoring the integrity of the blood-brain barrier. This review will present one of the newly characterized mechanisms that emerged with genomic and proteomic development that led to brain ischemia to a new level of post-ischemic neuropathological mechanisms, such as the presence of amyloid plaques and the development of neurofibrillary tangles, which further exacerbate oxidative stress. Finally, we hypothesize that modified amyloid and the tau protein, along with the oxidative stress generated, are new key elements in the vicious circle important in the development of post-ischemic neurodegeneration in a type of Alzheimer’s disease proteinopathy.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-608-6540
| | - Jacek Kiś
- Department of Urology, 1st Military Clinical Hospital with the Outpatient Clinic, Al. Racławickie 23, 20-049 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Jaczewskiego 8 Str., 20-090 Lublin, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland;
| |
Collapse
|
33
|
Interweaving of Reactive Oxygen Species and Major Neurological and Psychiatric Disorders. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:409-425. [PMID: 34896378 DOI: 10.1016/j.pharma.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species are found to be having a wide range of biological effects ranging from regulating functions in normal physiology to alteration and damaging various processes and cell components causing a number of diseases. Mitochondria is an important organelle responsible for energy production and in many signalling mechanisms. The electron transport chain in mitochondria where oxidative phosphorylation takes place is also coupled with the generation of reactive oxygen species (ROS). Changes in normal homeostasis and overproduction of reactive oxygen species by various sources are found to be involved in multiple neurological and major neurodegenerative diseases. This review summarises the role of reactive oxygen species and the mechanism of neuronal loss in major neuronal disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Depression, and Schizophrenia.
Collapse
|
34
|
Latina V, Giacovazzo G, Calissano P, Atlante A, La Regina F, Malerba F, Dell’Aquila M, Stigliano E, Balzamino BO, Micera A, Coccurello R, Amadoro G. Tau Cleavage Contributes to Cognitive Dysfunction in Strepto-Zotocin-Induced Sporadic Alzheimer's Disease (sAD) Mouse Model. Int J Mol Sci 2021; 22:ijms222212158. [PMID: 34830036 PMCID: PMC8618605 DOI: 10.3390/ijms222212158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/15/2023] Open
Abstract
Tau cleavage plays a crucial role in the onset and progression of Alzheimer’s Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)—a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic β cells and to induce insulin resistance—mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-β (Aβ) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism. We have demonstrated that pathological truncation of tau at its N-terminal domain occurs into hippocampi from two well-established transgenic lines of fAD animal models, such as Tg2576 and 3xTg mice, and that it’s in vivo neutralization via intravenous (i.v.) administration of the cleavage-specific anti-tau 12A12 monoclonal antibody (mAb) is strongly neuroprotective. Here, we report the therapeutic efficacy of 12A12mAb in STZ-infused mice after 14 days (short-term immunization, STIR) and 21 days (long-term immunization regimen, LTIR) of i.v. delivery. A virtually complete recovery was detected after three weeks of 12A12mAb immunization in both novel object recognition test (NORT) and object place recognition task (OPRT). Consistently, three weeks of this immunization regimen relieved in hippocampi from ICV-STZ mice the AD-like up-regulation of amyloid precursor protein (APP), the tau hyperphosphorylation and neuroinflammation, likely due to modulation of the PI3K/AKT/GSK3-β axis and the AMP-activated protein kinase (AMPK) activities. Cerebral oxidative stress, mitochondrial impairment, synaptic and histological alterations occurring in STZ-infused mice were also strongly attenuated by 12A12mAb delivery. These results further strengthen the causal role of N-terminal tau cleavage in AD pathogenesis and indicate that its specific neutralization by non-invasive administration of 12A12mAb can be a therapeutic option for both fAD and sAD patients, as well as for those showing type 2 diabetes as a comorbidity.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Giacomo Giacovazzo
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy;
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via Amendola 122/O, 70126 Bari, Italy;
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Marco Dell’Aquila
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (M.D.); (E.S.)
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (M.D.); (E.S.)
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6I, 00184 Rome, Italy; (B.O.B.); (A.M.)
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6I, 00184 Rome, Italy; (B.O.B.); (A.M.)
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy;
- Institute for Complex System (ISC)-CNR, Via dei Taurini 19, 00185 Rome, Italy
- Correspondence: (R.C.); (G.A.)
