1
|
Mahapatra C, Thakkar R, Kumar R. Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1172. [PMID: 39456426 PMCID: PMC11504047 DOI: 10.3390/antiox13101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses, significantly affects cellular function and viability. It plays a pivotal role in modulating membrane potentials, particularly action potentials (APs), essential for properly functioning excitable cells such as neurons, smooth muscles, pancreatic beta cells, and myocytes. The interaction between oxidative stress and AP dynamics is crucial for understanding the pathophysiology of various conditions, including neurodegenerative diseases, cardiac arrhythmias, and ischemia-reperfusion injuries. This review explores how oxidative stress influences APs, focusing on alterations in ion channel biophysics, gap junction, calcium dynamics, mitochondria, and Interstitial Cells of Cajal functions. By integrating current research, we aim to elucidate how oxidative stress contributes to disease progression and discuss potential therapeutic interventions targeting this interaction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ravindra Thakkar
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Becker S, Swoboda A, Siemer H, Schimmelpfennig S, Sargin S, Shahin V, Schwab A, Najder K. Membrane potential dynamics of C5a-stimulated neutrophil granulocytes. Pflugers Arch 2024; 476:1007-1018. [PMID: 38613695 PMCID: PMC11139730 DOI: 10.1007/s00424-024-02947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Neutrophil granulocytes play a crucial role in host defense against invading pathogens and in inflammatory diseases. The aim of this study was to elucidate membrane potential dynamics during the initial phase of neutrophil activation and its relation to migration and production of reactive oxygen species (ROS). We performed ROS production measurements of neutrophils from healthy C57BL/6J mice after TNFα-priming and/or C5a stimulation. The actin cytoskeleton was visualized with fluorescence microscopy. Furthermore, we combined migration assays and measurements of membrane potential dynamics after stimulating unprimed and/or TNFα-primed neutrophils with C5a. We show that C5a has a concentration-dependent effect on ROS production and chemokinetic migration. Chemokinetic migration and chemotaxis are impaired at C5a concentrations that induce ROS production. The actin cytoskeleton of unstimulated and of ROS-producing neutrophils is not distributed in a polarized way. Inhibition of the phagocytic NADPH oxidase NOX2 with diphenyleneiodonium (DPI) leads to a polarized distribution of the actin cytoskeleton and rescues chemokinetic migration of primed and C5a-stimulated neutrophils. Moreover, C5a evokes a pronounced depolarization of the cell membrane potential by 86.6 ± 4.2 mV starting from a resting membrane potential of -74.3 ± 0.7 mV. The C5a-induced depolarization occurs almost instantaneously (within less than one minute) in contrast to the more gradually developing depolarization induced by PMA (lag time of 3-4 min). This initial depolarization is accompanied by a decrease of the migration velocity. Collectively, our results show that stimulation with C5a evokes parallel changes in membrane potential dynamics, neutrophil ROS production and motility. Notably, the amplitude of membrane potential dynamics is comparable to that of excitable cells.
Collapse
Affiliation(s)
- Stina Becker
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Aljoscha Swoboda
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Henrik Siemer
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | | | - Sarah Sargin
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
| | - Karolina Najder
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
3
|
Liu P, Yang Z, Wang Y, Sun A. Role of STIM1 in the Regulation of Cardiac Energy Substrate Preference. Int J Mol Sci 2023; 24:13188. [PMID: 37685995 PMCID: PMC10487555 DOI: 10.3390/ijms241713188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The heart requires a variety of energy substrates to maintain proper contractile function. Glucose and long-chain fatty acids (FA) are the major cardiac metabolic substrates under physiological conditions. Upon stress, a shift of cardiac substrate preference toward either glucose or FA is associated with cardiac diseases. For example, in pressure-overloaded hypertrophic hearts, there is a long-lasting substrate shift toward glucose, while in hearts with diabetic cardiomyopathy, the fuel is switched toward FA. Stromal interaction molecule 1 (STIM1), a well-established calcium (Ca2+) sensor of endoplasmic reticulum (ER) Ca2+ store, is increasingly recognized as a critical player in mediating both cardiac hypertrophy and diabetic cardiomyopathy. However, the cause-effect relationship between STIM1 and glucose/FA metabolism and the possible mechanisms by which STIM1 is involved in these cardiac metabolic diseases are poorly understood. In this review, we first discussed STIM1-dependent signaling in cardiomyocytes and metabolic changes in cardiac hypertrophy and diabetic cardiomyopathy. Second, we provided examples of the involvement of STIM1 in energy metabolism to discuss the emerging role of STIM1 in the regulation of energy substrate preference in metabolic cardiac diseases and speculated the corresponding underlying molecular mechanisms of the crosstalk between STIM1 and cardiac energy substrate preference. Finally, we briefly discussed and presented future perspectives on the possibility of targeting STIM1 to rescue cardiac metabolic diseases. Taken together, STIM1 emerges as a key player in regulating cardiac energy substrate preference, and revealing the underlying molecular mechanisms by which STIM1 mediates cardiac energy metabolism could be helpful to find novel targets to prevent or treat cardiac metabolic diseases.
Collapse
Affiliation(s)
- Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhuli Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Shin S, Gombedza FC, Awuah Boadi E, Yiu AJ, Roy SK, Bandyopadhyay BC. Reduction of TRPC1/TRPC3 mediated Ca 2+-signaling protects oxidative stress-induced COPD. Cell Signal 2023; 107:110681. [PMID: 37062436 PMCID: PMC10542863 DOI: 10.1016/j.cellsig.2023.110681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Oxidative stress is a predisposing factor in Chronic Obstructive Pulmonary Disease (COPD). Specifically, pulmonary epithelial (PE) cells reduce antioxidant capacity during COPD because of the continuous production of reactive oxygen species (ROS). However, the molecular pathogenesis that governs such ROS activity is unclear. Here we show that the dysregulation of intracellular calcium concentration ([Ca2+]i) in PE cells from COPD patients, compared to the healthy PE cells, is associated with the robust functional expressions of Transient Receptor Potential Canonical (TRPC)1 and TRPC3 channels, and Ca2+ entry (SOCE) components, Stromal Interaction Molecule 1 (STIM1) and ORAI1 channels. Additionally, the elevated expression levels of fibrotic, inflammatory, oxidative, and apoptotic markers in cells from COPD patients suggest detrimental pathway activation, thereby reducing the ability of lung remodeling. To further delineate the mechanism, we used human lung epithelial cell line, A549, since the behavior of SOCE and the expression patterns of TRPC1/C3, STIM1, and ORAI1 were much like PE cells. Notably, the knockdown of TRPC1/C3 in A549 cells substantially reduced the SOCE-induced [Ca2+]i rise, and reversed the ROS-mediated oxidative, fibrotic, inflammatory, and apoptotic responses, thus confirming the role of TRPC1/C3 in SOCE driven COPD-like condition. Higher TRPC1/C3, STIM1, and ORAI1 expressions, along with a greater Ca2+ entry, via SOCE in ROS-induced A549 cells, led to the rise in oxidative, fibrotic, inflammatory, and apoptotic gene expression, specifically through the extracellular signal-regulated kinase (ERK) pathway. Abatement of TRPC1 and/or TRPC3 reduced the mobilization of [Ca2+]i and reversed apoptotic gene expression and ERK activation, signifying the involvement of TRPC1/C3. Together these data suggest that TRPC1/C3 and SOCE facilitate the COPD condition through ROS-mediated cell death, thus implicating their likely roles as potential therapeutic targets for COPD. SUMMARY: Alterations in Ca2+ signaling modalities in normal pulmonary epithelial cells exhibit COPD through oxidative stress and cellular injury, compromising repair, which was alleviated through inhibition of store-operated calcium entry. SUBJECT AREA: Calcium, ROS, Cellular signaling, lung disease.
Collapse
Affiliation(s)
- Samuel Shin
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Farai C Gombedza
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Eugenia Awuah Boadi
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Allen J Yiu
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Sanjit K Roy
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Bidhan C Bandyopadhyay
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America.
| |
Collapse
|
5
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
6
|
Endoplasmic Reticulum Stress Signaling and Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232315186. [PMID: 36499512 PMCID: PMC9740965 DOI: 10.3390/ijms232315186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Besides protein processing, the endoplasmic reticulum (ER) has several other functions such as lipid synthesis, the transfer of molecules to other cellular compartments, and the regulation of Ca2+ homeostasis. Before leaving the organelle, proteins must be folded and post-translationally modified. Protein folding and revision require molecular chaperones and a favorable ER environment. When in stressful situations, ER luminal conditions or chaperone capacity are altered, and the cell activates signaling cascades to restore a favorable folding environment triggering the so-called unfolded protein response (UPR) that can lead to autophagy to preserve cell integrity. However, when the UPR is disrupted or insufficient, cell death occurs. This review examines the links between UPR signaling, cell-protective responses, and death following ER stress with a particular focus on those mechanisms that operate in neurons.
