1
|
Younger E, Ellis EG, Parsons N, Pantano P, Tommasin S, Caeyenberghs K, Benito-León J, Romero JP, Joutsa J, Corp DT. Mapping Essential Tremor to a Common Brain Network Using Functional Connectivity Analysis. Neurology 2023; 101:e1483-e1494. [PMID: 37596042 PMCID: PMC10585696 DOI: 10.1212/wnl.0000000000207701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/09/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The cerebello-thalamo-cortical circuit plays a critical role in essential tremor (ET). However, abnormalities have been reported in multiple brain regions outside this circuit, leading to inconsistent characterization of ET pathophysiology. Here, we test whether these mixed findings in ET localize to a common functional network and whether this network has therapeutic relevance. METHODS We conducted a systematic literature search to identify studies reporting structural or metabolic brain abnormalities in ET. We then used 'coordinate network mapping,' which leverages a normative connectome (n = 1,000) of resting-state fMRI data to identify regions commonly connected to findings across all studies. To assess whether these regions may be relevant for the treatment of ET, we compared our network with a therapeutic network derived from lesions that relieved ET. Finally, we investigated whether the functional connectivity of this ET symptom network is abnormal in an independent cohort of patients with ET as compared with healthy controls. RESULTS Structural and metabolic brain abnormalities in ET were located in heterogeneous regions throughout the brain. However, these coordinates were connected to a common functional brain network, including the cerebellum, thalamus, motor cortex, precuneus, inferior parietal lobe, and insula. The cerebellum was identified as the hub of this network because it was the only brain region that was both functionally connected to the findings of over 90% of studies and significantly different in connectivity compared with a control data set of other movement disorders. This network was strikingly similar to the therapeutic network derived from lesions improving ET, with key regions aligning in the thalamus and cerebellum. Furthermore, positive functional connectivity between the cerebellar network hub and the sensorimotor cortices was significantly reduced in patients with ET compared with healthy controls, and connectivity within this network was correlated with tremor severity and cognitive functioning. DISCUSSION These findings suggest that the cerebellum is the central hub of a network commonly connected to structural and metabolic abnormalities in ET. This network may have therapeutic utility in refining and informing new targets for neuromodulation of ET.
Collapse
Affiliation(s)
- Ellen Younger
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Elizabeth G Ellis
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nicholas Parsons
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Patrizia Pantano
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Silvia Tommasin
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Karen Caeyenberghs
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Julián Benito-León
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juan Pablo Romero
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juho Joutsa
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Daniel T Corp
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Lyons S, Depue BE. Not all bad decisions are alike: approach and avoidant bad decisions are associated with distinct network organization. Front Neurosci 2023; 17:1249008. [PMID: 37877010 PMCID: PMC10591088 DOI: 10.3389/fnins.2023.1249008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Decisions under ambiguity occurs daily for everyone. Subsequently, we all deliberate upon options to initiate an action most appropriate for current goal demands. Researchers has attempted to identify factors which contribute to risk taking, alongside the neurocircuitry underpinning it. Empirically, uncertain decision making is frequently assessed using the Iowa Gambling Task (IGT). Research have reliably identified varying regions implicating two broader circuits known as the reward and salience networks. However, considerable work has focused on contrasting "good" versus "bad" decisions. Methods The present investigation attempted a unique approach to analyzing the modified IGT acquired during fMRI (n = 24) and focused on active and passive bad decisions to identify potential internetwork connectivity, dissociable connectivity patterns between approach and avoidant bad decisions, and their relationship with personality traits, which can be linked with behavioral approach styles. Results Network cluster analyses revealed general internetwork connectivity when passing (avoiding) good decks; however, the OFC was functionally disconnected from the rest of the selected brain regions when playing (approaching) bad decks. Decreased reward responsiveness was linked to increased functional connectivity between the lateral OFC and aSMG, while drive was associated with increased functional connectivity between dACC and aINS. Discussion We report evidence that approach and avoidant bad decisions are associated with distinct neural communication patterns. Avoidant decisions were marked by substantial network integration and coherence, contrasted with the general scarcity of internetwork communication observed for approach decisions. Furthermore, the present investigation observed preliminary evidence of personality traits linked with neural communication between salience and reward evaluative networks.
Collapse
Affiliation(s)
- Siraj Lyons
- Neuroimaging Laboratory of Cognitive, Affective, and Motoric Processes, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| | - Brendan Eliot Depue
- Neuroimaging Laboratory of Cognitive, Affective, and Motoric Processes, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
3
|
Zuleger TM, Slutsky-Ganesh AB, Anand M, Kim H, Warren SM, Grooms DR, Foss KDB, Riley MA, Yuan W, Gore RK, Myer GD, Diekfuss JA. The effects of sports-related concussion history on female adolescent brain activity and connectivity for bilateral lower extremity knee motor control. Psychophysiology 2023; 60:e14314. [PMID: 37114838 PMCID: PMC10523876 DOI: 10.1111/psyp.14314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Sports-related concussions (SRCs) are associated with neuromuscular control deficits in athletes following return to play. However, the connection between SRC and potentially disrupted neural regulation of lower extremity motor control has not been investigated. The purpose of this study was to investigate brain activity and connectivity during a functional magnetic resonance imaging (fMRI) lower extremity motor control task (bilateral leg press) in female adolescent athletes with a history of SRC. Nineteen female adolescent athletes with a history of SRC and nineteen uninjured (without a history of SRC) age- and sport-matched control athletes participated in this study. Athletes with a history of SRC exhibited less neural activity in the left inferior parietal lobule/supramarginal gyrus (IPL) during the bilateral leg press compared to matched controls. Based upon signal change detected in the brain activity analysis, a 6 mm region of interest (seed) was defined to perform secondary connectivity analyses using psychophysiological interaction (PPI) analyses. During the motor control task, the left IPL (seed) was significantly connected to the right posterior cingulate gyrus/precuneus cortex and right IPL for athletes with a history of SRC. The left IPL was significantly connected to the left primary motor cortex (M1) and primary somatosensory cortex (S1), right inferior temporal gyrus, and right S1 for matched controls. Altered neural activity in brain regions important for sensorimotor integration and motor attention, combined with unique connectivity to regions responsible for attentional, cognitive, and proprioceptive processing, indicate compensatory neural mechanisms may underlie the lingering neuromuscular control deficits associated with SRC.
Collapse
Affiliation(s)
- Taylor M. Zuleger
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
| | - Alexis B. Slutsky-Ganesh
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Manish Anand
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, TN, India
| | - HoWon Kim
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
| | - Shayla M. Warren
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Science and Professions, Ohio University, Grover Center, Athens, OH, USA
| | - Kim D. Barber Foss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael A. Riley
- Department of Rehabilitation, Exercise, & Nutrition Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Russell K. Gore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Shepherd Center, Atlanta, GA, USA
| | - Gregory D. Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| | - Jed A. Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Zhou Y, Tang J, Sun Y, Yang WFZ, Ma Y, Wu Q, Chen S, Wang Q, Hao Y, Wang Y, Li M, Liu T, Liao Y. A brainnetome atlas-based methamphetamine dependence identification using neighborhood component analysis and machine learning on functional MRI data. Front Cell Neurosci 2022; 16:958437. [PMID: 36238830 PMCID: PMC9550874 DOI: 10.3389/fncel.2022.958437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Addiction to methamphetamine (MA) is a major public health concern. Developing a predictive model that can classify and characterize the brain-based biomarkers predicting MA addicts may directly lead to improved treatment outcomes. In the current study, we applied the support vector machine (SVM)-based classification method to resting-state functional magnetic resonance imaging (rs-fMRI) data obtained from individuals with methamphetamine use disorder (MUD) and healthy controls (HCs) to identify brain-based features predictive of MUD. Brain connectivity analyses were conducted for 36 individuals with MUD as well as 37 HCs based on the brainnetome atlas, and the neighborhood component analysis was applied for feature selection. Eighteen most relevant features were screened out and fed into the SVM to classify the data. The classifier was able to differentiate individuals with MUD from HCs with a high prediction accuracy, sensitivity, specificity, and AUC of 88.00, 86.84, 89.19, and 0.94, respectively. The top six discriminative features associated with changes in the functional activity of key nodes in the default mode network (DMN), all the remaining discriminative features are related to the thalamic connections within the cortico-striato-thalamo-cortical (CSTC) loop. In addition, the functional connectivity (FC) between the bilateral inferior parietal lobule (IPL) and right cingulate gyrus (CG) was significantly correlated with the duration of methamphetamine use. The results of this study not only indicated that MUD-related FC alterations were predictive of group membership, but also suggested that machine learning techniques could be used for the identification of MUD-related imaging biomarkers.
Collapse
Affiliation(s)
- Yanan Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, China
| | - Jingsong Tang
- Department of Psychiatry, School of Medicine, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yunkai Sun
- Department of Psychiatry, School of Medicine, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, United States
| | - Yuejiao Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiuxia Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shubao Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuzhu Hao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunfei Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Manyun Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tieqiao Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Tieqiao Liu
| | - Yanhui Liao
- Department of Psychiatry, School of Medicine, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Yanhui Liao
| |
Collapse
|
5
|
Chen MJ, Huang R, Liang RB, Pan YC, Shu HY, Liao XL, Xu SH, Ying P, Kang M, Zhang LJ, Ge QM, Shao Y. Abnormal Intrinsic Functional Hubs in Corneal Ulcer: Evidence from a Voxel-Wise Degree Centrality Analysis. J Clin Med 2022; 11:jcm11061478. [PMID: 35329804 PMCID: PMC8949159 DOI: 10.3390/jcm11061478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Numerous anterior neuroimaging researches have revealed that corneal ulcers (CU) are related to changes in cerebral anatomic structure and functional area. Nonetheless, functional characteristics of the brain's network organization still show no definite research results. The study was designed to confirm CU-associated spatial centrality distribution functional network of the whole cerebrum and explore the mechanism through which the larvaceous changed the intrinsic functional hubs. MATERIAL AND METHODS In this study, 40 patients with CU and 40 normal controls (matched in sex, age, and education level) were enrolled in this study to undergo resting-state functional magnetic resonance imaging (fMRI) scans. The differences between the groups were determined by measuring the voxel-wise degree centrality (DC) throughout the whole cerebrum. For the purpose of assessing the correlation between abnormal DC value and clinical variables, the Linear correlation analysis was used. RESULTS Compared with normal controls (NCs), CU patients revealed high DC values in the frontal lobe, precuneus, inferior parietal lobule, posterior cingulate, occipital lobe, and temporal lobe in the brain functional connectivity maps throughout the brain. The intergroup differences also had high similarity on account of different thresholds. In addition, DC values were positively related to the duration of CU in the left middle frontal gyrus. CONCLUSIONS The experimental results revealed that patients with CU showed spatially unnatural intrinsic functional hubs whether DC values increased or decreased. This brings us to a new level of comprehending the functional features of CU and may offer useful information to make us obtain a clear understanding of the dysfunction of CU.
