1
|
Moreira Borges Oliveira FR, Rosales TO, Bobermin DM, Delgobo M, Zanotto-Filho A, Sordi R, Assreuy J. S-Denitrosylation counteracts local inflammation and improves survival in mice infected with K. pneumoniae. Nitric Oxide 2025; 154:105-114. [PMID: 39647659 DOI: 10.1016/j.niox.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
AIM Sepsis and septic shock remain are significant causes of mortality in the world. The inflammatory response should be at the basis of all organ dysfunction such as cardiovascular dysfunction, characterized by severe hypotension refractory to volume replacement and vasoconstrictor therapy. Nitric oxide (NO) has been implicated as a key element in both inflammatory and cardiovascular components of sepsis. In addition to activating soluble guanylate cyclase and potassium channels, NO also modifies proteins post-translationally by reacting with protein thiol groups, yielding S-nitrosothiols (RS-NO), which can act as endogenous NO reservoirs. Besides its use in quantifying free sulfhydryl groups of proteins and non-protein thiols, DTNB [5,5'-dithiobis-(2-nitrobenzoic acid)] has also been used as a pharmacological tool due to its specificity for oxidizing reactive sulfhydryl groups. Here we aimed to investigate the effects of DTNB in the inflammatory aspects of a sepsis model and to verify whether its effects can be attributed to S-denitrosylation. METHODS Anesthetized female Swiss mice were intratracheally injected with 1 × 108 CFU of K. pneumoniae. Twelve hours after pneumonia-induced sepsis, the animals were injected with vehicle (sodium bicarbonate 5 %, s.c.) or DTNB (31.5, 63 and 126 μmol/kg, s.c.). Twenty-four hours post-sepsis induction, plasma, bronchoalveolar lavage (BAL), and lung tissues were collected for assays (protein, cell count, nitrite + nitrate levels (NOx), cytokine levels, and sulfhydryl groups). In addition, lung S-nitrosylated proteins were visualized by a modified tissue assay for S-nitrosothiols. RESULTS Sepsis induced a significant vascular leakage in the lungs and elevated NOx levels in BAL, both reduced by DTNB. BAL leukocytosis and elevated IL-1β induced by sepsis were also reduced by DTNB, whereas it did not affect bacterial dissemination to liver, heart and BAL. Sepsis reduced free sulfhydryl groups in BAL and lung and DTNB did not change it. On the other hand, DTNB substantially reduced protein S-nitrosylation levels in the lung parenchyma and halved sepsis-induced mortality in septic mice. CONCLUSION Our results show that the administration of DTNB 12 h after bacterial instillation reduced most of the local inflammatory parameters and, more importantly, decreased mortality. These beneficial effects may be due to S-denitrosylation of RS-NO pools carried out by DTNB. Since DTNB was effective in reducing the inflammatory process after its onset, this mechanism of action could serve as a valuable proof of concept for compounds that can be useful to interfere with sepsis outcome.
Collapse
Affiliation(s)
| | - Thiele Osvaldt Rosales
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Daiane Mara Bobermin
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Marina Delgobo
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Alfeu Zanotto-Filho
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
2
|
Liang F, Wang M, Li J, Guo J. The evolution of S-nitrosylation detection methodology and the role of protein S-nitrosylation in various cancers. Cancer Cell Int 2024; 24:408. [PMID: 39702281 DOI: 10.1186/s12935-024-03568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
S-nitrosylation (SNO) modification, a nitric oxide (NO)-mediated post-translational modification (PTM) of proteins, plays an important role in protein microstructure, degradation, activity, and stability. Due to the presence of reducing agents, the SNO modification process mediated by NO derivatives is often reversible and unstable. This reversible transformation between SNO modification and denitrification often influences the structure, activity, and function of proteins. The reversibility of SNO modifications also poses a challenge when verifying changes in the biological functions of proteins. Moreover, SNO modification of key signaling pathway proteins, such as caspase-3, NF-κB, and Bcl-2, can affect tumor proliferation, invasion, and apoptosis. The SNO-modified proteins play important roles in both promoting and inhibiting cancer, which indirectly confirms the duality and complexity of SNO modification functions. This article reviews the biological significance of various SNO-modified proteins in different cancers, providing a theoretical basis for determining whether the related changes of SNO-modified proteins are universal in cancers. Additionally, this review presents a comprehensive and detailed summary of the evolution of detection methods for SNO-modified proteins, providing a possible methodological basis for future research on SNO-modified proteins.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
4
|
Sinha BK, Murphy C, Brown SM, Silver BB, Tokar EJ, Bortner CD. Mechanisms of Cell Death Induced by Erastin in Human Ovarian Tumor Cells. Int J Mol Sci 2024; 25:8666. [PMID: 39201357 PMCID: PMC11355013 DOI: 10.3390/ijms25168666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Erastin (ER) induces cell death through the formation of reactive oxygen species (ROS), resulting in ferroptosis. Ferroptosis is characterized by an accumulation of ROS within the cell, leading to an iron-dependent oxidative damage-mediated cell death. ER-induced ferroptosis may have potential as an alternative for ovarian cancers that have become resistant due to the presence of Ras mutation or multi-drug resistance1 (MDR1) gene expression. We used K-Ras mutant human ovarian tumor OVCAR-8 and NCI/ADR-RES, P-glycoprotein-expressing cells, to study the mechanisms of ER-induced cell death. We used these cell lines as NCI/ADR-RES cells also overexpresses superoxide dismutase, catalase, glutathione peroxidase, and transferase compared to OVCAR-8 cells, leading to the detoxification of reactive oxygen species. We found that ER was similarly cytotoxic to both cells. Ferrostatin, an inhibitor of ferroptosis, reduced ER cytotoxicity. In contrast, RSL3 (RAS-Selective Ligand3), an inducer of ferroptosis, markedly enhanced ER cytotoxicity in both cells. More ROS was detected in OVCAR-8 cells than NCI/ADR-RES cells, causing more malondialdehyde (MDA) formation in OVCAR-8 cells than in NCI/ADR-RES cells. RSL3, which was more cytotoxic to NCI/ADR-RES cells, significantly enhanced MDA formation in both cells, suggesting that glutathione peroxidase 4 (GPX4) was involved in ER-mediated ferroptosis. ER treatment modulated several ferroptosis-related genes (e.g., CHAC1, GSR, and HMOX1/OX1) in both cells. Our study indicates that ER-induced ferroptotic cell death may be mediated similarly in both NCI/ADR-RES and OVCAR-8 cells. Additionally, our results indicate that ER is not a substrate of P-gp and that combinations of ER and RSL3 may hold promise as more effective treatment routes for ovarian cancers, including those that are resistant to other current therapeutic agents.