Collapse
|
7
|
β-carotene alleviates LPS-induced inflammation through regulating STIM1/ORAI1 expression in bovine mammary epithelial cells. Int Immunopharmacol 2022; 113:109377. [DOI: 10.1016/j.intimp.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
8
|
Park JM, Do VQ, Seo YS, Kim HJ, Nam JH, Yin MZ, Kim HJ, Kim SJ, Griendling KK, Lee MY. NADPH Oxidase 1 Mediates Acute Blood Pressure Response to Angiotensin II by Contributing to Calcium Influx in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2022; 42:e117-e130. [PMID: 35354309 DOI: 10.1161/atvbaha.121.317239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) and calcium ions (Ca2+) are among the major effectors of Ang II (angiotensin II) in vascular smooth muscle cells. ROS are related to Ca2+ signaling or contraction induced by Ang II, but little is known about their detailed functions. Here, NOX (NADPH oxidase), a major ROS source responsive to Ang II, was investigated regarding its contribution to Ca2+ signaling. METHODS Vascular smooth muscle cells were primary cultured from rat aorta. Ca2+ and ROS were monitored mainly using fura-2 and HyPer family probes' respectively. Signals activating NOX were examined with relevant pharmacological inhibitors and genetic manipulation techniques. RESULTS Ang II-induced ROS generation was found to be biphasic: the first phase of ROS production, which was mainly mediated by NOX1, was small and transient, preceding a rise in Ca2+, and the second phase of ROS generation, mediated by NOX1 and NOX4, was slow but sizeable, continuing over tens of minutes. NOX1-derived superoxide in the first phase is required for Ca2+ influx through nonselective cation channels. AT1R (Ang II type 1 receptor)-Gβγ-PI3Kγ (phosphoinositide 3-kinase γ) signaling pathway was responsible for the rapid activation of NOX1 in the first phase, while in the second phase, NOX1 was further activated by a separate AT1R-Gαq/11-PLC (phospholipase C)-PKCβ (protein kinase C β) signaling axis. Consistent with these observations, aortas from NOX1-knockout mice exhibited reduced contractility in response to Ang II, and thus the acute pressor response to Ang II was also attenuated in NOX1-knockout mice. CONCLUSIONS NOX1 mediates Ca2+ signal generation and thereby contributes to vascular contraction and blood pressure elevation by Ang II.
Collapse
Affiliation(s)
- Jung-Min Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea (J.-M.P., V.Q.D., Y.-S.S., M.-Y.L.)
| | - Van Quan Do
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea (J.-M.P., V.Q.D., Y.-S.S., M.-Y.L.)
| | - Yoon-Seok Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea (J.-M.P., V.Q.D., Y.-S.S., M.-Y.L.)
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea (H.J.K., J.H.N.)
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea (H.J.K., J.H.N.)
| | - Ming Zhe Yin
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea (M.Z.Y., H.J.K., S.J.K.)
| | - Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea (M.Z.Y., H.J.K., S.J.K.)
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea (M.Z.Y., H.J.K., S.J.K.)
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (K.K.G.)
| | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea (J.-M.P., V.Q.D., Y.-S.S., M.-Y.L.)
| |
Collapse
|
9
|
Al-Hakeim HK, Al-Jassas HK, Morris G, Maes M. Increased ACE2, sRAGE, and Immune Activation, but Lowered Calcium and Magnesium in COVID-19. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:32-43. [PMID: 35307003 DOI: 10.2174/2772270816666220318103929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The characterization of new biomarkers that could help externally validate the diagnosis of COVID-19 and optimize treatments is extremely important. Many studies have established changes in immune-inflammatory and antibody levels, but few studies measured the soluble receptor for the advanced glycation end product (sRAGE), angiotensin-converting enzyme 2 (ACE2), calcium, and magnesium in COVID-19. OBJECTIVE To evaluate serum advanced glycation end-product receptor (sRAGE) and angiotensin converting enzyme (ACE)2 and peripheral oxygen saturation (SpO2) and chest CT scan abnormalities (CCTA) in COVID-19. METHODS sRAGE, ACE2, interleukin (IL)-6, IL-10, C-reactive protein (CRP), calcium, magnesium, and albumin were measured in 60 COVID-19 patients and 30 healthy controls. RESULTS COVID-19 is characterized by significantly increased IL-6, CRP, IL-10, sRAGE, ACE2, and lowered SpO2, albumin, magnesium, and calcium. COVID-19 with CCTAs showed lower SpO2 and albumin. SpO2 was significantly inversely correlated with IL-6, IL-10, CRP, sRAGE, and ACE2, and positively with albumin, magnesium, and calcium. Neural networks showed that a combination of calcium, IL-6, CRP, and sRAGE yielded an accuracy of 100% in detecting COVID-19 patients, with calcium being the most important predictor followed by IL-6 and CRP. Patients with positive IgG results showed a significant elevation in the serum level of IL-6, sRAGE, and ACE2 compared to the negatively IgG patient subgroup. CONCLUSION The results show that immune-inflammatory and RAGE pathways biomarkers may be used as an external validating criterion for the diagnosis of COVID-19. Those pathways coupled with lowered SpO2, calcium, and magnesium are drug targets that may help reduce the consequences of COVID-19.
Collapse
Affiliation(s)
| | | | - Gerwyn Morris
- School of Medicine, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia
| | - Michael Maes
- School of Medicine, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Humer C, Romanin C, Höglinger C. Highlighting the Multifaceted Role of Orai1 N-Terminal- and Loop Regions for Proper CRAC Channel Functions. Cells 2022; 11:371. [PMID: 35159181 PMCID: PMC8834118 DOI: 10.3390/cells11030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Orai1, the Ca2+-selective pore in the plasma membrane, is one of the key components of the Ca2+release-activated Ca2+ (CRAC) channel complex. Activated by the Ca2+ sensor in the endoplasmic reticulum (ER) membrane, stromal interaction molecule 1 (STIM1), via direct interaction when ER luminal Ca2+ levels recede, Orai1 helps to maintain Ca2+ homeostasis within a cell. It has already been proven that the C-terminus of Orai1 is indispensable for channel activation. However, there is strong evidence that for CRAC channels to function properly and maintain all typical hallmarks, such as selectivity and reversal potential, additional parts of Orai1 are needed. In this review, we focus on these sites apart from the C-terminus; namely, the second loop and N-terminus of Orai1 and on their multifaceted role in the functioning of CRAC channels.
Collapse
Affiliation(s)
| | | | - Carmen Höglinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (C.R.)
| |
Collapse
|
11
|
Chemogenetic approaches to dissect the role of H2O2 in redox-dependent pathways using genetically encoded biosensors. Biochem Soc Trans 2022; 50:335-345. [PMID: 35015078 DOI: 10.1042/bst20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Chemogenetic tools are recombinant enzymes that can be targeted to specific organelles and tissues. The provision or removal of the enzyme substrate permits control of its biochemical activities. Yeast-derived enzyme D-amino acid oxidase (DAAO) represents the first of its kind for a substrate-based chemogenetic approach to modulate H2O2 concentrations within cells. Combining these powerful enzymes with multiparametric imaging methods exploiting genetically encoded biosensors has opened new lines of investigations in life sciences. In recent years, the chemogenetic DAAO approach has proven beneficial to establish a new role for (patho)physiological oxidative stress on redox-dependent signaling and metabolic pathways in cultured cells and animal model systems. This mini-review covers established or emerging methods and assesses newer approaches exploiting chemogenetic tools combined with genetically encoded biosensors.
Collapse
|
12
|
Johnson J, Blackman R, Gross S, Soboloff J. Control of STIM and Orai function by post-translational modifications. Cell Calcium 2022; 103:102544. [PMID: 35151050 PMCID: PMC8960353 DOI: 10.1016/j.ceca.2022.102544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Store-operated calcium entry (SOCE) is mediated by the endoplasmic reticulum (ER) Ca2+ sensors stromal interaction molecules (STIM1 and STIM2) and the plasma membrane Orai (Orai1, Orai2, Orai3) Ca2+ channels. Although primarily regulated by ER Ca2+ content, there have been numerous studies over the last 15 years demonstrating that all 5 proteins are also regulated through post-translational modification (PTM). Focusing primarily on phosphorylation, glycosylation and redox modification, this review focuses on how PTMs modulate the key events in SOCE; Ca2+ sensing, STIM translocation, Orai interaction and/or Orai1 activation.
