1
|
Hawkins RD, Brodin L, Theodorsson E, Végvári Á, Kandel ER, Hokfelt T. Distribution, cellular localization, and colocalization of several peptide neurotransmitters in the central nervous system of Aplysia. Learn Mem 2023; 30:116-123. [PMID: 37442624 PMCID: PMC10353257 DOI: 10.1101/lm.053758.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Neuropeptides are widely used as neurotransmitters in vertebrates and invertebrates. In vertebrates, a detailed understanding of their functions as transmitters has been hampered by the complexity of the nervous system. The marine mollusk Aplysia, with a simpler nervous system and many large, identified neurons, presents several advantages for addressing this question and has been used to examine the roles of tens of peptides in behavior. To screen for other peptides that might also play roles in behavior, we observed immunoreactivity in individual neurons in the central nervous system of adult Aplysia with antisera raised against the Aplysia peptide FMRFamide and two mammalian peptides that are also found in Aplysia, cholecystokinin (CCK) and neuropeptide Y (NPY), as well as serotonin (5HT). In addition, we observed staining of individual neurons with antisera raised against mammalian somatostatin (SOM) and peptide histidine isoleucine (PHI). However, genomic analysis has shown that these two peptides are not expressed in the Aplysia nervous system, and we have therefore labeled the unknown peptides stained by these two antibodies as XSOM and XPHI There was an area at the anterior end of the cerebral ganglion that had staining by antisera raised against many different transmitters, suggesting that this may be a modulatory region of the nervous system. There was also staining for XSOM and, in some cases, FMRFamide in the bag cell cluster of the abdominal ganglion. In addition, these and other studies have revealed a fairly high degree of colocalization of different neuropeptides in individual neurons, suggesting that the peptides do not just act independently but can also interact in different combinations to produce complex functions. The simple nervous system of Aplysia is advantageous for further testing these ideas.
Collapse
Affiliation(s)
- Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
- New York State Psychiatric Institute, New York, New York 10032, USA
| | - Lennart Brodin
- Department of Neuroscience, Karolinska Institutet, Stockholm S-17177, Sweden
| | - Elvar Theodorsson
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping S-58185, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm S-17177, Sweden
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
- New York State Psychiatric Institute, New York, New York 10032, USA
- Howard Hughes Medical Institute, New York, New York 10032, USA
| | - Tomas Hokfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm S-17177, Sweden
| |
Collapse
|
2
|
Rolón-Martínez S, Habib MR, Mansour TA, Díaz-Ríos M, Rosenthal JJC, Zhou XN, Croll RP, Miller MW. FMRF-NH 2 -related neuropeptides in Biomphalaria spp., intermediate hosts for schistosomiasis: Precursor organization and immunohistochemical localization. J Comp Neurol 2021; 529:3336-3358. [PMID: 34041754 PMCID: PMC8273141 DOI: 10.1002/cne.25195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022]
Abstract
Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.
Collapse
Affiliation(s)
- Solymar Rolón-Martínez
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Tamer A Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Clinical Pathology, School of Medicine, University of Mansoura, Mansoura, Egypt
| | | | | | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark W Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
3
|
Adema CM. Sticky problems: extraction of nucleic acids from molluscs. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200162. [PMID: 33813891 DOI: 10.1098/rstb.2020.0162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditional molecular methods and omics-techniques across molluscan taxonomy increasingly inform biology of Mollusca. Recovery of DNA and RNA for such studies is challenged by common biological properties of the highly diverse molluscs. Molluscan biomineralization, adhesive structures and mucus involve polyphenolic proteins and mucopolysaccharides that hinder DNA extraction or copurify to inhibit enzyme-catalysed molecular procedures. DNA extraction methods that employ the detergent hexadecyltrimethylammoniumbromide (CTAB) to remove these contaminants importantly facilitate molecular-level study of molluscs. Molluscan pigments may stain DNA samples and interfere with spectrophotometry, necessitating gel electrophoresis or fluorometry for accurate quantification. RNA can reliably be extracted but the 'hidden break' in 28S rRNA of molluscs (like most protostomes) causes 18S and 28S rRNA fragments to co-migrate electrophoretically. This challenges the standard quality control based on the ratio of 18S and 28S rRNA, developed for deuterostome animals. High-AT content in molluscan rRNA prevents the effective purification of polyadenylated mRNA. Awareness of these matters aids the continuous expansion of molecular malacology, enabling work also with museum specimens and next-generation sequencing, with the latter imposing unprecedented demands on DNA quality. Alternative methods to extract nucleic acids from molluscs are available from literature and, importantly, from communications with others who study the molecular biology of molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87112, USA
| |
Collapse
|
4
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Zhang M, Wang Y, Li Y, Li W, Li R, Xie X, Wang S, Hu X, Zhang L, Bao Z. Identification and Characterization of Neuropeptides by Transcriptome and Proteome Analyses in a Bivalve Mollusc Patinopecten yessoensis. Front Genet 2018; 9:197. [PMID: 29922332 PMCID: PMC5996578 DOI: 10.3389/fgene.2018.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/15/2018] [Indexed: 11/28/2022] Open
Abstract
Neuropeptides play essential roles in regulation of reproduction and growth in marine molluscs. But their function in marine bivalves – a group of animals of commercial importance – is largely unexplored due to the lack of systematic identification of these molecules. In this study, we sequenced and analyzed the transcriptome of nerve ganglia of Yesso scallop Patinopecten yessoensis, from which 63 neuropeptide genes were identified based on BLAST and de novo prediction approaches, and 31 were confirmed by proteomic analysis using the liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty genes encode known neuropeptide precursors, of which 20 commonly exist in bilaterians and 30 are protostome specific. Three neuropeptides that have not yet been reported in bivalves were identified, including calcitonin/DH31, lymnokinin and pleurin. Characterization of glycoprotein hormones, insulin-like peptides, allatostatins, RFamides, and some reproduction, cardioactivity or feeding related neuropeptides reveals scallop neuropeptides have conserved molluscan neuropeptide domains, but some (e.g., GPB5, APGWamide and ELH) are characterized with bivalve-specific features. Thirteen potentially novel neuropeptides were identified, including 10 that may also exist in other protostomes, and 3 (GNamide, LRYamide, and Vamide) that may be scallop specific. In addition, we found neuropeptides potentially related to scallop shell growth and eye functioning. This study represents the first comprehensive identification of neuropeptides in scallop, and would contribute to a complete understanding on the roles of various neuropeptides in endocrine regulation in bivalve molluscs.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xinran Xie
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Rowe ML, Achhala S, Elphick MR. Neuropeptides and polypeptide hormones in echinoderms: new insights from analysis of the transcriptome of the sea cucumber Apostichopus japonicus. Gen Comp Endocrinol 2014; 197:43-55. [PMID: 24345384 DOI: 10.1016/j.ygcen.2013.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 11/17/2022]
Abstract
Echinoderms are of special interest for studies in comparative endocrinology because of their phylogenetic position in the animal kingdom as deuterostomian invertebrates. Furthermore, their pentaradial symmetry as adult animals provides a unique context for analysis of the physiological and behavioral roles of peptide signaling systems. Here we report the first extensive survey of neuropeptide and peptide hormone precursors in a species belonging to the class Holothuroidea. Transcriptome sequence data obtained from the sea cucumber Apostichopus japonicus were analyzed to identify homologs of precursor proteins that have recently been identified in the sea urchin Strongylocentrotus purpuratus (class Echinoidea). A total of 17 precursor proteins have been identified in A. japonicus, including precursors of peptides related to thyrotropin-releasing hormone, pedal peptide/orcokinin-type peptides, AN peptides/tachykinins, luqins, corticotropin-releasing hormone (CRH), GPA2-type glycoprotein hormone subunits and bursicon. In addition, an unusual finding was an A. japonicus calcitonin-type precursor protein (AjCTLPP), the first to be discovered that comprises two calcitonin-like peptides; this contrasts with the products of the alternatively-spliced calcitonin/CGRP gene in vertebrates, which comprise either calcitonin or CGRP. Collectively, the data obtained provide new insights on the evolution and diversity of neuropeptides and polypeptide hormones. Furthermore, because A. japonicus is one of several sea cucumber species that are used for human consumption, our findings may have practical and economic impact by providing a basis for neuroendocrine-based strategies to improve methods of aquaculture.
Collapse
Affiliation(s)
- Matthew L Rowe
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Sufyan Achhala
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
7
|
Zatylny-Gaudin C, Favrel P. Diversity of the RFamide Peptide Family in Mollusks. Front Endocrinol (Lausanne) 2014; 5:178. [PMID: 25386166 PMCID: PMC4208409 DOI: 10.3389/fendo.2014.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/06/2014] [Indexed: 01/25/2023] Open
Abstract
Since the initial characterization of the cardioexcitatory peptide FMRFamide in the bivalve mollusk Macrocallista nimbosa, a great number of FMRFamide-like peptides (FLPs) have been identified in mollusks. FLPs were initially isolated and molecularly characterized in model mollusks using biochemical methods. The development of recombinant technologies and, more recently, of genomics has boosted knowledge on their diversity in various mollusk classes. Today, mollusk FLPs represent approximately 75 distinct RFamide peptides that appear to result from the expression of only five genes: the FMRFamide-related peptide gene, the LFRFamide gene, the luqin gene, the neuropeptide F gene, and the cholecystokinin/sulfakinin gene. FLPs display a complex spatiotemporal pattern of expression in the central and peripheral nervous system. Working as neurotransmitters, neuromodulators, or neurohormones, FLPs are involved in the control of a great variety of biological and physiological processes including cardiovascular regulation, osmoregulation, reproduction, digestion, and feeding behavior. From an evolutionary viewpoint, the major challenge will then logically concern the elucidation of the FLP repertoire of orphan mollusk classes and the way they are functionally related. In this respect, deciphering FLP signaling pathways by characterizing the specific receptors these peptides bind remains another exciting objective.
