1
|
Leinen ZJ, Mohan R, Premadasa LS, Acharya A, Mohan M, Byrareddy SN. Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications. Biomedicines 2023; 11:2630. [PMID: 37893004 PMCID: PMC10604755 DOI: 10.3390/biomedicines11102630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Historically, cannabis has been valued for its pain-relieving, anti-inflammatory, and calming properties. Ancient civilizations like the Egyptians, Greeks, and Chinese medicines recognized their therapeutic potential. The discovery of the endocannabinoid system, which interacts with cannabis phytoconstituents, has scientifically explained how cannabis affects the human immune system, including the central nervous system (CNS). This review explores the evolving world of cannabis-based treatments, spotlighting its diverse applications. By researching current research and clinical studies, we probe into how cannabinoids like Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) help to manage conditions ranging from chronic pain, persistent inflammation, cancer, inflammatory bowel disease, and neurological disorders to even viral diseases such as Human Immunodeficiency virus (HIV), SARS-CoV-2. and the emerging monkeypox. The long-term recreational use of cannabis can develop into cannabis use disorder (CUD), and therefore, understanding the factors contributing to the development and maintenance of cannabis addiction, including genetic predisposition, neurobiological mechanisms, and environmental influences, will be timely. Shedding light on the adverse impacts of CUD underscores the importance of early intervention, effective treatment approaches, and public health initiatives to address this complex issue in an evolving landscape of cannabis policies and perceptions.
Collapse
Affiliation(s)
- Zach J. Leinen
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68182, USA; (Z.J.L.); (R.M.); (A.A.)
| | - Rahul Mohan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68182, USA; (Z.J.L.); (R.M.); (A.A.)
| | - Lakmini S. Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (L.S.P.); (M.M.)
| | - Arpan Acharya
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68182, USA; (Z.J.L.); (R.M.); (A.A.)
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (L.S.P.); (M.M.)
| | - Siddappa N. Byrareddy
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68182, USA; (Z.J.L.); (R.M.); (A.A.)
| |
Collapse
|
2
|
McDew-White M, Lee E, Premadasa LS, Alvarez X, Okeoma CM, Mohan M. Cannabinoids modulate the microbiota-gut-brain axis in HIV/SIV infection by reducing neuroinflammation and dysbiosis while concurrently elevating endocannabinoid and indole-3-propionate levels. J Neuroinflammation 2023; 20:62. [PMID: 36890518 PMCID: PMC9993397 DOI: 10.1186/s12974-023-02729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Although the advent of combination anti-retroviral therapy (cART) has transformed HIV into a manageable chronic disease, an estimated 30-50% of people living with HIV (PLWH) exhibit cognitive and motor deficits collectively known as HIV-associated neurocognitive disorders (HAND). A key driver of HAND neuropathology is chronic neuroinflammation, where proinflammatory mediators produced by activated microglia and macrophages are thought to inflict neuronal injury and loss. Moreover, the dysregulation of the microbiota-gut-brain axis (MGBA) in PLWH, consequent to gastrointestinal dysfunction and dysbiosis, can lead to neuroinflammation and persistent cognitive impairment, which underscores the need for new interventions. METHODS We performed RNA-seq and microRNA profiling in basal ganglia (BG), metabolomics (plasma) and shotgun metagenomic sequencing (colon contents) in uninfected and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV) or delta-9-tetrahydrocannabinol (THC) (THC/SIV). RESULTS Long-term, low-dose THC reduced neuroinflammation and dysbiosis and significantly increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid and indole-3-propionate levels in chronically SIV-infected RMs. Chronic THC potently blocked the upregulation of genes associated with type-I interferon responses (NLRC5, CCL2, CXCL10, IRF1, IRF7, STAT2, BST2), excitotoxicity (SLC7A11), and enhanced protein expression of WFS1 (endoplasmic reticulum stress) and CRYM (oxidative stress) in BG. Additionally, THC successfully countered miR-142-3p-mediated suppression of WFS1 protein expression via a cannabinoid receptor-1-mediated mechanism in HCN2 neuronal cells. Most importantly, THC significantly increased the relative abundance of Firmicutes and Clostridia including indole-3-propionate (C. botulinum, C. paraputrificum, and C. cadaveris) and butyrate (C. butyricum, Faecalibacterium prausnitzii and Butyricicoccus pullicaecorum) producers in colonic contents. CONCLUSION This study demonstrates the potential of long-term, low-dose THC to positively modulate the MGBA by reducing neuroinflammation, enhancing endocannabinoid levels and promoting the growth of gut bacterial species that produce neuroprotective metabolites, like indole-3-propionate. The findings from this study may benefit not only PLWH on cART, but also those with no access to cART and more importantly, those who fail to suppress the virus under cART.