Collapse
|
13
|
Bassoy EY, Walch M, Martinvalet D. Reactive Oxygen Species: Do They Play a Role in Adaptive Immunity? Front Immunol 2021; 12:755856. [PMID: 34899706 PMCID: PMC8653250 DOI: 10.3389/fimmu.2021.755856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system protects the host from a plethora of microorganisms and toxins through its unique ability to distinguish self from non-self. To perform this delicate but essential task, the immune system relies on two lines of defense. The innate immune system, which is by nature fast acting, represents the first line of defense. It involves anatomical barriers, physiological factors as well as a subset of haematopoietically-derived cells generically call leukocytes. Activation of the innate immune response leads to a state of inflammation that serves to both warn about and combat the ongoing infection and delivers the antigenic information of the invading pathogens to initiate the slower but highly potent and specific second line of defense, the adaptive immune system. The adaptive immune response calls on T lymphocytes as well as the B lymphocytes essential for the elimination of pathogens and the establishment of the immunological memory. Reactive oxygen species (ROS) have been implicated in many aspects of the immune responses to pathogens, mostly in innate immune functions, such as the respiratory burst and inflammasome activation. Here in this mini review, we focus on the role of ROS in adaptive immunity. We examine how ROS contribute to T-cell biology and discuss whether this activity can be extrapolated to B cells.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- International Society of Liver Surgeons (ISLS), Cankaya Ankara, Turkey.,Departments of Immunology and Cancer Biology, College of Medicine and Science, Mayo Clinic, Scottsdale, AZ, United States
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, University of Padua, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
14
|
Plasma Membrane and Organellar Targets of STIM1 for Intracellular Calcium Handling in Health and Neurodegenerative Diseases. Cells 2021; 10:cells10102518. [PMID: 34685498 PMCID: PMC8533710 DOI: 10.3390/cells10102518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Located at the level of the endoplasmic reticulum (ER) membrane, stromal interacting molecule 1 (STIM1) undergoes a complex conformational rearrangement after depletion of ER luminal Ca2+. Then, STIM1 translocates into discrete ER-plasma membrane (PM) junctions where it directly interacts with and activates plasma membrane Orai1 channels to refill ER with Ca2+. Furthermore, Ca2+ entry due to Orai1/STIM1 interaction may induce canonical transient receptor potential channel 1 (TRPC1) translocation to the plasma membrane, where it is activated by STIM1. All these events give rise to store-operated calcium entry (SOCE). Besides the main pathway underlying SOCE, which mainly involves Orai1 and TRPC1 activation, STIM1 modulates many other plasma membrane proteins in order to potentiate the influxof Ca2+. Furthermore, it is now clear that STIM1 may inhibit Ca2+ currents mediated by L-type Ca2+ channels. Interestingly, STIM1 also interacts with some intracellular channels and transporters, including nuclear and lysosomal ionic proteins, thus orchestrating organellar Ca2+ homeostasis. STIM1 and its partners/effectors are significantly modulated in diverse acute and chronic neurodegenerative conditions. This highlights the importance of further disclosing their cellular functions as they might represent promising molecular targets for neuroprotection.
Collapse
|
15
|
Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis. Cells 2021; 10:cells10092195. [PMID: 34571844 PMCID: PMC8468463 DOI: 10.3390/cells10092195] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria associated membranes (MAM), which are the contact sites between endoplasmic reticulum (ER) and mitochondria, have emerged as an important hub for signaling molecules to integrate the cellular and organelle homeostasis, thus facilitating the adaptation of energy metabolism to nutrient status. This review explores the dynamic structural and functional features of the MAM and summarizes the various abnormalities leading to the impaired insulin sensitivity and metabolic diseases.
Collapse
|
16
|
Wang WA, Demaurex N. Proteins Interacting with STIM1 and Store-Operated Ca 2+ Entry. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:51-97. [PMID: 34050862 DOI: 10.1007/978-3-030-67696-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) interacts with ORAI Ca2+ channels at the plasma membrane to regulate immune and muscle cell function. The conformational changes underlying STIM1 activation, translocation, and ORAI1 trapping and gating, are stringently regulated by post-translational modifications and accessory proteins. Here, we review the recent progress in the identification and characterization of ER and cytosolic proteins interacting with STIM1 to control its activation and deactivation during store-operated Ca2+ entry (SOCE).
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Dahiya P, Datta D, Hussain MA, Verma G, Shelly A, Mehta P, Mazumder S. The coordinated outcome of STIM1-Orai1 and superoxide signalling is crucial for headkidney macrophage apoptosis and clearance of Mycobacterium fortuitum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103800. [PMID: 32771347 DOI: 10.1016/j.dci.2020.103800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms underlying M. fortuitum-induced pathogenesis remains elusive. Using headkidney macrophages (HKM) from Clarias gariepinus, we report that TLR-2-mediated internalization of M. fortuitum is imperative to the induction of pathogenic effects. Inhibiting TLR-2 signalling alleviated HKM apoptosis, thereby favouring bacterial survival. Additionally, TLR-2-mediated cytosolic calcium (Ca2+)c elevation was instrumental for eliciting ER-stress in infected HKM. ER-stress triggered the activation of membrane-proximal calcium entry channels comprising stromal interaction molecule 1 (STIM1) and calcium-release activated calcium channel 1 (Orai1). RNAi studies suggested STIM1-Orai1 signalling initiate calpain-mediated cleavage of nitric oxide synthase interacting protein, prompting the release of pro-apoptotic nitric oxide. Inhibiting STIM1-Orai1 signalling attenuated superoxide production (O2•-) and vice versa. We conclude, TLR-2-induced ER-stress triggers STIM1/Orai1 expression and that the reciprocal association between STIM1-Orai1 signalling and oxidative stress is critical for sustaining (Ca2+)c level, thereby prolonging ER-stress and maintenance of pro-oxidant rich environment to induce HKM apoptosis and bacterial clearance.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Debika Datta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Gaurav Verma
- Lund University of Diabetes Centre, Lund University, Sweden, 21428, Malmo, Sweden
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Priyanka Mehta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007, India; Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110 021, India.
| |
Collapse
|
18
|
Gibhardt CS, Cappello S, Bhardwaj R, Schober R, Kirsch SA, Bonilla Del Rio Z, Gahbauer S, Bochicchio A, Sumanska M, Ickes C, Stejerean-Todoran I, Mitkovski M, Alansary D, Zhang X, Revazian A, Fahrner M, Lunz V, Frischauf I, Luo T, Ezerina D, Messens J, Belousov VV, Hoth M, Böckmann RA, Hediger MA, Schindl R, Bogeski I. Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry. Cell Rep 2020; 33:108292. [PMID: 33086068 DOI: 10.1016/j.celrep.2020.108292] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies.
Collapse
Affiliation(s)
- Christine Silvia Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabrina Cappello
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland
| | - Romana Schober
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria; Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Sonja Agnes Kirsch
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Zuriñe Bonilla Del Rio
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Stefan Gahbauer
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Bochicchio
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Magdalena Sumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Christian Ickes
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Dalia Alansary
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Xin Zhang
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Aram Revazian
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Marc Fahrner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Victoria Lunz
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Ting Luo
- VIB-VUB Center for Structural Biology, Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezerina
- VIB-VUB Center for Structural Biology, Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vsevolod Vadimovich Belousov
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany; Pirogov Russian National Research Medical University, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Rainer Arnold Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | | | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
19
|
Abstract
In 2004, PINK1 was established as a gene linked to early onset of autosomal recessive juvenile Parkinsonism. Since then, tremendous efforts allowed involving the gene product in diverse events but with a strong focus on its partnership with the protein Parkin for the degradation of damaged mitochondria through mitophagy. Yet, it is now clear that the importance of PINK1 encompasses a wider spectrum of intracellular processes. In this minireview, we highlight some of the PINK1 interplays and recent advances, including its growing involvement in immunity and also its emerging place in this era of mitochondria-organelles contact sites.
Collapse
Affiliation(s)
- Edgar Djaha Yoboue
- IRCCS Mondino Foundation, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
20
|
Yeh CH, Shen ZQ, Hsiung SY, Wu PC, Teng YC, Chou YJ, Fang SW, Chen CF, Yan YT, Kao LS, Kao CH, Tsai TF. Cisd2 is essential to delaying cardiac aging and to maintaining heart functions. PLoS Biol 2019; 17:e3000508. [PMID: 31593566 PMCID: PMC6799937 DOI: 10.1371/journal.pbio.3000508] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/18/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022] Open
Abstract
CDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes. Most strikingly, in Cisd2 transgenic mice, a persistently high level of Cisd2 is sufficient to delay cardiac aging and attenuate age-related structural defects and functional decline. In addition, it results in a younger cardiac transcriptome pattern during old age. Our findings indicate that Cisd2 plays an essential role in cardiac aging and in the heart's electromechanical functioning. They highlight Cisd2 as a novel drug target when developing therapies to delay cardiac aging and ameliorate age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (C-HY); (T-FT)
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shao-Yu Hsiung
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Chi Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ju Chou
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Su-Wen Fang
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chian-Feng Chen
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (C-HY); (T-FT)
| |
Collapse
|
21
|
TRPC1 and ORAI1 channels in colon cancer. Cell Calcium 2019; 81:59-66. [DOI: 10.1016/j.ceca.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|
22
|
Martinotti S, Laforenza U, Patrone M, Moccia F, Ranzato E. Honey-Mediated Wound Healing: H₂O₂ Entry through AQP3 Determines Extracellular Ca 2+ Influx. Int J Mol Sci 2019; 20:ijms20030764. [PMID: 30754672 PMCID: PMC6387258 DOI: 10.3390/ijms20030764] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 12/26/2022] Open
Abstract
Since Biblical times, honey has been utilized in “folk medicine”, and in recent decades the positive qualities of honey have been re-discovered and are gaining acceptance. Scientific literature states that honey has been successfully utilized on infections not responding to classic antiseptic and antibiotic therapy, because of its intrinsic H2O2 production. In our study, we demonstrated the involvement of H2O2 as a main mediator of honey regenerative effects on an immortalized human keratinocyte cell line. We observed that this extracellularly released H2O2 could pass across the plasma membrane through a specific aquaporin (i.e., AQP3). Once in the cytoplasm H2O2, in turn, induces the entry of extracellular Ca2+ through Melastatin Transient Receptor Potential 2 (TRPM2) and Orai1 channels. Honey-induced extracellular Ca2+ entry results in wound healing, which is consistent with the role played by Ca2+ signaling in tissue regeneration. This is the first report showing that honey exposure increases intracellular Ca2+ concentration ([Ca2+]i), due to H2O2 production and redox regulation of Ca2+-permeable ion channels, opening up a new horizon for the utilization of the honey as a beneficial tool.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Mauro Patrone
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | - Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Piazza Sant'Eusebio 5, 13100 Vercelli, Italy.
