1
|
Liu P, Liu Z, Zhou H, Zhu J, Sun Z, Zhang G, Liu Y. Lipidomics in forensic science: a comprehensive review of applications in drugs, alcohol, latent fingermarks, fire debris, and seafood authentication. Mol Omics 2024; 20:618-629. [PMID: 39400253 DOI: 10.1039/d4mo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Forensic science, an interdisciplinary field encompassing the collection, examination, and presentation of evidence in legal proceedings, has recently embraced lipidomics as a valuable tool. Lipidomics, a subfield of metabolomics, specializes in the analysis of lipid structures and functions, offering insights into biological processes that can aid forensic investigations. While not a substitute for DNA analysis in personal identification, lipidomics complements this technique by focusing on small biological molecules, with distinct sample requirements. This review comprehensively explores the current applications of lipidomics in forensic science. The review commences with an introduction to the concept and historical background of lipidomics, subsequently delving into its utilization in diverse areas such as drug analysis, ethyl alcohol and substitute assessment, latent fingermark detection, fire debris analysis, and seafood authentication. By showcasing the various biological materials and methods employed, this review underscores the potential of lipidomics as a powerful adjunct in forensic investigations.
Collapse
Affiliation(s)
- Pingyang Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhanfang Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Hong Zhou
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Jun Zhu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Zhenwen Sun
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Guannan Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Yao Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
2
|
Harasim-Symbor E, Bielawiec P, Pedzinska-Betiuk A, Weresa J, Malinowska B, Konstantynowicz-Nowicka K, Chabowski A. Cannabidiol treatment changes myocardial lipid profile in spontaneously hypertensive rats. Nutr Metab Cardiovasc Dis 2024; 34:2817-2833. [PMID: 39358107 DOI: 10.1016/j.numecd.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND AIMS Hypertension is a potent risk factor for cardiovascular diseases, which are the leading worldwide cause of death. Within time increased blood pressure (BP) induces cardiac contractile dysfunction, metabolic alternations, and eventually, heart failure, which makes hypertension an area for seeking safe therapies such as phytocannabinoids. METHODS AND RESULTS In the present study spontaneously hypertensive rats (SHRs) were used as an experimental model of genetically induced hypertension, where cannabidiol (CBD) was applied as a potential treatment (intraperitoneally administered for 2 weeks, 10 mg/kg) for elevated BP and related metabolic disturbances. Langendorff working heart system, Western blotting as well as gas-liquid chromatography were applied to determine radiolabeled 3H-palmitate uptake, incorporation, and oxidation, protein expression, as well as the content and fatty acid composition of different lipid fractions in the left ventricle and plasma, respectively. Most importantly, we noticed that 2-week CBD treatment was effective in upregulating ex vivo3H-palmitate uptake, oxidation, and its incorporation into triacylglycerol and cholesterol fractions with concomitant lowering free fatty acid, diacylglycerol, and phospholipid fractions, which was in agreement with in vivo studies and alternations in protein expressions of lipoprotein lipase, carnitine palmitoyltransferase I, 3-hydroxyacyl-CoA dehydrogenase, diacylglycerol acyltransferase 1, and adipose triglyceride lipase as well as proteins associated with eicosanoid signaling pathways and extracellular matrix remodeling in the heart of hypertensive rats. CONCLUSION Our study reveals that 2-week CBD administration substantially affects the energetic substrate milieu in cardiac muscle regarding fatty acids uptake and their further utilization without parallel significant alternations in cardiovascular parameters.
Collapse
Affiliation(s)
- Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-222, Bialystok, Poland.
| | - Patrycja Bielawiec
- Department of Physiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| | - Anna Pedzinska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| |
Collapse
|
3
|
Balaji S, Woodward TJ, Richter E, Chang A, Otiz R, Kulkarni PP, Balaji K, Bradshaw HB, Ferris CF. Palmitoylethanolamide causes dose-dependent changes in brain function and the lipidome. Front Neurosci 2024; 18:1506352. [PMID: 39664446 PMCID: PMC11631868 DOI: 10.3389/fnins.2024.1506352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
The present studies were undertaken to understand the effects of the commonly used nutraceutical PEA on brain function and lipid chemistry. These studies using MRI and broad-scale lipidomics are without precedent in animal or human research. During the MRI scanning session awake rats were given one of three doses of PEA (3, 10, or 30 mg/kg) or vehicle and imaged for changes in BOLD signal and functional connectivity. There was an inverse dose-response for negative BOLD suggesting a decrease in brain activity affecting the prefrontal ctx, sensorimotor cortices, basal ganglia and thalamus. However, there was a dose-dependent increase in functional connectivity in these same brain areas. Plasma and CNS levels of PEA and over 80 endogenous lipids (endolipids) were determined post treatment. While levels of PEA in the CNS were significantly higher after 30 mg/kg treatment, levels of the endocannabinoid, Anandamide, and at least 20 additional endolipids, were significantly lower across the CNS. Of the 78 endolipids that were detected in all CNS regions evaluated, 51 of them were modulated in at least one of the regions. Taken together, the functional connectivity and lipidomics changes provide evidence that PEA treatment drives substantial changes in CNS activity.
Collapse
Affiliation(s)
- Shreyas Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Taylor J. Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Emily Richter
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Otiz
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| | - Praveen P. Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Kaashyap Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University Boston, Boston, MA, United States
| |
Collapse
|
4
|
Couttas TA, Boost C, Pahlisch F, Sykorova EB, Mueller JK, Jieu B, Leweke JE, Dammann I, Hoffmann AE, Loeffler M, Grimm O, Enning F, Flor H, Meyer-Lindenberg A, Koethe D, Rohleder C, Leweke FM. Dose-dependent effects of oral cannabidiol and delta-9-tetrahydrocannabinol on serum anandamide and related N-acylethanolamines in healthy volunteers. BMJ MENTAL HEALTH 2024; 27:e301027. [PMID: 39182921 PMCID: PMC11409355 DOI: 10.1136/bmjment-2024-301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The mental health benefits of cannabidiol (CBD) are promising but can be inconsistent, in part due to challenges in defining an individual's effective dosage. In schizophrenia, alterations in anandamide (AEA) concentrations, an endocannabinoid (eCB) agonist of the eCB system, reflect positively on treatment with CBD. Here, we expanded this assessment to include eCBs alongside AEA congeners, comparing phytocannabinoids and dosage in a clinical setting. METHODS Liquid chromatography-tandem mass spectrometry quantified changes in serum levels of AEA, 2-arachidonoylglycerol (2-AG), alongside AEA-related compounds oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), which were attained from two independent, parallel-designed, clinical trials investigating single, oral CBD (600 or 800 mg), delta-9-tetrahydrocannabinol (Δ9-THC, 10 or 20 mg) and combination administration (CBD|800 mg+Δ9-THC|20 mg) in healthy volunteers (HVs, n=75). Concentrations were measured at baseline (t=0), 65 and 160 min post administration. RESULTS CBD-led increases in AEA (1.6-fold), OEA and PEA (1.4-fold) were observed following a single 800 mg (pcorr<0.05) but not 600 mg dosage. Declining AEA was observed with Δ9-THC at 10 mg (-1.3-fold) and 20 mg (-1.4-fold) but restored to baseline levels by 160 min. CBD+Δ9-THC yielded the highest increases in AEA (2.1-fold), OEA (1.9-fold) and PEA (1.8-fold) without reaching a maximal response. CONCLUSION CBD-administered effects towards AEA, OEA and PEA are consistent with phase II trials reporting clinical improvement for acute schizophrenia (CBD≥800 mg). Including Δ9-THC appears to enhance the CBD-induced response towards AEA and its congeners. Our results warrant further investigations into the potential of these lipid-derived mediators as metabolic measures for CBD dose prescription and co-cannabinoid administration.
