1
|
Zhang J, Benko Z, Zhang C, Zhao RY. Advanced Protocol for Molecular Characterization of Viral Genome in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2024; 13:566. [PMID: 39057793 PMCID: PMC11279667 DOI: 10.3390/pathogens13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Zsigmond Benko
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Chenyu Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Richard Y. Zhao
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Department of Microbiology-Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Global Health, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
González-Esparragoza D, Carrasco-Carballo A, Rosas-Murrieta NH, Millán-Pérez Peña L, Luna F, Herrera-Camacho I. In Silico Analysis of Protein-Protein Interactions of Putative Endoplasmic Reticulum Metallopeptidase 1 in Schizosaccharomyces pombe. Curr Issues Mol Biol 2024; 46:4609-4629. [PMID: 38785548 PMCID: PMC11120530 DOI: 10.3390/cimb46050280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Ermp1 is a putative metalloprotease from Schizosaccharomyces pombe and a member of the Fxna peptidases. Although their function is unknown, orthologous proteins from rats and humans have been associated with the maturation of ovarian follicles and increased ER stress. This study focuses on proposing the first prediction of PPI by comparison of the interologues between humans and yeasts, as well as the molecular docking and dynamics of the M28 domain of Ermp1 with possible target proteins. As results, 45 proteins are proposed that could interact with the metalloprotease. Most of these proteins are related to the transport of Ca2+ and the metabolism of amino acids and proteins. Docking and molecular dynamics suggest that the M28 domain of Ermp1 could hydrolyze leucine and methionine residues of Amk2, Ypt5 and Pex12. These results could support future experimental investigations of other Fxna peptidases, such as human ERMP1.
Collapse
Affiliation(s)
- Dalia González-Esparragoza
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Consejo Nacional de Humanidades Ciencia y Tecnología, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Nora H. Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| | - Lourdes Millán-Pérez Peña
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| | - Felix Luna
- Laboratorio de Neuroendocrinología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| |
Collapse
|
3
|
Hwang GJH, Clyne RK. Long non-coding RNA and ribosomal protein genes in a yeast ageing model: an investigation for undergraduate research-based learning. Essays Biochem 2023; 67:893-901. [PMID: 37655454 DOI: 10.1042/ebc20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
The unicellular yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are widely used eukaryotic model organisms. Research exploiting the tractability of these model systems has contributed significantly to our understanding of a wide range of fundamental processes. In this article, we outline the features of yeast that have similarly been exploited for undergraduate research training. We selected examples from published literature that demonstrate the utility of the yeast system for research-based learning embedded in the curriculum. We further describe a project which we designed for the team-based final-year dissertation projects module on our transnational joint programme, which investigates whether the expression and functions of the budding yeast RPL36 ribosomal protein paralogs are influenced by the overlapping long non-coding RNA genes. Students carry out the experimental procedures in a 2-week timetabled teaching block and exercise widely applicable biochemical techniques, including aseptic yeast cell culture and sample collection, RNA isolation, qRT-PCR quantitation, protein extraction and Western blot analysis, and cell cycle progression patterns using light microscopy and flow cytometry. It is challenging to design training programmes for undergraduates that are meaningful as well as practical and economical, but it is possible to transform active research projects into authentic research experiences. We consider yeast to be an ideal model organism for such projects. These can be adapted to the constraints of course schedules and explore fundamental biochemical topics which are evolutionarily conserved from yeast to mammals.