Collapse
Affiliation(s)
- Celine Zatylny-Gaudin
- Université de Caen Basse-Normandie, Normandie Université, Biology of Aquatic Organisms and Ecosystems (BOREA), Caen, France
- Muséum National d’Histoire Naturelle, Sorbonne Universités, BOREA, Paris, France
- Université Pierre et Marie Curie, BOREA, Paris, France
- UMR 7208 Centre National de la Recherche Scientifique, BOREA, Paris, France
- IRD 207, L’Institut de recherche pour le développement, BOREA, Paris, France
| | - Pascal Favrel
- Université de Caen Basse-Normandie, Normandie Université, Biology of Aquatic Organisms and Ecosystems (BOREA), Caen, France
- Muséum National d’Histoire Naturelle, Sorbonne Universités, BOREA, Paris, France
- Université Pierre et Marie Curie, BOREA, Paris, France
- UMR 7208 Centre National de la Recherche Scientifique, BOREA, Paris, France
- IRD 207, L’Institut de recherche pour le développement, BOREA, Paris, France
- *Correspondence: Pascal Favrel, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, Caen Cedex 5 14032, France e-mail:
| |
Collapse
|
8
|
Lutz EM, Macdonald M, Hettle S, Price DA, Cottrell GA, Sommerville J. Structure of cDNA clones and genomic DNA FMRFamide-related peptides (FaRPs) in Helix. Mol Cell Neurosci 2012; 3:373-82. [PMID: 19912881 DOI: 10.1016/1044-7431(92)90049-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1992] [Indexed: 10/20/2022] Open
Abstract
A complementary DNA (cDNA) library was prepared from poly(A)(+) RNA isolated from the central ganglia of Helix aspersa from which two classes of FaRP-encoding cDNA clones were identified by hybridization with the Aplysia FMRF-1 clone and oligonucleotides based on known Helix peptides. One type of cDNA (exemplified by HF-1) encodes only the tetrapeptides (FMRFamide and FLRFamide) and is very similar to the tetrapeptide-encoding precursors of other molluscan species. The other type of cDNA (represented by HF-4) encodes no tetrapeptides, but only N-terminally extended peptides, including all of the heptapeptides previously detected in the nervous system as well as some novel predicted peptides, which may be processed into free bio-active peptides. The overall structure of the precursor polypeptide encoded by HF-4 is markedly different from that encoded by HF-1 and more closely resembles the Drosophila FaRP precursor. Restriction digestion and hybridization analysis of genomic DNA indicates that each class of cDNA comes from a single genomic locus and that the two genomic loci span about 14 kbp. Parts of the genomic DNA sequence homologous to HF-1 were determined by PCR of Helix pomatia DNA. All of the coding sequence contained in HF-1 appears to be on one exon since it is contiguous in the genomic PCR products. In the coding region, the sequences from H. aspersa and H. pomatia are about 95% identical, but they are only about 80% identical in the noncoding region.
Collapse
Affiliation(s)
- E M Lutz
- Department of Biology and Preclinical Medicine, Bute Medical Building, University of St. Andrews, St. Andrews, Fife, KY16 9TS, United Kingdom
| | | | | | | | | | | |
Collapse
|
9
|
Cummins SF, Tollenaere A, Degnan BM, Croll RP. Molecular analysis of two FMRFamide-encoding transcripts expressed during the development of the tropical abalone Haliotis asinina. J Comp Neurol 2011; 519:2043-59. [PMID: 21452226 DOI: 10.1002/cne.22621] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
FMRFamide-related peptides (FaRPs) are involved in numerous neural functions across the animal kingdom and serve as important models for understanding the evolution of neuropeptides. Gastropod molluscs have proved to be particularly useful foci for such studies, but the developmental expression of FaRPs and the evolution of specific transcripts for different peptides are unclear within the molluscs. Here we show that FaRPs are encoded by two transcripts that appear to be splice variants of a single gene in the abalone, Haliotis asinina, which represents the basal vetigastropods. Has-FMRF1 comprises 1,438 nucleotides and encodes a precursor protein of 329 amino acids that can potentially produce two copies of FLRFamide, one copy each of TLAGDSFLRFamide, QFYRIamide, SDPDLDDVIRASLLAYSLDDSPNN, and SVATAPVEAKAVEAGNKDIE, and 13 copies of FMRFamide. The second 1,241-nucleotide transcript, Has-FMRF2, encodes a 206-amino acid precursor protein with single copies of FLRFamide and FMRFamide along with such extended forms as NFGEPFLRFamide, FDSYEDKALRFamide, and NGWLHFamide, in addition to SDPGEDMLKSILLRGAPSNNGLQY and DTUDETTUNDNAHSRQ. Both transcripts are present early in life and are expressed in different but overlapping patterns within the developing larval nervous system. Mass spectrometry and immunocytochemistry demonstrate that FaRPs are cleaved from larger precursors and localize to the developing nervous system. Our results confirm previous evidence that FaRPs are expressed early and potentially play many roles during molluscan development and suggest that the last common ancestor to living gastropods used alternative splicing of an FMRFamide gene to generate a diversity of FaRPs in spatially restricted patterns in the nervous system.
Collapse
Affiliation(s)
- Scott F Cummins
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | | | | | | |
Collapse
|
10
|
|
11
|
Ronan PJ, Summers CH. Molecular Signaling and Translational Significance of the Corticotropin Releasing Factor System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:235-92. [DOI: 10.1016/b978-0-12-385506-0.00006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Veenstra JA. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010; 167:86-103. [PMID: 20171220 DOI: 10.1016/j.ygcen.2010.02.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 12/23/2022]
Abstract
The Lottia gigantea genome was prospected for the presence of genes coding neuropeptides and neurohormones. Four genes code insulin-related peptides: two genes code molluscan insulin-like growth hormones, one gene an insulin very similar to vertebrate insulin, and the fourth a peptide related to drosophila insulin-like peptide 7. Four other genes encode the cysteine-knot proteins GPA2/GPB5 and bursicon/parabursicon. Another 37 genes code for precursors of the following neuropeptides: achatin, APGWamide, allatostatin C, allatotropin, buccalin (perhaps an allatostatin A homolog), cerebrin, CCAP, conopressin, elevenin (the predicted neuropeptide made by abdominal neuron 11 in Aplysia), egg laying hormone (two genes), enterin, feeding circuit activating neuropeptide (FCAP), FFamide, FMRFamide, GGNG, a GnRH-like peptide, the newly discovered LASGLVamide, LFRFamide, LFRYamide, LRNFVamide, luqin, lymnokinin, myomodulin (two genes), the newly discovered NKY, NPY, pedal peptide (three genes), PKYMDT, pleurin, PXFVamide, small cardioactive peptides, tachykinins (two genes) and WWamide (an allatostatin B homolog). One gene was found to encode FWISamide, while about 20 closely related genes were found to encode WWFamide. These small neuropeptides appear homologous to the NdWFamide, which contains d-Trp; these genes are similar to the Aplysia gene encoding NWFamide. Some of these peptides had not been previously identified from mollusks, such as the predicted hormones similar to Drosophila and vertebrate insulins, bursicon, the putative proctolin homolog PKYMDT and allatostatin C. Together with neuropeptides which are likely homologs of other insect neuropeptides, such as cerebrin and WWamide, this shows that despite significant differences the molluscan and arthropod neuropeptidomes are more similar than generally recognized.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS, CNIC UMR 5228, 33400 Talence, France.
| |
Collapse
|
13
|
Gorbushin AM, Panchin YV, Iakovleva NV. In search of the origin of FREPs: characterization of Aplysia californica fibrinogen-related proteins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:465-473. [PMID: 20026348 DOI: 10.1016/j.dci.2009.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 05/28/2023]
Abstract
All haemolymph lectins with uniquely juxtaposed N-terminal domain similar to the immunoglobulin superfamily (IgSF) and C-terminal fibrinogen (FBG) termed FBG-related proteins (FREP) are documented till now only in the pulmonate mollusc Biomphalaria glabrata. Using genomic WGS database we have found two FREP genes from marine opistobranch Aplysia californica named AcFREP1 and AcFREP2. The AcFREP1 and AcFREP2 mRNA molecules have been subsequently isolated from cDNA of sea hare larvae as well as adult mollusc tissues. These genes encode proteins (504 and 510aa respectively) with domain architecture typical for FREPs with two N-terminal IgSF domains and C-terminal FBG domain. Although cDNA sequences of AcFREP1 and AcFREP2 are 81% identical, their genomic structure is entirely different: AcFREP1 is intronless and AcFREP2 is encoded in four exons. These genes are paralogous pair in which AcFREP2 is a parental gene and AcFREP1 is the new transposed copy that has lost the introns (retrogene). Using RT-PCR analysis, expression of AcFREP1 and AcFREP2 was shown to be developmentally and tissue-specific and no constitutive expression in haemocytes was found. The overall frequency of nucleotide substitutions in genomic DNA trace sequences of coding region of the AcFREP1 and AcFREP2 is not higher than in the sequences of control conserved genes (actin, FMRFamide). Thus, previously reported high diversification of Biomphalaria FREP gene, BgFREP3, is not detected in Aplysia FREPs. A search for FREP homologs in other available complete genome of mollusc, Lottia gigantea (Patellogastropoda), a representative of the evolutionary earliest gastropod clade, did not reveal any DNA sequences coding for similar lectins. We suggest that unique domain architecture of FREPs is an evolutionary novelty that appeared and evolved only within one branch of Protostomata species, exclusively in heterobranch molluscs (Pulmonata and Opistobranchia).