Collapse
Affiliation(s)
- Timothy A Couttas
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Carola Boost
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
- Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Franziska Pahlisch
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Eliska B Sykorova
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Juliane K Mueller
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
- Dept. of Psychiatry, Psychosomatics and Psychotherapy, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| | - Beverly Jieu
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Judith E Leweke
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Dept. of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany
| | - Inga Dammann
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
- Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Anna E Hoffmann
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Martin Loeffler
- Dept. of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim, Germany
| | - Oliver Grimm
- Dept. of Psychiatry, Psychosomatics and Psychotherapy, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
- Dept. of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim, Germany
| | - Frank Enning
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
- Dept. of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Herta Flor
- Dept. of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim, Germany
| | | | - Dagmar Koethe
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cathrin Rohleder
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
- Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - F Markus Leweke
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| |
Collapse
|
5
|
Dujic G, Kumric M, Vrdoljak J, Dujic Z, Bozic J. Chronic Effects of Oral Cannabidiol Delivery on 24-h Ambulatory Blood Pressure in Patients with Hypertension (HYPER-H21-4): A Randomized, Placebo-Controlled, and Crossover Study. Cannabis Cannabinoid Res 2024; 9:979-989. [PMID: 37093160 DOI: 10.1089/can.2022.0320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Background: Recent data indicate that cannabidiol (CBD), a nonintoxicating constituent of cannabis, is involved in several aspects of cardiovascular regulation, including blood pressure (BP). However, the impact of chronic CBD administration on 24-h BP and vascular health has not been previously examined in patients with hypertension. The primary aim of this randomized, triple-blind, placebo-controlled, and crossover study was to examine the influence of chronic CBD on 24-h ambulatory BP and arterial stiffness in hypertensive patients. Methods: Seventy patients with mild or moderate primary hypertension, who were untreated or receiving standard of care therapy, were randomly assigned to receive either 5 weeks of oral CBD or placebo-matched controls. Following a >2-week washout period, patients were crossed over to alternate therapy. The primary outcome of the study was dynamic in 24-h ambulatory BP and was assessed using two-way repeated measure analysis of variance. Results: Administration of CBD reduced average 24 h mean, systolic, and diastolic BP after 2.5 weeks (-3.22±0.90 mmHg [95% confidence interval -1.01 to -5.44 mmHg], -4.76±1.24 mmHg [-1.72 to -7.80 mmHg], and -2.25±0.80 mmHg [-0.30 to -6.01 mmHg], respectively (all p<0.05); however, these values largely remained stable following the uptitration of CBD dosing. There were no changes in liver enzymes or serious adverse events (AEs). There was no significant difference in pulse wave velocity (group×factor interaction: F=1.50, p=0.226) at different time points, regardless of the intervention arm. Conclusions: In conclusion, chronic administration of CBD reduces ambulatory BP in those with untreated and treated hypertension. In addition, lack of serious AEs implies safety and tolerability of the above-noted CBD formulation. ClinicalTrials.gov ID: NCT05346562, Registered April 6th 2022.
Collapse
Affiliation(s)
- Goran Dujic
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, Split, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
6
|
Podinic T, Limoges L, Monaco C, MacAndrew A, Minhas M, Nederveen J, Raha S. Cannabidiol Disrupts Mitochondrial Respiration and Metabolism and Dysregulates Trophoblast Cell Differentiation. Cells 2024; 13:486. [PMID: 38534330 DOI: 10.3390/cells13060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Trophoblast differentiation is a crucial process in the formation of the placenta where cytotrophoblasts (CTs) differentiate and fuse to form the syncytiotrophoblast (ST). The bioactive components of cannabis, such as Δ9-THC, are known to disrupt trophoblast differentiation and fusion, as well as mitochondrial dynamics and respiration. However, less is known about the impact of cannabidiol (CBD) on trophoblast differentiation. Due to the central role of mitochondria in stem cell differentiation, we evaluated the impact of CBD on trophoblast mitochondrial function and differentiation. Using BeWo b30 cells, we observed decreased levels of mRNA for markers of syncytialization (GCM1, ERVW1, hCG) following 20 µM CBD treatment during differentiation. In CTs, CBD elevated transcript levels for the mitochondrial and cellular stress markers HSP60 and HSP70, respectively. Furthermore, CBD treatment also increased the lipid peroxidation and oxidative damage marker 4-hydroxynonenal. Mitochondrial membrane potential, basal respiration and ATP production were diminished with the 20 µM CBD treatment in both sub-lineages. mRNA levels for endocannabinoid system (ECS) components (FAAH, NAPEPLD, TRPV1, CB1, CB2, PPARγ) were altered differentially by CBD in CTs and STs. Overall, we demonstrate that CBD impairs trophoblast differentiation and fusion, as well as mitochondrial bioenergetics and redox homeostasis.
Collapse
Affiliation(s)
- Tina Podinic
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Louise Limoges
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Cristina Monaco
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Andie MacAndrew
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Mahek Minhas
- Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Joshua Nederveen
- Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Sandeep Raha
- Graduate Program in Medical Sciences, Department of Pediatrics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
7
|
Opęchowska A, Karpiuk K, Zahorodnii A, Harasim-Symbor E, Chabowski A, Konstantynowicz-Nowicka K. Anti-inflammatory effects of cannabidiol in early stages of neuroinflammation induced by high-fat diet in cerebral cortex of rats. Toxicol Appl Pharmacol 2024; 484:116856. [PMID: 38336253 DOI: 10.1016/j.taap.2024.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
High-fat diet (HFD) contributes to neuroinflammation forming, hence it is crucial to find safe and effective substances that are able to counteract its progress. The anti-inflammatory properties of phytocannabinoids acquired from the Cannabis plant have been widely acknowledged. We evaluated the effects of cannabidiol (CBD) treatment on induced by applying HFD early stages of neuroinflammation in Wistar rat cerebral cortex. In our 7-week experiment, CBD was injected intraperitoneally over the last 14days at a dose of 10 mg/kg of body weight once a day. The level of arachidonic acid, a precursor to pro-inflammatory eicosanoids, decreased in all analysed lipid classes after CBD administration to the HFD group. Moreover, the extent of diminishing the activity of the omega-6 (n-6) fatty acid pathway by CBD was the greatest in diacylglycerols and phospholipids. Surprisingly, CBD was also capable of downregulating the activity of the omega-3 (n-3) pathway. The expression of enzymes involved in the synthesis of the eicosanoids was significantly increased in the HFD group and subsequently lowered by CBD. Significant changes in various cytokines levels were also discovered. Our results strongly suggest the ability of CBD to reduce the formation of lipid inflammation precursors in rat cerebral cortex, as a primary event in the development of neurodegenerative diseases. This can raise hopes for the future use of this cannabinoid for therapeutic purposes since it is a substance lacking lasting and severe side effects.