Collapse
Affiliation(s)
- Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Carri Murphy
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Shalyn M. Brown
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Carl D. Bortner
- Laboratory of Signal Transduction, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
5
|
Puebla M, Muñoz MF, Lillo MA, Contreras JE, Figueroa XF. Control of astrocytic Ca 2+ signaling by nitric oxide-dependent S-nitrosylation of Ca 2+ homeostasis modulator 1 channels. Biol Res 2024; 57:19. [PMID: 38689353 PMCID: PMC11059852 DOI: 10.1186/s40659-024-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Manuel F Muñoz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
| |
Collapse
|
6
|
Liu S, Lu Q, Wang M, Guo H, Wang Y, Nong J, Wang S, Xia H, Xia T, Sun H. S-nitrosoglutathione reductase-dependent p65 denitrosation promotes osteoclastogenesis by facilitating recruitment of p65 to NFATc1 promoter. Bone 2024; 181:117036. [PMID: 38311303 DOI: 10.1016/j.bone.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Shumin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huilin Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yiwen Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Nong
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huifang Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Cui B, Pan Q, Cui W, Wang Y, Loake VIP, Yuan S, Liu F, Loake GJ. S-nitrosylation of a receptor-like cytoplasmic kinase regulates plant immunity. SCIENCE ADVANCES 2024; 10:eadk3126. [PMID: 38489361 PMCID: PMC10942119 DOI: 10.1126/sciadv.adk3126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Perception of pathogen/microbial-associated molecular patterns (P/MAMPs) by plant cell surface receptors leads to a sustained burst of reactive oxygen species (ROS), a key feature of P/MAMP-triggered immunity (PTI). Here we report that P/MAMP recognition leads to a rapid nitrosative burst, initiating the accumulation of nitric oxide (NO), subsequently leading to S-nitrosylation of the receptor-like cytoplasmic kinase (RLCK), botrytis-induced kinase 1 (BIK1), at Cys80. This redox-based, posttranslational modification, promotes the phosphorylation of BIK1, subsequently resulting in BIK1 activation and stabilization. Further, BIK1 S-nitrosylation increases its physical interaction with RBOHD, the source of the apoplastic oxidative burst, promoting ROS formation. Our data identify mechanistic links between rapid NO accumulation and the expression of PTI, providing insights into plant immunity.
Collapse
Affiliation(s)
- Beimi Cui
- Department of Plant Pathology, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Qiaona Pan
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Wenqiang Cui
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yiqin Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Verity I. P. Loake
- Faculty of Medicine, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fengquan Liu
- Department of Plant Pathology, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Gary J. Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
8
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Jimenez J, Dubey P, Carter B, Koomen JM, Markowitz J. A metabolic perspective on nitric oxide function in melanoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189038. [PMID: 38061664 PMCID: PMC11380350 DOI: 10.1016/j.bbcan.2023.189038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Nitric oxide (NO) generated from nitric oxide synthase (NOS) exerts a dichotomous effect in melanoma, suppressing or promoting tumor progression. This dichotomy is thought to depend on the intracellular NO concentration and the cell type in which it is generated. Due to its central role in the metabolism of multiple critical constituents involved in signaling and stress, it is crucial to explore NO's contribution to the metabolic dysfunction of melanoma. This review will discuss many known metabolites linked to NO production in melanoma. We discuss the synthesis of these metabolites, their role in biochemical pathways, and how they alter the biological processes observed in the melanoma tumor microenvironment. The metabolic pathways altered by NO and the corresponding metabolites reinforce its dual role in melanoma and support investigating this effect for potential avenues of therapeutic intervention.
Collapse
Affiliation(s)
- John Jimenez
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, FL 33612, USA
| | - Parul Dubey
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bethany Carter
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Flow Cytometry Core Facility, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Seckler JM, Getsy PM, May WJ, Gaston B, Baby SM, Lewis THJ, Bates JN, Lewis SJ. Hypoxia releases S-nitrosocysteine from carotid body glomus cells-relevance to expression of the hypoxic ventilatory response. Front Pharmacol 2023; 14:1250154. [PMID: 37886129 PMCID: PMC10598756 DOI: 10.3389/fphar.2023.1250154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
We have provided indirect pharmacological evidence that hypoxia may trigger release of the S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), from primary carotid body glomus cells (PGCs) of rats that then activates chemosensory afferents of the carotid sinus nerve to elicit the hypoxic ventilatory response (HVR). The objective of this study was to provide direct evidence, using our capacitive S-nitrosothiol sensor, that L-CSNO is stored and released from PGCs extracted from male Sprague Dawley rat carotid bodies, and thus further pharmacological evidence for the role of S-nitrosothiols in mediating the HVR. Key findings of this study were that 1) lysates of PGCs contained an S-nitrosothiol with physico-chemical properties similar to L-CSNO rather than S-nitroso-L-glutathione (L-GSNO), 2) exposure of PGCs to a hypoxic challenge caused a significant increase in S-nitrosothiol concentrations in the perfusate to levels approaching 100 fM via mechanisms that required extracellular Ca2+, 3) the dose-dependent increases in minute ventilation elicited by arterial injections of L-CSNO and L-GSNO were likely due to activation of small diameter unmyelinated C-fiber carotid body chemoafferents, 4) L-CSNO, but not L-GSNO, responses were markedly reduced in rats receiving continuous infusion (10 μmol/kg/min, IV) of both S-methyl-L-cysteine (L-SMC) and S-ethyl-L-cysteine (L-SEC), 5) ventilatory responses to hypoxic gas challenge (10% O2, 90% N2) were also due to the activation of small diameter unmyelinated C-fiber carotid body chemoafferents, and 6) the HVR was markedly diminished in rats receiving L-SMC plus L-SEC. This data provides evidence that rat PGCs synthesize an S-nitrosothiol with similar properties to L-CSNO that is released in an extracellular Ca2+-dependent manner by hypoxia.
Collapse
Affiliation(s)
- James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M. Getsy
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Walter J. May
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Tristan H. J. Lewis
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| | - Stephen J. Lewis
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Departments of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
11
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
12
|
Simão S, Agostinho RR, Martínez-Ruiz A, Araújo IM. Regulation of Ras Signaling by S-Nitrosylation. Antioxidants (Basel) 2023; 12:1562. [PMID: 37627556 PMCID: PMC10451275 DOI: 10.3390/antiox12081562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Ras are a family of small GTPases that function as signal transduction mediators and are involved in cell proliferation, migration, differentiation and survival. The significance of Ras is further evidenced by the fact that Ras genes are among the most mutated oncogenes in different types of cancers. After translation, Ras proteins can be targets of post-translational modifications (PTM), which can alter the intracellular dynamics of the protein. In this review, we will focus on how S-nitrosylation of Ras affects the way these proteins interact with membranes, its cellular localization, and its activity. S-Nitrosylation occurs when a nitrosyl moiety of nitric oxide (NO) is covalently attached to a thiol group of a cysteine residue in a target protein. In Ras, the conserved Cys118 is the most surface-exposed Cys and the preferable residue for NO action, leading to the initiation of transduction events. Ras transduces the mitogen-activated protein kinases (MAPK), the phosphoinositide-3 kinase (PI3K) and the RalGEF cellular pathways. S-Nitrosylation of elements of the RalGEF cascade remains to be identified. On the contrary, it is well established that several components of the MAPK and PI3K pathways, as well as different proteins associated with these cascades, can be modified by S-nitrosylation. Overall, this review presents a better understanding of Ras S-nitrosylation, increasing the knowledge on the dynamics of these proteins in the presence of NO and the underlying implications in cellular signaling.
Collapse
Affiliation(s)
- Sónia Simão
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Rafaela Ribeiro Agostinho
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain;
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inês Maria Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, 1400-038 Lisbon, Portugal
| |
Collapse
|
13
|
Kalinina EV, Novichkova MD. S-Glutathionylation and S-Nitrosylation as Modulators of Redox-Dependent Processes in Cancer Cell. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:924-943. [PMID: 37751864 DOI: 10.1134/s0006297923070064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 09/28/2023]
Abstract
Development of oxidative/nitrosative stress associated with the activation of oncogenic pathways results from the increase in the generation of reactive oxygen and nitrogen species (ROS/RNS) in tumor cells, where they can have a dual effect. At high concentrations, ROS/RNS cause cell death and limit tumor growth at certain phases of its development, while their low amounts promote oxidative/nitrosative modifications of key redox-dependent residues in regulatory proteins. The reversibility of such modifications as S-glutathionylation and S-nitrosylation that proceed through the electrophilic attack of ROS/RNS on nucleophilic Cys residues ensures the redox-dependent switch in the activity of signaling proteins, as well as the ability of these compounds to control cell proliferation and programmed cell death. The content of S-glutathionylated and S-nitrosylated proteins is controlled by the balance between S-glutathionylation/deglutathionylation and S-nitrosylation/denitrosylation, respectively, and depends on the cellular redox status. The extent of S-glutathionylation and S-nitrosylation of protein targets and their ratio largely determine the status and direction of signaling pathways in cancer cells. The review discusses the features of S-glutathionylation and S-nitrosylation reactions and systems that control them in cancer cells, as well as their relationship with redox-dependent processes and tumor growth.