Collapse
Affiliation(s)
- A M Gorbushin
- Institute of Evolutionary Biochemistry and Physiology RAS, pr. Torez 44, Saint-Petersburg 194223, Russia.
| | | | | |
Collapse
|
14
|
Walker RJ, Papaioannou S, Holden-Dye L. A review of FMRFamide- and RFamide-like peptides in metazoa. INVERTEBRATE NEUROSCIENCE 2010; 9:111-53. [PMID: 20191373 DOI: 10.1007/s10158-010-0097-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Neuropeptides are a diverse class of signalling molecules that are widely employed as neurotransmitters and neuromodulators in animals, both invertebrate and vertebrate. However, despite their fundamental importance to animal physiology and behaviour, they are much less well understood than the small molecule neurotransmitters. The neuropeptides are classified into families according to similarities in their peptide sequence; and on this basis, the FMRFamide and RFamide-like peptides, first discovered in molluscs, are an example of a family that is conserved throughout the animal phyla. In this review, the literature on these neuropeptides has been consolidated with a particular emphasis on allowing a comparison between data sets in phyla as diverse as coelenterates and mammals. The intention is that this focus on the structure and functional aspects of FMRFamide and RFamide-like neuropeptides will inform understanding of conserved principles and distinct properties of signalling across the animal phyla.
Collapse
Affiliation(s)
- Robert J Walker
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
15
|
Rahman MM, Fromm B, Neupert S, Kreusch S, Predel R. Extended FMRFamides in dipteran insects: conservative expression in the neuroendocrine system is accompanied by rapid sequence evolution. Gen Comp Endocrinol 2009; 162:52-8. [PMID: 18789334 DOI: 10.1016/j.ygcen.2008.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/11/2008] [Accepted: 08/19/2008] [Indexed: 11/21/2022]
Abstract
Extended FMRFamides are found throughout the central nervous system (CNS) of insects and exhibit diverse physiological effects on different target organs, such as muscles, intestine, and the nervous system. The genes encoding for extended FMRFamides are known from a number of flies, including Drosophila species, and the pest insects Lucilia cuprina, Calliphora vomitoria, and Musca domestica. No data, however, exist about the expression of the numerous paralogs of the latter three species, and studies on Drosophila melanogaster resulted in controversial findings. We could unambiguously verify, that all predictable products of the extended FMRFamide precursor are expressed in neurohemal tissues of the thoracic neuromers of these flies and can easily be identified and also sequenced by using single specimens. In addition to the confirmation of extended FMRFamides in species with known precursor sequences, the current knowledge about homologous peptides of Sarcophaga (=Neobellieria) bullata could be extended by de novo sequencing using tandem mass spectrometry. The most intriguing finding in this study was the detection of an internal gene duplication, followed by an amino acid substitution, in an insecticide-resistant strain of L. cuprina. To our knowledge, this is the first detection of such an intraspecific event and confirms the low conservation of the extended FMRFamide gene sequences. In insects, no other neuropeptide family is known that shows such sequence variability between related species.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Department of General Zoology and Animal Physiology, Friedrich-Schiller-University, Erbertstr. 1, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
16
|
Genetic variation in the popular lab worm Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae) reveals cryptic speciation. Mol Phylogenet Evol 2008; 51:182-9. [PMID: 19141324 DOI: 10.1016/j.ympev.2008.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 11/22/2022]
Abstract
Genetic variation in the freshwater oligochaete Lumbriculus variegatus from Europe, North America and Japan was studied by sequencing and analysing the mitochondrial 16S and COI genes, and the nuclear ITS region. What hitherto has been regarded as L. variegatus was found to consist of at least two distinct clades (I and II), both of which occur in Europe as well as North America (clade I also in Japan). Specimens from a single locality in Sierra Nevada, California, also morphologically identified as L. variegatus, represent a third clade, which appears to be more closely related to clade II than to clade I, based on 16S data only. Average COI genetic distances were 17.7% between clades I and II, 0.6% within clade I, and 1.3% within clade II. Further, for these two clades, the mitochondrial (16S and COI) gene trees, which consider only the maternal lineages, are congruent with the ITS gene tree, which is the result of recombinations of paternal as well as maternal genomes. Finally, chromosome counts revealed clade I specimens to be highly polyploid, and clade II specimens to be diploid. We therefore conclude that clades I-II are separately evolving lineages, and that they should be regarded as separate species. This will have to be taken into account in the continued use of L. variegatus as a model organism in biological sciences.
Collapse
|
17
|
Moulis A. The action of RFamide neuropeptides on molluscs, with special reference to the gastropods Buccinum undatum and Busycon canaliculatum. Peptides 2006; 27:1153-65. [PMID: 16516343 DOI: 10.1016/j.peptides.2005.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 07/07/2005] [Indexed: 10/24/2022]
Abstract
The ever-growing RFamide neuropeptide superfamily has members in all animal phyla. Their effects in molluscs, on both smooth and cardiac muscle as well as on neurons, has been studied in detail. These neuropeptides exert a variety of functions: excitatory, inhibitory or even biphasic. Firstly, the literature on the excitatory effect of the RFamide neuropeptides on molluscan muscle and neurons has been reviewed, with greater emphasis and examples from the gastropods Buccinum undatum and Busycon canaliculatum. The peptides seem to be potent activators of contraction, sometimes generating slow tonic force and other times twitch activity. Secondly, the literature on the inhibitory effect of the superfamily has been reviewed. These peptides can exert an inhibitory effect, hyperpolarizing the cells rather than depolarizing them. Thirdly, the neuropeptides may play a variety of other roles, such as contributing to the regulation or maturation process of the animals. There have been cases recorded of RFamide neuropeptides acting as potent venoms in members of the Conus sp. The pathway of action of these multiple roles, their interaction with the parent neurotransmitters acetylcholine and serotonin, as well as the calcium dependency of the RFamide neuropeptides has been discussed, again with special reference to the above mentioned gastropods. A better understanding of the mode of action, the effects, and the importance of the RFamide neuropeptides on molluscan physiology and pharmacology has been attempted by reviewing the existing literature, recognizing the importance of the RFamide neuropeptide actions on molluscs.
Collapse
Affiliation(s)
- Alexander Moulis
- Department of Biological Sciences, Institute of Environmental and Natural Sciences, Lancaster University, 103 Priamou St., 16673 Voula, Athens, Greece.
| |
Collapse
|
18
|
Evans PD, Robb S, Cuthbert BA. Insect neuropeptides-identification, establishment of functional roles and novel target sites for pesticides. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780250110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Masler EP. Changes in FaRP-like peptide levels during development of eggs from the plant-parasitic cyst nematode, Heterodera glycines. J Helminthol 2006; 80:53-8. [PMID: 16469173 DOI: 10.1079/joh2005322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The plant-parasitic cyst nematode Heterodera glycines requires a host plant to complete its life cycle, which involves hatching of infective juveniles that parasitize through root entry. A laboratory population of H. glycines grown on soybean, Glycine max, undergoes a sharp increase in maturity between 5 and 6 weeks in culture, as measured by the proportion of eggs containing well developed pre-hatch juveniles (late development eggs) versus eggs without visible juveniles (early development eggs). The median percent of eggs classified as late development, representing all samples taken from 4 to 7 weeks in culture, was 61%. For all samples taken up to 5 weeks, 80% scored below the median. In samples taken after 5 weeks, 15% scored below the median. This shift in population maturity was accompanied by a significant increase (P < 0.01) in the number of hatched juveniles present in each sample. There was also a significant increase (P < 0.02) in amount of FaRP-like peptide detected by specific ELISA. Total FaRP levels increased from 0.18 +/- 0.07 fMol FLRFamide equivalents per ng protein in early development eggs to 0.40 +/- 0.17 in late development eggs. The level remained high in hatched juveniles. HPLC/ELISA detected as many as nine potential FaRPs in H. glycines, two of which were specifically increased (P < 0.005) in hatched juveniles. The association of FaRPs with maturing eggs and the possible involvement of these neuropeptides with juvenile hatching and motility are discussed.
Collapse
Affiliation(s)
- E P Masler
- Nematology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
20
|
Hummon AB, Amare A, Sweedler JV. Discovering new invertebrate neuropeptides using mass spectrometry. MASS SPECTROMETRY REVIEWS 2006; 25:77-98. [PMID: 15937922 DOI: 10.1002/mas.20055] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuropeptides are a complex set of messenger molecules controlling a wide array of regulatory functions and behaviors within an organism. These neuromodulators are cleaved from longer protein molecules and often experience numerous post-translational modifications to achieve their bioactive form. As a result of this complexity, sensitive and versatile analysis schemes are needed to characterize neuropeptides. Mass spectrometry (MS) through a variety of approaches has fueled the discovery of hundreds of neuropeptides in invertebrate species in the last decade. Particularly successful are direct tissue and single neuron analyses by matrix-assisted laser desorption/ionization (MALDI) MS, which has been used to elucidate approximately 440 neuropeptides, and examination of neuronal homogenates by electrospray ionization techniques (ESI), also leading to the characterization of over 450 peptides. Additional MS methods with great promise for the discovery of neuropeptides are MS imaging and large-scale peptidomics studies in combination with a sequenced genome.