Collapse
|
6
|
Song K, Wang Y, Ren MX, Li J, Su T, Chen SY, Shao Y, Lv YL. Resting-State Functional Magnetic Resonance Imaging and Functional Connectivity Density Mapping in Patients With Optic Neuritis. Front Neurosci 2021; 15:718973. [PMID: 34720858 PMCID: PMC8551919 DOI: 10.3389/fnins.2021.718973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON). Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs. Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs. Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.
Collapse
Affiliation(s)
- Ke Song
- Department of Equipment, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| | - Yong Wang
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| | - Mei-Xia Ren
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| | - Jiao Li
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| | - Ting Su
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Si-Yi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ya-Li Lv
- Department of Neurology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| |
Collapse
|
7
|
Abstract
Action videogames have been shown to induce modifications in perceptual and cognitive systems, as well as in brain structure and function. Nevertheless, whether such changes are correlated with brain functional connectivity modifications outlasting the training period is not known. Functional magnetic resonance imaging (fMRI) was used in order to quantify acute and long-lasting connectivity changes following a sustained gaming experience on a first-person shooter (FPS) game. Thirty-five healthy participants were assigned to either a gaming or a control group prior to the acquisition of resting state fMRI data and a comprehensive cognitive assessment at baseline (T0), post-gaming (T1) and at a 3 months' follow-up (T2). Seed-based resting-state functional connectivity (rs-FC) analysis revealed a significant greater connectivity between left thalamus and left parahippocampal gyrus in the gamer group, both at T1 and at T2. Furthermore, a positive increase in the rs-FC between the cerebellum, Heschl's gyrus and the middle frontal gyrus paralleled improvements of in-gaming performance. In addition, baseline rs-FC of left supramarginal gyrus, left middle frontal gyrus and right cerebellum were associated with individual changes in videogame performance. Finally, enhancement of perceptual and attentional measures was observed at both T1 and T2, which correlated with a pattern of rs-FC changes in bilateral occipito-temporal regions belonging to the visual and attention fMRI networks. The present findings increase knowledge on functional connectivity changes induced by action videogames, pointing to a greater and long-lasting synchronization between brain regions associated with spatial orientation, visual discrimination and motor learning even after a relatively short multi-day gaming exposure.
Collapse
|
8
|
Bonzano L, Bisio A, Pedullà L, Brichetto G, Bove M. Right Inferior Parietal Lobule Activity Is Associated With Handwriting Spontaneous Tempo. Front Neurosci 2021; 15:656856. [PMID: 34177447 PMCID: PMC8219918 DOI: 10.3389/fnins.2021.656856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Handwriting is a complex activity including motor planning and visuomotor integration and referring to some brain areas identified as "writing centers." Although temporal features of handwriting are as important as spatial ones, to our knowledge, there is no evidence of the description of specific brain areas associated with handwriting tempo. People with multiple sclerosis (PwMS) show handwriting impairments that are mainly referred to as the temporal features of the task. The aim of this work was to assess differences in the brain activation pattern elicited by handwriting between PwMS and healthy controls (HC), with the final goal of identifying possible areas specific for handwriting tempo. Subjects were asked to write a sentence at their spontaneous speed. PwMS differed only in temporal handwriting features from HC and showed reduced activation with a subset of the clusters observed in HC. Spearman's correlation analysis was performed between handwriting temporal parameters and the activity in the brain areas resulting from the contrast analysis, HC > PwMS. We found that the right inferior parietal lobule (IPL) negatively correlated with the duration of the sentence, indicating that the higher the right IPL activity, the faster the handwriting performance. We propose that the right IPL might be considered a "writing tempo center."
Collapse
Affiliation(s)
- Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Ambra Bisio
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Ludovico Pedullà
- Scientific Research Area, Italian Multiple Sclerosis Foundation, Genoa, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation, Genoa, Italy.,Rehabilitation Center, Italian Multiple Sclerosis Society, Genoa, Italy
| | - Marco Bove
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico, Genoa, Italy
| |
Collapse
|
9
|
Cheng H, Liu J. Concurrent brain parcellation and connectivity estimation via co-clustering of resting state fMRI data: A novel approach. Hum Brain Mapp 2021; 42:2477-2489. [PMID: 33615651 PMCID: PMC8090776 DOI: 10.1002/hbm.25381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022] Open
Abstract
Connectional topography mapping has been gaining widespread attention in human brain imaging studies. However, existing methods might not effectively utilize the information from neuroimaging data, thus hindering the understanding of the underlying connectional organization in the brain and uncovering the optimal clustering number from the data. In this study, we propose a novel method for the automated construction of inherent functional connectivity topography in a data‐driven manner by leveraging the power of co‐clustering‐based on resting state fMRI (rs‐fMRI) data. We propose the co‐clustering‐based method not only for concurrently parcellating two interconnected brain regions of interest (ROIs) under consideration into functionally homogenous subregions, but also for estimating the connectivity between these subregions from the two brain ROIs. In particular, we first model the connectional topography mapping as a co‐clustering‐based bipartite graph partitioning problem for constructing the inherent functional connectivity topography between the two interconnected brain ROIs. We also adopt an objective criterion, that is, silhouette width index measuring clustering quality, for determining the optimal number of clusters. The proposed method has been validated for mapping thalamocortical connectional topography based on rs‐fMRI data of 57 subjects. Validation results have demonstrated that our method identified the optimal solution with five pairs of mutually connected subregions of the thalamocortical system from the rs‐fMRI data, and could yield more meaningful, interpretable, and homogenous connectional topography than existing methods. The proposed method was further validated by the high symmetry of the mapped connectional topography between two hemispheres.
Collapse
Affiliation(s)
- Hewei Cheng
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.,Chongqing Engineering Laboratory of Digital Medical Equipment and Systems, Chongqing University of Posts and Telecommunications, Chongqing, China.,Chongqing Engineering Research Center of Medical Electronics & Information Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jie Liu
- Research Institute of Education Development, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
10
|
Yamamoto Y, Yamagata B, Hirano J, Ueda R, Yoshitake H, Negishi K, Yamagishi M, Kimura M, Kamiya K, Shino M, Mimura M. Regional Gray Matter Volume Identifies High Risk of Unsafe Driving in Healthy Older People. Front Aging Neurosci 2020; 12:592979. [PMID: 33343333 PMCID: PMC7744700 DOI: 10.3389/fnagi.2020.592979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
In developed countries, the number of traffic accidents caused by older drivers is increasing. Approximately half of the older drivers who cause fatal accidents are cognitively normal. Thus, it is important to identify older drivers who are cognitively normal but at high risk of causing fatal traffic accidents. However, no standardized method for assessing the driving ability of older drivers has been established. We aimed to establish an objective assessment of driving ability and to clarify the neural basis of unsafe driving in healthy older people. We enrolled 32 healthy older individuals aged over 65 years and classified unsafe drivers using an on-road driving test. We then utilized a machine learning approach to distinguish unsafe drivers from safe drivers based on clinical features and gray matter volume data. Twenty-one participants were classified as safe drivers and 11 participants as unsafe drivers. A linear support vector machine classifier successfully distinguished unsafe drivers from safe drivers with 87.5% accuracy (sensitivity of 63.6% and specificity of 100%). Five parameters (age and gray matter volume in four cortical regions, including the left superior part of the precentral sulcus, the left sulcus intermedius primus [of Jensen], the right orbital part of the inferior frontal gyrus, and the right superior frontal sulcus), were consistently selected as features for the final classification model. Our findings indicate that the cortical regions implicated in voluntary orienting of attention, decision making, and working memory may constitute the essential neural basis of driving behavior.
Collapse
Affiliation(s)
- Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Hiroshi Yoshitake
- Department of Human and Engineered Environmental Studies, The University of Tokyo, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Mika Yamagishi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Kimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Graduate School of Psychology, Rissho University, Tokyo, Japan
| | - Kei Kamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Motoki Shino
- Department of Human and Engineered Environmental Studies, The University of Tokyo, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Cortical surface area alterations shaped by genetic load for neuroticism. Mol Psychiatry 2020; 25:3422-3431. [PMID: 30185937 DOI: 10.1038/s41380-018-0236-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 01/24/2023]
Abstract
Neuroticism has been shown to act as an important risk factor for major depressive disorder (MDD). Genetic and neuroimaging research has independently revealed biological correlates of neurotic personality including cortical alterations in brain regions of high relevance for affective disorders. Here we investigated the influence of a polygenic score for neuroticism (PGS) on cortical brain structure in a joint discovery sample of n = 746 healthy controls (HC) and n = 268 MDD patients. Findings were validated in an independent replication sample (n = 341 HC and n = 263 MDD). Subgroup analyses stratified for case-control status and analyses of associations between neurotic phenotype and cortical measures were carried out. PGS for neuroticism was significantly associated with a decreased cortical surface area of the inferior parietal cortex, the precuneus, the rostral cingulate cortex and the inferior frontal gyrus in the discovery sample. Similar associations between PGS and surface area of the inferior parietal cortex and the precuneus were demonstrated in the replication sample. Subgroup analyses revealed negative associations in the latter regions between PGS and surface area in both HC and MDD subjects. Neurotic phenotype was negatively correlated with surface area in similar cortical regions including the inferior parietal cortex and the precuneus. No significant associations between PGS and cortical thickness were detected. The morphometric overlap of associations between both PGS and neurotic phenotype in similar cortical regions closely related to internally focused cognition points to the potential relevance of genetically shaped cortical alterations in the development of neuroticism.