Collapse
Affiliation(s)
- Aleksandra Opęchowska
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, Bialystok 15-222, Poland.
| | - Kacper Karpiuk
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, Bialystok 15-222, Poland.
| | - Andrii Zahorodnii
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, Bialystok 15-222, Poland.
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, Bialystok 15-222, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, Bialystok 15-222, Poland.
| | | |
Collapse
|
8
|
Chester LA, Englund A, Chesney E, Oliver D, Wilson J, Sovi S, Dickens AM, Oresic M, Linderman T, Hodsoll J, Minichino A, Strang J, Murray RM, Freeman TP, McGuire P. Effects of Cannabidiol and Delta-9-Tetrahydrocannabinol on Plasma Endocannabinoid Levels in Healthy Volunteers: A Randomized Double-Blind Four-Arm Crossover Study. Cannabis Cannabinoid Res 2024; 9:188-198. [PMID: 36493386 PMCID: PMC10874814 DOI: 10.1089/can.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The effects of cannabis are thought to be mediated by interactions between its constituents and the endocannabinoid system. Delta-9-tetrahydrocannabinol (THC) binds to central cannabinoid receptors, while cannabidiol (CBD) may influence endocannabinoid function without directly acting on cannabinoid receptors. We examined the effects of THC coadministered with different doses of CBD on plasma levels of endocannabinoids in healthy volunteers. Methods: In a randomized, double-blind, four-arm crossover study, healthy volunteers (n=46) inhaled cannabis vapor containing 10 mg THC plus either 0, 10, 20, or 30 mg CBD, in four experimental sessions. The median time between sessions was 14 days (IQR=20). Blood samples were taken precannabis inhalation and at 0-, 5-, 15-, and 90-min postinhalation. Plasma concentrations of THC, CBD, anandamide, 2-arachidonoylglycerol (2-AG), and related noncannabinoid lipids were measured using liquid chromatography-mass spectrometry. Results: Administration of cannabis induced acute increases in plasma concentrations of anandamide (+18.0%, 0.042 ng/mL [95%CI: 0.023-0.062]), and the noncannabinoid ethanolamides, docosatetraenylethanolamide (DEA; +35.8%, 0.012 ng/mL [95%CI: 0.008-0.016]), oleoylethanolamide (+16.1%, 0.184 ng/mL [95%CI: 0.076-0.293]), and N-arachidonoyl-L-serine (+25.1%, 0.011 ng/mL [95%CI: 0.004-0.017]) (p<0.05). CBD had no significant effect on the plasma concentration of anandamide, 2-AG or related noncannabinoid lipids at any of three doses used. Over the four sessions, there were progressive decreases in the preinhalation concentrations of anandamide and DEA, from 0.254 ng/mL [95%CI: 0.223-0.286] to 0.194 ng/mL [95%CI: 0.163-0.226], and from 0.039 ng/mL [95%CI: 0.032-0.045] to 0.027 ng/mL [95%CI: 0.020-0.034] (p<0.05), respectively. Discussion: THC induced acute increases in plasma levels of anandamide and noncannabinoid ethanolamides, but there was no evidence that these effects were influenced by the coadministration of CBD. It is possible that such effects may be evident with higher doses of CBD or after chronic administration. The progressive reduction in pretreatment anandamide and DEA levels across sessions may be related to repeated exposure to THC or participants becoming less anxious about the testing procedure and requires further investigation. The study was registered on clinicaltrials.gov (NCT05170217).
Collapse
Affiliation(s)
- Lucy A. Chester
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Amir Englund
- National Addiction Centre (NAC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Edward Chesney
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Dominic Oliver
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, United Kingdom
| | - Jack Wilson
- The Matilda Centre for Research in Mental Health and Substance Use, The University of Sydney, New South Wales, Australia
| | - Simina Sovi
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alex M. Dickens
- Turku Bioscience Center, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Matej Oresic
- Turku Bioscience Center, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Tuomas Linderman
- Turku Bioscience Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - John Hodsoll
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Amedeo Minichino
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, United Kingdom
| | - John Strang
- National Addiction Centre (NAC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tom P. Freeman
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, United Kingdom
| |
Collapse
|
9
|
Fusse EJ, Scarante FF, Vicente MA, Marrubia MM, Turcato F, Scomparin DS, Ribeiro MA, Figueiredo MJ, Brigante TAV, Guimarães FS, Campos AC. Anxiogenic doses of rapamycin prevent URB597-induced anti-stress effects in socially defeated mice. Neurosci Lett 2024; 818:137519. [PMID: 37852528 DOI: 10.1016/j.neulet.2023.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.
Collapse
Affiliation(s)
- Eduardo J Fusse
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Franciele F Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria A Vicente
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Mariana M Marrubia
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Flávia Turcato
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Davi S Scomparin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Melissa A Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria J Figueiredo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Tamires A V Brigante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil.
| |
Collapse
|
10
|
Martín-Llorente A, Serrano M, Bonilla-Del Río I, Lekunberri L, Ocerin G, Puente N, Ramos A, Rico-Barrio I, Gerrikagoitia I, Grandes P. Omega-3 Recovers Cannabinoid 1 Receptor Expression in the Adult Mouse Brain after Adolescent Binge Drinking. Int J Mol Sci 2023; 24:17316. [PMID: 38139145 PMCID: PMC10744058 DOI: 10.3390/ijms242417316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Adolescent binge drinking is a social problem with a long-lasting impact on cognitive functions. The cannabinoid type-1 (CB1) receptor of the endocannabinoid system (ECS) is involved in brain synaptic plasticity, cognition and behavior via receptor localization at specific subcellular compartments of the cortical, limbic and motor regions. Alcohol (EtOH) intake affects the ECS, CB1 and their functions. Evidence indicates that binge drinking during adolescence impairs memory via the abrogation of CB1-dependent synaptic plasticity in the hippocampus. However, the impact of EtOH consumption on global CB1 receptor expression in the adult brain is unknown. We studied this using optical density analysis throughout brain regions processed for light microscopy (LM) immunohistotochemistry. CB1 staining decreased significantly in the secondary motor cortex, cerebellum, cingulate cortex, amygdala and nucleus accumbens. Next, as omega-3 (n-3) polyunsaturated fatty acids (PUFAs) rescue synaptic plasticity and improve EtOH-impaired cognition, we investigated whether docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) had any effect on CB1 receptors. N-3 intake during EtOH abstinence restored CB1 immunostaining in the secondary motor cortex, cerebellum and amygdala, and ameliorated receptor density in the cingulate cortex. These results show that n-3 supplementation recovers CB1 receptor expression disrupted by EtOH in distinct brain regions involved in motor functions and cognition.