Collapse
Affiliation(s)
- Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Eunhee Lee
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Lakmini S Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595-1524, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA.
| |
Collapse
|
3
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. Alterations in Abundance and Compartmentalization of miRNAs in Blood Plasma Extracellular Vesicles and Extracellular Condensates during HIV/SIV Infection and Its Modulation by Antiretroviral Therapy (ART) and Delta-9-Tetrahydrocannabinol (Δ 9-THC). Viruses 2023; 15:623. [PMID: 36992332 PMCID: PMC10053514 DOI: 10.3390/v15030623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In this follow-up study, we investigated the abundance and compartmentalization of blood plasma extracellular miRNA (exmiRNA) into lipid-based carriers-blood plasma extracellular vesicles (EVs) and non-lipid-based carriers-extracellular condensates (ECs) during SIV infection. We also assessed how combination antiretroviral therapy (cART), administered in conjunction with phytocannabinoid delta-9-tetrahydrocannabinol (THC), altered the abundance and compartmentalization of exmiRNAs in the EVs and ECs of SIV-infected rhesus macaques (RMs). Unlike cellular miRNAs, exmiRNAs in blood plasma may serve as minimally invasive disease indicators because they are readily detected in stable forms. The stability of exmiRNAs in cell culture fluids and body fluids (urine, saliva, tears, cerebrospinal fluid (CSF), semen, blood) is based on their association with different carriers (lipoproteins, EVs, and ECs) that protect them from the activities of endogenous RNases. Here, we showed that in the blood plasma of uninfected control RMs, significantly less exmiRNAs were associated with EVs compared to the level (30% higher) associated with ECs, and that SIV infection altered the profile of EVs and ECs miRNAome (Manuscript 1). In people living with HIV (PLWH), host-encoded miRNAs regulate both host and viral gene expression, which may serve as indicators of disease or treatment biomarkers. The profile of miRNAs in blood plasma of PLWH (elite controllers versus viremic patients) are different, indicating that HIV may alter host miRNAome. However, there are no studies assessing the effect of cART or other substances used by PLWH, such as THC, on the abundance of exmiRNA and their association with EVs and ECs. Moreover, longitudinal exmiRNA profiles following SIV infection, treatment with THC, cART, or THC+cART remains unclear. Here, we serially analyzed miRNAs associated with blood plasma derived EVs and ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of male Indian rhesus macaques (RMs) in five treatment groups, including VEH/SIV, VEH/SIV/cART, THC/SIV, THC/SIV/cART, or THC alone. Separation of EVs and ECs was achieved with the unparalleled nano-particle purification tool ─PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high resolution separation and retrieval of preparative quantities of sub-populations of extracellular structures. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNA was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We investigated the effect of cART, THC, or both cART and THC together on the abundance and compartmentalization of blood plasma exmiRNA in EVs and ECs in SIV-infected RMs. As shown in Manuscript 1 of this series, were in uninfected RMs, ~30% of exmiRNAs were associated with ECs, we confirmed in this follow up manuscript that exmiRNAs were present in both lipid-based carriers-EVs and non-lipid-based carriers-ECs, with 29.5 to 35.6% and 64.2 to 70.5 % being associated with EVs and ECs, respectively. Remarkably, the different treatments (cART, THC) have distinct effects on the enrichment and compartmentalization pattern of exmiRNAs. In the VEH/SIV/cART group, 12 EV-associated and 15 EC-associated miRNAs were significantly downregulated. EV-associated miR-206, a muscle-specific miRNA that is present in blood, was higher in the VEH/SIV/ART compared to the VEH/SIV group. ExmiR-139-5p that was implicated in endocrine resistance, focal adhesion, lipid and atherosclerosis, apoptosis, and breast cancer by miRNA-target enrichment analysis was significantly lower in VEH/SIV/cART compared to VEH/SIV, irrespective of the compartment. With respect to THC treatment, 5 EV-associated and 21 EC-associated miRNAs were significantly lower in the VEH/THC/SIV. EV-associated miR-99a-5p was higher