Collapse
|
12
|
Alahmadi AAS. Effects of different smoothing on global and regional resting functional connectivity. Neuroradiology 2020; 63:99-109. [PMID: 32840683 DOI: 10.1007/s00234-020-02523-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/13/2020] [Indexed: 01/25/2023]
Abstract
PURPOSE Spatial smoothing is an essential pre-processing step in the process of analysing functional magnetic resonance imaging (fMRI) data, both during an experimental task or during resting-state fMRI (rsfMRI). The main benefit of this spatial smoothing step is to artificially increase the signal-to-noise ratio of the fMRI signal. Previous fMRI studies have investigated the impact of spatial smoothing on task fMRI data, while rsfMRI studies usually apply the same analytical process used for the task data. However, this study investigates changes in different rsfMRI analyses, such as ROI-to-ROI, seed-to-voxels and ICA analyses. METHODS Nineteen healthy volunteers were scanned using rsfMRI with three applied smoothing kernels: 0 mm, 4 mm and 8 mm. Appropriate statistical comparisons were made. RESULTS The findings showed that spatial smoothing has a greater effect on rsfMRI data when analysed using seed-to-voxel-based analysis. The effect was less pronounced when analysing data using ROI-ROI or ICA analyses. The results demonstrated that even when analysing the data without the application of spatial smoothing, the results were significant compared with data analysed using a typical smoothing kernel. However, data analysed with lower-smoothing kernels produced greater negative correlations, particularly with the ICA analysis. CONCLUSION The results suggest that a medium smoothing kernel (around 4 mm) may be preferable, as it is comparable with the 8 mm kernel in all of the analyses performed. It is also recommended that the researchers consider analysing the data using two different smoothing kernels, as this will help to confirm the significance of the results and avoid overestimating the findings.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Radiologic Sciences, College of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Zhang Y, Chen S, Deng Z, Yang J, Yuan J. Benefits of Implicit Regulation of Instructed Fear: Evidence From Neuroimaging and Functional Connectivity. Front Neurosci 2020; 14:201. [PMID: 32231516 PMCID: PMC7082334 DOI: 10.3389/fnins.2020.00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/24/2020] [Indexed: 11/29/2022] Open
Abstract
Instructed fear, which denotes fearful emotions learned from others' verbal instructions, is an important form of fear acquisition in humans. Maladaptive instructed fear produces detrimental effects on health, but little is known about performing an efficient regulation of instructed fear and its underlying neural substrates. To address this question, 26 subjects performed an instructed fear task where emotional experiences and functional neuroimages were recorded during watching, explicit regulation (calmness imagination), and implicit regulation (calmness priming) conditions. Results indicated that implicit regulation decreased activity in the left amygdala and left insula for instructed fear; however, these effects were absent in explicit regulation. The implementation of implicit regulation did not increase activity in the frontoparietal control regions, while explicit regulation increased dorsolateral prefrontal cortex activity. Furthermore, implicit regulation increased functional connectivity between the right amygdala and right fusiform gyrus, and decreased functional connectivity between the right medial temporal gyrus and left inferior frontal gyrus, which are key nodes of memory retrieval and cognitive control networks, respectively. These findings suggest a favourable effect of implicit regulation on instructed fear, which is subserved by less involvement of control-related brain mechanisms.
Collapse
Affiliation(s)
- Yicheng Zhang
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shengdong Chen
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Zhongyan Deng
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jiemin Yang
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jiajin Yuan
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
14
|
Umezaki Y, Watanabe M, Shinohara Y, Sugawara S, Kawasaki K, Tu TTH, Watanabe T, Suga T, Miura A, Takenoshita M, Sato Y, Minami I, Oyama J, Toriihara A, Yoshikawa T, Naito T, Motomura H, Toyofuku A. Comparison of Cerebral Blood Flow Patterns in Patients with Phantom Bite Syndrome with Their Corresponding Clinical Features. Neuropsychiatr Dis Treat 2020; 16:2277-2284. [PMID: 33116526 PMCID: PMC7547763 DOI: 10.2147/ndt.s262892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Phantom bite syndrome (PBS) is characterized by an uncomfortable sensation during occlusion without any evident abnormality. A recent case-control study with single-photon emission computed tomography (SPECT) using 99mTc-ethyl cysteinate dimer could not find the specific features of regional cerebral blood flow (rCBF), which might be due to the heterogeneity of PBS. We analyzed the brain images of PBS corresponding to the clinical features by studying PBS subgroups. METHODS This study contributes to elucidating the pathophysiology of PBS by evaluating regional brain perfusion on SPECT and its clinical features. We performed SPECT using 99mTc-ethyl cysteinate dimer in 44 patients with PBS. The SPECT images were analyzed qualitatively and quantitatively. RESULTS Asymmetrical rCBF patterns were detected, corresponding to symptom laterality. Patients with PBS with right-side symptoms showed right-side-predominant rCBF asymmetry in the parietal region and left-side-predominant rCBF asymmetry in the thalamus, and vice versa. Moreover, the analysis of the association between rCBF and patient behaviors revealed that patients who blamed their dentists for their symptoms tended to have a symmetrical rCBF pattern. CONCLUSION Patients with PBS showed blood flow imbalance in the thalamus and parietal region corresponding to symptom laterality. There are two types of symmetrical and asymmetrical rCBF patterns in the pathophysiology of PBS despite similar clinical manifestations.
Collapse
Affiliation(s)
- Yojiro Umezaki
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Motoko Watanabe
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Yukiko Shinohara
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Shiori Sugawara
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Kaoru Kawasaki
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Trang T H Tu
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Takeshi Watanabe
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Takayuki Suga
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Anna Miura
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Miho Takenoshita
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Yusuke Sato
- Department of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Ichiro Minami
- Department of Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Jun Oyama
- Department of Diagnostic Radiology and Nuclear Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Akira Toriihara
- Department of Diagnostic Radiology and Nuclear Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Tatsuya Yoshikawa
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Toru Naito
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Haruhiko Motomura
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8548, Japan
| |
Collapse
|
15
|
Systematic Balance Exercises Influence Cortical Activation and Serum BDNF Levels in Older Adults. J Clin Med 2019; 8:jcm8111910. [PMID: 31703409 PMCID: PMC6912622 DOI: 10.3390/jcm8111910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022] Open
Abstract
We sought to investigate whether systematic balance training modulates brain area activity responsible for postural control and influence brain-derived neurotrophic factor (BDNF) mRNA protein expression. Seventy-four older adults were randomly divided into three groups (mean age 65.34 ± 3.79 years, 30 females): Classic balance exercises (CBT), virtual reality balance exercises (VBT), and control (CON). Neuroimaging studies were performed at inclusion and after completion of the training or 12 weeks later (CON). Blood samples were obtained to measure BDNF expression. The study revealed significant interaction of sessions and groups: In the motor imagery (MI) condition for supplementary motor area (SMA) activity (Fat peak = 5.25, p < 0.05); in the action observation (AO) condition for left and right supramarginal gyrus/posterior insula (left: Fat peak = 6.48, p < 0.05; right: Fat peak = 6.92, p < 0.05); in the action observation together with motor imagery (AOMI) condition for the middle occipital gyrus (laterally)/area V5 (left: Fat peak = 6.26, p < 0.05; right: Fat peak = 8.37, p < 0.05), and in the cerebellum–inferior semilunar lobule/tonsil (Fat peak = 5.47, p < 0.05). After the training serum BDNF level has increased in CBT (p < 0.001) and in CBT compared to CON (p < 0.05). Systematic balance training may reverse the age-related cortical over-activations and appear to be a factor mediating neuroplasticity in older adults.
Collapse
|
16
|
Brain structural connectivity network alterations in insomnia disorder reveal a central role of the right angular gyrus. NEUROIMAGE-CLINICAL 2019; 24:102019. [PMID: 31678910 PMCID: PMC6839281 DOI: 10.1016/j.nicl.2019.102019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
People with insomnia show widespread brain structural hyperconnectivity. The right angular gyrus is central to the structural connectivity alterations. Connectivity of this angular gyrus subnetwork correlates with reactive hyperarousal. Brain structural hyperconnectivity may mark vulnerability to insomnia.
Insomnia Disorder (ID) is a prevalent and persistent condition, yet its neural substrate is not well understood. The cognitive, emotional, and behavioral characteristics of ID suggest that vulnerability involves distributed brain networks rather than a single brain area or connection. The present study utilized probabilistic diffusion tractography to compare the whole-brain structural connectivity networks of people with ID and those of matched controls without sleep complaints. Diffusion-weighted images and T1-weighed images were acquired in 51 people diagnosed with ID (21–69 years of age, 37 female) and 48 matched controls without sleep complaints (22–70 years of age, 31 female). Probabilistic tractography was performed to construct the whole-brain structural connectivity network of each participant. Case–control differences in connectivity strength and network efficiency were evaluated with permutation tests. People with ID showed structural hyperconnectivity within a subnetwork that spread over frontal, parietal, temporal, and subcortical regions and was anchored at the right angular gyrus. The result was robust across different edge-weighting strategies. Moreover, converging support was given by the finding of heightened right angular gyrus nodal efficiency (harmonic centrality) across varying graph density in people with ID. Follow-up correlation analyses revealed that subnetwork connectivity was associated with self-reported reactive hyperarousal. The findings demonstrate that the right angular gyrus is a hub of enhanced structural connectivity in ID. Hyperconnectivity within the identified subnetwork may contribute to increased reactivity to stimuli and may signify vulnerability to ID.
Collapse
|
17
|
Jin D, Li R, Xu J. Multiscale Community Detection in Functional Brain Networks Constructed Using Dynamic Time Warping. IEEE Trans Neural Syst Rehabil Eng 2019; 28:52-61. [PMID: 31634138 DOI: 10.1109/tnsre.2019.2948055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have focused on the detection of community structures of brain networks constructed with resting-state functional magnetic resonance imaging (fMRI) data. Pearson correlation is often used to describe the connections between nodes in the construction of functional brain networks, which typically ignores the inherent timing and validity of fMRI time series. To solve this problem, this study applied the Dynamic Time Warp (DTW) algorithm to determine the correlation between two brain regions by comparing the synchronization and asynchrony of the time series. In addition, to determine the best community structure for each subject, we further divided the brain network into different scales, and then detected the different communities in these brain networks by using Modularity, Variation of Information (VI) and Normalized Mutual Information (NMI) as structural monitoring variables. Finally, we affirmed each subject's best community structure based on them. The experiments showed that through the method proposed in this paper, we not only accurately discovered important components of seven basic functional subnetworks, but also found that the putamen and Heschl's gyrus have a relationship with the inferior parietal network. Most importantly, this method can also determine each subject's functional brain network density, thus confirming the findings of studies testing real brain networks.
Collapse
|
18
|
Yuen NH, Osachoff N, Chen JJ. Intrinsic Frequencies of the Resting-State fMRI Signal: The Frequency Dependence of Functional Connectivity and the Effect of Mode Mixing. Front Neurosci 2019; 13:900. [PMID: 31551676 PMCID: PMC6738198 DOI: 10.3389/fnins.2019.00900] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
The frequency characteristics of the resting-state BOLD fMRI (rs-fMRI) signal are of increasing scientific interest, as we discover more frequency-specific biological interpretations. In this work, we use variational mode decomposition (VMD) to precisely decompose the rs-fMRI time series into its intrinsic mode functions (IMFs) in a data-driven manner. The accuracy of the VMD decomposition of constituent IMFs is verified through simulations, with higher reconstruction accuracy and much-reduced mode mixing relative to previous methods. Furthermore, we examine the relative contribution of the VMD-derived modes (frequencies) to the rs-fMRI signal as well as functional connectivity measurements. Our primary findings are: (1) The rs-fMRI signal within the 0.01–0.25 Hz range can be consistently characterized by four intrinsic frequency clusters, centered at 0.028 Hz (IMF4), 0.080 Hz (IMF3), 0.15 Hz (IMF2) and 0.22 Hz (IMF1); (2) these frequency clusters were highly reproducible, and independent of rs-fMRI data sampling rate; (3) not all frequencies were associated with equivalent network topology, in contrast to previous findings. In fact, while IMF4 is most likely associated with physiological fluctuations due to respiration and pulse, IMF3 is most likely associated with metabolic processes, and IMF2 with vasomotor activity. Both IMF3 and IMF4 could produce the brain-network topology typically observed in fMRI, whereas IMF1 and IMF2 could not. These findings provide initial evidence of feasibility in decomposing the rs-fMRI signal into its intrinsic oscillatory frequencies in a reproducible manner.