Collapse
Affiliation(s)
- Gwo-Jiunn H Hwang
- Nanchang University - Queen Mary University of London Joint Programme, Nanchang University, Nanchang, Jiangxi 330036, China
| | - Rosemary K Clyne
- School of Biological and Behavioural Sciences, Nanchang University Joint Programme in Biomedical Sciences, Queen Mary University of London, London, U.K
| |
Collapse
|
4
|
Wevers C, Höhler M, Alcázar-Román AR, Hegemann JH, Fleig U. A Functional Yeast-Based Screen Identifies the Host Microtubule Cytoskeleton as a Target of Numerous Chlamydia pneumoniae Proteins. Int J Mol Sci 2023; 24:ijms24087618. [PMID: 37108781 PMCID: PMC10142024 DOI: 10.3390/ijms24087618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial pathogens have evolved intricate ways to manipulate the host to support infection. Here, we systematically assessed the importance of the microtubule cytoskeleton for infection by Chlamydiae, which are obligate intracellular bacteria that are of great importance for human health. The elimination of microtubules in human HEp-2 cells prior to C. pneumoniae infection profoundly attenuated the infection efficiency, demonstrating the need for microtubules for the early infection processes. To identify microtubule-modulating C. pneumoniae proteins, a screen in the model yeast Schizosaccharomyces pombe was performed. Unexpectedly, among 116 selected chlamydial proteins, more than 10%, namely, 13 proteins, massively altered the yeast interphase microtubule cytoskeleton. With two exceptions, these proteins were predicted to be inclusion membrane proteins. As proof of principle, we selected the conserved CPn0443 protein, which caused massive microtubule instability in yeast, for further analysis. CPn0443 bound and bundled microtubules in vitro and co-localized partially with microtubules in vivo in yeast and human cells. Furthermore, CPn0443-transfected U2OS cells had a significantly reduced infection rate by C. pneumoniae EBs. Thus, our yeast screen identified numerous proteins encoded using the highly reduced C. pneumoniae genome that modulated microtubule dynamics. Hijacking of the host microtubule cytoskeleton must be a vital part of chlamydial infection.
Collapse
Affiliation(s)
- Carolin Wevers
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Mona Höhler
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Abel R Alcázar-Román
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Alao JP, Legon L, Dabrowska A, Tricolici AM, Kumar J, Rallis C. Interplays of AMPK and TOR in Autophagy Regulation in Yeast. Cells 2023; 12:cells12040519. [PMID: 36831186 PMCID: PMC9953913 DOI: 10.3390/cells12040519] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Cells survey their environment and need to balance growth and anabolism with stress programmes and catabolism towards maximum cellular bioenergetics economy and survival. Nutrient-responsive pathways, such as the mechanistic target of rapamycin (mTOR) interact and cross-talk, continuously, with stress-responsive hubs such as the AMP-activated protein kinase (AMPK) to regulate fundamental cellular processes such as transcription, protein translation, lipid and carbohydrate homeostasis. Especially in nutrient stresses or deprivations, cells tune their metabolism accordingly and, crucially, recycle materials through autophagy mechanisms. It has now become apparent that autophagy is pivotal in lifespan, health and cell survival as it is a gatekeeper of clearing damaged macromolecules and organelles and serving as quality assurance mechanism within cells. Autophagy is hard-wired with energy and nutrient levels as well as with damage-response, and yeasts have been instrumental in elucidating such connectivities. In this review, we briefly outline cross-talks and feedback loops that link growth and stress, mainly, in the fission yeast Schizosaccharomyces pombe, a favourite model in cell and molecular biology.
Collapse
|
6
|
Arginylation Regulates Cytoskeleton Organization and Cell Division and Affects Mitochondria in Fission Yeast. Mol Cell Biol 2022; 42:e0026122. [PMID: 36226970 PMCID: PMC9670973 DOI: 10.1128/mcb.00261-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein arginylation mediated by arginyltransferase Ate1 is a posttranslational modification of emerging importance implicated in the regulation of mammalian embryogenesis, the cardiovascular system, tissue morphogenesis, cell migration, neurodegeneration, cancer, and aging. Ate1 deletion results in embryonic lethality in mice but does not affect yeast viability, making yeast an ideal system to study the molecular pathways regulated by arginylation. Here, we conducted a global analysis of cytoskeleton-related arginylation-dependent phenotypes in Schizosaccharomyces pombe, a fission yeast species that shares many fundamental features of higher eukaryotic cells. Our studies revealed roles of Ate1 in cell division, cell polarization, organelle transport, and interphase cytoskeleton organization and dynamics. We also found a role of Ate1 in mitochondria morphology and maintenance. Furthermore, targeted mass spectrometry analysis of the total Sc. pombe arginylome identified a number of arginylated proteins, including those that play direct roles in these processes; lack of their arginylation may be responsible for ate1-knockout phenotypes. Our work outlines global biological processes potentially regulated by arginylation and paves the way to unraveling the functions of protein arginylation that are conserved at multiple levels of evolution and potentially constitute the primary role of this modification in vivo.