Collapse
|
14
|
Sinha BK, Bortner CD, Jarmusch AK, Tokar EJ, Murphy C, Wu X, Winter H, Cannon RE. Ferroptosis-Mediated Cell Death Induced by NCX4040, The Non-Steroidal Nitric Oxide Donor, in Human Colorectal Cancer Cells: Implications in Therapy. Cells 2023; 12:1626. [PMID: 37371096 DOI: 10.3390/cells12121626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Our recent studies show that the treatment of human ovarian tumor cells with NCX4040 results in significant depletions of cellular glutathione, the formation of reactive oxygen/nitrogen species and cell death. NCX4040 is also cytotoxic to several human colorectal cancer (CRC) cells in vitro and in vivo. Here, we examined the ferroptosis-dependent mechanism(s) of cytotoxicity of NCX4040 in HT-29 and K-RAS mutant HCT 116 colon cell lines. Ferroptosis is characterized by the accumulation of reactive oxygen species (ROS) within the cell, leading to an iron-dependent oxidative stress-mediated cell death. However, its relevance in the mechanism of NCX4040 cytotoxicity in CRCs is not known. We found that NCX4040 generates ROS in CRC cells without any depletion of cellular GSH. Combinations of NCX4040 with erastin (ER) or RSL3 (RAS-selective lethal 3), known inducers of ferroptosis, enhanced CRC death. In contrast, ferrostatin-1, an inhibitor of ferroptosis, significantly inhibited NCX4040-induced cell death. Treatment of CRC cells with NCX4040 resulted in the induction of lipid peroxidation in a dose- and time-dependent manner. NCX4040 treatment induced several genes related to ferroptosis (e.g., CHAC1, GPX4 and NOX4) in both cell lines. Metabolomic studies also indicated significant increases in both lipid and energy metabolism following the drug treatment in HT-29 and HCT 116 cells. These observations strongly suggest that NCX4040 causes the ferroptosis-mediated cell death of CRC cells. Furthermore, combinations of NCX4040 and ER or RSL3 may contribute significantly to the treatment of CRC, including those that are difficult to treat due to the presence of Ras mutations in the clinic. NCX4040-induced ferroptosis may also be a dynamic form of cell death for the treatment of other cancers.
Collapse
Affiliation(s)
- Birandra K Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Carl D Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Alan K Jarmusch
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Carri Murphy
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Heather Winter
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Ronald E Cannon
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
15
|
Tan QW, Lim PK, Chen Z, Pasha A, Provart N, Arend M, Nikoloski Z, Mutwil M. Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses. Nat Commun 2023; 14:986. [PMID: 36813788 PMCID: PMC9946954 DOI: 10.1038/s41467-023-36517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Abiotic stresses negatively impact ecosystems and the yield of crops, and climate change will increase their frequency and intensity. Despite progress in understanding how plants respond to individual stresses, our knowledge of plant acclimatization to combined stresses typically occurring in nature is still lacking. Here, we used a plant with minimal regulatory network redundancy, Marchantia polymorpha, to study how seven abiotic stresses, alone and in 19 pairwise combinations, affect the phenotype, gene expression, and activity of cellular pathways. While the transcriptomic responses show a conserved differential gene expression between Arabidopsis and Marchantia, we also observe a strong functional and transcriptional divergence between the two species. The reconstructed high-confidence gene regulatory network demonstrates that the response to specific stresses dominates those of others by relying on a large ensemble of transcription factors. We also show that a regression model could accurately predict the gene expression under combined stresses, indicating that Marchantia performs arithmetic multiplication to respond to multiple stresses. Lastly, two online resources ( https://conekt.plant.tools and http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi ) are provided to facilitate the study of gene expression in Marchantia exposed to abiotic stresses.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Zhong Chen
- Amoeba Education Hub, 1 West Coast Road, 128020, Singapore, Singapore
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
16
|
Vrettou S, Wirth B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:15849. [PMID: 36555492 PMCID: PMC9779533 DOI: 10.3390/ijms232415849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox post-translational modifications are derived from fluctuations in the redox potential and modulate protein function, localization, activity and structure. Amongst the oxidative reversible modifications, the S-glutathionylation of proteins was the first to be characterized as a post-translational modification, which primarily protects proteins from irreversible oxidation. However, a growing body of evidence suggests that S-glutathionylation plays a key role in core cell processes, particularly in mitochondria, which are the main source of reactive oxygen species. S-nitrosylation, another post-translational modification, was identified >150 years ago, but it was re-introduced as a prototype cell-signaling mechanism only recently, one that tightly regulates core processes within the cell’s sub-compartments, especially in mitochondria. S-glutathionylation and S-nitrosylation are modulated by fluctuations in reactive oxygen and nitrogen species and, in turn, orchestrate mitochondrial bioenergetics machinery, morphology, nutrients metabolism and apoptosis. In many neurodegenerative disorders, mitochondria dysfunction and oxidative/nitrosative stresses trigger or exacerbate their pathologies. Despite the substantial amount of research for most of these disorders, there are no successful treatments, while antioxidant supplementation failed in the majority of clinical trials. Herein, we discuss how S-glutathionylation and S-nitrosylation interfere in mitochondrial homeostasis and how the deregulation of these modifications is associated with Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and Friedreich’s ataxia.
Collapse
Affiliation(s)
- Sofia Vrettou
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
17
|
Getsy PM, Young AP, Bates JN, Baby SM, Seckler JM, Grossfield A, Hsieh YH, Lewis THJ, Jenkins MW, Gaston B, Lewis SJ. S-nitroso-L-cysteine stereoselectively blunts the adverse effects of morphine on breathing and arterial blood gas chemistry while promoting analgesia. Biomed Pharmacother 2022; 153:113436. [PMID: 36076552 PMCID: PMC9464305 DOI: 10.1016/j.biopha.2022.113436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Alex P Young
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - Santhosh M Baby
- Galleon Pharmaceuticals, Inc., 213 Witmer Road, Horsham, PA, USA.