Collapse
Affiliation(s)
- Ane Martín-Llorente
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
| | - Maitane Serrano
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Itziar Bonilla-Del Río
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Leire Lekunberri
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Garazi Ocerin
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Nagore Puente
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Almudena Ramos
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Irantzu Rico-Barrio
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
11
|
Farkas DJ, Inan S, Heydari LN, Johnson CT, Zhao P, Bradshaw HB, Ward SJ, Rawls SM. Cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid mitragynine against neuropathic, but not inflammatory pain. Life Sci 2023; 328:121878. [PMID: 37392779 PMCID: PMC10527577 DOI: 10.1016/j.lfs.2023.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
AIMS Mitragynine (MG) is an alkaloid found in Mitragyna speciosa (kratom), a plant used to self-treat symptoms of opioid withdrawal and pain. Kratom products are commonly used in combination with cannabis, with the self-treatment of pain being a primary motivator of use. Both cannabinoids and kratom alkaloids have been characterized to alleviate symptoms in preclinical models of neuropathic pain such as chemotherapy-induced peripheral neuropathy (CIPN). However, the potential involvement of cannabinoid mechanisms in MG's efficacy in a rodent model of CIPN have yet to be explored. MAIN METHODS Prevention of oxaliplatin-induced mechanical hypersensitivity and formalin-induced nociception were assessed following intraperitoneal administration of MG and CB1, CB2, or TRPV1 antagonists in wildtype and cannabinoid receptor knockout mice. The effects of oxaliplatin and MG exposure on the spinal cord endocannabinoid lipidome was assessed by HPLC-MS/MS. KEY FINDINGS The efficacy of MG on oxaliplatin-induced mechanical hypersensitivity was partially attenuated upon genetic deletion of cannabinoid receptors, and completely blocked upon pharmacological inhibition of CB1, CB2, and TRPV1 channels. This cannabinoid involvement was found to be selective to a model of neuropathic pain, with minimal effects on MG-induced antinociception in a model of formalin-induced pain. Oxaliplatin was found to selectively disrupt the endocannabinoid lipidome in the spinal cord, which was prevented by repeated MG exposure. SIGNIFICANCE Our findings suggest that cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid MG in a model of CIPN, which may result in increased therapeutic efficacy when co-administered with cannabinoids.
Collapse
Affiliation(s)
- Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA.
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Laila N Heydari
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Clare T Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| |
Collapse
|
12
|
Bellocchio L, Patano A, Inchingolo AD, Inchingolo F, Dipalma G, Isacco CG, de Ruvo E, Rapone B, Mancini A, Lorusso F, Scarano A, Malcangi G, Inchingolo AM. Cannabidiol for Oral Health: A New Promising Therapeutical Tool in Dentistry. Int J Mol Sci 2023; 24:ijms24119693. [PMID: 37298644 DOI: 10.3390/ijms24119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The medical use of cannabis has a very long history. Although many substances called cannabinoids are present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN) are the three main cannabinoids that are most present and described. CBD itself is not responsible for the psychotropic effects of cannabis, since it does not produce the typical behavioral effects associated with the consumption of this drug. CBD has recently gained growing attention in modern society and seems to be increasingly explored in dentistry. Several subjective findings suggest some therapeutic effects of CBD that are strongly supported by research evidence. However, there is a plethora of data regarding CBD's mechanism of action and therapeutic potential, which are in many cases contradictory. We will first provide an overview of the scientific evidence on the molecular mechanism of CBD's action. Furthermore, we will map the recent developments regarding the possible oral benefits of CBD. In summary, we will highlight CBD's promising biological features for its application in dentistry, despite exiting patents that suggest the current compositions for oral care as the main interest of the industry.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | |
Collapse
|
13
|
CBD supplementation reduces arterial blood pressure via modulation of the sympatho-chromaffin system: A substudy from the HYPER-H21-4 trial. Biomed Pharmacother 2023; 160:114387. [PMID: 36780785 DOI: 10.1016/j.biopha.2023.114387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Data concerning the effects of cannabidiol (CBD) on blood pressure (BP) is controversial. HYPER-H21-4 was a randomized, placebo-controlled, crossover trial which sought to elucidate if 5-week administration of CBD will reduce BP in hypertensive patients. In the substudy of this trial, we aimed to establish the mechanistic background of CBD-induced BP reduction. Specifically, we explored the dynamic of catestatin, a sympathoinhibitory peptide implicated in the pathophysiology of hypertension. In the present analysis, 54 patients with Grade 1 hypertension were included. 5-week administration of CBD but not placebo reduced serum catestatin concentration in comparison to baseline (13.50 [10.85-19.05] vs. 9.65 [6.37-12.26] ng/mL, p < 0.001). Serum catestatin levels at the start of the treatment period demonstrated a negative correlation with the extent of reduction in mean arterial pressure (r = -0.474, p < 0.001). Moreover, the extent of change in catestatin serum levels showed a strong correlation with the extent of mean arterial pressure reduction (r = 0.712, p < 0.001). Overall, the results of the present study imply that the antihypertensive effects of CBD may be explained by its interaction with the sympatho-chromaffin system, although further research is warranted.
Collapse
|
14
|
Hiniesto-Iñigo I, Castro-Gonzalez LM, Corradi V, Skarsfeldt MA, Yazdi S, Lundholm S, Nikesjö J, Noskov SY, Bentzen BH, Tieleman DP, Liin SI. Endocannabinoids enhance hK V7.1/KCNE1 channel function and shorten the cardiac action potential and QT interval. EBioMedicine 2023; 89:104459. [PMID: 36796231 PMCID: PMC9958262 DOI: 10.1016/j.ebiom.2023.104459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardiovascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS. METHODS We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts. FINDINGS We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. INTERPRETATION We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts. FUNDING ERC (No. 850622), Canadian Institutes of Health Research, Canada Research Chairs and Compute Canada, Swedish National Infrastructure for Computing.
Collapse
Affiliation(s)
- Irene Hiniesto-Iñigo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Laura M Castro-Gonzalez
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Mark A Skarsfeldt
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samira Yazdi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Siri Lundholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sergei Yu Noskov
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Cannabidiol attenuates fear memory expression in female rats via hippocampal 5-HT 1A but not CB1 or CB2 receptors. Neuropharmacology 2023; 223:109316. [PMID: 36334768 DOI: 10.1016/j.neuropharm.2022.109316] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Growing evidence from male rodent and human studies suggests that cannabidiol (CBD) modulates the expression of aversive memories and anxiety-related responses. The limited data on whether and how CBD influences these aspects in females could have therapeutic implications given the increased susceptibility of women to anxiety- and stress-related disorders relative to men. Female studies are also essential to examine inherent aspects that potentially contribute to differences in responsiveness to CBD. Here we addressed these questions in adult female rats. Contextually fear-conditioned animals acutely treated with CBD (1.0-10 mg/kg) were tested 45 min later. In subsequent experiments, we investigated the estrous cycle effects and the contribution of dorsal hippocampus (DH) serotonin 1A (5-HT1A) and cannabinoid types 1 (CB1) and 2 (CB2) receptors to CBD-induced effects on memory retrieval/expression. The effects of pre-retrieval systemic or intra-DH CBD administration on subsequent fear extinction were also assessed. Lastly, we evaluated the open arms avoidance and stretched-attend postures in females exposed to the elevated plus-maze after systemic CBD treatment. CBD 3.0 and 10 mg/kg administered before conditioned context exposure reduced females' freezing. This action remained unchanged across the estrous cycle and involved DH 5-HT1A receptors activation. Pre-retrieval CBD impaired memory reconsolidation and lowered fear during early extinction. CBD applied directly to the DH was sufficient to reproduce the effects of systemic CBD treatment. CBD 3.0 and 10 mg/kg reduced anxiety-related responses scored in the elevated plus-maze. Our findings demonstrate that CBD attenuates the behavioral manifestation of learned fear and anxiety in female rats.