Collapse
Affiliation(s)
- Amanda B Hummon
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
21
|
Predel R, Neupert S, Wicher D, Gundel M, Roth S, Derst C. Unique accumulation of neuropeptides in an insect: FMRFamide-related peptides in the cockroach, Periplaneta americana. Eur J Neurosci 2004; 20:1499-513. [PMID: 15355317 DOI: 10.1111/j.1460-9568.2004.03598.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FMRFamides belong to the most extensively studied neuropeptides in invertebrates and exhibit diverse physiological effects on different target organs, such as muscles, intestine and the nervous system. This study on the American cockroach confirms for the first time that extended FMRFamides occur in non-dipteran insects. By means of tandem mass spectrometry, these neuropeptides were structurally elucidated, and sequence information was used for subsequent cloning of the cockroach FMRFamide gene. This precursor gene encodes for 24 putative peptides and shows sufficient similarity with the Drosophila FMRFamide gene. Of the 24 peptides, 23 were detected by mass spectrometric methods; it is the highest number of neuropeptide forms shown to be expressed from a single precursor in any insect. The expression was traced back to single neurons in the thoracic ganglia. The unique accumulation of these FMRFamide-related peptides in thoracic perisympathetic organs provides the definite evidence for a tagma-specific distribution of peptidergic neurohormones in neurohaemal release sites of the insect CNS. Excitatory effects of the cockroach FMRFamides were observed on antenna-heart preparations. In addition, the newly described FMRFamides reduce the spike frequency of dorsal-unpaired median neurons and reduce the intracellular calcium concentration, which may affect the peripheral release of the biogenic amine octopamine.
Collapse
Affiliation(s)
- R Predel
- Saxon Academy of Sciences, Research Group Jena, Erbertstrasse 1, 07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Smit AB, van Kesteren RE, Spijker S, Van Minnen J, van Golen FA, Jiménez CR, Li KW. Peptidergic modulation of male sexual behavior in Lymnaea stagnalis: structural and functional characterization of -FVamide neuropeptides. J Neurochem 2003; 87:1245-54. [PMID: 14622104 DOI: 10.1046/j.1471-4159.2003.02086.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the simultaneous hermaphrodite snail Lymnaea stagnalis, copulation as a male is controlled by neurons that send axons to the male copulatory organs via a single penis nerve. Using direct mass spectrometry of a penis nerve sample, we show that one of the molecular ions has a mass corresponding to GAPRFVamide, previously identified from the buccal ganglia, and named Lymnaea inhibitory peptide (LIP). The identity of this peptide is confirmed by partial peptide purification from the penis nerve, followed by post source decay mass spectrometry. We cloned the LIP-encoding cDNA, which predicts a prohormone that gives rise to five copies of LIP (now re-named LIP A), two other -FVamide peptides (LIPs B and C), and five structurally unrelated peptides. The LIP gene is expressed in neurons of the right cerebral ventral lobe that send their axons into the penis nerve. We show that the LIP A peptide is present in these neurons and in the penis nerve, and confirmed the presence of LIP B and C in the penis nerve by post source decay mass spectrometry. Finally, we demonstrate that LIP A, B and C inhibit the contractions of the penis retractor muscle, thereby implicating their role in male copulation behavior.
Collapse
Affiliation(s)
- A B Smit
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cazzamali G, Grimmelikhuijzen CJP. Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc Natl Acad Sci U S A 2002; 99:12073-8. [PMID: 12218185 PMCID: PMC129400 DOI: 10.1073/pnas.192442799] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Accepted: 07/25/2002] [Indexed: 11/18/2022] Open
Abstract
FMRFamide and FMRFamide-related neuropeptides are extremely widespread and abundant in invertebrates and have numerous important functions. Here, we have cloned a Drosophila orphan receptor, and stably expressed it in Chinese hamster ovary cells. Screening of a peptide library revealed that the receptor reacted with high affinity to FMRFamide (EC50, 6 x 10(-9) M). The intrinsic Drosophila FMRFamide peptides are known to be synthesized as a large preprohormone, containing at least 13 related FMRFamide peptides (8 distinct FMRFamides). Screening of these intrinsic Drosophila FMRFamides showed that the receptor had highest affinity to Drosophila FMRFamide-6 (PDNFMRFamide) (EC50, 9 x 10(-10) M), whereas it had a somewhat lower affinity to Drosophila FMRFamide-2 (DPKQDFMRFamide) (EC50, 3 x 10(-9) M) and considerably less affinity to the other Drosophila FMRFamide-related peptides. To our knowledge, this article is the first report on the molecular identification of an invertebrate FMRFamide receptor.
Collapse
Affiliation(s)
- Giuseppe Cazzamali
- Department of Cell Biology, Zoological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
24
|
Chartrel N, Dujardin C, Leprince J, Desrues L, Tonon MC, Cellier E, Cosette P, Jouenne T, Simonnet G, Vaudry H. Isolation, characterization, and distribution of a novel neuropeptide, Rana RFamide (R-RFa), in the brain of the European green frog Rana esculenta. J Comp Neurol 2002; 448:111-27. [PMID: 12012424 DOI: 10.1002/cne.10253] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel neuropeptide of the RFamide peptide family was isolated in pure form from a frog (Rana esculenta) brain extract by using reversed-phase high performance liquid chromatography in combination with a radioimmunoassay for mammalian neuropeptide FF (NPFF). The primary structure of the peptide was established as Ser-Leu-Lys- Pro-Ala-Ala-Asn-Leu-Pro-Leu- Arg-Phe-NH(2). The sequence of this neuropeptide, designated Rana RFamide (R-RFa), exhibits substantial similarities with those of avian LPLRFamide, gonadotropin-inhibitory hormone, and human RFRP-1. The distribution of R-RFa was investigated in the frog central nervous system by using an antiserum directed against bovine NPFF. In the brain, immunoreactive cell bodies were primarily located in the hypothalamus, i.e., the anterior preoptic area, the suprachiasmatic nucleus, and the dorsal and ventral hypothalamic nuclei. The most abundant population of R-RFa-containing neurons was found in the periependymal region of the suprachiasmatic nucleus. R-RFa- containing fibers were widely distributed throughout the brain from the olfactory bulb to the brainstem, and were particularly abundant in the external layer of the median eminence. In the spinal cord, scattered immunoreactive neurons were found in the gray matter. R-RFa-positive processes were found in all regions of the spinal cord, but they were more abundant in the dorsal horn. This study provides the first characterization of a member of the RFamide peptide family in amphibians. The occurrence of this novel neuropeptide in the hypothalamus and median eminence and in the dorsal region of the spinal cord suggests that, in frog, R-RFa may exert neuroendocrine activities and/or may be involved in the transmission of nociceptive stimuli.
Collapse
Affiliation(s)
- Nicolas Chartrel
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U-413, UA CNRS, University of Rouen, 76821 Mont- Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fan X, Spijker S, Akalal DB, Nagle GT. Neuropeptide amidation: cloning of a bifunctional alpha-amidating enzyme from Aplysia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:25-34. [PMID: 11042355 DOI: 10.1016/s0169-328x(00)00173-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most common mechanisms of posttranslational modifications to generate biologically active (neuro)peptides is the process of peptide alpha-amidation. The only enzyme known to catalyze this important modification is peptidylglycine alpha-amidating monooxygenase (PAM): a (bifunctional) zymogen, giving rise to a monooxygenase (PHM) and a lyase (PAL). The highly peptidergic central nervous system and endocrine system of the marine mollusk Aplysia has homologs of various mammalian peptide processing enzymes, including furin, Afurin2, prohormone convertase 1 (PC1), PC2, carboxypeptidase E (CPE) and CPD. Previously, it has been shown that the abdominal ganglion of Aplysia, which contains approximately 800 peptidergic bag cell neurons, contains the highest specific alpha-amidating activity. We have identified and cloned multiple overlapping central nervous system and bag cell cDNAs that encode a predicted 748-residue protein that is a member of the PAM family. The protein sequence contains the contiguous sequence of the catalytic domains of PHM and PAL, clearly demonstrating the existence of bifunctional Aplysia PAM, the first invertebrate PAM zymogen with an organization similar to that in vertebrates. None of the characterized clones encoded the so-called exon A domain between the PHM and PAL domains. Furthermore, in a specific search by reverse transcription-polymerase chain reaction of RNA from multiple tissues we could only detect exon A-less transcripts. PAM expression was detected in the central nervous system, and in several endocrine and exocrine organs. Aplysia PAM is a candidate prohormone processing enzyme that plays an important role in the processing of Aplysia prohormones in the secretory pathway.