Collapse
Affiliation(s)
- Nicole H Yuen
- Rotman Research Institute at Baycrest, Toronto, ON, Canada
| | | | - J Jean Chen
- Rotman Research Institute at Baycrest, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Määttä S, Säisänen L, Kallioniemi E, Lakka TA, Lintu N, Haapala EA, Koskenkorva P, Niskanen E, Ferreri F, Könönen M. Maturation changes the excitability and effective connectivity of the frontal lobe: A developmental TMS-EEG study. Hum Brain Mapp 2019; 40:2320-2335. [PMID: 30648321 DOI: 10.1002/hbm.24525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
The combination of transcranial magnetic stimulation with simultaneous electroencephalography (TMS-EEG) offers direct neurophysiological insight into excitability and connectivity within neural circuits. However, there have been few developmental TMS-EEG studies to date, and they all have focused on primary motor cortex stimulation. In the present study, we used navigated high-density TMS-EEG to investigate the maturation of the superior frontal cortex (dorsal premotor cortex [PMd]), which is involved in a broad range of motor and cognitive functions known to develop with age. We demonstrated that reactivity to frontal cortex TMS decreases with development. We also showed that although frontal cortex TMS elicits an equally complex TEP waveform in all age groups, the statistically significant between-group differences in the topography of the TMS-evoked peaks and differences in current density maps suggest changes in effective connectivity of the right PMd with maturation. More generally, our results indicate that direct study of the brain's excitability and effective connectivity via TMS-EEG co-registration can also be applied to pediatric populations outside the primary motor cortex, and may provide useful information for developmental studies and studies on developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sara Määttä
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Timo A Lakka
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.,Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Niina Lintu
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Päivi Koskenkorva
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Florinda Ferreri
- Department of Neuroscience, Unit of Neurology and Neurophysiology, University of Padua, Padua, Italy
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
20
|
Archer DB, Coombes SA, Chu WT, Chung JW, Burciu RG, Okun MS, Wagle Shukla A, Vaillancourt DE. A widespread visually-sensitive functional network relates to symptoms in essential tremor. Brain 2019; 141:472-485. [PMID: 29293948 DOI: 10.1093/brain/awx338] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/21/2017] [Indexed: 12/17/2022] Open
Abstract
Essential tremor is a neurological syndrome of heterogeneous pathology and aetiology that is characterized by tremor primarily in the upper extremities. This tremor is commonly hypothesized to be driven by a single or multiple neural oscillator(s) within the cerebello-thalamo-cortical pathway. Several studies have found an association of blood-oxygen level-dependent (BOLD) signal in the cerebello-thalamo-cortical pathway with essential tremor, but there is behavioural evidence that also points to the possibility that the severity of tremor could be influenced by visual feedback. Here, we directly manipulated visual feedback during a functional MRI grip force task in patients with essential tremor and control participants, and hypothesized that an increase in visual feedback would exacerbate tremor in the 4-12 Hz range in essential tremor patients. Further, we hypothesized that this exacerbation of tremor would be associated with dysfunctional changes in BOLD signal and entropy within, and beyond, the cerebello-thalamo-cortical pathway. We found that increases in visual feedback increased tremor in the 4-12 Hz range in essential tremor patients, and this increase in tremor was associated with abnormal changes in BOLD amplitude and entropy in regions within the cerebello-thalamo-motor cortical pathway, and extended to visual and parietal areas. To determine if the tremor severity was associated with single or multiple brain region(s), we conducted a birectional stepwise multiple regression analysis, and found that a widespread functional network extending beyond the cerebello-thalamo-motor cortical pathway was associated with changes in tremor severity measured during the imaging protocol. Further, this same network was associated with clinical tremor severity measured with the Fahn, Tolosa, Marin Tremor Rating Scale, suggesting this network is clinically relevant. Since increased visual feedback also reduced force error, this network was evaluated in relation to force error but the model was not significant, indicating it is associated with force tremor but not force error. This study therefore provides new evidence that a widespread functional network is associated with the severity of tremor in patients with essential tremor measured simultaneously at the hand during functional imaging, and is also associated with the clinical severity of tremor. These findings support the idea that the severity of tremor is exacerbated by increased visual feedback, suggesting that designers of new computing technologies should consider using lower visual feedback levels to reduce tremor in essential tremor.
Collapse
Affiliation(s)
- Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Winston T Chu
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jae Woo Chung
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Roxana G Burciu
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
An Essential Role of the Intraparietal Sulcus in Response Inhibition Predicted by Parcellation-Based Network. J Neurosci 2019; 39:2509-2521. [PMID: 30692225 DOI: 10.1523/jneurosci.2244-18.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023] Open
Abstract
The posterior parietal cortex (PPC) features close anatomical and functional relationships with the prefrontal cortex. However, the necessity of the PPC in executive functions has been questioned. The present study used the stop-signal task to examine response inhibition, an executive function that inhibits prepotent response tendency. The brain activity and resting-state functional connectivity were measured to analyze a parcellation-based network that was aimed at identifying a candidate PPC region essential for response inhibition in humans. The intraparietal sulcus (IPS) was activated during response inhibition and connected with the inferior frontal cortex and the presupplementary motor area, the two frontal regions known to be necessary for response inhibition. Next, transcranial magnetic stimulation (TMS) was used to test the essential role of the IPS region for response inhibition. TMS over the IPS region prolonged the stop-signal reaction time (SSRT), the standard behavioral index used to evaluate stopping performance, when stimulation was applied 30-0 ms before stopping. On the contrary, stimulation over the temporoparietal junction region, an area activated during response inhibition but lacking connectivity with the two frontal regions, did not show changes in SSRT. These results indicate that the IPS identified using the parcellation-based network plays an essential role in executive functions.SIGNIFICANCE STATEMENT Based on the previous neuropsychological studies reporting no impairment in executive functions after lesions in the posterior parietal cortex (PPC), the necessity of PPC in executive functions has been questioned. Here, contrary to the long-lasting view, by using recently developed analysis in functional MRI ("parcellation-based network analysis"), we identified the intraparietal sulcus (IPS) region in the PPC as essential for response inhibition: one executive function to stop actions that are inaccurate in a given context. The necessity of IPS for response inhibition was further tested by an interventional technique of transcranial magnetic stimulation. Stimulation to the IPS disrupted the performance of stopping. Our findings suggest that the IPS plays essential roles in executive functions.
Collapse
|
22
|
Graham AM, Rasmussen JM, Entringer S, Ben Ward E, Rudolph MD, Gilmore JH, Styner M, Wadhwa PD, Fair DA, Buss C. Maternal Cortisol Concentrations During Pregnancy and Sex-Specific Associations With Neonatal Amygdala Connectivity and Emerging Internalizing Behaviors. Biol Psychiatry 2019; 85:172-181. [PMID: 30122286 PMCID: PMC6632079 DOI: 10.1016/j.biopsych.2018.06.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/06/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Maternal cortisol during pregnancy has the potential to influence rapidly developing fetal brain systems that are commonly altered in neurodevelopmental and psychiatric disorders. Research examining maternal cortisol concentrations across pregnancy and offspring neurodevelopment proximal to birth is needed to advance understanding in this area and lead to insight into the etiology of these disorders. METHODS Participants were 70 adult women recruited during early pregnancy and their infants born after 34 weeks gestation. Maternal cortisol concentrations were assessed serially over 4 days in early, mid, and late gestation. Resting state functional connectivity magnetic resonance imaging of the neonatal amygdala was examined. Mothers reported on children's internalizing behavior problems at 24 months of age. RESULTS Maternal cortisol concentrations during pregnancy were significantly associated with neonatal amygdala connectivity in a sex-specific manner. Elevated maternal cortisol was associated with stronger amygdala connectivity to brain regions involved in sensory processing and integration, as well as the default mode network in girls, and with weaker connectivity to these brain regions in boys. Elevated maternal cortisol was associated with higher internalizing symptoms in girls only, and this association was mediated by stronger neonatal amygdala connectivity. CONCLUSIONS Normative variation in maternal cortisol during pregnancy is associated with the coordinated functioning of the amygdala soon after birth in a sex-specific manner. The identified pathway from maternal cortisol to higher internalizing symptoms in girls via alterations in neonatal amygdala connectivity may be relevant for the etiology of sex differences in internalizing psychiatric disorders, which are more prevalent in women.
Collapse
Affiliation(s)
- Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, California
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, California; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Psychology, Berlin, Germany
| | - Elizabeth Ben Ward
- Department of Computer Science, University of California, Irvine, Irvine, California
| | - Marc D Rudolph
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, California.
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, California; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Psychology, Berlin, Germany
| |
Collapse
|
23
|
Hullfish J, Abenes I, Yoo HB, De Ridder D, Vanneste S. Frontostriatal network dysfunction as a domain-general mechanism underlying phantom perception. Hum Brain Mapp 2019; 40:2241-2251. [PMID: 30648324 DOI: 10.1002/hbm.24521] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/05/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022] Open
Abstract
In the present study, we use resting state fMRI to investigate whether nucleus accumbens (NAc) and extended frontostriatal networks are involved in the pathology of auditory phantom perception, i.e., tinnitus, through a study of functional connectivity. We hypothesize that resting state functional connectivity involving NAc will be increased relative to what is observed in healthy subjects and that this connectivity will correlate with clinical measures of tinnitus such as percept loudness, duration of symptoms, etc. We show that a large sample of patients with chronic tinnitus (n = 90) features extensive functional connectivity involving NAc that is largely absent in healthy subjects (n = 94). We further show that connectivity involving NAc correlates significantly with tinnitus percept loudness and the duration of tinnitus symptoms, even after controlling for the effects of age and hearing loss. The loudness correlation, which involves NAc and parahippocampal cortex, is consistent with existing literature identifying the parahippocampus as a tinnitus generator. Our results further suggest that frontostriatal connectivity may predict the transition from acute to chronic tinnitus, analogous to what is seen in the pain literature. We discuss these ideas and suggest fruitful avenues for future research.