Collapse
|
16
|
Sadaka AH, Canuel J, Febo M, Johnson CT, Bradshaw HB, Ortiz R, Ciumo F, Kulkarni P, Gitcho MA, Ferris CF. Effects of inhaled cannabis high in Δ9-THC or CBD on the aging brain: A translational MRI and behavioral study. Front Aging Neurosci 2023; 15:1055433. [PMID: 36819730 PMCID: PMC9930474 DOI: 10.3389/fnagi.2023.1055433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
With the recent legalization of inhaled cannabis for medicinal and recreational use, the elderly represents one of the newest, rapidly growing cohorts of cannabis users. To understand the neurobiological effects of cannabis on the aging brain, 19-20 months old mice were divided into three groups exposed to vaporized cannabis containing ~10% Δ9-THC, ~10% CBD, or placebo for 30 min each day. Voxel based morphometry, diffusion weighted imaging, and resting state functional connectivity data were gathered after 28 days of exposure and following a two-week washout period. Tail-flick, open field, and novel object preference tests were conducted to explore analgesic, anxiolytic, and cognitive effects of cannabis, respectively. Vaporized cannabis high in Δ9-THC and CBD achieved blood levels reported in human users. Mice showed antinociceptive effects to chronic Δ9-THC without tolerance while the anxiolytic and cognitive effects of Δ9-THC waned with treatment. CBD had no effect on any of the behavioral measures. Voxel based morphometry showed a decrease in midbrain dopaminergic volume to chronic Δ9-THC followed but an increase after a two-week washout. Fractional anisotropy values were reduced in the same area by chronic Δ9-THC, suggesting a reduction in gray matter volume. Cannabis high in CBD but not THC increased network strength and efficiency, an effect that persisted after washout. These data would indicate chronic use of inhaled cannabis high in Δ9-THC can be an effective analgesic but not for treatment of anxiety or cognitive decline. The dopaminergic midbrain system was sensitive to chronic Δ9-THC but not CBD showing robust plasticity in volume and water diffusivity prior to and following drug cessation an effect possibly related to the abuse liability of Δ9-THC. Chronic inhaled CBD resulted in enhanced global network connectivity that persisted after drug cessation. The behavioral consequences of this sustained change in brain connectivity remain to be determined.
Collapse
Affiliation(s)
- Aymen H. Sadaka
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Justin Canuel
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Marcelo Febo
- Department of Psychiatry and Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clare T. Johnson
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Heather B. Bradshaw
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Federica Ciumo
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Michael A. Gitcho
- Department of Biological Sciences, Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
17
|
Tahermanesh K, Hakimpour S, Govahi A, Keyhanfar F, Kashi AM, Chaichian S, Shahriyaripour R, Ajdary M. Treatment of Ovarian Hyperstimulation Syndrome in a Mouse Model by Cannabidiol, an Angiogenesis Pathway Inhibitor. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1111777. [PMID: 36588534 PMCID: PMC9797301 DOI: 10.1155/2022/1111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Studies suggest that ovarian hyperstimulation syndrome (OHSS) can be treated by reducing the level of vascular endothelial growth factor (VEGF). However, due to the side effects of commercially available VEGF-reducing drugs, they can be ruled out as a suitable treatment for OHSS; therefore, researchers are looking for new medications to treat OHSS. This study is aimed at investigating the effects of cannabidiol (CBD) in an OHSS model and to evaluate its efficacy in modulating the angiogenesis pathway and VEGF gene expression. For this purpose, 32 female mice were randomly divided into four groups (eight mice per group): control group, group 2 with OHSS induction, group 3 receiving 32 nmol of dimethyl sulfoxide after OHSS induction, and group 4 receiving 30 mg/kg of CBD after OHSS induction. The animals' body weight, ovarian weight, vascular permeability (VP), and ovarian follicle count were measured, and the levels of VEGF gene and protein expression in the peritoneal fluid were assessed. Based on the results, CBD decreased the body and ovarian weights, VP, and corpus luteum number compared to the OHSS group (p < 0.05). The peritoneal VEGF gene and protein expression levels reduced in the CBD group compared to the OHSS group (p < 0.05). Also, CBD caused OHSS alleviation by suppressing VEGF expression and VP. Overall, CBD downregulated VEGF gene expression and improved VP in OHSS.
Collapse
Affiliation(s)
- Kobra Tahermanesh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Hakimpour
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Shahriyaripour
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Franzen JM, Vanz F, Werle I, Guimarães FS, Bertoglio LJ. Cannabidiol impairs fear memory reconsolidation in female rats through dorsal hippocampus CB1 but not CB2 receptor interaction. Eur Neuropsychopharmacol 2022; 64:7-18. [PMID: 36049316 DOI: 10.1016/j.euroneuro.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 01/23/2023]
Abstract
Women present increased susceptibility to anxiety- and stress-related disorders compared to men. A potentially promising pharmacological-based strategy to regulate abnormal aversive memories disrupts their reconsolidation stage after reactivation and destabilization. Male rodent findings indicate that cannabidiol (CBD), a relatively safe and effective treatment for several mental health conditions, can impair the reconsolidation of aversive memories. However, whether and how CBD influences it in females is still unknown. The present study addressed this question in contextually fear-conditioned female rats. We report that systemically administered CBD impaired their reconsolidation, reducing freezing expression for over a week. This action was restricted to a time when the reconsolidation presumably lasted (< six hours post-retrieval) and depended on memory reactivation/destabilization. Moreover, the impairing effects of CBD on memory reconsolidation relied on the activation of cannabinoid type-1 but not type-2 receptors located in the CA1 subregion of the dorsal hippocampus. CBD applied directly to this brain area was sufficient to reproduce the effects of systemic CBD treatment. Contextual fear memories attenuated by CBD did not show reinstatement, an extinction-related feature. By demonstrating that destabilized fear memories are sensitive to CBD and how it hinders mechanisms in the DH CA1 that may restabilize them in female rats, the present findings concur that reconsolidation blockers are viable and could be effective in disrupting abnormally persistent and distressing aversive memories such as those related to posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jaqueline M Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Vanz
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Isabel Werle
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
19
|
Jordan E, Nguyen GN, Piechot A, Kayser O. Cannabinoids as New Drug Candidates for the Treatment of Glaucoma. PLANTA MEDICA 2022; 88:1267-1274. [PMID: 35299275 DOI: 10.1055/a-1665-3100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glaucoma is a blinding eye disease that affects about 70 million patients globally today. The cannabinoid receptors and the endocannabinoid system have found attention for new drug concepts. This review will analyze the potential of cannabinoids, primarily tetrahydrocannabinol, THCVS, and cannabinol, as drug candidates and the role of CB1/CB2 receptors with regard to the pathophysiology of glaucoma. The mode of action of cannabinoids as innovative drug candidates and recent formulations for topical delivery will be discussed. Cannabinoid receptors with associated TRPV channels will be evaluated for their potential as drug targets. Especially the role of the endocannabinoid system (fatty acid amide hydrolase, monoacylglycerol lipase) impacting the prostaglandin network (cyclooxygenase, PGE, PGF) and neuroprotection by inhibition of nitric oxide radical formation is in the focus of this review. Delivery systems, including recent clinical trials, will be analyzed to evaluate the potential for innovative future ophthalmological drugs.