Collapse
Affiliation(s)
- X Fan
- Marine Biomedical Institute and Department of Anatomy and Neurosciences, University of Texas Medical Branch, Medical Research Building, Galveston, TX 77555-1043, USA
| | | | | | | |
Collapse
|
26
|
Geary TG, Marks NJ, Maule AG, Bowman JW, Alexander-Bowman SJ, Day TA, Larsen MJ, Kubiak TM, Davis JP, Thompson DP. Pharmacology of FMRFamide-related peptides in helminths. Ann N Y Acad Sci 2000; 897:212-27. [PMID: 10676450 DOI: 10.1111/j.1749-6632.1999.tb07893.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nervous systems of helminths are highly peptidergic. Species in the phylum Nematoda (roundworms) possess at least 50 FMRFamide-related peptides (FaRPs), with more yet to be identified. To date, few non-FaRP neuropeptides have been identified in these organisms, though evidence suggests that other families are present. FaRPergic systems have important functions in nematode neuromuscular control. In contrast, species in the phylum Platyhelminthes (flatworms) apparently utilize fewer FaRPs than do nematodes; those species examined possess one or two FaRPs. Other neuropeptides, such as neuropeptide F (NPF), play key roles in flatworm physiology. Although progress has been made in the characterization of FaRP pharmacology in helminths, much remains to be learned. Most studies on nematodes have been done with Ascaris suum because of its large size. However, thanks to the Caenorhabditis elegans genome project, we know most about the FaRP complement of this free-living animal. That essentially all C. elegans FaRPs are active on at least one A. suum neuromuscular system argues for conservation of ligand-receptor recognition features among the Nematoda. Structure-activity studies on nematode FaRPs have revealed that structure-activity relationship (SAR) "rules" differ considerably among the FaRPs. Second messenger studies, along with experiments on ionic dependence and anatomical requirements for activity, reveal that FaRPs act through many different mechanisms. Platyhelminth FaRPs are myoexcitatory, and no evidence exists of multiple FaRP receptors in flatworms. Interestingly, there are examples of cross-phylum activity, with some nematode FaRPs being active on flatworm muscle. The extent to which other invertebrate FaRPs show cross-phylum activity remains to be determined. How FaRPergic nerves contribute to the control of behavior in helminths, and are integrated with non-neuropeptidergic systems, also remains to be elucidated.
Collapse
Affiliation(s)
- T G Geary
- Animal Health Discovery Research, Pharmacia & Upjohn, Kalamazoo, Michigan 49007-4940, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Veenstra JA. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 43:49-63. [PMID: 10644969 DOI: 10.1002/(sici)1520-6327(200002)43:2<49::aid-arch1>3.0.co;2-m] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Regulatory peptides are synthesized as part of larger precursors that are subsequently processed into the active substances. After cleavage of the signal peptide, further proteolytic processing occurs predominantly at basic amino acid residues. Rules have been proposed in order to predict which putative proteolytic processing sites are actually used, but these rules have been established for vertebrate peptide precursors and it is unclear whether they are also valid for insects. The aim of this paper is to establish the validity of these rules to predict proteolytic cleavage sites at basic amino acids in insect neuropeptide precursors. Rules describing the cleavage of mono- and dibasic potential processing sites in insect neuropeptide precursors are summarized below. Lys-Arg pairs not followed by an aliphatic or basic amino acid residue are virtually always cleaved in insect regulatory peptide precursors, but cleavages of Lys-Arg pairs followed by either an aliphatic or a basic amino acid residue are ambiguous, as is processing at Arg-Arg pairs. Processing at Arg-Lys pairs has so far not been demonstrated in insects and processing at Lys-Lys pairs appears very rare. Processing at single Arg residues occurs only when there is a basic amino acid residue in position -4, -6, or -8, usually an Arg, but Lys or His residues work also. Although the current number of such sites is too limited to draw definitive conclusions, it seems plausible that cleavage at these sites is inhibited by the presence of aliphatic residues in the +1 position. However, cleavage at single Arg residues is ambiguous. When several potential cleavage sites overlap the one most easily cleaved appears to be processed. It cannot be excluded that some of the rules formulated here will prove less than universal, as only a limited number of cleavage sites have so far been identified. It is likely that, as in vertebrates, ambiguous processing sites exist to allow differential cleavage of the same precursor by different convertases and it seems possible that the precursors of allatostatins and PBAN are differentially cleaved in different cell types. Arch. Insect Biochem. Physiol. 43:49-63, 2000.
Collapse
Affiliation(s)
- J A Veenstra
- Laboratoire de Neuroendocrinologie, Université Bordeaux I, Talence, France.
| |
Collapse
|
28
|
Abstract
Conformational properties of several similar FMRFamide-like neuropeptides from mollusks were investigated by nuclear magnetic resonance (NMR) spectroscopy. It was found that amino acid substitutions in the N-terminal variable regions of the peptides had dramatic effects on the populations of reverse turns in solution. The populations of turns, as measured by two independent NMR parameters, were found to be highly correlated (r(2) = 0.93 and 0. 82) with IC(50) values using receptor membrane preparations from Helix aspersa (Payza, 1987; Payza et al., 1989). These results suggest that the amount of turn in the free peptide can influence the receptor binding affinities of that peptide. On the basis of these observations, a model was developed in which only a single species from a conformational ensemble of an unbound peptide will bind to a particular receptor. Thus, the conformational ensemble reduces the effective concentration of a particular peptide with respect to a particular receptor.
Collapse
|
29
|
Bellés X, Graham LA, Bendena WG, Ding QI, Edwards JP, Weaver RJ, Tobe SS. The molecular evolution of the allatostatin precursor in cockroaches. Peptides 1999; 20:11-22. [PMID: 10098619 DOI: 10.1016/s0196-9781(98)00155-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Allatostatins (ASTs) of the Tyr/Phe-Xaa-Phe-Gly Leu/Ile-NH2 family are a group of insect neuropeptides that inhibit juvenile hormone biosynthesis by the corpora allata. We have obtained genomic DNA sequences that specify the preproallatostatin precursor for the cockroaches, Blatta orientalis, Blattella germanica, Blaberus (cranufer and Supella longipalpa. The sequences obtained are similar to those of Diploptera punctata and Periplaneta americana reported previously. The precursors of all these cockroach species are similar in size, and the organization of the ASTs that they contain (there are 13 or 14, depending on the species) have been conserved. With the sequences of these precursors, and using the homologous sequence in the orthopteran Schistocera gregari as an outgroup, a phylogenetic analysis using parsimony was carried out. The dendrograms obtained from these analyses. using the amino acid as well as the nucleotide sequences, are comparable with current models for cockroach phylogeny. Parsimony analysis was also used to study the genealogy of the different ASTs within the same precursor. Results suggest that the AST sequences were generated through a process of internal gene duplication which occurred before these species diverged from each other in evolutionary time.
Collapse
Affiliation(s)
- X Bellés
- Department of Physiology and Molecular Biodiversity, Institut de Biologia Molecular de Barcelona (CID, CSIC), Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Favrel P, Lelong C, Mathieu M. Structure of the cDNA encoding the precursor for the neuropeptide FMRFamide in the bivalve mollusc Mytilus edulis. Neuroreport 1998; 9:2961-5. [PMID: 9804298 DOI: 10.1097/00001756-199809140-00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
FMRFamide immunoreactivity is widespread in the tissues of bivalve molluscs, but some of this immunoreactivity may represent distinct related peptides (FaRPs) rather than the exact tetrapeptide FMRFamide. We have cloned the first full-length cDNA encoding the precursor protein for FMRFamide from this class of molluscs to investigate the possibility that additional peptides may be produced. The precursor contains one copy each of NFLRFamide, FLRFamide, ALAGDHFFRFamide and 16 copies of FMRFamide. This precursor is expressed in all three ganglia of the central nervous system. Since the gene encoding the FMRFamide precursor in pulmonate molluscs is alternatively spliced to give two distinct messages, we searched for evidence that the FMRFamide gene of Mytilus is also alternatively spliced. No evidence of alternative splicing was found.
Collapse
Affiliation(s)
- P Favrel
- Laboratoire de Biologie et Biotechnologies Marines, IBBA IFREMER URM 14, Université de Caen, France
| | | | | |
Collapse
|
31
|
Affiliation(s)
- M Gajewski
- Zoologisches Institut, Universität Köln, Federal Republic of Germany
| | | | | |
Collapse
|
32
|
Marks NJ, Maule AG, Geary TG, Thompson DP, Davis JP, Halton DW, Verhaert P, Shaw C. APEASPFIRFamide, a novel FMRFamide-related decapeptide from Caenorhabditis elegans: structure and myoactivity. Biochem Biophys Res Commun 1997; 231:591-5. [PMID: 9070852 DOI: 10.1006/bbrc.1997.6155] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To date, 9 FMRFamide-related peptides (FaRPs) have been identified in Caenorhabditis elegans. Eight of these peptides are encoded on the flp-1 gene. However, AF2 (KHEYLRFamide) which was not co-encoded was the most abundant FaRP identified in ethanolic extracts. Further radioimmunometrical screening of acidified ethanol extracts of C. elegans has revealed the presence of other novel FaRPs, which are not encoded on the flp-1 gene. One of these peptides has been isolated by sequential rpHPLC and subjected to Edman degradation analysis and gas-phase sequencing and the unequivocal primary structure of the decapeptide Ala-Pro-Glu-Ala-Ser-Pro-Phe-Ile-Arg-Phe-NH2 was determined following a single gas-phase sequencing run. The molecular mass of the peptide was found to be 1133.7 Da, determined using a time-of-flight mass spectrometer. Synthetic replicates of this peptide were found to induce a profound relaxation of both dorsal and ventral somatic muscle-strip preparations of Ascaris suum with a threshold for activity of 10 nM. The inhibitory response was not dependent on the presence of nerve cords, indicating a post-synaptic site-of-action. The relaxation was Ca(+2)- and Cl(-)-independent but was abolished in high-K+ medium and could be distinguished from those of other inhibitory nematode FaRPs, including PF1 (SDPNFLRFamide) and PF4 (KPNFIRFamide).