Collapse
Affiliation(s)
- Jeffrey Hullfish
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Ian Abenes
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Hye Bin Yoo
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas.,Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Kuo LW, Lin PS, Lin SY, Liu MF, Jan H, Lee HC, Wang SC. Functional Correlates of Resting-State Connectivity in the Default Mode Network of Heroin Users on Methadone Treatment and Medication-Free Therapeutic Community Program. Front Psychiatry 2019; 10:381. [PMID: 31244690 PMCID: PMC6562277 DOI: 10.3389/fpsyt.2019.00381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/14/2019] [Indexed: 11/21/2022] Open
Abstract
The treatment of heroin addiction is a complex process involving changes in addictive behavior and brain functioning. The goal of this study was to explore the brain default mode network (DMN) functional connectivity using resting-state functional magnetic resonance imaging (rs-fMRI) and decision-making performance based on the Cambridge gambling task in heroin-dependent individuals undergoing methadone treatment (MT, n = 11) and medication-free faith-based therapeutic community program (TC, n = 11). The DMN involved the medial prefrontal cortex (mPFC), left inferior parietal lobe (IPLL), right inferior parietal lobe (IPLR), and posterior cingulate cortex (PCC) subregions for all participants in both the MT and TC groups. Compared with MT, TC had an increased functional connectivity in IPLL-IPLR and IPLR-PCC and decreased functional connectivity in mPFC-IPLL and IPLL-PCC. Both groups exhibited no significant difference in the regional rs-fMRI metric [i.e., amplitude of low-frequency fluctuation (ALFF)]. In the analysis of the neural correlates for decision-making performance, risk adjustment was positively associated with ALFF in IPLL for all participants considering the group effects. The involvement of IPL in decision-making performance and treatment response among heroin-dependent patients warrants further investigation.
Collapse
Affiliation(s)
- Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Sheng Lin
- Institute of Population Health Sciences, NHRI, Miaoli, Taiwan
| | - Shih-Yen Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli, Taiwan.,Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Fang Liu
- Institute of Population Health Sciences, NHRI, Miaoli, Taiwan
| | - Hengtai Jan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli, Taiwan
| | - Hsin-Chien Lee
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Chang Wang
- Center for Neuropsychiatric Research, NHRI, Miaoli, Taiwan.,Department of Psychiatry, Cardinal Tien Hospital, New Taipei City, Taiwan
| |
Collapse
|
25
|
Friedrich J, Mückschel M, Beste C. Physical intensity of stimuli modulates motor inhibition by affecting response selection processes in right inferior frontal regions. Behav Brain Res 2018; 359:597-608. [PMID: 30292901 DOI: 10.1016/j.bbr.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023]
Abstract
Response inhibition is a central aspect of cognitive control. Yet, only recently the role of sensory mechanisms for response inhibition has been addressed and neurophysiological mechanisms are far from being understood. Here we ask in how far the physical intensity of stimuli is a relevant perceptual factor modulating motor inhibitory control. We investigated how different physical (objective) stimulus and the subjectively perceived stimulus magnitude modulated response inhibition and its neurophysiological correlates. To this end we used a somatosensory GO/NOGO task in combination with EEG recordings and applied temporal signal decomposition and source localization methods. The behavioral (false alarm) data clearly demonstrated that response inhibition performance was worse in the subjective and objective stimulation condition as compared to the reference stimulation condition with higher stimulus magnitude. Despite primary perceptual aspects were manipulated, neurophysiological correlates of lower-level perceptual and attentional selection processes did not explain effects on overt response inhibition behavior. Rather, neurophysiological processes at the response selection level were modulated. These were associated with activation differences in the right inferior frontal gyrus and suggest that "braking processes" enabling the inhibition of a to-be-executed motor response were modulated. The modulation of these braking processes depends on objective physical magnitude of incoming sensory information and not the subjectively perceived stimulus magnitude.
Collapse
Affiliation(s)
- Julia Friedrich
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; MS Centre Dresden, Faculty of Medicine of the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
26
|
Su H, Zuo C, Zhang H, Jiao F, Zhang B, Tang W, Geng D, Guan Y, Shi S. Regional cerebral metabolism alterations affect resting-state functional connectivity in major depressive disorder. Quant Imaging Med Surg 2018; 8:910-924. [PMID: 30505720 DOI: 10.21037/qims.2018.10.05] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background 18F-FDG positron emission tomography (PET) is a reliable technique to quantify regional neural glucose metabolism even with major depressive disorder (MDD) heterogeneous features. Previous study proposed that in the resting-state (RS), pairs of brain regions whose regional glucose metabolic rates were significantly correlated were functionally associated. This synchronicity indicates a neuronal metabolic and functional interaction in high energy efficient brain regions. In this study, a multimode method was used to identify the RS-FC patterns based on regional metabolism changes, and to observe its relationship with the severity of depressive symptoms in MDD patients. Methods The study enrolled 11 medication-naive MDD patients and 14 healthy subjects. All participants received a static 18F-FDG PET brain scan and a resting-state functional magnetic resonance imaging (RS-fMRI) scan. SPM5 software was used to compare brain metabolism in MDD patients with that in healthy controls, and designated regions with a change in metabolism as regions of interest (ROIs). The glucose metabolism-based regional RS-FC Z values were compared between groups. Then group independent component analysis (ICA) was used to identify the abnormal connectivity nodes in the intrinsic function networks. Finally, the correlation between abnormal RS-FC Z values and the severity of depressive symptoms was evaluated. Results Patients with MDD had reduced glucose metabolism in the putamen, claustrum, insular, inferior frontal gyrus, and supramarginal gyrus. The metabolic reduction regions impaired functional connectivity (FC) to key hubs, such as the Inferior frontal gyrus (pars triangular), angular gyrus, calcarine sulcus, middle frontal gyrus (MFG), located in dorsolateral prefrontal cortex (DLPFC)/parietal lobe, salience network (SN), primary visual cortex (V1), and language network respectively. There was no correlation between aberrant connectivity and the severity of clinical symptoms. Conclusions This research puts forward a possibility that focal neural activity alteration may share RS-FC dysfunction and be susceptible to hubs in the functional network in MDD. In particular, the metabolism and function profiles of the Inferior frontal gyrus (pars triangularis) should be emphasized in future MDD studies.
Collapse
Affiliation(s)
- Hui Su
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai 200030, China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Fangyang Jiao
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Bin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200030, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daoyin Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Shenxun Shi
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
27
|
Rizzo G, Milardi D, Bertino S, Basile GA, Di Mauro D, Calamuneri A, Chillemi G, Silvestri G, Anastasi G, Bramanti A, Cacciola A. The Limbic and Sensorimotor Pathways of the Human Amygdala: A Structural Connectivity Study. Neuroscience 2018; 385:166-180. [DOI: 10.1016/j.neuroscience.2018.05.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
|
28
|
Ventral striatal dysfunction in cocaine dependence - difference mapping for subregional resting state functional connectivity. Transl Psychiatry 2018; 8:119. [PMID: 29915214 PMCID: PMC6006289 DOI: 10.1038/s41398-018-0164-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Research of dopaminergic deficits has focused on the ventral striatum (VS) with many studies elucidating altered resting state functional connectivity (rsFC) in individuals with cocaine dependence (CD). The VS comprises functional subregions and delineation of subregional changes in rsFC requires careful consideration of the differences between addicted and healthy populations. In the current study, we parcellated the VS using whole-brain rsFC differences between CD and non-drug-using controls (HC). Voxels with similar rsFC changes formed functional clusters. The results showed that the VS was divided into 3 subclusters, in the area of the dorsal-anterior VS (daVS), dorsal posterior VS (dpVS), and ventral VS (vVS), each in association with different patterns of rsFC. The three subregions shared reduced rsFC with bilateral hippocampal/parahippocampal gyri (HG/PHG) but also showed distinct changes, including reduced vVS rsFC with ventromedial prefrontal cortex (vmPFC) and increased daVS rsFC with visual cortex in CD as compared to HC. Across CD, daVS visual cortical connectivity was positively correlated with amount of prior-month cocaine use and cocaine craving, and vVS vmPFC connectivity was negatively correlated with the extent of depression and anxiety. These findings suggest a distinct pattern of altered VS subregional rsFC in cocaine dependence, and some of the changes have eluded analyses using the whole VS as a seed region. The findings may provide new insight to delineating VS circuit deficits in cocaine dependence and provide an alternative analytical framework to address functional dysconnectivity in other mental illnesses.
Collapse
|
29
|
Wang W, Hu S, Ide JS, Zhornitsky S, Zhang S, Yu AJ, Li CSR. Motor Preparation Disrupts Proactive Control in the Stop Signal Task. Front Hum Neurosci 2018; 12:151. [PMID: 29780308 PMCID: PMC5945807 DOI: 10.3389/fnhum.2018.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/04/2018] [Indexed: 01/19/2023] Open
Abstract
In a study of the stop signal task (SST) we employed Bayesian modeling to compute the estimated likelihood of stop signal or P(Stop) trial by trial and identified regional processes of conflict anticipation and response slowing. A higher P(Stop) is associated with prolonged go trial reaction time (goRT)-a form of sequential effect-and reflects proactive control of motor response. However, some individuals do not demonstrate a sequential effect despite similar go and stop success (SS) rates. We posited that motor preparation may disrupt proactive control more in certain individuals than others. Specifically, the time interval between trial and go signal onset-the fore-period (FP)-varies across trials and a longer FP is associated with a higher level of motor preparation and shorter goRT. Greater motor preparatory activities may disrupt proactive control. To test this hypothesis, we compared brain activations and Granger causal connectivities of 81 adults who demonstrated a sequential effect (SEQ) and 35 who did not (nSEQ). SEQ and nSEQ did not differ in regional activations to conflict anticipation, motor preparation, goRT slowing or goRT speeding. In contrast, SEQ and nSEQ demonstrated different patterns of Granger causal connectivities. P(Stop) and FP activations shared reciprocal influence in SEQ but FP activities Granger caused P(Stop) activities unidirectionally in nSEQ, and FP activities Granger caused goRT speeding activities in nSEQ but not SEQ. These findings support the hypothesis that motor preparation disrupts proactive control in nSEQ and provide direct neural evidence for interactive go and stop processes.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Sien Hu
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Department of Psychology, State University of New York, Oswego, NY, United States
| | - Jaime S Ide
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Angela J Yu
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale University, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| |
Collapse
|
30
|
Peterson AC, Li CSR. Noradrenergic Dysfunction in Alzheimer's and Parkinson's Diseases-An Overview of Imaging Studies. Front Aging Neurosci 2018; 10:127. [PMID: 29765316 PMCID: PMC5938376 DOI: 10.3389/fnagi.2018.00127] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer's Disease (AD) and Parkinson's Disease (PD). Conventional therapeutic strategies seek to enhance cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and few studies have examined noradrenergic dysfunction as a target for medication development. We review the literature of noradrenergic dysfunction in AD and PD with a focus on human imaging studies that implicate the locus coeruleus (LC) circuit. The LC sends noradrenergic projections diffusely throughout the cerebral cortex and plays a critical role in attention, learning, working memory, and cognitive control. The LC undergoes considerable degeneration in both AD and PD. Advances in magnetic resonance imaging have facilitated greater understanding of how structural and functional alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the potential roles of the noradrenergic system in the pathogenesis of AD and PD with an emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI studies, where we highlight changes in LC connectivity with the default mode network (DMN). LC degeneration may accompany deficient capacity in suppressing DMN activity and increasing saliency and task control network activities to meet behavioral challenges. We finish by proposing potential and new directions of research to address noradrenergic dysfunction in AD and PD.