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: (R.C.); (G.A.)
| |
Collapse
|
35
|
Lushchak VI, Duszenko M, Gospodaryov DV, Garaschuk O. Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel) 2021; 10:1715. [PMID: 34829586 PMCID: PMC8614699 DOI: 10.3390/antiox10111715] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Neural tissue is one of the main oxygen consumers in the mammalian body, and a plentitude of metabolic as well as signaling processes within the brain is accompanied by the generation of reactive oxygen (ROS) and nitrogen (RNS) species. Besides the important signaling roles, both ROS and RNS can damage/modify the self-derived cellular components thus promoting neuroinflammation and oxidative stress. While previously, the latter processes were thought to progress linearly with age, newer data point to midlife as a critical turning point. Here, we describe (i) the main pathways leading to ROS/RNS generation within the brain, (ii) the main defense systems for their neutralization and (iii) summarize the recent literature about considerable changes in the energy/ROS homeostasis as well as activation state of the brain's immune system at midlife. Finally, we discuss the role of calorie restriction as a readily available and cost-efficient antiaging and antioxidant lifestyle intervention.
Collapse
Affiliation(s)
- Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46002 Ternopil, Ukraine
- Research and Development University, 13a Shota Rustaveli Str., 76018 Ivano-Frankivsk, Ukraine
| | - Michael Duszenko
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| | - Dmytro V. Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
36
|
Targetable Pathways for Alleviating Mitochondrial Dysfunction in Neurodegeneration of Metabolic and Non-Metabolic Diseases. Int J Mol Sci 2021; 22:ijms222111444. [PMID: 34768878 PMCID: PMC8583882 DOI: 10.3390/ijms222111444] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.
Collapse
|
37
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
38
|
Skin Antiaging Effects of the Fermented Outer Layers of Leaf Skin of Aloe barbadensis Miller Associated with the Enhancement of Mitochondrial Activities of UVb-Irradiated Human Skin Fibroblasts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study is the first to show that increased mitochondrial activities improved the antiaging effects of Aloe vera leaf skin fermented by Lactobacillus plantarum on UVb-irradiated skin fibroblasts. The fermented extract (AF) increased the activities of mitochondrial reductase and the complex II and significantly reduced reactive oxygen species (ROS) production, even under UVb stress conditions, and also increased DPPH free radical scavenging activities compared with the hot water extract of outer layers of aloe leaf (AW) and quercetin itself. AF exerted a synergistic effect with quercetin and bioactive substances derived from the fermentation process. Moreover, mitochondrial activation of UVb-irradiated human skin fibroblasts by 0.3% (w/v) of the AF plays important roles in increasing collagen production up to 125 ± 5.45% and decreasing MMP-1 secretion down to 69.41 ± 2.63% of the control levels. The AF enhanced the upregulation of collagen gene expression, and this change was also greater than those induced by the AW and quercetin. Therefore, this study concludes that fermentation of the skin of aloe leaves increases the activation of mitochondria and inhibits the photo-aging of UVb-irradiated skin fibroblasts.
Collapse
|
39
|
Reina M, Celaya CA, Muñiz J. C
36
and C
35
E (E=N and B) Fullerenes as Potential Nanovehicles for Neuroprotective Drugs: A Comparative DFT Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202101227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Miguel Reina
- Departamento de Química Inorgánica y Nuclear Facultad de Química Universidad Nacional Autónoma de México Circuito Exterior S.N. Ciudad Universitaria, P.O. Box 70–360 Coyoacán C.P. 04510 Ciudad de México México
| | - Christian A. Celaya
- Departamento de Química Inorgánica y Nuclear Facultad de Química Universidad Nacional Autónoma de México Circuito Exterior S.N. Ciudad Universitaria, P.O. Box 70–360 Coyoacán C.P. 04510 Ciudad de México México
- Instituto de Energías Renovables Universidad Nacional Autonoma de México Piv. Xochicalcos/n. Col. Centro Temixco, C.P. 62580 Morelos, México
| | - Jesús Muñiz
- Instituto de Energías Renovables Universidad Nacional Autonoma de México Piv. Xochicalcos/n. Col. Centro Temixco, C.P. 62580 Morelos, México
| |
Collapse
|
40
|
Rodrigues MS, de Paula GC, Duarte MB, de Rezende VL, Possato JC, Farias HR, Medeiros EB, Feuser PE, Streck EL, de Ávila RAM, Bast RKSS, Budni J, de Bem AF, Silveira PCL, de Oliveira J. Nanotechnology as a therapeutic strategy to prevent neuropsychomotor alterations associated with hypercholesterolemia. Colloids Surf B Biointerfaces 2021; 201:111608. [PMID: 33618084 DOI: 10.1016/j.colsurfb.2021.111608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