| |
Collapse
|
23
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
24
|
Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis 2018; 9:932. [PMID: 30224699 PMCID: PMC6141459 DOI: 10.1038/s41419-018-0996-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Parthanatos is a new form of programmed cell death. It has been recognized to be critical in cerebral ischemia–reperfusion injury, and reactive oxygen species (ROS) can induce parthanatos. Recent studies found that propofol, a widely used intravenous anesthetic agent, has an inhibitory effect on ROS and has neuroprotective in many neurological diseases. However, the functional roles and mechanisms of propofol in parthanatos remain unclear. Here, we discovered that the ROS–ER–calcium–mitochondria signal pathway mediated parthanatos and the significance of propofol in parthanatos. Next, we found that ROS overproduction would cause endoplasmic reticulum (ER) calcium release, leading to mitochondria depolarization with the loss of mitochondrial membrane potential. Mitochondria depolarization caused mitochondria to release more ROS, which, in turn, contributed to parthanatos. Also, we found that propofol inhibited parthanatos through impeding ROS overproduction, calcium release from ER, and mitochondrial depolarization in parthanatos. Importantly, our results indicated that propofol protected cerebral ischemia–reperfusion via parthanatos suppression, amelioration of mitochondria, and ER swelling. Our findings provide new insights into the mechanisms of how ER and mitochondria contribute to parthanatos. Furthermore, our studies elucidated that propofol has a vital role in parthanatos prevention in vivo and in vitro, and propofol can be a promising therapeutic approach for nerve injury patients.
Collapse
|
25
|
Bai X, Geng J, Li X, Wan J, Liu J, Zhou Z, Liu X. Long Noncoding RNA LINC01619 Regulates MicroRNA-27a/Forkhead Box Protein O1 and Endoplasmic Reticulum Stress-Mediated Podocyte Injury in Diabetic Nephropathy. Antioxid Redox Signal 2018; 29:355-376. [PMID: 29334763 DOI: 10.1089/ars.2017.7278] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Altered activities of long noncoding RNAs (lncRNAs) have been implicated in the regulation of microRNAs. microRNA-27a (miR-27a) upregulation has been shown to induce endoplasmic reticulum (ER) stress podocyte injury in diabetic nephropathy (DN). Herein, we aim to interrogate the mutually regulated network of miR-27a with long intergenic noncoding RNA 1619 (LINC01619) and the target gene. RESULTS LINC01619 downregulation was found in human DN renal biopsy tissues and contributed to proteinuria and diminished renal function. LINC01619 was expressed in podocyte cytoplasm and involved in ER stress signaling pathway. LINC01619 exerted biological function by serving as a "sponge" for miR-27a, which negatively targeted forkhead box protein O1 (FOXO1) and activated ER stress. In diabetic rats and high-glucose cultured podocytes, LINC01619 triggered oxidative stress and podocyte injuries as demonstrated by increased apoptosis, diffuse podocyte foot process effacement, and decreased renal function. Innovation and Conclusion: This study demonstrates that LINC01619 functions as a competing endogenous RNA and regulates miR-27a/FOXO1-mediated ER stress and podocyte injury in DN. Antioxid. Redox Signal. 29, 355-376.
Collapse
Affiliation(s)
- Xiaoyan Bai
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University , Guangzhou, People's Republic of China
| | - Jian Geng
- 2 Department of Pathology, Nanfang Hospital, Southern Medical University , Guangzhou, People's Republic of China
| | - Xiao Li
- 3 Department of Emergency, Nanfang Hospital, Southern Medical University , Guangzhou, People's Republic of China
| | - Jiao Wan
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University , Guangzhou, People's Republic of China
| | - Jixing Liu
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University , Guangzhou, People's Republic of China
| | - Zhanmei Zhou
- 1 Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University , Guangzhou, People's Republic of China
| | - Xiaoting Liu
- 4 Department of Pathology, King Medical Diagnostics Center , Guangzhou, People's Republic of China
| |
Collapse
|
26
|
Mitochondrial junctions with cellular organelles: Ca 2+ signalling perspective. Pflugers Arch 2018; 470:1181-1192. [PMID: 29982949 PMCID: PMC6060751 DOI: 10.1007/s00424-018-2179-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023]
Abstract
Cellular organelles form multiple junctional complexes with one another and the emerging research area dealing with such structures and their functions is undergoing explosive growth. A new research journal named “Contact” has been recently established to facilitate the development of this research field. The current consensus is to define an organellar junction by the maximal distance between the participating organelles; and the gap of 30 nm or less is considered appropriate for classifying such structures as junctions or membrane contact sites. Ideally, the organellar junction should have a functional significance, i.e. facilitate transfer of calcium, sterols, phospholipids, iron and possibly other substances between the organelles (Carrasco and Meyer in Annu Rev Biochem 80:973–1000, 2011; Csordas et al. in Trends Cell Biol 28:523–540, 2018; Phillips and Voeltz in Nat Rev Mol Cell Biol 17:69–82, 2016; Prinz in J Cell Biol 205:759–769, 2014). It is also important to note that the junction is not just a result of a random organelle collision but have active and specific formation, stabilisation and disassembly mechanisms. The nature of these mechanisms and their role in physiology/pathophysiology are the main focus of an emerging research field. In this review, we will briefly describe junctional complexes formed by cellular organelles and then focus on the junctional complexes that are formed by mitochondria with other organelles and the role of these complexes in regulating Ca2+ signalling.
Collapse
|
27
|
Castillo-Arellano JI, Guzmán-Gutiérrez SL, Ibarra-Sánchez A, Hernández-Ortega S, Nieto-Camacho A, Medina-Campos ON, Pedraza-Chaverri J, Reyes-Chilpa R, González-Espinosa C. Jacareubin inhibits FcεRI-induced extracellular calcium entry and production of reactive oxygen species required for anaphylactic degranulation of mast cells. Biochem Pharmacol 2018; 154:344-356. [PMID: 29802828 DOI: 10.1016/j.bcp.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Mast cells (MCs) are important effectors in allergic reactions since they produce a number of pre-formed and de novo synthesized pro-inflammatory compounds in response to the high affinity IgE receptor (FcεRI) crosslinking. IgE/Antigen-dependent degranulation and cytokine synthesis in MCs have been recognized as relevant pharmacological targets for the control of deleterious inflammatory reactions. Despite the relevance of allergic diseases worldwide, efficient pharmacological control of mast cell degranulation has been elusive. In this work, the xanthone jacareubin was isolated from the heartwood of the tropical tree Callophyllum brasilense, and its tridimensional structure was determined for the first time by X-ray diffraction. Also, its effects on the main activation parameters of bone marrow-derived mast cells (BMMCs) were evaluated. Jacareubin inhibited IgE/Ag-induced degranulation in a dose-response manner with an IC50 = 46 nM. It also blocked extracellular calcium influx triggered by IgE/Ag complexes and by the SERCA ATPase inhibitor thapsigargin (Thap). Inhibition of calcium entry correlated with a blockage on the reactive oxygen species (ROS) accumulation. Antioxidant capacity of jacareubin was higher than the showed by α-tocopherol and caffeic acid, but similar to trolox. Jacareubin shown inhibitory actions on xanthine oxidase, but not on NADPH oxidase (NOX) activities. In vivo, jacareubin inhibited passive anaphylactic reactions and TPA-induced edema in mice. Our data demonstrate that jacareubin is a potent natural compound able to inhibit anaphylactic degranualtion in mast cells by blunting FcεRI-induced calcium flux needed for secretion of granule content, and suggest that xanthones could be efficient anti-oxidant, antiallergic, and antiinflammatory molecules.