| | - James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Tristan H J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
18
|
Getsy PM, Baby SM, Gruber RB, Gaston B, Lewis THJ, Grossfield A, Seckler JM, Hsieh YH, Bates JN, Lewis SJ. S-Nitroso-L-Cysteine Stereoselectively Blunts the Deleterious Effects of Fentanyl on Breathing While Augmenting Antinociception in Freely-Moving Rats. Front Pharmacol 2022; 13:892307. [PMID: 35721204 PMCID: PMC9199495 DOI: 10.3389/fphar.2022.892307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
Endogenous and exogenously administered S-nitrosothiols modulate the activities of central and peripheral systems that control breathing. We have unpublished data showing that the deleterious effects of morphine on arterial blood-gas chemistry (i.e., pH, pCO2, pO2, and sO2) and Alveolar-arterial gradient (i.e., index of gas exchange) were markedly diminished in anesthetized Sprague Dawley rats that received a continuous intravenous infusion of the endogenous S-nitrosothiol, S-nitroso-L-cysteine. The present study extends these findings by showing that unanesthetized adult male Sprague Dawley rats receiving an intravenous infusion of S-nitroso-L-cysteine (100 or 200 nmol/kg/min) markedly diminished the ability of intravenous injections of the potent synthetic opioid, fentanyl (10, 25, and 50 μg/kg), to depress the frequency of breathing, tidal volume, and minute ventilation. Our study also found that the ability of intravenously injected fentanyl (10, 25, and 50 μg/kg) to disturb eupneic breathing, which was measured as a marked increase of the non-eupneic breathing index, was substantially reduced in unanesthetized rats receiving intravenous infusions of S-nitroso-L-cysteine (100 or 200 nmol/kg/min). In contrast, the deleterious effects of fentanyl (10, 25, and 50 μg/kg) on frequency of breathing, tidal volume, minute ventilation and non-eupneic breathing index were fully expressed in rats receiving continuous infusions (200 nmol/kg/min) of the parent amino acid, L-cysteine, or the D-isomer, namely, S-nitroso-D-cysteine. In addition, the antinociceptive actions of the above doses of fentanyl as monitored by the tail-flick latency assay, were enhanced by S-nitroso-L-cysteine, but not L-cysteine or S-nitroso-D-cysteine. Taken together, these findings add to existing knowledge that S-nitroso-L-cysteine stereoselectively modulates the detrimental effects of opioids on breathing, and opens the door for mechanistic studies designed to establish whether the pharmacological actions of S-nitroso-L-cysteine involve signaling processes that include 1) the activation of plasma membrane ion channels and receptors, 2) selective intracellular entry of S-nitroso-L-cysteine, and/or 3) S-nitrosylation events. Whether alterations in the bioavailability and bioactivity of endogenous S-nitroso-L-cysteine is a key factor in determining the potency/efficacy of fentanyl on breathing is an intriguing question.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ryan B. Gruber
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
20
|
Kruse CPS, Wyatt SE. Nitric oxide, gravity response, and a unified schematic of plant signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111105. [PMID: 34895542 DOI: 10.1016/j.plantsci.2021.111105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Plant signaling components are often involved in numerous processes. Calcium, reactive oxygen species, and other signaling molecules are essential to normal biotic and abiotic responses. Yet, the summation of these components is integrated to produce a specific response despite their involvement in a myriad of response cascades. In the response to gravity, the role of many of these individual components has been studied, but a specific sequence of signals has not yet been assembled into a cohesive schematic of gravity response signaling. Herein, we provide a review of existing knowledge of gravity response and differential protein and gene regulation induced by the absence of gravity stimulus aboard the International Space Station and propose an integrated theoretical schematic of gravity response incorporating that information. Recent developments in the role of nitric oxide in gravity signaling provided some of the final contextual pillars for the assembly of the model, where nitric oxide and the role of cysteine S-nitrosation may be central to the gravity response. The proposed schematic accounts for the known responses to reorientation with respect to gravity in roots-the most well studied gravitropic plant tissue-and is supported by the extensive evolutionary conservation of regulatory amino acids within protein components of the signaling schematic. The identification of a role of nitric oxide in regulating the TIR1 auxin receptor is indicative of the broader relevance of the schematic in studying a multitude of environmental and stress responses. Finally, there are several experimental approaches that are highlighted as essential to the further study and validation of this schematic.
Collapse
Affiliation(s)
- Colin P S Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, United States; Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, United States(1)
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
21
|
He Q, Qu M, Xu C, Shi W, Hussain M, Jin G, Zhu H, Zeng LH, Wu X. The emerging roles of nitric oxide in ferroptosis and pyroptosis of tumor cells. Life Sci 2021; 290:120257. [PMID: 34952041 DOI: 10.1016/j.lfs.2021.120257] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
Tumor cells can develop resistance to cell death which is divided into necrosis and programmed cell death (PCD). PCD, including apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Ferroptosis and pyroptosis, two new forms of cell death, have gradually been of interest to researchers. Boosting ferroptosis and pyroptosis of tumor cells could be a potential cancer therapy. Nitric oxide (NO) is a ubiquitous, lipophilic, highly diffusible, free-radical signaling molecule that plays various roles in tumorigenesis. In addition, NO also has regulatory mechanisms through S-nitrosylation that do not depend on the classic NO/sGC/cGMP signaling. The current tumor treatment strategy for NO is to promote cell death through promoting S-nitrosylation-induced apoptosis while multiple drawbacks dampen this tumor therapy. However, numerous studies have suggested that suppression of NO is perceived to active ferroptosis and pyroptosis, which could be a better anti-tumor treatment. In this review, ferroptosis and pyroptosis are described in detail. We summarize that NO influences ferroptosis and pyroptosis and infer that S-nitrosylation mediates ferroptosis- and pyroptosis-related signaling pathways. It could be a potential cancer therapy different from NO-induced apoptosis of tumor cells. Finally, the information shows the drugs that manipulate endogenous production and exogenous delivery of NO to modulate the levels of S-nitrosylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Shi
- Department of Biology and Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guojian Jin
- Department of Internal Medicine, Shaoxing Central Hospital Anchang Branch, Shaoxing City 312080, China
| | - Haibin Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
22
|
Muronetz VI, Medvedeva MV, Sevostyanova IA, Schmalhausen EV. Modification of Glyceraldehyde-3-Phosphate Dehydrogenase with Nitric Oxide: Role in Signal Transduction and Development of Apoptosis. Biomolecules 2021; 11:1656. [PMID: 34827652 PMCID: PMC8615796 DOI: 10.3390/biom11111656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
This review focuses on the consequences of GAPDH S-nitrosylation at the catalytic cysteine residue. The widespread hypothesis according to which S-nitrosylation causes a change in GAPDH structure and its subsequent binding to the Siah1 protein is considered in detail. It is assumed that the GAPDH complex with Siah1 is transported to the nucleus by carrier proteins, interacts with nuclear proteins, and induces apoptosis. However, there are several conflicting and unproven elements in this hypothesis. In particular, there is no direct confirmation of the interaction between the tetrameric GAPDH and Siah1 caused by S-nitrosylation of GAPDH. The question remains as to whether the translocation of GAPDH into the nucleus is caused by S-nitrosylation or by some other modification of the catalytic cysteine residue. The hypothesis of the induction of apoptosis by oxidation of GAPDH is considered. This oxidation leads to a release of the coenzyme NAD+ from the active center of GAPDH, followed by the dissociation of the tetramer into subunits, which move to the nucleus due to passive transport and induce apoptosis. In conclusion, the main tasks are summarized, the solutions to which will make it possible to more definitively establish the role of nitric oxide in the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Maria V. Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Irina A. Sevostyanova
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
| | - Elena V. Schmalhausen
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
| |
Collapse
|
23
|
Schmalhausen EV, Medvedeva MV, Serebryakova MV, Chagovets VV, Muronetz VI. Products of S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase: Relation between S-nitrosylation and oxidation. Biochim Biophys Acta Gen Subj 2021; 1866:130032. [PMID: 34627945 DOI: 10.1016/j.bbagen.2021.130032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the major targets of NO in cells, especially in neurodegenerative diseases. S-Nitrosylation of GAPDH is accompanied by its translocation into the nucleus with subsequent apoptosis. The product of GAPDH modification by NO is considered to be S-nitrosylated GAPDH (GAPDH-SNO). However, this has not been confirmed by direct methods. METHODS Products of GAPDH modification in the presence of the NO donor diethylamine NONOate were analyzed by MALDI- and ESI- mass spectrometry methods. RESULTS The adduct between GAPDH and dimedone was detected by MALDI-MS analysis after incubation of S-nitrosylated GAPDH with dimedone, which points to the formation of cysteine-sulfenic acid (GAPDH-SOH) in the protein. Analysis of the protein hydrolysate revealed the incorporation of dimedone into the catalytic residue Cys150. An additional peak that corresponded to GAPDH-SNO was detected by ESI-MS analysis in GAPDH after the incubation with the NO donor. The content of GAPDH-SNO and GAPDH-SOH in the modified GAPDH was evaluated by different approaches and constituted 2.3 and 0.7 mol per mol GAPDH, respectively. A small fraction of GAPDH was irreversibly inactivated after NO treatment, suggesting that a minor part of the products includes cysteine-sulfinic or cysteine-sulfonic acids. CONCLUSIONS The main products of GAPDH modification by NO are GAPDH-SNO and GAPDH-SOH that is presumably formed due to the hydrolysis of GAPDH-SNO. GENERAL SIGNIFICANCE The obtained results are important for understanding the molecular mechanism of redox regulation of cell functions and the role of GAPDH in the development of neurodegenerative disorders.