in VEH/THC/SIV compared to VEH/SIV, while miR-335-5p counts were significantly lower in both EVs and ECs of THC/SIV compared to VEH/SIV. EVs from SIV/cART/THC combined treatment group have significant increases in the count of eight (miR-186-5p, miR-382-5p, miR-139-5p and miR-652, miR-10a-5p, miR-657, miR-140-5p, miR-29c-3p) miRNAs, all of which were lower in VEH/SIV/cART group. Analysis of miRNA-target enrichment showed that this set of eight miRNAs were implicated in endocrine resistance, focal adhesions, lipid and atherosclerosis, apoptosis, and breast cancer as well as cocaine and amphetamine addiction. In ECs and EVs, combined THC and cART treatment significantly increased miR-139-5p counts compared to VEH/SIV group. Significant alterations in these host miRNAs in both EVs and ECs in the untreated and treated (cART, THC, or both) RMs indicate the persistence of host responses to infection or treatments, and this is despite cART suppression of viral load and THC suppression of inflammation. To gain further insight into the pattern of miRNA alterations in EVs and ECs and to assess potential cause-and-effect relationships, we performed longitudinal miRNA profile analysis, measured in terms of months (1 and 5) post-infection (MPI). We uncovered miRNA signatures associated with THC or cART treatment of SIV-infected macaques in both EVs and ECs. While the number of miRNAs was significantly higher in ECs relative to EVs for all groups (VEH/SIV, SIV/cART, THC/SIV, THC/SIV/cART, and THC) longitudinally from 1 MPI to 5 MPI, treatment with cART and THC have longitudinal effects on the abundance and compartmentalization pattern of exmiRNAs in the two carriers. As shown in Manuscript 1 where SIV infection led to longitudinal suppression of EV-associated miRNA-128-3p, administration of cART to SIV-infected RMs did not increase miR-128-3p but resulted in longitudinal increases in six EV-associated miRNAs (miR-484, miR-107, miR-206, miR-184, miR-1260b, miR-6132). Furthermore, administration of cART to THC treated SIV-infected RMs resulted in a longitudinal decrease in three EV-associated miRNAs (miR-342-3p, miR-100-5p, miR181b-5p) and a longitudinal increase in three EC-associated miRNAs (miR-676-3p, miR-574-3p, miR-505-5p). The longitudinally altered miRNAs in SIV-infected RMs may indicate disease progression, while in the cART Group and the THC Group, the longitudinally altered miRNAs may serve as biomarkers of response to treatment. Conclusions: This paired EVs and ECs miRNAome analyses provided a comprehensive cross-sectional and longitudinal summary of the host exmiRNA responses to SIV infection and the impact of THC, cART, or THC and cART together on the miRNAome during SIV infection. Overall, our data point to previously unrecognized alterations in the exmiRNA profile in blood plasma following SIV infection. Our data also indicate that cART and THC treatment independently and in combination may alter both the abundance and the compartmentalization of several exmiRNA related to various disease and biological processes.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
4
|
Cody SL, Miller GH, Fazeli PL, Wang G, Li W, Goodin BR, Vance DE. Preventing Neurocognitive Decline in Adults Aging with HIV: Implications for Practice and Research. J Alzheimers Dis 2023; 95:753-768. [PMID: 37599532 DOI: 10.3233/jad-230203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Mild to moderate forms of neurocognitive impairment persist among people living with HIV (PLWH), despite being virally suppressed on antiretroviral therapy. PLWH are disproportionally impacted by physiological and psychosocial comorbidities compared to those without HIV. As adults live longer with HIV, the neurocognitive burden of physiological and psychosocial stressors can impair everyday functioning and may contribute to the development of neurodegenerative diseases such as Alzheimer's disease. This article outlines neurocognitive consequences of everyday stressors in PLWH. While some lifestyle factors can exacerbate inflammatory processes and promote negative neurocognitive health, novel interventions including the use of cannabinoids may be neuroprotective for aging PLWH who are at risk for elevated levels of inflammation from comorbidities. Studies of integrated neurocognitive rehabilitation strategies targeting lifestyle factors are promising for improving neurocognitive health, and may over time, reduce the risk of Alzheimer's disease in PLWH.