Collapse
Affiliation(s)
- N J Marks
- Comparative Neuroendocrinology Research Group, Queen's University of Belfast, Northern Ireland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Edison AS, Messinger LA, Stretton AO. afp-1: a gene encoding multiple transcripts of a new class of FMRFamide-like neuropeptides in the nematode Ascaris suum. Peptides 1997; 18:929-35. [PMID: 9357048 DOI: 10.1016/s0196-9781(97)00047-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified a gene, afp-1, that encodes a new subfamily of six FMRFamide-like neuropeptides in the nematode Ascaris suum. The predicted peptides share the C-terminal sequence PGVLRF-NH2 but have different N-terminal extensions. We discuss possible functional roles of these different peptides based upon experiments with Ascaris as well as results from other organisms. Three of the peptides were previously isolated from extracts of A. suum (4) and three other are novel sequences. The translated product of afp-1 is a precursor protein containing two main halves: a C-terminal region containing a series of putative peptides separated by characteristic processing sites and a relatively hydrophobic N-terminal region with no obvious peptides. Although the overall structure of the translated product of afp-1 is similar to flp-1 from C. elegans (18), there is little evidence for homology between the two nematode neuropeptide genes. At least four different transcripts of afp-1 have been identified. These transcripts differ in their 3' and 5' untranslated regions, and one of the transcripts predicts a truncated precursor protein which contains only the C-terminal peptide-containing region.
Collapse
Affiliation(s)
- A S Edison
- Department of Zoology, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
34
|
Ding Q, Donly BC, Tobe SS, Bendena WG. Comparison of the allatostatin neuropeptide precursors in the distantly related cockroaches Periplaneta americana and Diploptera punctata. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:737-46. [PMID: 8575430 DOI: 10.1111/j.1432-1033.1995.737_a.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Allatostatins are a family of insect neuropeptides that inhibit juvenile hormone biosynthesis by the corpora allata. We have characterized cDNA and genomic DNA sequences that specify a preproallatostatin precursor in the oviparous cockroach Periplaneta americana. Comparison of this precursor with that previously described [Donly, B. C., Ding, Q., Tobe, S. S. & Bendena, W. G. (1993) Proc. Natl Acad. Sci. USA 90, 8807-8811] for the viviparous cockroach Diploptera punctata revealed several common features. First, the precursors are remarkably similar in size and the organization of the peptides within the precursor is conserved. The separation of the peptides into groups by acidic domains within the precursor has been maintained. The P. americana precursor contains 14 allatostatin-like peptides that contain the core C-terminal sequence (Tyr/Phe)-Xaa-Phe-Gly-(Leu/Ile)-NH2, as compared to the D. punctata precursor, which contains 13. Five of the peptides are perfectly conserved between the two species. The remainder, with one exception, contain amino acid substitutions in the N-terminal address portion of the peptide. Several features of expression are also similar between these two species. In both, a single copy gene specifies a large allatostatin transcript of 5.0 kb in P. americana and 9.2 kb in D. punctata. In P. americana, allatostatin transcripts appear to be produced by numerous cells in different regions of the brain.
Collapse
Affiliation(s)
- Q Ding
- Department of Zoology, University of Toronto, Canada
| | | | | | | |
Collapse
|
35
|
Leviev I, Grimmelikhuijzen CJ. Molecular cloning of a preprohormone from sea anemones containing numerous copies of a metamorphosis-inducing neuropeptide: a likely role for dipeptidyl aminopeptidase in neuropeptide precursor processing. Proc Natl Acad Sci U S A 1995; 92:11647-51. [PMID: 8524821 PMCID: PMC40459 DOI: 10.1073/pnas.92.25.11647] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neuropeptides are an important group of hormones mediating or modulating neuronal communication. Neuropeptides are especially abundant in evolutionarily "old" nervous systems, such as those of cnidarians, the lowest animal group having a nervous system. Cnidarians often have a life cycle including a polyp, a medusa, and a planula larva stage. Recently, a neuropeptide, < Glu-Gln-Pro-Gly-Leu-Trp-NH2, has been isolated from sea anemones that induces metamorphosis in a hydroid planula larva to become a hydropolyp [Leitz, T., Morand, K. & Mann, M. (1994) Dev. Biol. 163, 440-446]. Here, we have cloned the precursor protein for this metamorphosis-inducing neuropeptide from sea anemones. The precursor protein is 514-amino acid residues long and contains 10 copies of the immature, authentic neuropeptide (Gln-Gln-Pro-Gly-Leu-Trp-Gly). All neuropeptide copies are preceded by Xaa-Pro or Xaa-Ala sequences, suggesting a role for dipeptidyl aminopeptidase in neuropeptide precursor processing. In addition to these neuropeptide copies, there are 14 copies of another, closely related neuropeptide sequence (Gln-Asn-Pro-Gly-Leu-Trp-Gly). These copies are flanked by basic cleavage sites and, therefore, are likely to be released from the precursor protein. Furthermore, there are 13 other, related neuropeptide sequences having only small sequence variations (the most frequent sequence: Gln-Pro-Gly-Leu-Trp-Gly, eight copies). These variants are preceded by Lys-Arg, Xaa-Ala, or Xaa-Pro sequences, and are followed by basic cleavage sites, and therefore, are also likely to be produced from the precursor. Thus, there are at least 37 closely related neuropeptides localized on the precursor protein, making this precursor one of the most productive preprohormones known so far. This report also shows that unusual processing sites are common in cnidarian preprohormones.
Collapse
Affiliation(s)
- I Leviev
- Department of Cell Biology and Anatomy, University of Copenhagen, Denmark
| | | |
Collapse
|
36
|
Nagle GT, Garcia AT, Gorham EL, Knock SL, van Heumen WR, Spijker S, Smit AB, Geraerts WP, Kurosky A. Molecular cloning and cellular localization of a furin-like prohormone convertase from the atrial gland of Aplysia. DNA Cell Biol 1995; 14:431-43. [PMID: 7748493 DOI: 10.1089/dna.1995.14.431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prohormone convertases (PCs) are Ca(2+)-dependent subtilisin-related endoproteases that have been implicated in the post-translational processing of prohormones and other proproteins. Furin is an ubiquitously expressed PC that has been shown to hydrolyze a wide variety of precursor proteins in secretory pathways. We have screened an Aplysia atrial gland cDNA library using a furin probe prepared by polymerase chain reaction (PCR) and have isolated an Aplysia furin-related 6.7-kb cDNA partial clone that was truncated on the 5' end. The remaining 5' atrial gland furin nucleotide sequence was obtained by two stages of reverse transcription PCR. The final composite nucleotide sequence of the atrial gland furin cDNA was 7,837 bp in length. This sequence encoded a putative preproendoprotease (Afurin2) of 824 amino acid residues that was related to other eukaryotic furins, and showed a high sequence identity with a recently reported Aplysia nervous system furin-like sequence. In situ hybridization demonstrated extensive expression of Afurin2 in atrial gland secretory cells. The cDNA clone contained a relatively long 3' untranslated region of 5,230 nucleotides that included a microsatellite repeat region (TG)n. The characterized Aplysia Afurin2 is a candidate PC that may play an important role in the processing of egg-laying hormone (ELH)-related precursors in the secretory cells of the atrial gland. In addition, comparative structural studies of Afurin2, together with previously reported localization studies, argue for the occurrence of a furin-like convertase within secretory granules.
Collapse
Affiliation(s)
- G T Nagle
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nagle GT, Garcia AT, Knock SL, Gorham EL, Van Heumen WR, Kurosky A. Molecular cloning, cDNA sequence, and localization of a prohormone convertase (PC2) from the Aplysia atrial gland. DNA Cell Biol 1995; 14:145-54. [PMID: 7865132 DOI: 10.1089/dna.1995.14.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neuropeptides and peptide hormones are synthesized as part of larger precursor proteins that are processed post-translationally by subtilisin-related calcium-dependent prohormone convertases (PCs), frequently at multiple basic sites, to generate biologically active peptides. The atrial gland of Aplysia californica produces large quantities of egg-laying hormone (ELH)-related peptides, providing a unique opportunity to study prohormone processing. We have screened an Aplysia atrial gland cDNA library using a Lymnaea stagnalis PC2 probe and have isolated an Aplysia PC2-related 4.6-kb cDNA partial clone that was truncated on the 5' end. The remaining 5' atrial gland PC2 nucleotide sequence was obtained by reverse transcription/polymerase chain reaction (RT-PCR). The composite cDNA structure (5.6 kb) was deduced from sequence analysis of the RT-PCR product combined with the sequence obtained from the cDNA clone. The deduced cDNA of Aplysia atrial gland PC2 encoded a putative preproendoprotease of 653 amino acids that was evolutionarily related to other eukaryotic PC2s, and showed the strongest sequence identity with recently reported Aplysia nervous tissue PC2 sequences. In situ hybridization demonstrated extensive expression of PC2 in atrial gland secretory cells. The cDNA clone contained a relatively long 3'untranslated region (3'-UTR) of 3,632 nucleotides. Strikingly, the 3'-UTR also contained several major nucleotide repeat sequences including the microsatellite repeats, (CA)n and (TG)n, and a TA-rich region comprised largely of the triplet repeat (TTA)n. The characterized Aplysia PC2 is a candidate endoprotease that may play an important role in the processing of ELH-related precursors in the atrial gland and represents the first example of PC2 expression in exocrine tissue.