Collapse
Affiliation(s)
- E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| | - M V Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - V V Chagovets
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russia, Akademika Oparina 4, Moscow 117997, Russia
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
24
|
Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D, Furuta S. S-Nitrosylation in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094600. [PMID: 33925645 PMCID: PMC8124305 DOI: 10.3390/ijms22094600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
S-nitrosylation is a selective and reversible post-translational modification of protein thiols by nitric oxide (NO), which is a bioactive signaling molecule, to exert a variety of effects. These effects include the modulation of protein conformation, activity, stability, and protein-protein interactions. S-nitrosylation plays a central role in propagating NO signals within a cell, tissue, and tissue microenvironment, as the nitrosyl moiety can rapidly be transferred from one protein to another upon contact. This modification has also been reported to confer either tumor-suppressing or tumor-promoting effects and is portrayed as a process involved in every stage of cancer progression. In particular, S-nitrosylation has recently been found as an essential regulator of the tumor microenvironment (TME), the environment around a tumor governing the disease pathogenesis. This review aims to outline the effects of S-nitrosylation on different resident cells in the TME and the diverse outcomes in a context-dependent manner. Furthermore, we will discuss the therapeutic potentials of modulating S-nitrosylation levels in tumors.
Collapse
|
25
|
Redox and Antioxidant Modulation of Circadian Rhythms: Effects of Nitroxyl, N-Acetylcysteine and Glutathione. Molecules 2021; 26:molecules26092514. [PMID: 33925826 PMCID: PMC8123468 DOI: 10.3390/molecules26092514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The circadian clock at the hypothalamic suprachiasmatic nucleus (SCN) entrains output rhythms to 24-h light cycles. To entrain by phase-advances, light signaling at the end of subjective night (circadian time 18, CT18) requires free radical nitric oxide (NO•) binding to soluble guanylate cyclase (sGC) heme group, activating the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Phase-delays at CT14 seem to be independent of NO•, whose redox-related species were yet to be investigated. Here, the one-electron reduction of NO• nitroxyl was pharmacologically delivered by Angeli’s salt (AS) donor to assess its modulation on phase-resetting of locomotor rhythms in hamsters. Intracerebroventricular AS generated nitroxyl at the SCN, promoting phase-delays at CT14, but potentiated light-induced phase-advances at CT18. Glutathione/glutathione disulfide (GSH/GSSG) couple measured in SCN homogenates showed higher values at CT14 (i.e., more reduced) than at CT18 (oxidized). In addition, administration of antioxidants N-acetylcysteine (NAC) and GSH induced delays per se at CT14 but did not affect light-induced advances at CT18. Thus, the relative of NO• nitroxyl generates phase-delays in a reductive SCN environment, while an oxidative favors photic-advances. These data suggest that circadian phase-locking mechanisms should include redox SCN environment, generating relatives of NO•, as well as coupling with the molecular oscillator.
Collapse
|
26
|
Majewska AM, Mostek A. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review. Electrophoresis 2021; 42:1378-1387. [PMID: 33783010 DOI: 10.1002/elps.202000389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
The specific chemical reactivity of thiol groups makes protein cysteines susceptible to reactions with reactive oxygen species (ROS) and reactive nitrogen species (RNS) resulting in the formation of various reversible and irreversible oxidative post-translational modifications (oxPTMs). This review highlights a number of gel-based redox proteomic approaches to detect protein oxPTMs, with particular emphasis on S-nitrosylation, which we believe are currently one of the most accurate way to analyze changes in the redox status of proteins. The information collected in this review relates to the recent progress regarding methods for the enrichment and identification of redox-modified proteins, with an emphasis on fluorescent gel proteomics. Gel-based fluorescent proteomic strategies are low-cost and easy-to-use tools for investigating the thiol proteome and can provide substantial information on redox signaling.
Collapse
Affiliation(s)
- Anna M Majewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Mostek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
27
|
Turan HT, Meuwly M. Spectroscopy, Dynamics, and Hydration of S-Nitrosylated Myoglobin. J Phys Chem B 2021; 125:4262-4273. [PMID: 33724027 DOI: 10.1021/acs.jpcb.0c10353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
S-Nitrosylation, the covalent addition of NO to the thiol side chain of cysteine, is an important post-transitional modification that can alter the function of various proteins. The structural dynamics and vibrational spectroscopy of S-nitrosylation in the condensed phase are investigated for the methyl-capped cysteine model system and for myoglobin. Using conventional point charge and physically more realistic multipolar force fields for the -SNO group, it is found that the SN- and NO-stretch and the SNO-bend vibrations can be located and distinguished from the other protein modes for simulations of MbSNO at 50 K. The finding of stable cis- and trans-MbSNO agrees with experimental findings on other proteins as is the observation of buried -SNO. For MbSNO the observed relocation of the EF loop in the simulations by ∼3 Å is consistent with the available X-ray structure, and the conformations adopted by the -SNO label are in good overall agreement with the X-ray structure. Despite the larger size of the -SNO group compared with -SH, MbSNO recruits more water molecules in the first two hydration shells due to stronger electrostatic interactions. Similarly, when comparing the hydration between the A- and H-helices, they differ by up to 30% between WT and MbSNO. This suggests that local hydration can also be significantly modulated through nitrosylation.
Collapse
Affiliation(s)
- Haydar Taylan Turan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| |
Collapse
|
28
|
Exploiting S-nitrosylation for cancer therapy: facts and perspectives. Biochem J 2021; 477:3649-3672. [PMID: 33017470 DOI: 10.1042/bcj20200064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.
Collapse
|
29
|
Kalinina E, Novichkova M. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation. Molecules 2021; 26:molecules26020435. [PMID: 33467703 PMCID: PMC7838997 DOI: 10.3390/molecules26020435] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
S-glutathionylation and S-nitrosylation are reversible post-translational modifications on the cysteine thiol groups of proteins, which occur in cells under physiological conditions and oxidative/nitrosative stress both spontaneously and enzymatically. They are important for the regulation of the functional activity of proteins and intracellular processes. Connecting link and “switch” functions between S-glutathionylation and S-nitrosylation may be performed by GSNO, the generation of which depends on the GSH content, the GSH/GSSG ratio, and the cellular redox state. An important role in the regulation of these processes is played by Trx family enzymes (Trx, Grx, PDI), the activity of which is determined by the cellular redox status and depends on the GSH/GSSG ratio. In this review, we analyze data concerning the role of GSH/GSSG in the modulation of S-glutathionylation and S-nitrosylation and their relationship for the maintenance of cell viability.