Collapse
Affiliation(s)
- Andrew C Peterson
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
31
|
Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions. NEUROIMAGE-CLINICAL 2018; 18:342-355. [PMID: 29487791 PMCID: PMC5814381 DOI: 10.1016/j.nicl.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke survivors with impaired touch sensation. Hemisphere of lesion was associated with different patterns of altered functional connectivity within the somatosensory network and with related function was associated with different patterns of altered functional connectivity within the somatosensory network and with related functional networks. Examined somatosensory resting functional connectivity (RSFC) in left/right lesion stroke patients and/healthy controls. Seed based voxel wise (SB) and laterality index (LI) analyses were used. Left lesion SB results showed decreased RSFC in somatosensory and attention regions vs. controls/right lesion patients. Right lesion patients showed increased RSFC compared to controls and left lesion patients to inferior parietal areas. LI results showed increased laterality in both left and right lesion groups between the somatosensory seeds. This suggests RSFC may differ depending on laterality of lesion damage, with altered connectivity profiles between networks.
Collapse
|
32
|
Rallis A, Fercho KA, Bosch TJ, Baugh LA. Getting a handle on virtual tools: An examination of the neuronal activity associated with virtual tool use. Neuropsychologia 2018; 109:208-221. [PMID: 29247666 DOI: 10.1016/j.neuropsychologia.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/14/2017] [Accepted: 12/12/2017] [Indexed: 11/28/2022]
Abstract
Tool use is associated with three visual streams-dorso-dorsal, ventro-dorsal, and ventral visual streams. These streams are involved in processing online motor planning, action semantics, and tool semantics features, respectively. Little is known about the way in which the brain represents virtual tools. To directly assess this question, a virtual tool paradigm was created that provided the ability to manipulate tool components in isolation of one another. During functional magnetic resonance imaging (fMRI), adult participants performed a series of virtual tool manipulation tasks in which vision and movement kinematics of the tool were manipulated. Reaction time and hand movement direction were monitored while the tasks were performed. Functional imaging revealed that activity within all three visual streams was present, in a similar pattern to what would be expected with physical tool use. However, a previously unreported network of right-hemisphere activity was found including right inferior parietal lobule, middle and superior temporal gyri and supramarginal gyrus - regions well known to be associated with tool processing within the left hemisphere. These results provide evidence that both virtual and physical tools are processed within the same brain regions, though virtual tools recruit bilateral tool processing regions to a greater extent than physical tools.
Collapse
Affiliation(s)
- Austin Rallis
- Basic Biomedical Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA; Center for Brain and Behavior Research, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA
| | - Kelene A Fercho
- Basic Biomedical Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA; Center for Brain and Behavior Research, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA
| | - Taylor J Bosch
- Basic Biomedical Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA; Center for Brain and Behavior Research, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA
| | - Lee A Baugh
- Basic Biomedical Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA; Center for Brain and Behavior Research, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA.
| |
Collapse
|
33
|
Ishibashi R, Mima T, Fukuyama H, Pobric G. Facilitation of Function and Manipulation Knowledge of Tools Using Transcranial Direct Current Stimulation (tDCS). Front Integr Neurosci 2018; 11:37. [PMID: 29354036 PMCID: PMC5758506 DOI: 10.3389/fnint.2017.00037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022] Open
Abstract
Using a variety of tools is a common and essential component of modern human life. Patients with brain damage or neurological disorders frequently have cognitive deficits in their recognition and manipulation of tools. In this study, we focused on improving tool-related cognition using transcranial direct current stimulation (tDCS). Converging evidence from neuropsychology, neuroimaging and non- invasive brain stimulation has identified the anterior temporal lobe (ATL) and inferior parietal lobule (IPL) as brain regions supporting action semantics. We observed enhanced performance in tool cognition with anodal tDCS over ATL and IPL in two cognitive tasks that require rapid access to semantic knowledge about the function or manipulation of common tools. ATL stimulation improved access to both function and manipulation knowledge of tools. The effect of IPL stimulation showed a trend toward better manipulation judgments. Our findings support previous studies of tool semantics and provide a novel approach for manipulation of underlying circuits.
Collapse
Affiliation(s)
- Ryo Ishibashi
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom.,Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Intelligent Robotics Institute, Beijing Institute of Technology, Beijing, China
| | - Gorana Pobric
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
34
|
Resting-state connectivity and executive functions after pediatric arterial ischemic stroke. NEUROIMAGE-CLINICAL 2017; 17:359-367. [PMID: 29159048 PMCID: PMC5681318 DOI: 10.1016/j.nicl.2017.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023]
Abstract
Background The aim of this study was to compare the relationship between core executive functions and frontoparietal network connections at rest between children who had suffered an arterial ischemic stroke and typically developing peers. Methods Children diagnosed with arterial ischemic stroke more than two years previously and typically developing controls were included. Executive function (EF) measures comprised inhibition (Go-NoGo task), fluency (category fluency task), processing speed (processing speed tasks), divided attention, working memory (letter-number sequencing), conceptual reasoning (matrices) and EF in everyday life (questionnaire). High-resolution T1-weighted magnetic resonance (MR) structural images and resting-state functional MR imaging were acquired. Independent component analysis was used to identify the frontoparietal network. Functional connections were obtained through correlation matrices; associations between cognitive measures and functional connections through Pearson's correlations. Results Twenty participants after stroke (7 females; mean age 16.0 years) and 22 controls (13 females; mean age 14.8 years) were examined. Patients and controls performed within the normal range in all executive tasks. Patients who had had a stroke performed significantly less well in tests of fluency, processing speed and conceptual reasoning than controls. Resting-state functional connectivity between the left and right inferior parietal lobe was significantly reduced in patients after pediatric stroke. Fluency, processing speed and perceptual reasoning correlated positively with the interhemispheric inferior parietal lobe connection in patients and controls. Conclusion Decreased interhemispheric connections after stroke in childhood may indicate a disruption of typical interhemispheric interactions relating to executive functions. The present results emphasize the relationship between functional organization of the brain at rest and cognitive processes. Interhemispheric frontoparietal connectivity is reduced after pediatric stroke. Interhemispheric frontoparietal connectivity relates to executive functions. Connectivity-function relation occurs in children, adolescents and young adults.
Collapse
|
35
|
Liu L, Li W, Zhang Y, Qin W, Lu S, Zhang Q. Weaker Functional Connectivity Strength in Patients with Type 2 Diabetes Mellitus. Front Neurosci 2017; 11:390. [PMID: 28736516 PMCID: PMC5500656 DOI: 10.3389/fnins.2017.00390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is related to cognitive impairments and increased risk for dementia. Neuroimaging studies have demonstrated T2DM-related brain structural and functional changes which are partly associated to the cognitive decline. However, few studies focused on the early neuroimaging findingsin T2DM patients. In this study, a data-driven whole-brain resting state functional connectivity strength (rsFCS) methodwas used to evaluate resting functional changes in 53 T2DM patients compared with 55 matched healthy controls (HCs), and to detect the associations between the rsFCSchanges and cognitive functions in T2DM patients. The T2DM patients exhibited weaker long-range rsFCS in the right insula and weaker short-range rsFCS in the right supramarginalgyrus (SG) compared with the HCs. Additionally, seed-based functional connectivity (FC) analysis revealed weaker FC between the right insula and the bilateral superior parietal lobule (SPL), and between the right SG and the bilateral supplementary motor area (SMA)/right SPL in T2DM patientscompared with the HCs. In T2DM patients, negative correlation was found between the long-range rsFCS in the right insula and HbA1c levels; and the FC between the right SG and the bilateral SMA negatively correlated with TMT-A scores. Our results indicated that the rsFCS alteration occurredbefore obvious cognitive deficits in T2DM patients, which might be helpful for understanding the neuromechanism of cognitive declines in T2DM patients.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China
| | - Wanhu Li
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical SciencesJinan, China
| | - Yang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China
| | - Shan Lu
- Department of Radiology, Tianjin Medical University Metabolic Diseases HospitalTianjin, China
| | - Quan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China
| |
Collapse
|
36
|
The Mirror Neuron System in Relapsing Remitting Multiple Sclerosis Patients with Low Disability. Brain Topogr 2017; 30:548-559. [DOI: 10.1007/s10548-017-0558-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
|
37
|
Peterson AC, Zhang S, Hu S, Chao HH, Li CSR. The Effects of Age, from Young to Middle Adulthood, and Gender on Resting State Functional Connectivity of the Dopaminergic Midbrain. Front Hum Neurosci 2017; 11:52. [PMID: 28223929 PMCID: PMC5293810 DOI: 10.3389/fnhum.2017.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 01/31/2023] Open
Abstract
Dysfunction of the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) is implicated in psychiatric disorders including attention-deficit/ hyperactivity disorder (ADHD), addiction, schizophrenia and movement disorders such as Parkinson's disease (PD). Although the prevalence of these disorders varies by age and sex, the underlying neural mechanism is not well understood. The objective of this study was to delineate the distinct resting state functional connectivity (rsFC) of the VTA and SNc and examine the effects of age, from young to middle-adulthood, and sex on the rsFC of these two dopaminergic structures in a data set of 250 healthy adults (18-49 years of age, 104 men). Using blood oxygenation level dependent (BOLD) signals, we correlated the time course of the VTA and SNc to the time courses of all other brain voxels. At a corrected threshold, paired t-test showed stronger VTA connectivity to bilateral angular gyrus and superior/middle and orbital frontal regions and stronger SNc connectivity to the insula, thalamus, parahippocampal gyrus (PHG) and amygdala. Compared to women, men showed a stronger VTA/SNc connectivity to the left posterior orbital gyrus. In linear regressions, men but not women showed age-related changes in VTA/SNc connectivity to a number of cortical and cerebellar regions. Supporting shared but also distinct cerebral rsFC of the VTA and SNc and gender differences in age-related changes from young and middle adulthood in VTA/SNc connectivity, these new findings help advance our understanding of the neural bases of many neuropsychiatric illnesses that implicate the dopaminergic systems.