Collapse
Affiliation(s)
- Shameka L Cody
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL, USA
| | - Gabe H Miller
- Department of Sociology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pariya L Fazeli
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ge Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Anesthesiology, Washington University Pain Center, Washington University, St. Louis, MO, USA
| | - David E Vance
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Hill SV, Palenski P, Crane HM, O’Cleirigh C, Matthews LT, Cropsey K. "You Almost Feel Out of Touch [For Saying] … 'Oh, and by the way, Stop Smoking.'" A Qualitative Exploration of Provider Perspectives About Discussing Tobacco and Cannabis Use With 18-24-Year-Old Young Adults With HIV. J Int Assoc Provid AIDS Care 2023; 22:23259582231163125. [PMID: 37009663 PMCID: PMC10074605 DOI: 10.1177/23259582231163125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/04/2023] Open
Abstract
Background: Youth with HIV (YWH) aged 18-24 are overburdened by tobacco, with half also using cannabis recreationally. Increasing tobacco cessation necessitates exploring providers' approaches to cessation. Methods: Grounded in social cognitive theory, we explored cognitive, socioenvironmental, and behavioral factors impacting providers' approaches to tobacco use among recreational cannabis users. Virtual interviews were conducted among healthcare providers caring for YWH in Washington (legalized cannabis), Massachusetts (legalized cannabis), and Alabama (cannabis not legal). Interviews were transcribed and analyzed via deductive and exploratory, thematic approaches using NVivo 12 Plus. Results: Twelve providers participated; 80% were subspecialist physicians. All providers (N = 12) reported discussing tobacco use; none reported discussing tobacco use in conjunction with cannabis use. Identified themes included competing demands including cannabis co-use, prioritization of social determinants of health, and need for youth-tailored tools. Conclusions: YWH disproportionately use tobacco and recreational cannabis. Optimizing clinical visits to identify opportunities to address tobacco is crucial.