Collapse
|
30
|
Ledo A, Lourenço CF, Cadenas E, Barbosa RM, Laranjinha J. The bioactivity of neuronal-derived nitric oxide in aging and neurodegeneration: Switching signaling to degeneration. Free Radic Biol Med 2021; 162:500-513. [PMID: 33186742 DOI: 10.1016/j.freeradbiomed.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
The small and diffusible free radical nitric oxide (•NO) has fascinated biological and medical scientists since it was promoted from atmospheric air pollutant to biological ubiquitous signaling molecule. Its unique physical chemical properties expand beyond its radical nature to include fast diffusion in aqueous and lipid environments and selective reactivity in a biological setting determined by bioavailability and reaction rate constants with biomolecules. In the brain, •NO is recognized as a key player in numerous physiological processes ranging from neurotransmission/neuromodulation to neurovascular coupling and immune response. Furthermore, changes in its bioactivity are central to the molecular pathways associated with brain aging and neurodegeneration. The understanding of •NO bioactivity in the brain, however, requires the knowledge of its concentration dynamics with high spatial and temporal resolution upon stimulation of its synthesis. Here we revise our current understanding of the role of neuronal-derived •NO in brain physiology, aging and degeneration, focused on changes in the extracellular concentration dynamics of this free radical and the regulation of bioenergetic metabolism and neurovascular coupling.
Collapse
Affiliation(s)
- A Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - C F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - E Cadenas
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, CA, USA
| | - R M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - J Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
31
|
Marchesani F, Gianquinto E, Autiero I, Michielon A, Campanini B, Faggiano S, Bettati S, Mozzarelli A, Spyrakis F, Bruno S. The allosteric interplay between S-nitrosylation and glycine binding controls the activity of human serine racemase. FEBS J 2020; 288:3034-3054. [PMID: 33249721 DOI: 10.1111/febs.15645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Human serine racemase (hSR) catalyzes the biosynthesis of D-serine, an obligatory co-agonist of the NMDA receptors. It was previously found that the reversible S-nitrosylation of Cys113 reduces hSR activity. Here, we show by site-directed mutagenesis, fluorescence spectroscopy, mass spectrometry, and molecular dynamics that S-nitrosylation stabilizes an open, less-active conformation of the enzyme. The reaction of hSR with either NO or nitroso donors is conformation-dependent and occurs only in the conformation stabilized by the allosteric effector ATP, in which the ε-amino group of Lys114 acts as a base toward the thiol group of Cys113. In the closed conformation stabilized by glycine-an active-site ligand of hSR-the side chain of Lys114 moves away from that of Cys113, while the carboxyl side-chain group of Asp318 moves significantly closer, increasing the thiol pKa and preventing the reaction. We conclude that ATP binding, glycine binding, and S-nitrosylation constitute a three-way regulation mechanism for the tight control of hSR activity. We also show that Cys113 undergoes H2 O2 -mediated oxidation, with loss of enzyme activity, a reaction also dependent on hSR conformation.
Collapse
Affiliation(s)
- Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Eleonora Gianquinto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Italy
| | - Ida Autiero
- Molecular Horizon Srl, Bettona, PG, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Napoli, Italy
| | - Annalisa Michielon
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Serena Faggiano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy
| | - Stefano Bettati
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy.,Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy
| | - Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| |
Collapse
|
32
|
Post-Translational S-Nitrosylation of Proteins in Regulating Cardiac Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9111051. [PMID: 33126514 PMCID: PMC7693965 DOI: 10.3390/antiox9111051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Like other post-translational modifications (PTMs) of proteins, S-nitrosylation has been considered a key regulatory mechanism of multiple cellular functions in many physiological and disease conditions. Emerging evidence has demonstrated that S-nitrosylation plays a crucial role in regulating redox homeostasis in the stressed heart, leading to discoveries in the mechanisms underlying the pathogenesis of heart diseases and cardiac protection. In this review, we summarize recent studies in understanding the molecular and biological basis of S-nitrosylation, including the formation, spatiotemporal specificity, homeostatic regulation, and association with cellular redox status. We also outline the currently available methods that have been applied to detect S-nitrosylation. Additionally, we synopsize the up-to-date studies of S-nitrosylation in various cardiac diseases in humans and animal models, and we discuss its therapeutic potential in cardiac protection. These pieces of information would bring new insights into understanding the role of S-nitrosylation in cardiac pathogenesis and provide novel avenues for developing novel therapeutic strategies for heart diseases.
Collapse
|
33
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
34
|
Chen L, Wu R, Feng J, Feng T, Wang C, Hu J, Zhan N, Li Y, Ma X, Ren B, Zhang J, Song CP, Li J, Zhou JM, Zuo J. Transnitrosylation Mediated by the Non-canonical Catalase ROG1 Regulates Nitric Oxide Signaling in Plants. Dev Cell 2020; 53:444-457.e5. [PMID: 32330424 DOI: 10.1016/j.devcel.2020.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 01/26/2023]
Abstract
The redox-based protein S-nitrosylation is a conserved mechanism modulating nitric oxide (NO) signaling and has been considered mainly as a non-enzymatic reaction. S-nitrosylation is regulated by the intracellular NO level that is tightly controlled by S-nitrosoglutathione reductase (GSNOR). However, the molecular mechanisms regulating S-nitrosylation selectivity remain elusive. Here, we characterize an Arabidopsis "repressor of" gsnor1 (rog1) mutation that specifically suppresses the gsnor1 mutant phenotype. ROG1, identical to the non-canonical catalase, CAT3, is a transnitrosylase that specifically modifies GSNOR1 at Cys-10. The transnitrosylase activity of ROG1 is regulated by a unique and highly conserved Cys-343 residue. A ROG1C343T mutant displays increased catalase but decreased transnitrosylase activities. Consistent with these results, the rog1 mutation compromises responses to NO under both normal and stress conditions. We propose that ROG1 functions as a transnitrosylase to regulate the NO-based redox signaling in plants.
Collapse
Affiliation(s)
- Lichao Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianpeng Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiliang Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ni Zhan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yansha Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Ren
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng 475001, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Biotic Interactions, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
35
|
Santos AI, Lourenço AS, Simão S, Marques da Silva D, Santos DF, Onofre de Carvalho AP, Pereira AC, Izquierdo-Álvarez A, Ramos E, Morato E, Marina A, Martínez-Ruiz A, Araújo IM. Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics. Redox Biol 2020; 32:101457. [PMID: 32088623 PMCID: PMC7038503 DOI: 10.1016/j.redox.2020.101457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) is well established as a regulator of neurogenesis. NO increases the proliferation of neural stem cells (NSC), and is essential for hippocampal injury-induced neurogenesis following an excitotoxic lesion. One of the mechanisms underlying non-classical NO cell signaling is protein S-nitrosylation. This post-translational modification consists in the formation of a nitrosothiol group (R-SNO) in cysteine residues, which can promote formation of other oxidative modifications in those cysteine residues. S-nitrosylation can regulate many physiological processes, including neuronal plasticity and neurogenesis. In this work, we aimed to identify S-nitrosylation targets of NO that could participate in neurogenesis. In NSC, we identified a group of proteins oxidatively modified using complementary techniques of thiol redox proteomics. S-nitrosylation of some of these proteins was confirmed and validated in a seizure mouse model of hippocampal injury and in cultured hippocampal stem cells. The identified S-nitrosylated proteins are involved in the ERK/MAPK pathway and may be important targets of NO to enhance the proliferation of NSC.