Collapse
Affiliation(s)
- G T Nagle
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555
| | | | | | | | | | | |
Collapse
|
38
|
Santama N, Benjamin PR, Burke JF. Alternative RNA splicing generates diversity of neuropeptide expression in the brain of the snail Lymnaea: in situ analysis of mutually exclusive transcripts of the FMRFamide gene. Eur J Neurosci 1995; 7:65-76. [PMID: 7711938 DOI: 10.1111/j.1460-9568.1995.tb01021.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the CNS of the snail Lymnaea stagnalis, Phe-Met-Arg-Phe-amide (FMRFamide)-like and additional novel neuropeptides are encoded by a common, multi-exon gene. This complex locus, comprising at least five exons, is subject to post-transcriptional regulation at the level of alternative RNA splicing. Our aim was first to analyse the pattern by which exons of this neuropeptide locus combine during splicing of the primary RNA transcript, and second to investigate the functional significance of splicing by mapping the expression and neuronal localization in the CNS of the alternative mRNA transcripts, in the context of defined neuronal networks and single identified neurons. The approach was a combination of comparative in situ hybridization and immunocytochemistry, using a battery of exon-specific oligonucleotides and anti-peptide antisera. The analysis illustrated that exons III, IV and V were always coexpressed and colocalized whereas the expression of exon II was always differential and mutually exclusive. Both sets of exons were, however, coexpressed with exon I: the total number of exon I-expressing neurons was equal to the combined number of neurons expressing exon III/IV/V and neurons expressing exon II. In addition, it was revealed that the extreme 5' of exon II, encoding a potential hydrophobic leader signal, was not expressed in the CNS of Lymnaea but was apparently spliced out during RNA processing. Both mRNA transcripts of the FMRFamide locus, type 1 (exons I/II) and type 2 (exons I/III/IV/V), were translated in the CNS and the resulting protein precursors were also expressed in a mutually exclusive fashion, as were their respective transcripts. The expression of alternative transcripts within identified networks or neuronal clusters was heterogeneous, as exemplified by the cardiorespiratory network. On the basis of this work and a previous cDNA analysis, we put forward a revised model of differential splicing and expression of the FMRFamide gene in the CNS of Lymnaea.
Collapse
Affiliation(s)
- N Santama
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | |
Collapse
|
39
|
Salzet M, Wattez C, Bulet P, Malecha J. Isolation and structural characterization of a novel peptide related to gamma-melanocyte stimulating hormone from the brain of the leech Theromyzon tessulatum. FEBS Lett 1994; 348:102-6. [PMID: 8026574 DOI: 10.1016/0014-5793(94)00581-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper reports the purification of a novel pro-opiomelanocortin derivative peptide (a gamma-melanocyte stimulating hormone-like (gamma-MSH-like) molecule) from the brain of the leech Theromyzon tessulatum. After reverse-phase HPLC purification, the sequence of the gamma-MSH-like peptide (YVMGHFRWDKFamide) was established by a combination of automated Edman degradation, electrospray mass spectrometry measurement, enzymatic treatment and co-elution experiments in reverse-phase HPLC with synthetic peptides.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire de Phylogénie moléculaire des Annélides, ER 87 CNRS, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
40
|
Benjamin PR, Burke JF. Alternative mRNA splicing of the FMRFamide gene and its role in neuropeptidergic signalling in a defined neural network. Bioessays 1994; 16:335-42. [PMID: 7912924 DOI: 10.1002/bies.950160508] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuronal signalling involves multiple neuropeptides that are diverse in structure and function. Complex patterns of tissue-specific expression arise from alternate RNA splicing of neuropeptide-encoding gene transcripts. The pattern of expression and its role in cell signalling is difficult to study at the level of single neurons in the complex vertebrate brain. However, in the model molluscan system, Lymnaea, it is possible to show that alternate mRNA expression of the FMRFamide gene is specific to single identified neurons. Two different transcripts are expressed in a mutually exclusive manner in different neurons. Post-translational processing of the two precursor proteins leads to completely distinct sets of neuropeptide transmitters. The function of these transmitter cocktails, resulting from alternate mRNA splicing, was studied physiologically in identified neurons forming part of a behaviourally important network regulating heartbeat.
Collapse
Affiliation(s)
- P R Benjamin
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Brighton, UK
| | | |
Collapse
|
41
|
Salzet M, Bulet P, Wattez C, Malecha J. FMRFamide-related peptides in the sex segmental ganglia of the Pharyngobdellid leech Erpobdella octoculata. Identification and involvement in the control of hydric balance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:269-75. [PMID: 8168516 DOI: 10.1111/j.1432-1033.1994.tb18738.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using enzyme-linked immunosorbent assays, a dot-immunobinding assay and a three-step reverse-phase HPLC separation, four Arg-Phe-amide (RFamide) peptides were purified from sex segmental ganglia extracts of the leech Erpobdella octoculata; FMRFamide, FM(O)RFamide, FLRFamide and GDPFLRFamide. Their amino acid sequences were elucidated by means of a combined approach using antiserum specificity, synthetic-peptide coelution, automated Edman degradation and electrospray mass spectrometry. One of these peptides, GDPFLRFamide, is a novel leech RFamide neuropeptide. Two of the above RFamide peptides are involved in the control of leech hydric balance; one (GDPFLRFamide) is diuretic, the other (FMRFamide) is anti-diuretic. Titration of each purified RFamide peptide indicated a similar amount of each tetrapeptide and of tetrapeptides and heptapeptides. A comparison between RFamide peptides of E. octoculata and molluscs reveals structural similarities supporting the hypothesis for the existence of an ancestral RFamide peptide gene common to leeches and molluscs.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire de Biologie Animale, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
42
|
Reinscheid RK, Grimmelikhuijzen CJ. Primary structure of the precursor for the anthozoan neuropeptide antho-RFamide from Renilla köllikeri: evidence for unusual processing enzymes. J Neurochem 1994; 62:1214-22. [PMID: 7906718 DOI: 10.1046/j.1471-4159.1994.62031214.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuropeptides containing the C-terminal sequence Arg-Phe-NH2 are an important group of hormones mediating or modulating neuronal communication. Arg-Phe-NH2 peptides are abundant in evolutionarily "old" nervous systems such as those of coelenterates, the lowest animal group having a nervous system. Here, we have cloned the precursor protein for the anthozoan neuropeptide Antho-RFamide (< Glu-Gly-Arg-Phe-NH2) from the sea pansy Renilla köllikeri. This precursor contains 36 copies of immature Antho-RFamide (Gln-Gly-Arg-Phe-Gly) and two additional putative neuropeptide sequences, which are regularly distributed over the precursor protein. Of the 36 Antho-RFamide sequences, 29 copies are separated by the five amino acid spacer sequence Arg-Glu/Gly-Asn/Ser/Asp-Glu/Lys-Glu. This implicates processing at single Arg and single Glu residues. Endoproteolytic cleavage at the C-terminal side of paired or single basic residues is a well known initial step in the maturation of precursor proteins. Cleavage at the C-terminal side of acidic residues, however, is unusual and must be catalyzed by a new type of processing enzyme. This processing enzyme is most likely to be an endoprotease, because the simplest way to generate Antho-RFamide is by endoproteolytic cleavage at the C-terminal side of Glu residues. The enzyme could also be an aminopeptidase, but in this case other proteases must be involved. As a possible alternative, one single "unspecific" aminopeptidase could cleave at Glu, Asp, Gly, Asn, Ser, and possibly also at other residues, and thus liberate all Antho-RFamide sequences. The processing of one precursor molecule probably yields 38 neuropeptides.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R K Reinscheid
- Centre for Molecular Neurobiology (ZMNH), University of Hamburg, F.R.G
| | | |
Collapse
|
43
|
Wu F, Schacher S. Pre- and postsynaptic changes mediated by two second messengers contribute to expression of Aplysia long-term heterosynaptic inhibition. Neuron 1994; 12:407-21. [PMID: 7906529 DOI: 10.1016/0896-6273(94)90281-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
FMRFamide evokes long-term inhibition of the sensorimotor connection of Aplysia that includes structural alterations in the presynaptic sensory cell. FMRFamide also evokes a down-regulation of the adhesion molecule apCAM from the surface of the postsynaptic motor cell L7. We examined the second messenger pathways mediating the long-term actions of FMRFamide on both the pre- and postsynaptic cells and determined whether the activation of each pathway is required for the expression of long-term functional and structural plasticity. Inhibition of the lipoxygenase pathway of arachidonic acid metabolism, but not the cyclooxygenase pathway, blocks the long-term changes in the presynaptic sensory cell evoked by FMRFamide. The down-regulation of apCAM in L7 appears to be mediated by cAMP-dependent activation of protein kinase A. Blocking the cAMP-dependent changes also blocks FMRFamide-induced long-term functional and structural changes. These results suggest that the expression of long-term heterosynaptic inhibition in Aplysia may require concomitant presynaptic and postsynaptic changes, each transduced by specific second messenger systems.
Collapse
Affiliation(s)
- F Wu
- Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York
| | | |
Collapse
|
44
|
Patel M, Chung JS, Kay I, Mallet AI, Gibbon CR, Thompson KS, Bacon JP, Coast GM. Localization of Locusta-DP in locust CNS and hemolymph satisfies initial hormonal criteria. Peptides 1994; 15:591-602. [PMID: 7937333 DOI: 10.1016/0196-9781(94)90081-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Locusta-diuretic peptide (Locusta-DP) is a potent stimulant of fluid secretion and cyclic AMP production by locust Malpighian tubules. In this study, a polyclonal antiserum raised to the C-terminus of Locusta-DP reveals a wide distribution of immunoreactive cell bodies and processes throughout the CNS, and endings in two important neurohemal release sites: the corpora cardiaca and the perivisceral organs. HPLC fractionation of CNS, neurohemal structures, and hemolymph reveals immunoreactive material that coelutes with synthetic Locusta-DP and stimulates cyclic AMP production by locust tubules. The identity of the immunoreactive and biologically active material is confirmed as authentic Locusta-DP by mass spectrometry.