Collapse
Affiliation(s)
- Samantha V. Hill
- Department of Pediatrics, The University of Alabama, Birmingham, AL, USA
| | - Paige Palenski
- Department of Psychiatry, The University of Alabama, Birmingham, AL, USA
| | - Heidi M. Crane
- Department of Medicine, The University of
Washington, Seattle, WA, USA
| | - Conall O’Cleirigh
- Department of Psychology, Massachusetts
General Hospital, Boston, MA, USA
| | - Lynn T. Matthews
- Division of Infectious Disease, The University of Alabama, Birmingham, AL, USA
| | - Karen Cropsey
- Department of Psychiatry, The University of Alabama, Birmingham, AL, USA
| |
Collapse
|
6
|
Algarin AB, Plazarte GN, Sovich KR, Seeger SD, Li Y, Cohen RA, Striley CW, Goldberger BA, Wang Y, Somboonwit C, Ibañez GE, Spencer EC, Cook RL. Marijuana Use and Health Outcomes in Persons Living With HIV: Protocol for the Marijuana Associated Planning and Long-term Effects (MAPLE) Longitudinal Cohort Study. JMIR Res Protoc 2022; 11:e37153. [PMID: 36040775 PMCID: PMC9472048 DOI: 10.2196/37153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Marijuana use is common in persons with HIV, but there is limited evidence of its relationship with potential health benefits or harms. OBJECTIVE The Marijuana Associated Planning and Long-term Effects (MAPLE) study was designed to evaluate the impact of marijuana use on HIV-related health outcomes, cognitive function, and systemic inflammation. METHODS The MAPLE study is a longitudinal cohort study of participants living with HIV who were recruited from 3 locations in Florida and were either current marijuana users or never regular marijuana users. At enrollment, participants completed questionnaires that included detailed marijuana use assessments, underwent interviewer-administered neurocognitive assessments, and provided blood and urine samples. Ongoing follow-ups included brief telephone assessments (every 3 months), detailed questionnaires (annually), repeated blood and urine samples (2 years), and linkage to medical records and statewide HIV surveillance data. Supplemental measures related to intracellular RNA, COVID-19, Alzheimer disease, and the gut microbiome were added after study initiation. RESULTS The MAPLE study completed enrollment of 333 persons between 2018 and 2021. The majority of participants in the sample were ≥50 years of age (200/333, 60.1%), male (181/333, 54.4%), cisgender men (173/329, 52.6%), non-Hispanic Black (221/333, 66.4%), and self-reported marijuana users (260/333, 78.1%). Participant follow-up was completed in 2022, with annual updates to HIV surveillance data through at least 2027. CONCLUSIONS The MAPLE study is the largest cohort specifically designed to understand the use of marijuana and its effects on HIV-related outcomes. The study population has significant diversity across age, sex, gender, and race. The data will help clinicians and public health officials to better understand patterns of marijuana use associated with both positive and negative health outcomes, and may inform recommendations for future clinical trials related to medical marijuana and HIV. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/37153.
Collapse
Affiliation(s)
- Angel B Algarin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriela N Plazarte
- Department of Psychology, University of South Florida, Tampa, CA, United States
| | - Kaitlin R Sovich
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Stella D Seeger
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Yancheng Li
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Catherine W Striley
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Bruce A Goldberger
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Yan Wang
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Charurut Somboonwit
- Division of Infectious Disease & International Medicine, University of South Florida, Tampa, FL, United States
| | - Gladys E Ibañez
- Department of Epidemiology, Florida International University, Miami, FL, United States
| | - Emma C Spencer
- Bureau of Communicable Diseases, Florida Department of Health, Tallahassee, FL, United States
| | - Robert L Cook
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
8
|
Maggirwar SB, Khalsa JH. The Link between Cannabis Use, Immune System, and Viral Infections. Viruses 2021; 13:v13061099. [PMID: 34207524 PMCID: PMC8229290 DOI: 10.3390/v13061099] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Cannabis continues to be the most used drug in the world today. Research shows that cannabis use is associated with a wide range of adverse health consequences that may involve almost every physiological and biochemical system including respiratory/pulmonary complications such as chronic cough and emphysema, impairment of immune function, and increased risk of acquiring or transmitting viral infections such as HIV, HCV, and others. The review of published research shows that cannabis use may impair immune function in many instances and thereby exerts an impact on viral infections including human immune deficiency virus (HIV), hepatitis C infection (HCV), and human T-cell lymphotropic type I and II virus (HTLV-I/II). The need for more research is also highlighted in the areas of long-term effects of cannabis use on pulmonary/respiratory diseases, immune dysfunction and the risk of infection transmission, and the molecular/genetic basis of immune dysfunction in chronic cannabis users.
Collapse
Affiliation(s)
- Sanjay B. Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA;
- Correspondence:
| | - Jag H. Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA;
- Medical Consequences of Drug Abuse and Infections Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20852, USA
| |
Collapse
|