Collapse
Affiliation(s)
- Ana Isabel Santos
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-527, Coimbra, Portugal
| | - Ana Sofia Lourenço
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal; Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-527, Coimbra, Portugal
| | - Sónia Simão
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | - Dorinda Marques da Silva
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | - Daniela Filipa Santos
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal
| | | | - Ana Catarina Pereira
- Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) & Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) & Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain; Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28009, Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - Inês Maria Araújo
- Centre for Biomedical Research, CBMR, University of Algarve, 8005-139, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, University of Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
36
|
Azevedo C, Desfougères Y, Jiramongkol Y, Partington H, Trakansuebkul S, Singh J, Steck N, Jessen HJ, Saiardi A. Development of a yeast model to study the contribution of vacuolar polyphosphate metabolism to lysine polyphosphorylation. J Biol Chem 2020; 295:1439-1451. [PMID: 31844018 PMCID: PMC7008358 DOI: 10.1074/jbc.ra119.011680] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
A recently-discovered protein post-translational modification, lysine polyphosphorylation (K-PPn), consists of the covalent attachment of inorganic polyphosphate (polyP) to lysine residues. The nonenzymatic nature of K-PPn means that the degree of this modification depends on both polyP abundance and the amino acids surrounding the modified lysine. K-PPn was originally discovered in budding yeast (Saccharomyces cerevisiae), in which polyP anabolism and catabolism are well-characterized. However, yeast vacuoles accumulate large amounts of polyP, and upon cell lysis, the release of the vacuolar polyP could nonphysiologically cause K-PPn of nuclear and cytosolic targets. Moreover, yeast vacuoles possess two very active endopolyphosphatases, Ppn1 and Ppn2, that could have opposing effects on the extent of K-PPn. Here, we characterized the contribution of vacuolar polyP metabolism to K-PPn of two yeast proteins, Top1 (DNA topoisomerase 1) and Nsr1 (nuclear signal recognition 1). We discovered that whereas Top1-targeting K-PPn is only marginally affected by vacuolar polyP metabolism, Nsr1-targeting K-PPn is highly sensitive to the release of polyP and of endopolyphosphatases from the vacuole. Therefore, to better study K-PPn of cytosolic and nuclear targets, we constructed a yeast strain devoid of vacuolar polyP by targeting the exopolyphosphatase Ppx1 to the vacuole and concomitantly depleting the two endopolyphosphatases (ppn1Δppn2Δ, vt-Ppx1). This strain enabled us to study K-PPn of cytosolic and nuclear targets without the interfering effects of cell lysis on vacuole polyP and of endopolyphosphatases. Furthermore, we also define the fundamental nature of the acidic amino acid residues to the K-PPn target domain.
Collapse
Affiliation(s)
- Cristina Azevedo
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| | - Yann Desfougères
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Yannasittha Jiramongkol
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Hamish Partington
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Sasanan Trakansuebkul
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Steck
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
37
|
Anticancer Activity of Liquid Treated with Microwave Plasma-Generated Gas through Macrophage Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2946820. [PMID: 32089766 PMCID: PMC7013299 DOI: 10.1155/2020/2946820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Abstract
Reactive nitrogen species (RNS), including nitric oxide (NO·) has been known as one of the key regulatory molecules in the immune system. In this study, we generated RNS-containing water treated with microwave plasma-generated gas in which the major component was nitric oxide (PGNO), and the effect on the macrophage polarization was investigated. The RNS-containing water was diluted in complete cell culture media (PGNO-solution) into the concentration that did not induce cell death in RAW 264.7 murine macrophages. PGNO-solution upregulates M1-type macrophage activation and downregulates the characteristics of M2-type macrophage at the transcriptional level. In addition, the PGNO-solution-treated M2-like macrophages had higher potential in killing melanoma cells. The anticancer potential was also investigated in a syngeneic mouse model. Our results show that PGNO-solution has the potential to convert the fate of macrophages, suggesting PGNO-solution treatment as a supportive method for controlling the function of macrophages under the tumor microenvironment.
Collapse
|
38
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
39
|
Arnaiz A, Rosa-Diaz I, Romero-Puertas MC, Sandalio LM, Diaz I. Nitric Oxide, an Essential Intermediate in the Plant-Herbivore Interaction. FRONTIERS IN PLANT SCIENCE 2020; 11:620086. [PMID: 33488661 PMCID: PMC7819962 DOI: 10.3389/fpls.2020.620086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/24/2020] [Indexed: 05/02/2023]
Abstract
Reactive nitrogen species (RNS), mainly nitric oxide (NO), are highly reactive molecules with a prominent role in plant response to numerous stresses including herbivores, although the information is still very limited. This perspective article compiles the current progress in determining the NO function, as either a signal molecule, a metabolic intermediate, or a toxic oxidative product, as well as the contribution of molecules associated with NO metabolic pathway in the generation of plant defenses against phytophagous arthropods, in particular to insects and acari.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Irene Rosa-Diaz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Maria C. Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Luisa M. Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Isabel Diaz,
| |
Collapse
|
40
|
Kopacz A, Klóska D, Proniewski B, Cysewski D, Personnic N, Piechota-Polańczyk A, Kaczara P, Zakrzewska A, Forman HJ, Dulak J, Józkowicz A, Grochot-Przęczek A. Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells. Redox Biol 2020; 28:101304. [PMID: 31491600 PMCID: PMC6731384 DOI: 10.1016/j.redox.2019.101304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Premature senescence, a death escaping pathway for cells experiencing stress, is conducive to aging and cardiovascular diseases. The molecular switch between senescent and apoptotic fate remains, however, poorly recognized. Nrf2 is an important transcription factor orchestrating adaptive response to cellular stress. Here, we show that both human primary endothelial cells (ECs) and murine aortas lacking Nrf2 signaling are senescent but unexpectedly do not encounter damaging oxidative stress. Instead, they exhibit markedly increased S-nitrosation of proteins. A functional role of S-nitrosation is protection of ECs from death by inhibition of NOX4-mediated oxidative damage and redirection of ECs to premature senescence. S-nitrosation and senescence are mediated by Keap1, a direct binding partner of Nrf2, which colocalizes and precipitates with nitric oxide synthase (NOS) and transnitrosating protein GAPDH in ECs devoid of Nrf2. We conclude that the overabundance of this "unrestrained" Keap1 determines the fate of ECs by regulation of S-nitrosation and propose that Keap1/GAPDH/NOS complex may serve as an enzymatic machinery for S-nitrosation in mammalian cells.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Klóska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106, Warsaw, Poland
| | - Nicolas Personnic
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Aleksandra Piechota-Polańczyk
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
41
|
López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2019; 176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain.
| |
Collapse
|
42
|
Feng J, Chen L, Zuo J. Protein S-Nitrosylation in plants: Current progresses and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1206-1223. [PMID: 30663237 DOI: 10.1111/jipb.12780] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/14/2019] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule regulating diverse biological processes in all living organisms. A major physiological function of NO is executed via protein S-nitrosylation, a redox-based posttranslational modification by covalently adding a NO molecule to a reactive cysteine thiol of a target protein. S-nitrosylation is an evolutionarily conserved mechanism modulating multiple aspects of cellular signaling. During the past decade, significant progress has been made in functional characterization of S-nitrosylated proteins in plants. Emerging evidence indicates that protein S-nitrosylation is ubiquitously involved in the regulation of plant development and stress responses. Here we review current understanding on the regulatory mechanisms of protein S-nitrosylation in various biological processes in plants and highlight key challenges in this field.