Collapse
Affiliation(s)
- J I Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico; Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - S L Guzmán-Gutiérrez
- Departamento de Inmunología, Catedrática CONACyT-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - A Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | | - A Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - O N Medina-Campos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - J Pedraza-Chaverri
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - R Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico.
| | - C González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico.
| |
Collapse
|
28
|
Tam KC, Ali E, Hua J, Chataway T, Barritt GJ. Evidence for the interaction of peroxiredoxin-4 with the store-operated calcium channel activator STIM1 in liver cells. Cell Calcium 2018; 74:14-28. [PMID: 29804005 DOI: 10.1016/j.ceca.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
Ca2+ entry through store-operated Ca2+ channels (SOCs) in the plasma membrane (PM) of hepatocytes plays a central role in the hormonal regulation of liver metabolism. SOCs are composed of Orai1, the channel pore protein, and STIM1, the activator protein, and are regulated by hormones and reactive oxygen species (ROS). In addition to Orai1, STIM1 also interacts with several other intracellular proteins. Most previous studies of the cellular functions of Orai1 and STIM1 have employed immortalised cells in culture expressing ectopic proteins tagged with a fluorescent polypeptide such as GFP. Little is known about the intracellular distributions of endogenous Orai1 and STIM1. The aims are to determine the intracellular distribution of endogenous Orai1 and STIM1 in hepatocytes and to identify novel STIM1 binding proteins. Subcellular fractions of rat liver were prepared by homogenisation and differential centrifugation. Orai1 and STIM1 were identified and quantified by western blot. Orai1 was found in the PM (0.03%), heavy (44%) and light (27%) microsomal fractions, and STIM1 in the PM (0.09%), and heavy (85%) and light (13%) microsomal fractions. Immunoprecipitation of STIM1 followed by LC/MS or western blot identified peroxiredoxin-4 (Prx-4) as a potential STIM1 binding protein. Prx-4 was found principally in the heavy microsomal fraction. Knockdown of Prx-4 using siRNA, or inhibition of Prx-4 using conoidin A, did not affect Ca2+ entry through SOCs but rendered SOCs susceptible to inhibition by H2O2. It is concluded that, in hepatocytes, a considerable proportion of endogenous Orai1 and STIM1 is located in the rough ER. In the rough ER, STIM1 interacts with Prx-4, and this interaction may contribute to the regulation by ROS of STIM1 and SOCs.
Collapse
Affiliation(s)
- Ka Cheung Tam
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Eunus Ali
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Jin Hua
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Tim Chataway
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Greg J Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
29
|
Mu YP, Lin DC, Zheng SY, Jiao HX, Sham JSK, Lin MJ. Transient Receptor Potential Melastatin-8 Activation Induces Relaxation of Pulmonary Artery by Inhibition of Store-Operated Calcium Entry in Normoxic and Chronic Hypoxic Pulmonary Hypertensive Rats. J Pharmacol Exp Ther 2018; 365:544-555. [PMID: 29622593 DOI: 10.1124/jpet.117.247320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by enhanced vasoconstriction and vascular remodeling, which are attributable to the alteration of Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs). It is well established that store-operated Ca2+ entry (SOCE) is augmented in PASMCs during PH and that it plays a crucial role in PH development. Our previous studies showed that the melastatin-related transient receptor potential 8 (TRPM8) is down-regulated in PASMCs of PH animal models, and activation of TRPM8 causes relaxation of pulmonary arteries (PAs). However, the mechanism of TRPM8-induced PA relaxation is unclear. Here we examined the interaction of TRPM8 and SOCE in PAs and PASMCs of normoxic and chronic hypoxic pulmonary hypertensive (CHPH) rats, a model of human group 3 PH. We found that TRPM8 was down-regulated and TRPM8-mediated cation entry was reduced in CHPH-PASMCs. Activation of TRPM8 with icilin caused concentration-dependent relaxation of cyclopiazonic acid (CPA) and endothelin-1 contracted endothelium-denuded PAs, and the effect was abolished by the SOCE antagonist Gd3+ Application of icilin to PASMCs suppressed CPA-induced Mn2+ quenching and Ca2+ entry, which was reversed by the TRPM8 antagonist N-(3-aminopropyl)-2-([(3-methylphenyl)methyl])-oxy-N-(2-thienylmethyl)benzamide hydrochloride salt (AMTB). Moreover, the inhibitory effects of icilin on SOCE in PA and PASMCs of CHPH rats were significantly augmented due to enhanced SOCE activity in PH. Our results, therefore, demonstrated a novel mechanism of TRPM8-mediated inhibition of SOCE in pulmonary vasculature. Because SOCE is important for vascular remodeling and enhanced vasoconstriction, down-regulation of TRPM8 in PASMCs of CHPH rats may minimize its inhibitory influence to allow unimpeded SOCE activity for PH development.
Collapse
Affiliation(s)
- Yun-Ping Mu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Da-Cen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Si-Yi Zheng
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Hai-Xia Jiao
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - James S K Sham
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| |
Collapse
|
30
|
Martinvalet D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis 2018; 9:336. [PMID: 29491398 PMCID: PMC5832423 DOI: 10.1038/s41419-017-0237-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity.
Collapse
Affiliation(s)
- Denis Martinvalet
- Department of Cell Physiology and Metabolism, Geneva Medical School, 1211, Geneva, Switzerland.
| |
Collapse
|
31
|
He X, Song S, Ayon RJ, Balisterieri A, Black SM, Makino A, Wier WG, Zang WJ, Yuan JXJ. Hypoxia selectively upregulates cation channels and increases cytosolic [Ca 2+] in pulmonary, but not coronary, arterial smooth muscle cells. Am J Physiol Cell Physiol 2018; 314:C504-C517. [PMID: 29351410 DOI: 10.1152/ajpcell.00272.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ca2+ signaling, particularly the mechanism via store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE), plays a critical role in the development of acute hypoxia-induced pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension. This study aimed to test the hypothesis that chronic hypoxia differentially regulates the expression of proteins that mediate SOCE and ROCE [stromal interacting molecule (STIM), Orai, and canonical transient receptor potential channel TRPC6] in pulmonary (PASMC) and coronary (CASMC) artery smooth muscle cells. The resting cytosolic [Ca2+] ([Ca2+]cyt) and the stored [Ca2+] in the sarcoplasmic reticulum were not different in CASMC and PASMC. Seahorse measurement showed a similar level of mitochondrial bioenergetics (basal respiration and ATP production) between CASMC and PASMC. Glycolysis was significantly higher in PASMC than in CASMC. The amplitudes of cyclopiazonic acid-induced SOCE and OAG-induced ROCE in CASMC are slightly, but significantly, greater than in PASMC. The frequency and the area under the curve of Ca2+ oscillations induced by ATP and histamine were also larger in CASMC than in PASMC. Na+/Ca2+ exchanger-mediated increases in [Ca2+]cyt did not differ significantly between CASMC and PASMC. The basal protein expression levels of STIM1/2, Orai1/2, and TRPC6 were higher in CASMC than in PASMC, but hypoxia (3% O2 for 72 h) significantly upregulated protein expression levels of STIM1/STIM2, Orai1/Orai2, and TRPC6 and increased the resting [Ca2+]cyt only in PASMC, but not in CASMC. The different response of essential components of store-operated and receptor-operated Ca2+ channels to hypoxia is a unique intrinsic property of PASMC, which is likely one of the important explanations why hypoxia causes pulmonary vasoconstriction and induces pulmonary vascular remodeling, but causes coronary vasodilation.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Angela Balisterieri
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - W Gil Wier
- Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| |
Collapse
|
32
|
CISD2 Haploinsufficiency Disrupts Calcium Homeostasis, Causes Nonalcoholic Fatty Liver Disease, and Promotes Hepatocellular Carcinoma. Cell Rep 2017; 21:2198-2211. [DOI: 10.1016/j.celrep.2017.10.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/24/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
|
33
|
Yoboue ED, Rimessi A, Anelli T, Pinton P, Sitia R. Regulation of Calcium Fluxes by GPX8, a Type-II Transmembrane Peroxidase Enriched at the Mitochondria-Associated Endoplasmic Reticulum Membrane. Antioxid Redox Signal 2017; 27:583-595. [PMID: 28129698 DOI: 10.1089/ars.2016.6866] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UNLABELLED Glutathione peroxidases (GPXs) are enzymes that are present in almost all organisms with the primary function of limiting peroxide accumulation. In mammals, two of the eight members (GPX7 and GPX8) reside in the endoplasmic reticulum (ER). A peculiar feature of GPX8 is the concomitant presence of a conserved N-terminal transmembrane domain (TMD) and a C-terminal KDEL-like motif for ER localization. AIMS Investigating whether and how GPX8 impacts Ca2+ homeostasis and signaling. RESULTS We show that GPX8 is enriched in mitochondria-associated membranes and regulates Ca2+ storage and fluxes. Its levels correlate with [Ca2+]ER, and cytosolic and mitochondrial Ca2+ fluxes. GPX7, which lacks a TMD, does not share these properties. Deleting or replacing the GPX8 TMD with an unrelated N-terminal membrane integration sequence abolishes all effects on Ca2+ fluxes, whereas appending the GPX8 TMD to GPX7 transfers the Ca2+-regulating properties. Innovation and Conclusion: The notion that the TMD of GPX8, in addition to its enzymatic activity, is essential for regulating Ca2+ dynamics reveals a novel level of integration between redox-related proteins and Ca2+ signaling/homeostasis. Antioxid. Redox Signal. 27, 583-595.