Hypercholesterolemia has been linked to neurodegenerative disease development. Previously others and we demonstrated that high levels of plasma cholesterol-induced memory impairments and depressive-like behavior in mice. More recently, some evidence reported that a hypercholesterolemic diet led to motor alterations in rodents. Peripheral inflammation, blood-brain barrier (BBB) dysfunction, and neuroinflammation seem to be the connective factors between hypercholesterolemia and brain disorders. Herein, we aimed to investigate whether treatment with gold nanoparticles (GNPs) can prevent the inflammation, BBB disruption, and behavioral changes related to neurodegenerative diseases and depression, induced by hypercholesterolemic diet intake in mice. Adult Swiss mice were fed a standard or a high cholesterol diet for eight weeks and concomitantly treated with either vehicle or GNPs by the oral route. At the end of treatments, mice were subjected to behavioral tests. After that, the blood, liver, and brain structures were collected for biochemical analysis. The high cholesterol diet-induced an increase in the plasma cholesterol levels and body weight of mice, which were not modified by GNPs treatment. Hypercholesterolemia was associated with enhanced liver tumor necrosis factor- α (TNF-α), BBB dysfunction in the hippocampus and olfactory bulb, memory impairment, cataleptic posture, and depressive-like behavior. Notably, GNPs administration attenuated liver inflammation, BBB dysfunction, and improved behavioral and memory deficits in hypercholesterolemic mice. Also, GNPs increased mitochondrial complex I activity in the prefrontal cortex of mice. It is worth highlight that GNPs' administration did not cause toxic effects in the liver and kidney of mice. Overall, our results indicated that GNPs treatment potentially mitigated peripheral, brain, and memory impairments related to hypercholesterolemia.
Collapse
Affiliation(s)
- Matheus Scarpatto Rodrigues
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, Rio Grande do Sul, Brazil; Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | | | - Mariane Bernardo Duarte
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | - Victoria Linden de Rezende
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | - Jonathann Correa Possato
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | - Hemelin Resende Farias
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, Rio Grande do Sul, Brazil; Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | - Eduarda Behenck Medeiros
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | - Paulo Emilio Feuser
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | - Emilio Luiz Streck
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | | | - Rachel Krolow Santos Silva Bast
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josiane Budni
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | - Andreza Fabro de Bem
- Universidade de Brasília, Instituto de Ciências Biológicas, Brasília, Distrito Federal, Brazil
| | - Paulo César Lock Silveira
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil
| | - Jade de Oliveira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, Rio Grande do Sul, Brazil; Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
41
|
Jacobsen L, Husen P, Solov'yov IA. Inhibition Mechanism of Antimalarial Drugs Targeting the Cytochrome bc 1 Complex. J Chem Inf Model 2021; 61:1334-1345. [PMID: 33617262 DOI: 10.1021/acs.jcim.0c01148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum (P. falciparum) is the main parasite known to cause malaria in humans. The antimalarial drug atovaquone is known to inhibit the Qo-site of the cytochrome bc1 complex of P. falciparum, which ultimately blocks ATP synthesis, leading to cell death. Through the years, mutations of the P. falciparum cytochrome bc1 complex, causing resistance to atovaquone, have emerged. The present investigation applies molecular dynamics (MD) simulations to study how the specific mutations Y279S and L282V, known to cause atovaquone resistance in malarial parasites, affect the inhibition mechanism of two known inhibitors. Binding free energy estimates were obtained through free energy perturbation calculations but were unable to confidently resolve the effects of mutations due to the great complexity of the binding environment. Meanwhile, basic mechanistic considerations from the MD simulations provide a detailed characterization of inhibitor binding modes and indicate that the Y279S mutation weakens the natural binding of the inhibitors, while no conclusive effect of the L282V mutation could be observed.