Collapse
Affiliation(s)
- Erin Jordan
- Technical Biochemistry, TU Dortmund University, Dortmund, Germany
| | - Gia-Nam Nguyen
- Technical Biochemistry, TU Dortmund University, Dortmund, Germany
- MINDbioscience GmbH, Dortmund, Germany
| | | | - Oliver Kayser
- Technical Biochemistry, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
20
|
Maciel IDS, de Abreu GH, Johnson CT, Bonday R, Bradshaw HB, Mackie K, Lu HC. Perinatal CBD or THC Exposure Results in Lasting Resistance to Fluoxetine in the Forced Swim Test: Reversal by Fatty Acid Amide Hydrolase Inhibition. Cannabis Cannabinoid Res 2022; 7:318-327. [PMID: 34182795 PMCID: PMC9225394 DOI: 10.1089/can.2021.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction: There is widespread acceptance of cannabis for medical or recreational use across the society, including pregnant women. Concerningly, numerous studies find that the developing central nervous system (CNS) is vulnerable to the detrimental effects of Δ9-tetrahydrocannabinol (THC). In contrast, almost nothing on the consequences of perinatal cannabidiol (CBD) exposure. In this study, we used mice to investigate the adult impact of perinatal cannabinoid exposure (PCE) with THC, CBD, or a 1:1 ratio of THC and CBD on behaviors. Furthermore, the lasting impact of PCE on fluoxetine sensitivity in the forced swim test (FST) was evaluated to probe neurochemical pathways interacting with the endocannabinoid system (ECS). Methods: Pregnant CD1 dams were injected subcutaneously daily with vehicle, 3 mg/kg THC, 3 mg/kg CBD, or 3 mg/kg THC +3 mg/kg CBD from gestational day 5 to postnatal day 10. Mass spectroscopic (MS) analyses were conducted to measure the THC and CBD brain levels in dams and their embryonic progenies. PCE adults were subjected to a battery of behavioral tests: open field arena, sucrose preference test, marble burying test, nestlet shredding test, and FST. Results: MS analysis found substantial levels of THC and CBD in embryonic brains. Our behavioral testing found that PCE females receiving THC or CBD buried significantly more marbles than control mice. Interestingly, PCE males receiving CBD or THC+CBD had significantly increased sucrose preference. While PCE with THC or CBD did not affect FST immobility, PCE with THC or CBD prevented fluoxetine from decreasing immobility in both males and females. Excitingly, fatty acid amide hydrolase (FAAH) inhibition with a dose of URB597 that was behaviorally inactive in the FST rescued fluoxetine efficacy in PCE mice of both sexes. Conclusions: Our data suggest that PCE with either THC, CBD, or THC+CBD alters repetitive and hedonic behaviors in a phytocannabinoid and sex-dependent manner. In addition, PCE with THC or CBD prevents fluoxetine from enhancing coping behavior. The restoration of fluoxetine responsiveness in THC or CBD PCE adults by inhibition of FAAH suggests that PCE causes a lasting reduction of the ECS and that enhancement of anandamide signaling represents a potential treatment for behavioral deficits following PCE.
Collapse
Affiliation(s)
- Izaque de Sousa Maciel
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Gabriel H.D. de Abreu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Claire T. Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Rida Bonday
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Ken Mackie
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA.,Address correspondence to: Hui-Chen Lu, PhD, The Linda and Jack Gill Center for Biomolecular Science, Indiana University, 702 N Walnut Grove Ave, IN 47405, USA,
| |
Collapse
|
21
|
Genovese T, Cordaro M, Siracusa R, Impellizzeri D, Caudullo S, Raffone E, Macrí F, Interdonato L, Gugliandolo E, Interlandi C, Crupi R, D’Amico R, Fusco R, Cuzzocrea S, Di Paola R. Molecular and Biochemical Mechanism of Cannabidiol in the Management of the Inflammatory and Oxidative Processes Associated with Endometriosis. Int J Mol Sci 2022; 23:5427. [PMID: 35628240 PMCID: PMC9141153 DOI: 10.3390/ijms23105427] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Endometriosis is usually associated with inflammation and chronic pelvic pain. This paper focuses the attention on the anti-inflammatory, anti-oxidant and analgesic effects of cannabidiol (CBD) and on its potential role in endometriosis. We employed an in vivo model of endometriosis and administered CBD daily by gavage. CBD administration strongly reduced lesions diameter, volume and area. In particular, it was able to modify lesion morphology, reducing epithelial glands and stroma. CBD showed anti-oxidant effects reducing lipid peroxidation, the expression of Nox-1 and Nox-4 enzymes. CBD restored the oxidative equilibrium of the endogenous cellular defense as showed by the SOD activity and the GSH levels in the lesions. CBD also showed important antifibrotic effects as showed by the Masson trichrome staining and by downregulated expression of MMP-9, iNOS and TGF-β. CBD was able to reduce inflammation both in the harvested lesions, as showed by the increased Ikb-α and reduced COX2 cytosolic expressions and reduced NFkB nuclear localization, and in the peritoneal fluids as showed by the decreased TNF-α, PGE2 and IL-1α levels. CBD has important analgesic effects as showed by the reduced mast cells recruitment in the spinal cord and the reduced release of neuro-sensitizing and pro-inflammatory mediators. In conclusion, the collected data showed that CBD has an effective and coordinated effects in endometriosis suppression.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | | | - Emanuela Raffone
- Multi-Specialist Istitute Rizzo, Torregrotta, 98043 Messina, Italy;
| | - Francesco Macrí
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| | - Claudia Interlandi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| |
Collapse
|
22
|
Johnson CT, de Abreu GHD, Mackie K, Lu HC, Bradshaw HB. Cannabinoids accumulate in mouse breast milk and differentially regulate lipid composition and lipid signaling molecules involved in infant development. BBA ADVANCES 2022; 2:100054. [PMID: 36643901 PMCID: PMC9835790 DOI: 10.1016/j.bbadva.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Maternal cannabis use during lactation may expose developing infants to cannabinoids (CBs) such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). CBs modulate lipid signaling molecules in the central nervous system in age- and cell-dependent ways, but their influence on the lipid composition of breast milk has yet to be established. This study investigates the effects of THC, CBD, or their combination on milk lipids by analyzing the stomach contents of CD1 mouse pups that have been nursed by dams injected with CBs on postnatal days (PND) 1 -10. Stomach contents were collected 2 hours after the last injection on PND10 and HPLC/MS/MS was used to identify and quantify over 80 endogenous lipid species and cannabinoids in the samples. We show that CBs differentially accumulate in milk, lead to widespread decreases in free fatty acids, decreases in N-acyl methionine species, increases N-linoleoyl species, as well as modulate levels of endogenous CBs (eCBs) AEA, 2-AG, and their structural congeners. Our data indicate the passage of CBs to pups through breast milk and that maternal CB exposure alters breast milk lipid compositions.