Collapse
Affiliation(s)
- Andrew C Peterson
- Frank H. Netter MD School of Medicine at Quinnipiac University North Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Herta H Chao
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT, USA; Veterans Administration Medical CenterWest Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
38
|
Zhang S, Hu S, Chao HH, Li CSR. Hemispheric lateralization of resting-state functional connectivity of the ventral striatum: an exploratory study. Brain Struct Funct 2017; 222:2573-2583. [PMID: 28110447 DOI: 10.1007/s00429-016-1358-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023]
Abstract
Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The ventral striatum (VS) is critical to motivated behavior, with extant studies suggesting functional hemispheric asymmetry. The current work investigated differences in rsFC between the left (L) and right (R) VS and explored gender differences in the extent of functional lateralization. In 106 adults, we computed a laterality index (fcLI) to query whether a target region shows greater or less connectivity to the L vs R VS. A total of 45 target regions with hemispheric masks were examined from the Automated Anatomic Labeling atlas. One-sample t test was performed to explore significant laterality in the whole sample and in men and women separately. Two-sample t test was performed to examine gender differences in fcLI. At a corrected threshold (p < 0.05/45 = 0.0011), the dorsomedial prefrontal cortex (dmPFC) and posterior cingulate cortex (pCC) showed L lateralization and the intraparietal sulcus (IPS) and supramarginal gyrus (SMG) showed R lateralization in VS connectivity. Except for the pCC, these findings were replicated in a different data set (n = 97) from the Human Connectome Project. Furthermore, the fcLI of VS-pCC was negatively correlated with a novelty seeking trait in women but not in men. Together, the findings may suggest a more important role of the L VS in linking saliency response to self control and other internally directed processes. Right lateralization of VS connectivity to the SMG and IPS may support attention and action directed to external behavioral contingencies.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA
| | - Herta H Chao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Veterans Administration Medical Center, West Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, CMHC S112, 34 Park Street, New Haven, CT, 06519-1109, USA. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA. .,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
39
|
Plata-Bello J, Modroño C, Hernández-Martín E, Pérez-Martín Y, Fariña H, Castañón-Pérez A, Marcano F, González-Mora JL. The mirror neuron system also rests. Brain Struct Funct 2016; 222:2193-2202. [PMID: 27838795 DOI: 10.1007/s00429-016-1335-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/04/2016] [Indexed: 11/26/2022]
Abstract
The mirror neuron system (MNS) is a brain network that has been associated with the understanding of the actions performed by others. The main areas of the brain that are considered as belonging to the MNS are the rostral part of the inferior parietal lobe (IPL) and the inferior frontal gyrus (IFG). Many studies have tried to focus on the relationship between the regions belonging to the MNS, but a little consideration has been given to the study of the MNS in resting conditions. In the present experiment, the MNS has been studied by two fMRI modalities (task-based fMRI and resting-fMRI) and three analytical procedures [task-block comparison, functional connectivity (FC), and independent component analysis (ICA)]. The task-fMRI with block design showed a mirror activity located in the rostral IPL. The coordinates of this local maximum voxel were defined as a region of interest (ROI) for an FC analysis of the resting-fMRI. This analysis revealed the existence of a functional connectivity within regions forming the core of MNS network and also with other regions with mirror properties. Finally, resting-state fMRI ICA showed the same functional network, although it was more restricted to the core MNS regions. To the best of our knowledge, this is the first study that approaches the MNS using the resting-state fMRI analysis using independent component analysis and functional connectivity at the same time.
Collapse
Affiliation(s)
- Julio Plata-Bello
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, La Laguna, Spain.
- Department of Neurosurgery, Hospital Universitario de Canarias, S/C de Tenerife, CP 38320, La Laguna, Spain.
| | - Cristián Modroño
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, La Laguna, Spain
| | | | - Yaiza Pérez-Martín
- Department of Neurology, Hospital Universitario de Canarias, S/C de Tenerife, CP 38320, La Laguna, Spain
| | - Helga Fariña
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, La Laguna, Spain
| | - Abril Castañón-Pérez
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, La Laguna, Spain
| | - Francisco Marcano
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, La Laguna, Spain
| | - José Luis González-Mora
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, La Laguna, Spain
| |
Collapse
|
40
|
Kann S, Zhang S, Manza P, Leung HC, Li CSR. Hemispheric Lateralization of Resting-State Functional Connectivity of the Anterior Insula: Association with Age, Gender, and a Novelty-Seeking Trait. Brain Connect 2016; 6:724-734. [PMID: 27604154 PMCID: PMC5105339 DOI: 10.1089/brain.2016.0443] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The imaging literature has described lateralization of insula activations during cognitive and affective processing. Evidence appears to support a role of the right-hemispheric insula in attentional orientation to salient stimulus, interoception, and physiological arousal, and a role of the left-hemispheric insula in cognitive and affective control, as well as perspective taking. In this study, in a large data set of healthy adults, we examined lateralization of the rsFC of the anterior insula (AI) by computing a laterality index (LI) of connectivity with 54 regions from the Automated Anatomic Labeling atlas. At a corrected threshold (p < 0.001), the AI is left lateralized in connectivity with the dorsomedial prefrontal cortex, superior frontal gyrus, inferior frontal cortex, and posterior orbital gyrus and right lateralized in connectivity with the postcentral gyrus, supramarginal gyrus, and superior parietal lobule. In gender differences, women, but not men, showed right-lateralized connectivity to the thalamus. Furthermore, in a subgroup of participants assessed by the tridimensional personality questionnaire, novelty seeking is correlated with the extent of left lateralization of AI connectivity to the pallidum and putamen in men and with the extent of right lateralization of AI connectivity to the parahippocampal gyrus in women. These findings support hemispheric functional differentiation of the AI.
Collapse
Affiliation(s)
- Sarah Kann
- 1 Department of Psychology, State University of New York , Stony Brook, New York
| | - Sheng Zhang
- 2 Department of Psychiatry, Yale University School of Medicine , New Haven, Connecticut
| | - Peter Manza
- 1 Department of Psychology, State University of New York , Stony Brook, New York
| | - Hoi-Chung Leung
- 1 Department of Psychology, State University of New York , Stony Brook, New York
| | - Chiang-Shan R Li
- 2 Department of Psychiatry, Yale University School of Medicine , New Haven, Connecticut.,3 Department of Neuroscience, Yale University School of Medicine , New Haven, Connecticut.,4 Interdepartmental Neuroscience Program, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
41
|
Upadhyay J, Granitzka J, Bauermann T, Baumgärtner U, Breimhorst M, Treede RD, Birklein F. Detection of central circuits implicated in the formation of novel pain memories. J Pain Res 2016; 9:671-681. [PMID: 27695361 PMCID: PMC5029841 DOI: 10.2147/jpr.s113436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Being able to remember physically and emotionally painful events in one's own past may shape behavior, and can create an aversion to a variety of situations. Pain imagination is a related process that may include recall of past experiences, in addition to production of sensory and emotional percepts without external stimuli. This study aimed to understand 1) the central nervous system processes that underlie pain imagination, 2) the retrieval of pain memories, and 3) to compare the latter with visual object memory. These goals were achieved by longitudinally investigating brain function with functional magnetic resonance imaging in a unique group of healthy volunteers who had never experienced tooth pain. In these subjects, we compared brain responses elicited during three experimental conditions in the following order: imagination of tooth pain (pain imagination), remembering one's own house (object memory), and remembrance of tooth pain following an episode of induced acute tooth pain (pain memory). Key observations stemming from group-level conjunction analyses revealed common activation in the posterior parietal cortex for both pain imagination and pain memory, while object and pain memory each had strong activation predominantly within the middle frontal gyrus. When contrasting pain imagination and memory, significant activation differences were observed in subcortical structures (ie, parahippocampus - pain imagination > pain memory; midbrain - pain memory > pain imagination). Importantly, these findings were observed in the presence of consistent and reproducible psychophysical and behavioral measures that informed on the subjects' ability to imagine novel and familiar thoughts, as well as the subjects' pain perception.
Collapse
Affiliation(s)
| | | | - Thomas Bauermann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz
| | - Ulf Baumgärtner
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | | | - Rolf-Detlef Treede
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
42
|
Farr OM, Li CSR, Mantzoros CS. Central nervous system regulation of eating: Insights from human brain imaging. Metabolism 2016; 65:699-713. [PMID: 27085777 PMCID: PMC4834455 DOI: 10.1016/j.metabol.2016.02.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022]
Abstract
Appetite and body weight regulation are controlled by the central nervous system (CNS) in a rather complicated manner. The human brain plays a central role in integrating internal and external inputs to modulate energy homeostasis. Although homeostatic control by the hypothalamus is currently considered to be primarily responsible for controlling appetite, most of the available evidence derives from experiments in rodents, and the role of this system in regulating appetite in states of hunger/starvation and in the pathogenesis of overeating/obesity remains to be fully elucidated in humans. Further, cognitive and affective processes have been implicated in the dysregulation of eating behavior in humans, but their exact relative contributions as well as the respective underlying mechanisms remain unclear. We briefly review each of these systems here and present the current state of research in an attempt to update clinicians and clinical researchers alike on the status and future directions of obesity research.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
43
|
Kline RL, Zhang S, Farr OM, Hu S, Zaborszky L, Samanez-Larkin GR, Li CSR. The Effects of Methylphenidate on Resting-State Functional Connectivity of the Basal Nucleus of Meynert, Locus Coeruleus, and Ventral Tegmental Area in Healthy Adults. Front Hum Neurosci 2016; 10:149. [PMID: 27148006 PMCID: PMC4834346 DOI: 10.3389/fnhum.2016.00149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/24/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Methylphenidate (MPH) influences catecholaminergic signaling. Extant work examined the effects of MPH on the neural circuits of attention and cognitive control, but few studies have investigated the effect of MPH on the brain's resting-state functional connectivity (rsFC). Methods: In this observational study, we compared rsFC of a group of 24 healthy adults who were administered an oral 45 mg dose of MPH with a group of 24 age and gender matched controls who did not receive MPH. We focused on three seed regions: basal nucleus of Meynert (BNM), locus coeruleus (LC), and ventral tegmental area/substantia nigra, pars compacta (VTA/SNc), each providing cholinergic, noradrenergic and dopaminergic inputs to the cerebral cortex. Images were pre-processed and analyzed as in our recent work (Li et al., 2014; Zhang et al., 2015). We used one-sample t-test to characterize group-specific rsFC of each seed region and two-sample t-test to compare rsFC between groups. Results: MPH reversed negative connectivity between BNM and precentral gyri. MPH reduced positive connectivity between LC and cerebellum, and induced positive connectivity between LC and right hippocampus. MPH decreased positive VTA/SNc connectivity to the cerebellum and putamen, and reduced negative connectivity to left middle occipital gyrus. Conclusion: MPH had distinct effects on the rsFC of BNM, LC, and VTA/SNc in healthy adults. These new findings may further our understanding of the role of catecholaminergic signaling in Attention Deficit Hyperactivity Disorder (ADHD) and Parkinson's disease and provide insights into the therapeutic mechanisms of MPH in the treatment of clinical conditions that implicate catecholaminergic dysfunction.