Collapse
Affiliation(s)
- Luise Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
42
|
Zhang N, Yu X, Xie J, Xu H. New Insights into the Role of Ferritin in Iron Homeostasis and Neurodegenerative Diseases. Mol Neurobiol 2021; 58:2812-2823. [PMID: 33507490 DOI: 10.1007/s12035-020-02277-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence has indicated that iron deposition is one of the key factors leading to neuronal death in the neurodegenerative diseases. Ferritin is a hollow iron storage protein composed of 24 subunits of two types, ferritin heavy chain (FTH) and ferritin light chain (FTL), which plays an important role in maintaining iron homeostasis. Recently, the discovery of extracellular ferritin and ferritin in exosomes indicates that ferritin might be not only an iron storage protein within the cell, but might also be an important factor in the regulation of tissue and body iron homeostasis. In this review, we first described the structural characteristics, regulation and the physiological functions of ferritin. Secondly, we reviewed the current evidence concerning the mechanisms underlying the secretion of ferritin and the possible role of secreted ferritin in the brain. Then, we summarized the relationship between ferritin and the neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD) and neuroferritinopathy (NF). Given the importance and relationship between iron and neurodegenerative diseases, understanding the role of ferritin in the brain can be expected to contribute to our knowledge of iron dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Xiaoqi Yu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. .,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China. .,Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
43
|
Ciani F, Cocchia N, Calabrò V, Pollice A, Maruccio L, Carotenuto D, Esposito L, Avallone L, Tafuri S. Uncaria tomentosa: A promising source of therapeutic agents for prevention and treatment of oxidative stress and cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Zhang Y, Park J, Han SJ, Park I, Huu TN, Kim JS, Woo HA, Lee SR. The critical role of redox regulation of PTEN and peroxiredoxin III in alcoholic fatty liver. Free Radic Biol Med 2021; 162:141-148. [PMID: 33249138 DOI: 10.1016/j.freeradbiomed.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
Hepatic steatosis and subsequent fatty liver disease are developed in response to alcohol consumption. Reactive oxygen species (ROS) are thought to play an important role in the alcoholic fatty liver disease (AFLD). However, the molecular targets of ROS and the underlying cellular mechanisms are unknown. Here, we investigate roles of peroxiredoxin III and redox regulation of phosphatase and tension homolog deleted on chromosome 10 (PTEN) in the alcoholic fatty liver. Alcohol-induced mitochondrial oxidative stress was found to contribute to reversible oxidation of PTEN, which results in Akt and MAPK hyperactivation with elevated levels of the lipogenesis regulators SREBP1c and PPARγ. Moreover, mitochondrial peroxiredoxin III was found to have antagonistic effects on lipogenesis via the redox regulation of PTEN by removing ROS, upon alcohol exposure. This study demonstrated that redox regulation of PTEN and peroxiredoxin III play crucial roles in the development of AFLD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea
| | - Seong-Jeong Han
- COTDE Inc. 19-3, Ugakgol-gil, Susin-myeon, Cheonan-si, Chungcheongnam-do, 330-882, South Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-190, South Korea
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-190, South Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, 560-182, South Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea.
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-190, South Korea.
| |
Collapse
|
45
|
Wang D, Chen M, Zeng X, Li W, Liang S, Lin Y. Improving the catalytic performance of Pichia pastoris whole-cell biocatalysts by fermentation process. RSC Adv 2021; 11:36329-36339. [PMID: 35492776 PMCID: PMC9043429 DOI: 10.1039/d1ra06253k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Whole-cell biocatalysts have a wide range of applications in many fields. However, the transport of substrates is tricky when applying whole-cell biocatalysts for industrial production. In this research, P. pastoris whole-cell biocatalysts were constructed for rebaudioside A synthesis. Sucrose synthase was expressed intracellularly while UDP-glycosyltransferase was displayed on the cell wall surface simultaneously. As an alternative method, a fermentation process is applied to relieve the substrate transport-limitation of P. pastoris whole-cell biocatalysts. This fermentation process was much simpler, more energy-saving, and greener than additional operating after collecting cells to improve the catalytic ability of whole-cell biocatalysts. Compared with the general fermentation process, the protein production capacity of cells did not decrease. Meanwhile, the activity of whole-cell biocatalysts was increased to 262%, which indicates that the permeability and space resistance were improved to relieve the transport-limitations. Furthermore, the induction time was reduced from 60 h to 36 h. The fermentation process offered significant advantages over traditional permeabilizing reagent treatment and ultrasonication treatment based on the high efficiency and simplicity. Fermentation process was applied to relieve the substrate transport-limitation of P. pastoris whole-cell biocatalysts, which was much simpler, more energy-saving and greener than c traditional permeabilizing reagent and ultrasonication treatment.![]()
Collapse
Affiliation(s)
- Denggang Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Meiqi Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Xin Zeng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Wenjie Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| |
Collapse
|
46
|
Jayatunga DPW, Hone E, Bharadwaj P, Garg M, Verdile G, Guillemin GJ, Martins RN. Targeting Mitophagy in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1273-1297. [PMID: 33285629 DOI: 10.3233/jad-191258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform many essential cellular functions including energy production, calcium homeostasis, transduction of metabolic and stress signals, and mediating cell survival and death. Maintaining viable populations of mitochondria is therefore critical for normal cell function. The selective disposal of damaged mitochondria, by a pathway known as mitophagy, plays a key role in preserving mitochondrial integrity and quality. Mitophagy reduces the formation of reactive oxygen species and is considered as a protective cellular process. Mitochondrial dysfunction and deficits of mitophagy have important roles in aging and especially in neurodegenerative disorders such as Alzheimer's disease (AD). Targeting mitophagy pathways has been suggested to have potential therapeutic effects against AD. In this review, we aim to briefly discuss the emerging concepts on mitophagy, molecular regulation of the mitophagy process, current mitophagy detection methods, and mitophagy dysfunction in AD. Finally, we will also briefly examine the stimulation of mitophagy as an approach for attenuating neurodegeneration in AD.