Collapse
Affiliation(s)
- Edgar Djaha Yoboue
- 1 Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele , Milan, Italy
| | - Alessandro Rimessi
- 2 Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara, Italy
| | - Tiziana Anelli
- 1 Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele , Milan, Italy .,3 Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Paolo Pinton
- 2 Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara, Italy
| | - Roberto Sitia
- 1 Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele , Milan, Italy .,3 Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| |
Collapse
|
34
|
Munoz FM, Zhang F, Islas-Robles A, Lau SS, Monks TJ. From the Cover: ROS-Induced Store-Operated Ca2+ Entry Coupled to PARP-1 Hyperactivation Is Independent of PARG Activity in Necrotic Cell Death. Toxicol Sci 2017; 158:444-453. [PMID: 28525621 PMCID: PMC5837598 DOI: 10.1093/toxsci/kfx106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
2,3,5-tris(Glutathion-S-yl)hydroquinone, a potent nephrotoxic and nephrocarcinogenic metabolite of benzene and hydroquinone, generates reactive oxygen species (ROS) causing DNA strand breaks and the subsequent activation of DNA repair enzymes, including poly(ADP-ribose) polymerase (PARP)-1. Under robust oxidative DNA damage, PARP-1 is hyperactivated, resulting in the depletion of NAD+ and ATP with accompanying elevations in intracellular calcium concentrations (iCa2+), and ultimately necrotic cell death. The role of Ca2+ during PARP-dependent necrotic cell death remains unclear. We therefore sought to determine the relationship between Ca2+ and PARP-1 during ROS-induced necrotic cell death in human renal proximal tubule epithelial cells (HK-2). Our experiments suggest that store-operated Ca2+ channel (SOC) entry contributes to the coupling of PARP-1 activation to increases in iCa2+ during ROS-induced cell death. Poly(ADP-ribose)glycohydrolase (PARG), which catalyzes the degradation of PARs to yield free ADP-ribose (ADPR), is known to activate Ca2+ channels such as TRPM2. However, siRNA knockdown of PARG did not restore cell viability, indicating that free ADPR is not responsible for SOC activation in HK-2 cells. The data indicate that PARP-1 and iCa2+ are coupled through activation of SOC mediated Ca2+ entry in an apparently ADPR-independent fashion; alternative PAR-mediated signaling likely contributes to PARP-dependent necrotic cell death, perhaps via PAR-mediated signaling proteins that regulate iCa2+ homeostasis.
Collapse
Affiliation(s)
- Frances M. Munoz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Fengjiao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Argel Islas-Robles
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Serrine S. Lau
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Terrence J. Monks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| |
Collapse
|
35
|
Nunes-Hasler P, Demaurex N. The ER phagosome connection in the era of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1513-1524. [PMID: 28432021 DOI: 10.1016/j.bbamcr.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis is an essential mechanism through which innate immune cells ingest foreign material that is either destroyed or used to generate and present antigens and initiate adaptive immune responses. While a role for the ER during phagosome biogenesis has been recognized, whether fusion with ER cisternae or vesicular derivatives occurs has been the source of much contention. Membrane contact sites (MCS) are tight appositions between ER membranes and various organelles that coordinate multiple functions including localized signalling, lipid transfer and trafficking. The discovery that MCS form between the ER and phagosomes now begs the question of whether MCS play a role in connecting the ER to phagosomes under different contexts. In this review, we consider the implications of MCS between the ER and phagosomes during cross-presentation and infection with intracellular pathogens. We also discuss the similarities between these contacts and those between the ER and plasma membrane and acidic organelles such as endosomes and lysosomes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
36
|
Chen TX, Xu XY, Zhao Z, Zhao FY, Gao YM, Yan XH, Wan Y. Hydrogen peroxide is a critical regulator of the hypoxia-induced alterations of store-operated Ca2+ entry into rat pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L477-L487. [DOI: 10.1152/ajplung.00138.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
To investigate the association between store-operated Ca2+ entry (SOCE) and reactive oxygen species (ROS) during hypoxia, this study determined the changes of transient receptor potential canonical 1 (TRPC1) and Orai1, two candidate proteins for store-operated Ca2+ (SOC) channels and their gate regulator, stromal interaction molecule 1 (STIM1), in a hypoxic environment and their relationship with ROS in pulmonary arterial smooth muscle cells (PASMCs). Exposure to hypoxia caused a transient Ca2+ spike and subsequent Ca2+ plateau of SOCE to be intensified in PASMCs when TRPC1, STIM1, and Orai1 were upregulated. SOCE in cells transfected with specific short hairpin RNA (shRNA) constructs was almost completely eliminated by the knockdown of TRPC1, STIM1, or Orai1 alone and was no longer affected by hypoxia exposure. Hypoxia-induced SOCE enhancement was further strengthened by PEG-SOD but was attenuated by PEG-catalase, with correlated changes to intracellular hydrogen peroxide (H2O2) levels and protein levels of TRPC1, STIM1, and Orai1. Exogenous H2O2 could mimic alterations of the interactions of STIM1 with TRPC1 and Orai1 in hypoxic cells. These findings suggest that TRPC1, STIM1, and Orai1 are essential for the initiation of SOCE in PASMCs. Hypoxia-induced ROS promoted the expression and interaction of the SOC channel molecules and their gate regulator via their converted product, H2O2.
Collapse
Affiliation(s)
- Tao-Xiang Chen
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Ya Xu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhao Zhao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fang-Yu Zhao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yi-Mei Gao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Hong Yan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yu Wan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
37
|
Ben-Kasus Nissim T, Zhang X, Elazar A, Roy S, Stolwijk JA, Zhou Y, Motiani RK, Gueguinou M, Hempel N, Hershfinkel M, Gill DL, Trebak M, Sekler I. Mitochondria control store-operated Ca 2+ entry through Na + and redox signals. EMBO J 2017; 36:797-815. [PMID: 28219928 DOI: 10.15252/embj.201592481] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/25/2016] [Accepted: 01/05/2017] [Indexed: 02/05/2023] Open
Abstract
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.
Collapse
Affiliation(s)
- Tsipi Ben-Kasus Nissim
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Assaf Elazar
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soumitra Roy
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Judith A Stolwijk
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Rajender K Motiani
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxime Gueguinou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nadine Hempel
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Michal Hershfinkel
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Israel Sekler
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
38
|
Spät A, Szanda G. The Role of Mitochondria in the Activation/Maintenance of SOCE: Store-Operated Ca 2+ Entry and Mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:257-275. [PMID: 28900919 DOI: 10.1007/978-3-319-57732-6_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria extensively modify virtually all cellular Ca2+ transport processes, and store-operated Ca2+ entry (SOCE) is no exception to this rule. The interaction between SOCE and mitochondria is complex and reciprocal, substantially altering and, ultimately, fine-tuning both capacitative Ca2+ influx and mitochondrial function. Mitochondria, owing to their considerable Ca2+ accumulation ability, extensively buffer the cytosolic Ca2+ in their vicinity. In turn, the accumulated ion is released back into the neighboring cytosol during net Ca2+ efflux. Since store depletion itself and the successive SOCE are both Ca2+-regulated phenomena, mitochondrial Ca2+ handling may have wide-ranging effects on capacitative Ca2+ influx at any given time. In addition, mitochondria may also produce or consume soluble factors known to affect store-operated channels. On the other hand, Ca2+ entering the cell during SOCE is sensed by mitochondria, and the ensuing mitochondrial Ca2+ uptake boosts mitochondrial energy metabolism and, if Ca2+ overload occurs, may even lead to apoptosis or cell death. In several cell types, mitochondria seem to be sterically excluded from the confined space that forms between the plasma membrane (PM) and endoplasmic reticulum (ER) during SOCE. This implies that high-Ca2+ microdomains comparable to those observed between the ER and mitochondria do not form here. In the following chapter, the above aspects of the many-sided SOCE-mitochondrion interplay will be discussed in greater detail.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, POB 2, 1428, Budapest, Hungary.
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Gergö Szanda
- Department of Physiology, Semmelweis University Medical School, POB 2, 1428, Budapest, Hungary
| |
Collapse
|
39
|
Niemeyer BA. The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:99-116. [PMID: 28900911 DOI: 10.1007/978-3-319-57732-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteines are among the least abundant amino acids found in proteins. Due to their unique nucleophilic thiol group, they are able to undergo a broad range of chemical modifications besides their known role in disulfide formation, such as S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sufonylation (-SO(3)H), S-glutathionylation (-SSG), and S-sulfhydration (-SSH), among others. These posttranslational modifications can be irreversible and act as transitional modifiers or as reversible on-off switches for the function of proteins. Disturbances of the redox homeostasis, for example, in situations of increased oxidative stress, can contribute to a range of diseases. Because Ca2+ signaling mediated by store-operated calcium entry (SOCE) is involved in a plethora of cellular responses, the cross-talk between reactive oxygen species (ROS) and Ca2+ is critical for homeostatic control. Identification of calcium regulatory protein targets of thiol redox modifications is needed to understand their role in biology and disease.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
40
|
Blatter LA. Tissue Specificity: SOCE: Implications for Ca 2+ Handling in Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:343-361. [PMID: 28900923 DOI: 10.1007/978-3-319-57732-6_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cellular functions of the vascular endothelium are regulated by fine-tuned global and local, microdomain-confined changes of cytosolic free Ca2+ ([Ca2+]i). Vasoactive agonist-induced stimulation of vascular endothelial cells (VECs) typically induces Ca2+ release through IP3 receptor Ca2+ release channels embedded in the membrane of the endoplasmic reticulum (ER) Ca2+ store, followed by Ca2+ entry from the extracellular space elicited by Ca2+ store depletion and referred to as capacitative or store-operated Ca2+ entry (SOCE). In vascular endothelial cells, SOCE is graded with the degree of store depletion and controlled locally in the subcellular microdomain where depletion occurs. SOCE provides distinct Ca2+ signals that selectively control specific endothelial functions: in calf pulmonary artery endothelial cells, the SOCE Ca2+ signal drives nitric oxide (an endothelium-derived relaxing factor of the vascular smooth muscle) production and controls activation and nuclear translocation of the transcription factor NFAT. Both cellular events are not affected by Ca2+ signals of comparable magnitude arising directly from Ca2+ release from intracellular stores, clearly indicating that SOCE regulates specific Ca2+-dependent cellular tasks by a unique and exclusive mechanism. This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.