Collapse
Affiliation(s)
- Jian Feng
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Sandalio LM, Gotor C, Romero LC, Romero-Puertas MC. Multilevel Regulation of Peroxisomal Proteome by Post-Translational Modifications. Int J Mol Sci 2019; 20:E4881. [PMID: 31581473 PMCID: PMC6801620 DOI: 10.3390/ijms20194881] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes, which are ubiquitous organelles in all eukaryotes, are highly dynamic organelles that are essential for development and stress responses. Plant peroxisomes are involved in major metabolic pathways, such as fatty acid β-oxidation, photorespiration, ureide and polyamine metabolism, in the biosynthesis of jasmonic, indolacetic, and salicylic acid hormones, as well as in signaling molecules such as reactive oxygen and nitrogen species (ROS/RNS). Peroxisomes are involved in the perception of environmental changes, which is a complex process involving the regulation of gene expression and protein functionality by protein post-translational modifications (PTMs). Although there has been a growing interest in individual PTMs in peroxisomes over the last ten years, their role and cross-talk in the whole peroxisomal proteome remain unclear. This review provides up-to-date information on the function and crosstalk of the main peroxisomal PTMs. Analysis of whole peroxisomal proteomes shows that a very large number of peroxisomal proteins are targeted by multiple PTMs, which affect redox balance, photorespiration, the glyoxylate cycle, and lipid metabolism. This multilevel PTM regulation could boost the plasticity of peroxisomes and their capacity to regulate metabolism in response to environmental changes.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Luis C Romero
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Maria C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| |
Collapse
|
44
|
S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8090404. [PMID: 31533268 PMCID: PMC6769533 DOI: 10.3390/antiox8090404] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
Collapse
|
45
|
Martínez-Medina A, Pescador L, Terrón-Camero LC, Pozo MJ, Romero-Puertas MC. Nitric oxide in plant-fungal interactions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4489-4503. [PMID: 31197351 DOI: 10.1093/jxb/erz289] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/05/2019] [Indexed: 05/17/2023]
Abstract
Whilst many interactions with fungi are detrimental for plants, others are beneficial and result in improved growth and stress tolerance. Thus, plants have evolved sophisticated mechanisms to restrict pathogenic interactions while promoting mutualistic relationships. Numerous studies have demonstrated the importance of nitric oxide (NO) in the regulation of plant defence against fungal pathogens. NO triggers a reprograming of defence-related gene expression, the production of secondary metabolites with antimicrobial properties, and the hypersensitive response. More recent studies have shown a regulatory role of NO during the establishment of plant-fungal mutualistic associations from the early stages of the interaction. Indeed, NO has been recently shown to be produced by the plant after the recognition of root fungal symbionts, and to be required for the optimal control of mycorrhizal symbiosis. Although studies dealing with the function of NO in plant-fungal mutualistic associations are still scarce, experimental data indicate that different regulation patterns and functions for NO exist between plant interactions with pathogenic and mutualistic fungi. Here, we review recent progress in determining the functions of NO in plant-fungal interactions, and try to identify common and differential patterns related to pathogenic and mutualistic associations, and their impacts on plant health.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microorganism Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Leyre Pescador
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Granada, Spain
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Laura C Terrón-Camero
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María C Romero-Puertas
- Plant-Microorganism Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
46
|
Shin S, Choe J, Park Y, Jeong D, Song H, You Y, Seo D, Cho J. Artificial Control of Cell Signaling Using a Photocleavable Cobalt(III)–Nitrosyl Complex. Angew Chem Int Ed Engl 2019; 58:10126-10131. [DOI: 10.1002/anie.201903106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sangwon Shin
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| | - Jisu Choe
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| | - Youngchan Park
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
- Department of ChemistryKAIST Daejeon 34141 Republic of Korea
| | - Donghyun Jeong
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| | - Hyunjoon Song
- Department of ChemistryKAIST Daejeon 34141 Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials ScienceEwha Womans University Seoul 03760 Republic of Korea
| | - Daeha Seo
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| |
Collapse
|
47
|
Shin S, Choe J, Park Y, Jeong D, Song H, You Y, Seo D, Cho J. Artificial Control of Cell Signaling Using a Photocleavable Cobalt(III)–Nitrosyl Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sangwon Shin
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| | - Jisu Choe
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| | - Youngchan Park
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
- Department of ChemistryKAIST Daejeon 34141 Republic of Korea
| | - Donghyun Jeong
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| | - Hyunjoon Song
- Department of ChemistryKAIST Daejeon 34141 Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials ScienceEwha Womans University Seoul 03760 Republic of Korea
| | - Daeha Seo
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials ScienceDGIST Daegu 42988 Republic of Korea
| |
Collapse
|
48
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
49
|
Protein S-Nitrosylation: Enzymatically Controlled, but Intrinsically Unstable, Post-translational Modification. Mol Cell 2018; 69:351-353. [PMID: 29395059 DOI: 10.1016/j.molcel.2018.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reports by Seth et al. (2018) and Wolhuter et al. (2018) in this issue of Molecular Cell highlight the enzymatic synthesis, functionality, and propagation of S-nitrosylation-based signaling and address its low stability due to the elevated reactivity toward other cellular thiols.
Collapse
|
50
|
López-Grueso MJ, González-Ojeda R, Requejo-Aguilar R, McDonagh B, Fuentes-Almagro CA, Muntané J, Bárcena JA, Padilla CA. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biol 2018; 21:101049. [PMID: 30639960 PMCID: PMC6327914 DOI: 10.1016/j.redox.2018.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental model. Grx1 or Trx1 silencing caused conspicuous changes in the redox proteome reflected by significant changes in the reduced/oxidized ratios of specific Cys's including several glycolytic enzymes. Cys91 of peroxiredoxin-6 (PRDX6) and Cys153 of phosphoglycerate mutase-1 (PGAM1), that are known to be involved in progression of tumor growth, are reported here for the first time as specific targets of Grx1. A group of proteins increased their CysRED/CysOX ratio upon Trx1 and/or Grx1 silencing, including caspase-3 Cys163, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Cys247 and triose-phosphate isomerase (TPI) Cys255 likely by enhancement of NOS3 auto-oxidation. The activities of several glycolytic enzymes were also significantly affected. Glycolysis metabolic flux increased upon Trx1 silencing, whereas silencing of Grx1 had the opposite effect. Diversion of metabolic fluxes toward synthesis of fatty acids and phospholipids was observed in siRNA-Grx1 treated cells, while siRNA-Trx1 treated cells showed elevated levels of various sphingomyelins and ceramides and signs of increased protein degradation. Glutathione synthesis was stimulated by both treatments. These data indicate that Trx and Grx have both, common and specific protein Cys redox targets and that down regulation of either redoxin has markedly different metabolic outcomes. They reflect the delicate sensitivity of redox equilibrium to changes in any of the elements involved and the difficulty of forecasting metabolic responses to redox environmental changes. Trx1 and Grx1 Cys redox targets are abundant among Glycolytic enzymes. PRDX6-Cys91 and PGAM-Cys153 are specific targets of Grx1. Down regulation of thioredoxin and glutaredoxin have different metabolic outcomes. Glutathione synthesis and membrane lipid composition are sensitive to Trx1 and Grx1 down regulation. Redoxins down regulation also induce target Cys reductive changes under NOS3 overexpression.
Collapse
Affiliation(s)
- M J López-Grueso
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - R González-Ojeda
- Institute of Biomedicine of Seville (IBIS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville, Seville, Spain
| | - R Requejo-Aguilar
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - B McDonagh
- Dept. of Physiology, School of Medicine, NUI Galway, Ireland
| | | | - J Muntané
- Dept. of Physiology, School of Medicine, NUI Galway, Ireland
| | - J A Bárcena
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
| | - C A Padilla
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| |
Collapse
|