Collapse
Affiliation(s)
- Ryan L Kline
- Department of Psychology, Yale University School of Arts and Sciences New Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Olivia M Farr
- Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience Rutgers, NJ, USA
| | - Gregory R Samanez-Larkin
- Department of Psychology, Yale University School of Arts and SciencesNew Haven, CT, USA; Interdepartmental Neuroscience Program, Yale UniversityNew Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA; Interdepartmental Neuroscience Program, Yale UniversityNew Haven, CT, USA; Department of Neurobiology, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
44
|
Tan G, Huang X, Zhang Y, Wu AH, Zhong YL, Wu K, Zhou FQ, Shao Y. A functional MRI study of altered spontaneous brain activity pattern in patients with congenital comitant strabismus using amplitude of low-frequency fluctuation. Neuropsychiatr Dis Treat 2016; 12:1243-50. [PMID: 27284244 PMCID: PMC4882152 DOI: 10.2147/ndt.s104756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE The aim of this study was to use amplitude of low-frequency fluctuation (ALFF) to investigate local features of spontaneous brain activity in patients with congenital comitant strabismus and clarify their relationship with emotional and psychosocial problems. METHODS A total of 20 patients with congenital comitant strabismus (ten males and ten females), and 20 healthy controls (ten males and ten females) closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. Congenital comitant strabismus patients were distinguished from healthy controls by receiver operating characteristic curve. Correlation analysis was performed to explore the relationships between the observed mean ALFF signal values of the different areas and the Chinese version of the Hospital Anxiety and Depression Scale. RESULTS Compared with healthy controls, patients with congenital comitant strabismus had significantly lower ALFF in the bilateral medialfrontal gyrus and higher values in the bilateral cerebellum posterior lobe and left angular gyrus. In the congenital comitant strabismus group, the Hospital Anxiety and Depression Scale-depression score showed a negative correlation with the ALFF signal values of the bilateral medial frontal gyrus (r=-0.550, P=0.012) and a negative correlation was noted between the mean ALFF signal values of the left angular gyrus and strabismus duration (r=-0.515, P=0.020). CONCLUSION Congenital comitant strabismus mainly involves dysfunction in the bilateral medial frontal gyrus, bilateral cerebellum posterior lobe, and left angular gyrus, which may reflect the underlying pathologic mechanism of congenital strabismus.
Collapse
Affiliation(s)
- Gang Tan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China; Department of Ophthalmology, The First People's Hospital of Jiujiang City, Jiujiang, People's Republic of China
| | - Ying Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| | - An-Hua Wu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Yu-Lin Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| | - Kai Wu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
45
|
Zhang S, Hu S, Chao HH, Li CSR. Resting-State Functional Connectivity of the Locus Coeruleus in Humans: In Comparison with the Ventral Tegmental Area/Substantia Nigra Pars Compacta and the Effects of Age. Cereb Cortex 2015. [PMID: 26223261 DOI: 10.1093/cercor/bhv172] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The locus coeruleus (LC) provides the primary noradrenergic inputs to the cerebral cortex. Despite numerous animal studies documenting the functions of the LC, research in humans is hampered by the small volume of this midbrain nucleus. Here, we took advantage of a probabilistic template, explored the cerebral functional connectivity of the LC with resting-state fMRI data of 250 healthy adults, and verified the findings by accounting for physiological noise in another data set. In addition, we contrasted connectivities of the LC and the ventral tegmental area/substantia nigra pars compacta. The results highlighted both shared and distinct connectivity of these 2 midbrain structures, as well as an opposite pattern of connectivity to bilateral amygdala, pulvinar, and right anterior insula. Additionally, LC connectivity to the fronto-parietal cortex and the cerebellum increases with age and connectivity to the visual cortex decreases with age. These findings may facilitate studies of the role of the LC in arousal, saliency responses and cognitive motor control and in the behavioral and cognitive manifestations during healthy and disordered aging. Although the first to demonstrate whole-brain LC connectivity, these findings need to be confirmed with high-resolution imaging.
Collapse
Affiliation(s)
| | | | - Herta H Chao
- Department of Internal Medicine, Yale University, New Haven, CT 06519, USA Medical Service, VA Connecticut Health Care System, West Haven, CT 06516, USA
| | - Chiang-Shan R Li
- Department of Psychiatry Department of Neurobiology Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA Connecticut Mental Health Center, New Haven, CT 06519, USA
| |
Collapse
|
46
|
Exogenous features versus prior experiences modulate different subregions of the right IPL during episodic memory retrieval. Sci Rep 2015; 5:11248. [PMID: 26057929 PMCID: PMC4460889 DOI: 10.1038/srep11248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/20/2015] [Indexed: 11/11/2022] Open
Abstract
The fractionation view holds that distinct cognitive operations are mediated by subregions of the inferior parietal lobule (IPL). Within IPL, we hypothesised that retrieval-related activity in different parts of the right supramarginal gyrus (rSMG) may be modulated differentially by information acquired via different combinations of attention signals at encoding. We had two groups of participants watch a 42-min TV episode and, after a 24-hr delay, perform a temporal-order judgment task during fMRI. Each retrieval trial comprised three images presented sequentially, requiring participants to judge the temporal order between the first and last images while ignoring the second image (“distractor”). We manipulated the bottom-up factor by presenting distractors that were extracted from either an event-boundary or a non-boundary of the movie. The top-down factor was manipulated by instructing one group perform a segmentation task reporting the event-boundaries at encoding, while the other group watched the movie passively. Across groups, we found that the stimulus-related factor modulated retrieval activation in the anterior rSMG (areas PFt and PFop), whereas the goal-related influence of prior segmentation interacted with this effect in the middle rSMG (area PF), demonstrating IPL segregation during retrieval as a function of prior bottom-up vs. top-down attention signals.
Collapse
|
47
|
Manza P, Zhang S, Hu S, Chao HH, Leung HC, Li CSR. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood. Neuroimage 2015; 107:311-322. [PMID: 25514518 PMCID: PMC4300261 DOI: 10.1016/j.neuroimage.2014.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction.
Collapse
Affiliation(s)
- Peter Manza
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA; Department of Psychology, Stony Brook University, Stony Brook, NY 11790, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA
| | - Sien Hu
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA
| | - Herta H Chao
- Department of Internal Medicine, Yale University, New Haven, CT 06519, USA; Medical Service, VA Connecticut Health Care System, West Haven, CT 06516, USA
| | - Hoi-Chung Leung
- Department of Psychology, Stony Brook University, Stony Brook, NY 11790, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA; Department of Neurobiology, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Fang Z, Spaeth AM, Ma N, Zhu S, Hu S, Goel N, Detre JA, Dinges DF, Rao H. Altered salience network connectivity predicts macronutrient intake after sleep deprivation. Sci Rep 2015; 5:8215. [PMID: 25645575 PMCID: PMC4314629 DOI: 10.1038/srep08215] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/29/2014] [Indexed: 01/10/2023] Open
Abstract
Although insufficient sleep is a well-recognized risk factor for overeating and weight gain, the neural mechanisms underlying increased caloric (particularly fat) intake after sleep deprivation remain unclear. Here we used resting-state functional magnetic resonance imaging and examined brain connectivity changes associated with macronutrient intake after one night of total sleep deprivation (TSD). Compared to the day following baseline sleep, healthy adults consumed a greater percentage of calories from fat and a lower percentage of calories from carbohydrates during the day following TSD. Subjects also exhibited increased brain connectivity in the salience network from the dorsal anterior cingulate cortex (dACC) to bilateral putamen and bilateral anterior insula (aINS) after TSD. Moreover, dACC-putamen and dACC-aINS connectivity correlated with increased fat and decreased carbohydrate intake during the day following TSD, but not during the day following baseline sleep. These findings provide a potential neural mechanism by which sleep loss leads to increased fat intake.
Collapse
Affiliation(s)
- Zhuo Fang
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Andrea M. Spaeth
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ning Ma
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Senhua Zhu
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Siyuan Hu
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Namni Goel
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John A. Detre
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David F. Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
49
|
Wang CX, Fu KL, Liu HJ, Xing F, Zhang SY. Spontaneous brain activity in type 2 diabetics revealed by amplitude of low-frequency fluctuations and its association with diabetic vascular disease: a resting-state FMRI study. PLoS One 2014; 9:e108883. [PMID: 25272033 PMCID: PMC4182760 DOI: 10.1371/journal.pone.0108883] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/04/2014] [Indexed: 11/29/2022] Open
Abstract
Purpose To investigate correlations between altered spontaneous brain activity, diabetic vascular disease, and cognitive function for patients with type 2 diabetes mellitus (T2DM) using resting-state functional magnetic resonance imaging (rs-fMRI). Methods Rs-fMRI was performed for T2DM patients (n = 26) and age-, gender-, and education-matched non-diabetic control subjects (n = 26). Amplitude of low frequency fluctuations (ALFF) were computed from fMRI signals to measure spontaneous neuronal activity. Differences in the ALFF patterns between patients and controls, as well as their correlations with clinical variables, were evaluated. Results Compared with healthy controls, T2DM patients exhibited significantly decreased ALFF values mainly in the frontal and parietal lobes, the bilateral thalumi, the posterior lobe of the cerebellum, and increased ALFF values mainly in the visual cortices. Furthermore, lower ALFF values in the left subcallosal gyrus correlated with lower ankle-brachial index values (r = 0.481, p = 0.020), while lower ALFF values in the bilateral medial prefrontal gyri correlated with higher urinary albumin-creatinine ratio (r = −0.418, p = 0.047). In addition, most of the regions with increased ALFF values in the visual cortices were found to negatively correlate with MoCA scores. Conclusions These results confirm that ALFF are altered in many brain regions in T2DM patients, and this is associated with the presence of diabetic vascular disease and poor cognitive performance. These findings may provide additional insight into the neurophysiological mechanisms that mediate T2DM-related cognitive dysfunction, and may also serve as a reference for future research.
Collapse
Affiliation(s)
- Chun-Xia Wang
- Department of Medical Imaging, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai-Liang Fu
- Department of Medical Imaging, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huai-Jun Liu
- Department of Medical Imaging, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- * E-mail:
| | - Fei Xing
- Department of Medical Imaging, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Song-Yun Zhang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
50
|
Patterns of regional gray matter and white matter atrophy in cortical multiple sclerosis. J Neurol 2014; 261:1715-25. [PMID: 24952616 DOI: 10.1007/s00415-014-7409-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
We investigated the patterns of regional distribution of focal lesions, white matter (WM) and gray matter (GM) atrophy in patients with cortical (cort) MS in comparison to classical (c) MS patients. Nine cort-MS, nine c-MS and nine age-matched healthy controls (HC) underwent a brain MRI exam, including FLAIR and high-resolution T1-weighted scans. MS patients underwent neurological and neuropsychological assessment. Between-group differences of GM and WM volumes and their correlations with neuropsychological performances were assessed with voxel-based morphometry. FLAIR and T1 lesion probability maps (LPMs) were also obtained. Performance at neuropsychological tests was worse in cort-MS than in c-MS patients. Compared to HC, MS patients had a distributed pattern of GM and WM atrophy. No GM/WM area was more atrophic in c-MS vs cort-MS patients. Compared to c-MS, cort-MS patients experienced GM atrophy of frontal-temporal-parietal areas and cingulate cortex and WM atrophy of the cingulum bundle, bilateral cerebral peduncles, right inferior longitudinal fasciculus and left superior longitudinal fasciculus. FLAIR and T1 LPMs did not differ between c-MS vs cort-MS patients. A higher susceptibility to neurodegenerative processes in key brain regions known to be related to cognitive functions is likely to underlie the clinical manifestations of cort-MS.
Collapse
|