Collapse
Affiliation(s)
- Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
41
|
Bollimuntha S, Pani B, Singh BB. Neurological and Motor Disorders: Neuronal Store-Operated Ca 2+ Signaling: An Overview and Its Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:535-556. [PMID: 28900932 PMCID: PMC5821072 DOI: 10.1007/978-3-319-57732-6_27] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that performs significant physiological task such as neurosecretion, exocytosis, neuronal growth/differentiation, and the development and/or maintenance of neural circuits. An important regulatory aspect of neuronal Ca2+ homeostasis is store-operated Ca2+ entry (SOCE) which, in recent years, has gained much attention for influencing a variety of nerve cell responses. Essentially, activation of SOCE ensues following the activation of the plasma membrane (PM) store-operated Ca2+ channels (SOCC) triggered by the depletion of endoplasmic reticulum (ER) Ca2+ stores. In addition to the TRPC (transient receptor potential canonical) and the Orai family of ion channels, STIM (stromal interacting molecule) proteins have been baptized as key molecular regulators of SOCE. Functional significance of the TRPC channels in neurons has been elaborately studied; however, information on Orai and STIM components of SOCE, although seems imminent, is currently limited. Importantly, perturbations in SOCE have been implicated in a spectrum of neuropathological conditions. Hence, understanding the precise involvement of SOCC in neurodegeneration would presumably unveil avenues for plausible therapeutic interventions. We thus review the role of SOCE-regulated neuronal Ca2+ signaling in selecting neurodegenerative conditions.
Collapse
Affiliation(s)
- Sunitha Bollimuntha
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Biswaranjan Pani
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA.
| |
Collapse
|
42
|
Wu RF, Liao C, Hatoum H, Fu G, Ochoa CD, Terada LS. RasGRF Couples Nox4-Dependent Endoplasmic Reticulum Signaling to Ras. Arterioscler Thromb Vasc Biol 2016; 37:98-107. [PMID: 27856453 DOI: 10.1161/atvbaha.116.307922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVES In response to endoplasmic reticulum (ER) stress, endothelial cells initiate corrective pathways such as the unfolded protein response. Recent studies suggest that reactive oxygen species produced on the ER may participate in homeostatic signaling through Ras in response to ER stress. We sought to identify mechanisms responsible for this focal signaling pathway. APPROACH AND RESULTS In endothelial cells, we found that ER stress induced by tunicamycin activates the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 focally on the ER surface but not on the plasma membrane. Ras activation is also restricted to the ER, occurs downstream of Nox4, and is required for activation of the unfolded protein response. In contrast, treatment with the growth factor VEGF (vascular endothelial growth factor) results in Ras activation and reactive oxygen species production confined instead to the plasma membrane and not to the ER, demonstrating local coupling of reactive oxygen species and Ras signals. We further identify the calcium-responsive, ER-resident guanyl exchange factors RasGRF1 and RasGRF2 as novel upstream mediators linking Nox4 with Ras activation in response to ER stress. Oxidation of the sarcoendoplasmic reticulum calcium ATPase and increases in cytosolic calcium caused by ER stress are blocked by Nox4 knockdown, and reduction in cytosolic free calcium prevents both Ras activation and the unfolded protein response. CONCLUSIONS ER stress triggers a localized signaling module on the ER surface involving Nox4-dependent calcium mobilization, which directs local Ras activation through ER-associated, calcium-responsive RasGRF.
Collapse
Affiliation(s)
- Ru Feng Wu
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Chengxu Liao
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Hadi Hatoum
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Guosheng Fu
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Cristhiaan D Ochoa
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Lance S Terada
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
43
|
Huber N, Bieniossek C, Wagner KM, Elsässer HP, Suter U, Berger I, Niemann A. Glutathione-conjugating and membrane-remodeling activity of GDAP1 relies on amphipathic C-terminal domain. Sci Rep 2016; 6:36930. [PMID: 27841286 PMCID: PMC5107993 DOI: 10.1038/srep36930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) cause severe peripheral motor and sensory neuropathies called Charcot-Marie-Tooth disease. GDAP1 expression induces fission of mitochondria and peroxisomes by a currently elusive mechanism, while disease causing mutations in GDAP1 impede the protein's role in mitochondrial dynamics. In silico analysis reveals sequence similarities of GDAP1 to glutathione S-transferases (GSTs). However, a proof of GST activity and its possible impact on membrane dynamics are lacking to date. Using recombinant protein, we demonstrate for the first time theta-class-like GST activity for GDAP1, and it's activity being regulated by the C-terminal hydrophobic domain 1 (HD1) of GDAP1 in an autoinhibitory manner. Moreover, we show that the HD1 amphipathic pattern is required to induce membrane dynamics by GDAP1. As both, fission and GST activities of GDAP1, are critically dependent on HD1, we propose that GDAP1 undergoes a molecular switch, turning from a pro-fission active to an auto-inhibited inactive conformation.
Collapse
Affiliation(s)
- Nina Huber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Bieniossek
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Konstanze Marion Wagner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Hans-Peter Elsässer
- Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, 35033 Marburg, Germany
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
- School of Biochemistry, Bristol University, Bristol BS8 1TD, United Kingdom
| | - Axel Niemann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
44
|
Lin BH, Tsai MH, Lii CK, Wang TS. IP3 and calcium signaling involved in the reorganization of the actin cytoskeleton and cell rounding induced by cigarette smoke extract in human endothelial cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1293-1306. [PMID: 25758670 DOI: 10.1002/tox.22133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Smoking increases the risk of cardiovascular disorders and leads to damage caused by inflammation and oxidative stress. The actin cytoskeleton is a key player in the response to inflammatory stimuli and is an early target of cellular oxidative stress. The purpose of this study was to investigate the changes in actin cytoskeleton dynamics in human endothelial EA.hy926 cells exposed to cigarette smoke extract (CSE). Immunostaining revealed that CSE exposure resulted in modification of the actin cytoskeleton and led to cell rounding in a dose- and time-dependent manner. In addition, the intracellular calcium concentration was increased by treatment with CSE. Pretreatment with antioxidants (lipoic acid, glutathione, N-acetyl cysteine, aminoguanidine, α-tocopherol, and vitamin C) significantly attenuated the CSE-induced actin cytoskeleton reorganization and cell rounding. Calcium ion chelators (EGTA, BAPTA-AM AM) and a potent store-operated calcium channel inhibitor (MRS 1845) also reduced CSE-induced intracellular calcium changes and attenuated actin cytoskeleton reorganization and cell morphology change. Moreover, the CSE-induced intracellular calcium increase was suppressed by pretreatment with the inositol trisphosphate receptor (IP3R) inhibitor xestospongin C, the phospholipase C (PLC) inhibitor U-73122, and the protein kinase C (PKC) inhibitor GF109203X. These results suggest that reactive oxygen species production and intracellular calcium increase play an essential role in CSE-induced actin disorganization and cell rounding through a PLC-IP3-PKC signaling pathway. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1293-1306, 2016.
Collapse
Affiliation(s)
- Bo-Hong Lin
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hsuan Tsai
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tsu-Shing Wang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
45
|
Ravi S, Peña KA, Chu CT, Kiselyov K. Biphasic regulation of lysosomal exocytosis by oxidative stress. Cell Calcium 2016; 60:356-362. [PMID: 27593159 DOI: 10.1016/j.ceca.2016.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 02/02/2023]
Abstract
Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca2+. We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.