Collapse
Affiliation(s)
- M Patel
- Department of Biology, Birkbeck College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Salzet M, Wattez C, Baert JL, Malecha J. Biochemical evidence of angiotensin II-like peptides and proteins in the brain of the rhynchobdellid leech Theromyzon tessulatum. Brain Res 1993; 631:247-55. [PMID: 7510576 DOI: 10.1016/0006-8993(93)91542-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The peptides contained in neurons localized in the brain of the leech Theromyzon tessulatum (Hirudinae, Rhynchobdellida) and showing an immunopositive reaction with an antibody directed against angiotensin II (AII), were purified by reversed-phase HPLC. Three AII-like peptides (P1, P2 and P3) which exhibited the same retention times and chromatographic behaviors as synthetic AVII (fragment 6-8 of AII), AIV (fragment 3-8 of AII) and AII, respectively, were resolved in brain extracts. An identification of the proteins immunoreactive to an anti-AII was performed at the level of both brain extracts and in vitro brain-translated RNA products. The protein detected at the level of the brain extracts (of a molecular mass of approximately 18 kDa) is multipeptidic as it is also recognized by two other antisera, a polyclonal one directed against gamma-MSH and a monoclonal one (Tt159) raised against a leech brain epitope. It could be the pro-AII-like precursor. The protein detected at the level of in vitro brain-translated RNA products (of a molecular mass of approximately 19 kDa) could be the prepro-AII-like precursor.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire de Phylogénie moléculaire des Annélides, ERS 20 CNRS, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
46
|
Bawab W, Aloyz RS, Crine P, Roques BP, DesGroseillers L. Identification and characterization of a neutral endopeptidase activity in Aplysia californica. Biochem J 1993; 296 ( Pt 2):459-65. [PMID: 8257438 PMCID: PMC1137717 DOI: 10.1042/bj2960459] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Kidney plasma membranes of Aplysia californica were shown to contain an endopeptidase activity which cleaved [Leu]enkephalin (Tyr-Gly-Gly-Phe-Leu) and [Leu]enkephalinamide (Tyr-Gly-Gly-Phe-Leu-NH2) at the Gly3-Phe4 bond, as determined by reverse-phase h.p.l.c. analysis of metabolites. The optimal pH was shown to be 6.5. The bivalent cation chelating agent, 1,10-phenanthroline protected [Leu]enkephalin from degradation, suggesting that this enzyme is a metallopeptidase. The degradation of [Leu]enkephalin was also abolished by the neutral endopeptidase-24.11 inhibitors RB104 (2-[(3-iodo-4-hydroxyl)-phenylmethyl]-4-N-[3-(hydroxyamino-3-oxo-1- phenylmethyl)-propyl]amino-4-oxobutanoic acid), HABCO-Gly [(3-hydroxy-aminocarbonyl-2-benzyl-1-oxypropyl)glycine], phosphoramidon and thiorphan, with IC50 values of 1 nM, 1 microM, 20 microM and 30 microM respectively. By contrast, the angiotensin-converting enzyme inhibitor captopril and the serine proteinase inhibitor phenylmethanesulphonyl fluoride were without effect. Phase separation experiments using Triton X-114 showed that about 64% of the neutral endopeptidase activity in the Aplysia kidney membrane corresponds to an integral membrane protein. A specific radioiodinated inhibitor ([125I]RB104) was shown to bind the Aplysia endopeptidase with high affinity; the KD and Bmax. values were 21 +/- 5 pM and 20.3 +/- 5 fmol/mg of proteins respectively. This inhibitor was used to determine the molecular form of the enzyme, after separation of solubilized membrane proteins on SDS/PAGE and transfer on to nitrocellulose membranes. A single protein band with an apparent molecular mass of 140 kDa was observed. The labelling was abolished by specific neutral endopeptidase inhibitors. This study provides the first biochemical characterization of an endopeptidase with catalytic properties similar to those of neutral endopeptidase-24.11 in the mollusc Aplysia californica.
Collapse
Affiliation(s)
- W Bawab
- Department of Biochemistry, University of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
47
|
Santama N, Li KW, Bright KE, Yeoman M, Geraerts WP, Benjamin PR, Burke JF. Processing of the FMRFamide precursor protein in the snail Lymnaea stagnalis: characterization and neuronal localization of a novel peptide, 'SEEPLY'. Eur J Neurosci 1993; 5:1003-16. [PMID: 7904219 DOI: 10.1111/j.1460-9568.1993.tb00952.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the pulmonate snail Lymnaea stagnalis, FMRFamide-like neuropeptides are encoded by a multi-exon genomic locus which is subject to regulation at the level of mRNA splicing. We aim to understand the post-translational processing of one resulting protein precursor encoding the tetrapeptide FMRFamide and a number of other putative peptides, and determine the distribution of the final peptide products in the central nervous system (CNS) and periphery of Lymnaea. We focused on two previously unknown peptide sequences predicted by molecular cloning to be encoded in the tetrapeptide protein precursor consecutively, separated by the tetrabasic cleavage site RKRR. Here we report the isolation and structural characterization of a novel non-FMRFamide-like peptide, the 22 amino acid peptide SEQPDVDDYLRDVVLQSEEPLY. The novel peptide is colocalized with FMRFamide in the CNS in a number of identified neuronal systems and their peripheral motor targets, as determined by in situ hybridization and immunocytochemistry. Its detection in heart excitatory motoneurons and in nerve fibres of the heart indicated that the novel peptide may play a role, together with FMRFamide, in heart regulation in the snail. The second predicted peptide, STEAGGQSEEMTHRTA (16 amino acids), was at very low abundance in the CNS and was only occasionally detected. Our current findings, suggestive of a distinct pattern of post-translational processing, allowed the reassessment of a previously proposed hypothesis that the two equivalent sequences in the Aplysia FMRFamide gene constitute a molluscan homologue of vertebrate corticotrophin releasing factor-like peptides.
Collapse
Affiliation(s)
- N Santama
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Brighton, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Rosoff ML, Doble KE, Price DA, Li C. The flp-1 propeptide is processed into multiple, highly similar FMRFamide-like peptides in Caenorhabditis elegans. Peptides 1993; 14:331-8. [PMID: 8483810 DOI: 10.1016/0196-9781(93)90049-m] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we described a gene, flp-1, that encodes seven FMRFamide-like peptides from two alternatively spliced transcripts in the nematode Caenorhabditis elegans. To determine whether all or a subset of the predicted peptides coded for by flp-1 are produced in vivo, we undertook the isolation of FMRFamide-like peptides from C. elegans. Six FLRFamide-containing peptides, all contained within the putative translation products of the flp-1 gene, were isolated from extracts of mixed stage animals. By quantitative PCR analysis of RNA from mixed stage animals, we found that the shorter transcript of flp-1 has a higher level of expression than the longer transcript.
Collapse
Affiliation(s)
- M L Rosoff
- Department of Biology, Boston University, MA 02215
| | | | | | | |
Collapse
|
49
|
Yasuda A, Naya Y, Nakanishi K. Isolation of Antho-RFamide related peptides from the eyestalks of blue crab. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 104:235-40. [PMID: 8462277 DOI: 10.1016/0305-0491(93)90363-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Two carboxyl-terminally amidated peptides (CP1 and CP2) were isolated from the blue crab (Callinectes sapidus) eyestalks by a method of carboxyl-terminal analysis. 2. The peptides were sequenced as pGlu-Gly-Arg-Phe-amide (CP1) and pGlu-Leu-Gly-Arg-Phe-amide (CP2). 3. Each carboxyl-terminus of the peptides was precisely determined by amino acid analysis utilizing phenylisothiocyanate derivatives. 4. CP1 was identical to the sea anemone neuropeptide, Antho-RFamide.
Collapse
Affiliation(s)
- A Yasuda
- Suntory Institute for Bioorganic Research, Osaka, Japan
| | | | | |
Collapse
|
50
|
Pepe G. A highly polymorphic (ACT)n VNTR (variable nucleotide of tandem repeats) locus inside intron 12 of COL1A2, one of the two genes involved in dominant osteogenesis imperfecta. Hum Mutat 1993; 2:300-5. [PMID: 8104634 DOI: 10.1002/humu.1380020410] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new, highly polymorphic, region consisting of variable number of tandem repeats (VNTR) is described that occurs within intron 12 of the COL1A2 gene. This VNTR consists of the trinucleotide ACT repeated from 6 to 12 times. Of the six alleles so far detected four are common in the three major races. The two rare alleles, (ACT)11 and (ACT)12, have been found only in Africans. In addition, a rapid technique has been developed that can be used successfully with very small amounts of even partially degraded DNA, thus allowing the use of this VNTR for forensic applications. Since dominant OI can be due to mutations at either of two loci (COL1A1 and COL1A2) prenatal diagnosis becomes feasible in the majority of the affected families only if a very informative marker is available for both of these genes. This VNTR provides a very powerful marker for COL1A2. In fact the heterozygosity for it ranges from 0.634 to 0.741 with PIC values from 0.562 to 0.696, respectively. Since trinucleotide repeats can be "unstable," and sometimes pathogenic, the unexplained collagenopathies (or suspected collagenopathies) should be analyzed from this point of view.
Collapse
Affiliation(s)
- G Pepe
- Department of Biology, University of Roma Tor Vergata, Italia
| |
Collapse
|