Collapse
Affiliation(s)
- Clare T Johnson
- Psychological and Brain Sciences, Indiana University, Bloomington IN, United States
| | | | - Ken Mackie
- Psychological and Brain Sciences, Indiana University, Bloomington IN, United States
- Gill Center for Molecular Neuroscience, Indiana University, Bloomington IN, United States
| | - Hui-Chen Lu
- Psychological and Brain Sciences, Indiana University, Bloomington IN, United States
- Gill Center for Molecular Neuroscience, Indiana University, Bloomington IN, United States
| | - Heather B Bradshaw
- Psychological and Brain Sciences, Indiana University, Bloomington IN, United States
- Corresponding author.
| |
Collapse
|
23
|
Seillier A. The endocannabinoid system as a therapeutic target for schizophrenia: Failures and potentials. Neurosci Lett 2021; 759:136064. [PMID: 34146641 DOI: 10.1016/j.neulet.2021.136064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Owing to its psychotropic effects, Cannabis has been stigmatized by its recreational use leading to a dramatic decline in the experimentations about its medical use in the twentieth century. The medical properties of the plant - known since ancient times - have received increased attention over recent years; yet, the research on its potential application in the field of psychiatry is still nascent. In this connection, the non-psychotropic cannabidiol (CBD) has emerged as a phytocannabinoid compound with promising antipsychotic effects. In addition, advances in our understanding of the endocannabinoid system, along with accumulating evidence implicating this system in the pathophysiology of schizophrenia, have stimulated research by the pharmaceutical industry to explore whether alteration of this system can be of medical benefit. This review examines the current state of evidence regarding the clinical potential of cannabinoid-based drugs as a treatment for schizophrenia, while discussing various limitations with the therapeutic approaches considered so far. In the second part, the author highlights the most promising strategies, as well as the most interesting directions one could follow, in the emerging field of cannabinoid therapies for schizophrenia.
Collapse
Affiliation(s)
- Alexandre Seillier
- RP1 Experimental Neurobiology, National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic.
| |
Collapse
|
24
|
Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology 2021; 195:108626. [PMID: 34116110 DOI: 10.1016/j.neuropharm.2021.108626] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Gavin N Petrie
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
25
|
Johnson CT, Bradshaw HB. Modulatory Potential of Cannabidiol on the Opioid-Induced Inflammatory Response. Cannabis Cannabinoid Res 2021; 6:211-220. [PMID: 34115948 DOI: 10.1089/can.2020.0181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Opioids are effective analgesics; however, there are many negative consequences of chronic use. One important side effect of chronic opioid use is the continuous engagement of the immune response that can exacerbate chronic pain. The opioid, morphine, initiates a Toll-like receptor 4 (TLR4) signaling cascade that drives the activation of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome proteins, resulting in cytokine production and effectively creating a positive feedback loop for continuous TLR4 activation. In addition to driving cytokine production, morphine drives changes in proinflammatory lipid signaling. The alteration of both cytokine and lipid signaling systems by morphine suggests that its chronic use leads to a pathological immune response that would benefit from targeted therapy. Engaging the endogenous cannabinoid system has shown therapeutic benefit, particularly regarding its anti-inflammatory and immunosuppressive effects. Promising preclinical and clinical investigations suggest that cannabidiol (CBD) is an effective adjuvant for treatment of symptoms of opioid use disorders; however, the mechanism through which CBD drives this outcome is unclear. One potential source of insight into this mechanism is in how CBD regulates immune regulators such as cytokines and lipid signaling systems, including endocannabinoids and related immune-responsive lipids. In this review, we outline the immune response to chronic opioid use as well as CBD in the context of a lipopolysaccharide-induced immune response and speculate on the mechanism of CBD as a modulator of chronic opioid-induced immune system dysregulation.
Collapse
Affiliation(s)
- Clare T Johnson
- Department of Psychological & Brain Science, Indiana University, Bloomington, Indiana, USA
| | - Heather B Bradshaw
- Department of Psychological & Brain Science, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
26
|
Sadaka AH, Ozuna AG, Ortiz RJ, Kulkarni P, Johnson CT, Bradshaw HB, Cushing BS, Li AL, Hohmann AG, Ferris CF. Cannabidiol has a unique effect on global brain activity: a pharmacological, functional MRI study in awake mice. J Transl Med 2021; 19:220. [PMID: 34030718 PMCID: PMC8142641 DOI: 10.1186/s12967-021-02891-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
Background The phytocannabinoid cannabidiol (CBD) exhibits anxiolytic activity and has been promoted as a potential treatment for post-traumatic stress disorders. How does CBD interact with the brain to alter behavior? We hypothesized that CBD would produce a dose-dependent reduction in brain activity and functional coupling in neural circuitry associated with fear and defense. Methods During the scanning session awake mice were given vehicle or CBD (3, 10, or 30 mg/kg I.P.) and imaged for 10 min post treatment. Mice were also treated with the 10 mg/kg dose of CBD and imaged 1 h later for resting state BOLD functional connectivity (rsFC). Imaging data were registered to a 3D MRI mouse atlas providing site-specific information on 138 different brain areas. Blood samples were collected for CBD measurements. Results CBD produced a dose-dependent polarization of activation along the rostral-caudal axis of the brain. The olfactory bulb and prefrontal cortex showed an increase in positive BOLD whereas the brainstem and cerebellum showed a decrease in BOLD signal. This negative BOLD affected many areas connected to the ascending reticular activating system (ARAS). The ARAS was decoupled to much of the brain but was hyperconnected to the olfactory system and prefrontal cortex. Conclusion The CBD-induced decrease in ARAS activity is consistent with an emerging literature suggesting that CBD reduces autonomic arousal under conditions of emotional and physical stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02891-6.
Collapse
Affiliation(s)
- Aymen H Sadaka
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Ana G Ozuna
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Richard J Ortiz
- Department of Biological Sciences, University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Clare T Johnson
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Bruce S Cushing
- Department of Biological Sciences, University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Ai-Ling Li
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA. .,Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA. .,Department of Psychology, Northeastern University, 125 NI Hall, 360 Huntington Ave, Boston, MA, 02115-5000, USA.
| |
Collapse
|
27
|
Neuromolecular Mechanisms of Cannabis Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:15-28. [PMID: 33332001 DOI: 10.1007/978-3-030-57369-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most of our current understanding of the neuromolecular mechanisms of Cannabis action focusses on two plant cannabinoids, THC and CBD. THC acts primarily through presynaptic CB cannabinoid receptors to regulate neurotransmitter release in the brain, spinal cord and peripheral nerves. CBD action, on the other hand, is probably mediated through multiple molecular targets.
Collapse
|
28
|
Mlost J, Bryk M, Starowicz K. Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. Int J Mol Sci 2020; 21:ijms21228870. [PMID: 33238607 PMCID: PMC7700528 DOI: 10.3390/ijms21228870] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/03/2023] Open
Abstract
Cannabis has a long history of medical use. Although there are many cannabinoids present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two components found in the highest concentrations. CBD itself does not produce typical behavioral cannabimimetic effects and was thought not to be responsible for psychotropic effects of cannabis. Numerous anecdotal findings testify to the therapeutic effects of CBD, which in some cases were further supported by research findings. However, data regarding CBD’s mechanism of action and therapeutic potential are abundant and omnifarious. Therefore, we review the basic research regarding molecular mechanism of CBD’s action with particular focus on its analgesic potential. Moreover, this article describes the detailed analgesic and anti-inflammatory effects of CBD in various models, including neuropathic pain, inflammatory pain, osteoarthritis and others. The dose and route of the administration-dependent effect of CBD, on the reduction in pain, hyperalgesia or allodynia, as well as the production of pro and anti-inflammatory cytokines, were described depending on the disease model. The clinical applications of CBD-containing drugs are also mentioned. The data presented herein unravel what is known about CBD’s pharmacodynamics and analgesic effects to provide the reader with current state-of-art knowledge regarding CBD’s action and future perspectives for research.