Collapse
Affiliation(s)
- Sreeram Ravi
- Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | - Karina A Peña
- Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, Pittsburgh, PA 15260, USA.
| |
Collapse
|
46
|
Rivet CA, Kniss-James AS, Gran MA, Potnis A, Hill A, Lu H, Kemp ML. Calcium Dynamics of Ex Vivo Long-Term Cultured CD8+ T Cells Are Regulated by Changes in Redox Metabolism. PLoS One 2016; 11:e0159248. [PMID: 27526200 PMCID: PMC4985122 DOI: 10.1371/journal.pone.0159248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
T cells reach a state of replicative senescence characterized by a decreased ability to proliferate and respond to foreign antigens. Calcium release associated with TCR engagement is widely used as a surrogate measure of T cell response. Using an ex vivo culture model that partially replicates features of organismal aging, we observe that while the amplitude of Ca2+ signaling does not change with time in culture, older T cells exhibit faster Ca2+ rise and a faster decay. Gene expression analysis of Ca2+ channels and pumps expressed in T cells by RT-qPCR identified overexpression of the plasma membrane CRAC channel subunit ORAI1 and PMCA in older T cells. To test whether overexpression of the plasma membrane Ca2+ channel is sufficient to explain the kinetic information, we adapted a previously published computational model by Maurya and Subramaniam to include additional details on the store-operated calcium entry (SOCE) process to recapitulate Ca2+ dynamics after T cell receptor stimulation. Simulations demonstrated that upregulation of ORAI1 and PMCA channels is not sufficient to explain the observed alterations in Ca2+ signaling. Instead, modeling analysis identified kinetic parameters associated with the IP3R and STIM1 channels as potential causes for alterations in Ca2+ dynamics associated with the long term ex vivo culturing protocol. Due to these proteins having known cysteine residues susceptible to oxidation, we subsequently investigated and observed transcriptional remodeling of metabolic enzymes, a shift to more oxidized redox couples, and post-translational thiol oxidation of STIM1. The model-directed findings from this study highlight changes in the cellular redox environment that may ultimately lead to altered T cell calcium dynamics during immunosenescence or organismal aging.
Collapse
Affiliation(s)
- Catherine A. Rivet
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ariel S. Kniss-James
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Margaret A. Gran
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Anish Potnis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Abby Hill
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Hang Lu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States of America
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States of America
| |
Collapse
|
47
|
Kazumura K, Yoshida LS, Hara A, Tsuchiya H, Morishita N, Kawagishi H, Kakegawa T, Yuda Y, Takano-Ohmuro H. Inhibition of neutrophil superoxide generation by shikonin is associated with suppression of cellular Ca(2+) fluxes. J Clin Biochem Nutr 2016; 59:1-9. [PMID: 27499572 PMCID: PMC4933695 DOI: 10.3164/jcbn.16-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/16/2016] [Indexed: 01/21/2023] Open
Abstract
Shikonin, an anti-inflammatory compound of “Shikon”, inhibits the neutrophil superoxide (O2•−) generation by NADPH oxidase 2 (Nox2); however, the mechanisms of how shikonin affects Nox2 activity remained unclear. We aimed to elucidate the relationship between the inhibition of Nox2 activity and influences on intracellular Ca2+ concentration ([Ca2+]i) by shikonin. For this purpose, we used a simultaneous monitoring system for detecting changes in [Ca2+]i (by fluorescence) and O2•− generation (by chemiluminescence) and evaluated the effects of shikonin on neutrophil-like HL-60 cells stimulated with N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP). Since fMLP activates Nox2 by elevation in [Ca2+]i via fluxes such as inositol 1,4,5-trisphosphate-induced Ca2+ release (IICR) and store-operated Ca2+ entry (SOCE), we also evaluated the effects of shikonin on IICR and SOCE. Shikonin dose-dependently inhibited the fMLP-induced elevation in [Ca2+]i and O2•− generation (IC50 values of 1.45 and 1.12 µM, respectively) in a synchronized manner. Analyses of specific Ca2+ fluxes showed that shikonin inhibits IICR and IICR-linked O2•− generation (IC50 values: 0.28 and 0.31 µM for [Ca2+]i and O2•−, respectively), as well as SOCE and SOCE-linked O2•− generation (IC50 values: 0.39 and 0.25 µM for [Ca2+]i and O2•−, respectively). These results suggested that shikonin inhibits the O2•− generation by Nox2 in fMLP-stimulated neutrophils by targeting Ca2+ fluxes such as IICR and SOCE.
Collapse
Affiliation(s)
- Kimiko Kazumura
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Lucia Satiko Yoshida
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Akiko Hara
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Hiroshi Tsuchiya
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Naokazu Morishita
- Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata 438-0193, Japan
| | - Hirokazu Kawagishi
- Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohito Kakegawa
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Japan
| | - Yasukatsu Yuda
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Hiromi Takano-Ohmuro
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| |
Collapse
|
48
|
Gibhardt CS, Zimmermann KM, Zhang X, Belousov VV, Bogeski I. Imaging calcium and redox signals using genetically encoded fluorescent indicators. Cell Calcium 2016; 60:55-64. [PMID: 27142890 DOI: 10.1016/j.ceca.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022]
Abstract
Calcium and redox signals are presently established as essential regulators of many cellular processes. Nevertheless, we are still far from fully understanding the physiological and pathological importance of these universal second messengers. It is becoming increasingly apparent that many cellular functions are not regulated by global changes in the abundance of Ca(2+) ions and/or reactive oxygen and nitrogen species (ROS and RNS), but by the formation of transient local micro-domains or by signaling limited to a particular cellular compartment. Therefore, it is essential to identify and quantify Ca(2+) and redox signals in single cells with a high spatial and temporal resolution. The best tools for this purpose are the genetically encoded fluorescent indicators (GEFI). These protein sensors can be targeted into different cellular compartments, feature different colors, can be used to establish transgenic animal models, and are relatively inert to the cellular environment. Based on the chemical properties of Ca(2+) and ROS/RNS, currently more sensors exist for the detection of Ca(2+)- than for redox signals. Here, we shortly describe the most popular genetically encoded fluorescent Ca(2+) and redox indicators, discuss advantages and disadvantages based on our experience, show examples of different applications, and thus provide a brief guide that will help scientists choose the right combination of Ca(2+) and redox sensors to answer specific scientific questions.
Collapse
Affiliation(s)
- Christine S Gibhardt
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Katharina M Zimmermann
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Xin Zhang
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | | | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
49
|
Demaurex N, Nunes P. The role of STIM and ORAI proteins in phagocytic immune cells. Am J Physiol Cell Physiol 2016; 310:C496-508. [PMID: 26764049 PMCID: PMC4824159 DOI: 10.1152/ajpcell.00360.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytic cells, such as neutrophils, macrophages, and dendritic cells, migrate to sites of infection or damage and are integral to innate immunity through two main mechanisms. The first is to directly neutralize foreign agents and damaged or infected cells by secreting toxic substances or ingesting them through phagocytosis. The second is to alert the adaptive immune system through the secretion of cytokines and the presentation of the ingested materials as antigens, inducing T cell maturation into helper, cytotoxic, or regulatory phenotypes. While calcium signaling has been implicated in numerous phagocyte functions, including differentiation, maturation, migration, secretion, and phagocytosis, the molecular components that mediate these Ca(2+) signals have been elusive. The discovery of the STIM and ORAI proteins has allowed researchers to begin clarifying the mechanisms and physiological impact of store-operated Ca(2+) entry, the major pathway for generating calcium signals in innate immune cells. Here, we review evidence from cell lines and mouse models linking STIM and ORAI proteins to the control of specific innate immune functions of neutrophils, macrophages, and dendritic cells.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Santiago E, Climent B, Muñoz M, García-Sacristán A, Rivera L, Prieto D. Hydrogen peroxide activates store-operated Ca(2+) entry in coronary arteries. Br J Pharmacol 2015; 172:5318-32. [PMID: 26478127 DOI: 10.1111/bph.13322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/20/2015] [Accepted: 09/06/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Abnormal Ca(2+) metabolism has been involved in the pathogenesis of vascular dysfunction associated with oxidative stress. Here, we have investigated the actions of H2 O2 on store-operated Ca(2+) (SOC) entry in coronary arteries and assessed whether it is impaired in arteries from a rat model of metabolic syndrome. EXPERIMENTAL APPROACH Simultaneous measurements of intracellular Ca(2+) concentration and contractile responses were made in coronary arteries from Wistar and obese Zucker rats, mounted in microvascular myographs, and the effects of H2 O2 were assessed. KEY RESULTS H2 O2 raised intracellular Ca(2+) concentrations, accompanied by simultaneous vasoconstriction that was markedly reduced in a Ca(2+) -free medium. Upon Ca(2+) re-addition, a nifedipine-resistant sustained Ca(2+) entry, not coupled to contraction, was obtained in endothelium-denuded coronary arteries. The effect of H2 O2 on this voltage-independent Ca(2+) influx was concentration-dependent, and high micromolar H2 O2 concentrations were inhibitory and reduced SOC entry evoked by inhibition of the sarcoplasmic reticulum ATPase (SERCA). H2 O2 -induced increases in Fura signals were mimicked by Ba(2+) and reduced by heparin, Gd(3+) ions and by Pyr6, a selective inhibitor of the Orai1-mediated Ca(2+) entry,. In coronary arteries from obese Zucker rats, intracellular Ca(2+) mobilization and SOC entry activated by acute exposure to H2 O2 were augmented and associated with local oxidative stress. CONCLUSION AND IMPLICATIONS H2 O2 exerted dual concentration-dependent stimulatory/inhibitory effects on store-operated, IP3 receptor-mediated and Orai1-mediated Ca(2+) entry, not coupled to vasoconstriction in coronary vascular smooth muscle. SOC entry activated by H2 O2 was enhanced and associated with vascular oxidative stress in coronary arteries in metabolic syndrome.
Collapse
Affiliation(s)
- Elvira Santiago
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|