Collapse
Affiliation(s)
- Dona P W Jayatunga
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Manohar Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Gilles J Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
47
|
Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal. Int J Mol Sci 2020; 21:ijms21228750. [PMID: 33228180 PMCID: PMC7699490 DOI: 10.3390/ijms21228750] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are not only harmful to cell survival but also essential to cell signaling through cysteine-based redox switches. In fact, ROS triggers the potential activation of mitogen-activated protein kinases (MAPKs). The 90 kDa ribosomal S6 kinase 1 (RSK1), one of the downstream mediators of the MAPK pathway, is implicated in various cellular processes through phosphorylating different substrates. As such, RSK1 associates with and phosphorylates neuronal nitric oxide (NO) synthase (nNOS) at Ser847, leading to a decrease in NO generation. In addition, the RSK1 activity is sensitive to inhibition by reversible cysteine-based redox modification of its Cys223 during oxidative stress. Aside from oxidative stress, nitrosative stress also contributes to cysteine-based redox modification. Thus, the protein kinases such as Ca2+/calmodulin (CaM)-dependent protein kinase I (CaMKI) and II (CaMKII) that phosphorylate nNOS could be potentially regulated by cysteine-based redox modification. In this review, we focus on the role of post-translational modifications in regulating nNOS and nNOS-phosphorylating protein kinases and communication among themselves.
Collapse
|
48
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
49
|
Sun Y, Pham AN, Hider RC, Zheng H, Waite TD. Effectiveness of the Iron Chelator CN128 in Mitigating the Formation of Dopamine Oxidation Products Associated with the Progression of Parkinson's Disease. ACS Chem Neurosci 2020; 11:3646-3657. [PMID: 33143428 DOI: 10.1021/acschemneuro.0c00557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The occurrence and progression of Parkinson's disease (PD) has been associated with the observation of elevated iron concentrations in the substantia nigra pars compacta (SNpc). While the reasons for the impact of elevated iron concentrations remain unclear, one hypothesis is that the presence of labile iron induces the oxidation of dopamine (DA) to toxic quinones such as aminochrome (DAC) and reactive oxygen species (ROS). As such, one of the proposed therapeutic strategies has been the use of iron chelators such as deferiprone (DFP) (which is recognized to have limitations related to its rapid degradation in the liver) to reduce the concentration of labile iron. In this study, a detailed investigation regarding the novel iron chelator, CN128, was conducted and a kinetic model developed to elucidate the fundamental behavior of this chelator. The results in this work reveal that CN128 is effective in alleviating the toxicity induced by iron and DA to neurons when DA is present at moderate concentrations. When all the iron is chelated by CN128, the formation of DAC and the oxidation of DA can be reduced to levels identical to that in the absence of iron. The production of H2O2 is lower than that generated via the autoxidation of the same amount of DA. However, when severe leakage of DA occurs, the application of CN128 is insufficient to alleviate the associated toxicity. This is attibuted to the less important role of iron in the production of toxic intermediates at high concentrations of DA. CN128 is superior to DFP with regard to the reduction in formation of DAC and elevation in DA concentration. In summary, the results of this study suggest that prodromal application of the chelator CN128 could be effective in preventing the onset and slowing the early stage development of PD symptoms associated with oxidants and toxic intermediates resulting from the iron-mediated oxidation of the neurotransmitter dopamine with CN128 likely to be superior to DFP in view of its greater in vivo availability and less problematic side effects.
Collapse
Affiliation(s)
- Yingying Sun
- Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - A. Ninh Pham
- Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert C. Hider
- Institute of Pharmaceutical Science, King’s College, London, WC2R 2LS, United Kingdom
| | - Haolin Zheng
- Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T. David Waite
- Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
50
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|