Collapse
|
29
|
The Effects of Cannabidiol, a Non-Intoxicating Compound of Cannabis, on the Cardiovascular System in Health and Disease. Int J Mol Sci 2020; 21:ijms21186740. [PMID: 32937917 PMCID: PMC7554803 DOI: 10.3390/ijms21186740] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating and generally well-tolerated constituent of cannabis which exhibits potential beneficial properties in a wide range of diseases, including cardiovascular disorders. Due to its complex mechanism of action, CBD may affect the cardiovascular system in different ways. Thus, we reviewed the influence of CBD on this system in health and disease to determine the potential risk of cardiovascular side effects during CBD use for medical and wellness purposes and to elucidate its therapeutic potential in cardiovascular diseases. Administration of CBD to healthy volunteers or animals usually does not markedly affect hemodynamic parameters. Although CBD has been found to exhibit vasodilatory and antioxidant properties in hypertension, it has not affected blood pressure in hypertensive animals. Hypotensive action of CBD has been mainly revealed under stress conditions. Many positive effects of CBD have been observed in experimental models of heart diseases (myocardial infarction, cardiomyopathy, myocarditis), stroke, neonatal hypoxic ischemic encephalopathy, sepsis-related encephalitis, cardiovascular complications of diabetes, and ischemia/reperfusion injures of liver and kidneys. In these pathological conditions CBD decreased organ damage and dysfunction, oxidative and nitrative stress, inflammatory processes and apoptosis, among others. Nevertheless, further clinical research is needed to recommend the use of CBD in the treatment of cardiovascular diseases.
Collapse
|
30
|
Abstract
The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB1), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB1 receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB2 receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.
.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
31
|
Chronic Cannabidiol Administration Fails to Diminish Blood Pressure in Rats with Primary and Secondary Hypertension Despite Its Effects on Cardiac and Plasma Endocannabinoid System, Oxidative Stress and Lipid Metabolism. Int J Mol Sci 2020; 21:ijms21041295. [PMID: 32075117 PMCID: PMC7072941 DOI: 10.3390/ijms21041295] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
We investigated the influence of cannabidiol (CBD) on blood pressure (BP) and heart rate (HR) in spontaneously (SHR) and deoxycorticosterone (DOCA-salt) hypertensive rats. Hypertension was connected with increases in cardiac and plasma markers of lipid peroxidation in both models, whereas cardiac endocannabinoid levels decreased in SHR and increased in DOCA-salt. CBD (10 mg/kg once a day for 2 weeks) did not modify BP and HR in hypertension but counteracted pro-oxidant effects. Moreover, it decreased cardiac or plasma levels of anandamide, 2-arachidonoylglycerol and oleoyl ethanolamide in DOCA-salt and inhibited the activity of fatty acid amide hydrolase (FAAH) in both models. In the respective normotensive control rats, CBD increased lipid peroxidation, free fatty acid levels and FAAH activity. In conclusion, chronic CBD administration does not possess antihypertensive activity in a model of primary and secondary (DOCA-salt) hypertension, despite its antioxidant effect. The latter may be direct rather than based on the endocannabinoid system. The unexpected CBD-related increase in lipid peroxidation in normotensive controls may lead to untoward effects; thus, caution should be kept if CBD is used therapeutically.
Collapse
|
32
|
Wouters E, Walraed J, Banister SD, Stove CP. Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists. Biochem Pharmacol 2019; 169:113623. [DOI: 10.1016/j.bcp.2019.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
|
33
|
Hudson R, Renard J, Norris C, Rushlow WJ, Laviolette SR. Cannabidiol Counteracts the Psychotropic Side-Effects of Δ-9-Tetrahydrocannabinol in the Ventral Hippocampus through Bidirectional Control of ERK1-2 Phosphorylation. J Neurosci 2019; 39:8762-8777. [PMID: 31570536 PMCID: PMC6820200 DOI: 10.1523/jneurosci.0708-19.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022] Open
Abstract
Evidence suggests that the phytocannabinoids Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) differentially regulate salience attribution and psychiatric risk. The ventral hippocampus (vHipp) relays emotional salience via control of dopamine (DA) neuronal activity states, which are dysregulated in psychosis and schizophrenia. Using in vivo electrophysiology in male Sprague Dawley rats, we demonstrate that intra-vHipp THC strongly increases ventral tegmental area (VTA) DA neuronal frequency and bursting rates, decreases GABA frequency, and amplifies VTA beta, gamma and ε oscillatory magnitudes via modulation of local extracellular signal-regulated kinase phosphorylation (pERK1-2). Remarkably, whereas intra-vHipp THC also potentiates salience attribution in morphine place-preference and fear conditioning assays, CBD coadministration reverses these changes by downregulating pERK1-2 signaling, as pharmacological reactivation of pERK1-2 blocked the inhibitory properties of CBD. These results identify vHipp pERK1-2 signaling as a critical neural nexus point mediating THC-induced affective disturbances and suggest a potential mechanism by which CBD may counteract the psychotomimetic and psychotropic side effects of THC.SIGNIFICANCE STATEMENT Strains of marijuana with high levels of delta-9-tetrahydrocannabinol (THC) and low levels of cannabidiol (CBD) have been shown to underlie neuropsychiatric risks associated with high-potency cannabis use. However, the mechanisms by which CBD mitigates the side effects of THC have not been identified. We demonstrate that THC induces cognitive and affective abnormalities resembling neuropsychiatric symptoms directly in the hippocampus, while dysregulating dopamine activity states and amplifying oscillatory frequencies in the ventral tegmental area via modulation of the extracellular signal-regulated kinase (ERK) signaling pathway. In contrast, CBD coadministration blocked THC-induced ERK phosphorylation, and prevented THC-induced behavioral and neural abnormalities. These findings identify a novel molecular mechanism that may account for how CBD functionally mitigates the neuropsychiatric side effects of THC.
Collapse
Affiliation(s)
- Roger Hudson
- Addiction Research Group
- Department of Anatomy and Cell Biology, and
| | - Justine Renard
- Addiction Research Group
- Department of Anatomy and Cell Biology, and
| | | | - Walter J Rushlow
- Addiction Research Group
- Department of Anatomy and Cell Biology, and
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | - Steven R Laviolette
- Addiction Research Group,
- Department of Anatomy and Cell Biology, and
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 3K7
| |
Collapse
|
34
|
Tassorelli C, Greco R, Silberstein SD. The endocannabinoid system in migraine: from bench to pharmacy and back. Curr Opin Neurol 2019; 32:405-412. [DOI: 10.1097/wco.0000000000000688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|