Collapse
|
7
|
Improving Drug Sensitivity of HIV-1 Protease Inhibitors by Restriction of Cellular Efflux System in a Fission Yeast Model. Pathogens 2022; 11:pathogens11070804. [PMID: 35890048 PMCID: PMC9318301 DOI: 10.3390/pathogens11070804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Fission yeast can be used as a cell-based system for high-throughput drug screening. However, higher drug concentrations are often needed to achieve the same effect as in mammalian cells. Our goal here was to improve drug sensitivity so reduced drugs could be used. Three different methods affecting drug uptakes were tested using an FDA-approved HIV-1 protease inhibitor (PI) drug Darunavir (DRV). First, we tested whether spheroplasts without cell walls increase the drug sensitivity. Second, we examined whether electroporation could be used. Although small improvements were observed, neither of these two methods showed significant increase in the EC50 values of DRV compared with the traditional method. In contrast, when DRV was tested in a mutant strain PR836 that lacks key proteins regulating cellular efflux, a significant increase in the EC50 was observed. A comparison of nine FDA-approved HIV-1 PI drugs between the wild-type RE294 strain and the mutant PR836 strain showed marked enhancement of the drug sensitivities ranging from an increase of 0.56 log to 2.48 logs. Therefore, restricting cellular efflux through the adaption of the described fission yeast mutant strain enhances the drug sensitivity, reduces the amount of drug used, and increases the chance of success in future drug discovery.
Collapse
|
8
|
Zhang J, Li Q, Cruz Cosme RS, Gerzanich V, Tang Q, Simard JM, Zhao RY. Genome-wide characterization of SARS-CoV-2 cytopathogenic proteins in the search of antiviral targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.23.469747. [PMID: 34845452 PMCID: PMC8629195 DOI: 10.1101/2021.11.23.469747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Therapeutic inhibition of critical viral functions is important for curtailing coronavirus disease-2019 (COVID-19). We sought to identify antiviral targets through genome-wide characterization of SARS-CoV-2 proteins that are crucial for viral pathogenesis and that cause harmful cytopathic effects. All twenty-nine viral proteins were tested in a fission yeast cell-based system using inducible gene expression. Twelve proteins including eight non-structural proteins (NSP1, NSP3, NSP4, NSP5, NSP6, NSP13, NSP14 and NSP15) and four accessory proteins (ORF3a, ORF6, ORF7a and ORF7b) were identified that altered cellular proliferation and integrity, and induced cell death. Cell death correlated with the activation of cellular oxidative stress. Of the twelve proteins, ORF3a was chosen for further study in mammalian cells. In human pulmonary and kidney epithelial cells, ORF3a induced cellular oxidative stress associated with apoptosis and necrosis, and caused activation of pro-inflammatory response with production of the cytokines TNF-α, IL-6, and IFN-β1, possibly through the activation of NF-κB. To further characterize the mechanism, we tested a natural ORF3a Beta variant, Q57H, and a mutant with deletion of the highly conserved residue, ΔG188. Compared to wild type ORF3a, the ΔG188 variant yielded more robust activation of cellular oxidative stress, cell death, and innate immune response. Since cellular oxidative stress and inflammation contribute to cell death and tissue damage linked to the severity of COVID-19, our findings suggest that ORF3a is a promising, novel therapeutic target against COVID-19.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qi Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ruth S. Cruz Cosme
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qiyi Tang
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
9
|
Zhang X, Xin Y, Chen Z, Xia Y, Xun L, Liu H. Sulfide-quinone oxidoreductase is required for cysteine synthesis and indispensable to mitochondrial health. Redox Biol 2021; 47:102169. [PMID: 34688157 PMCID: PMC8577491 DOI: 10.1016/j.redox.2021.102169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial dysfunction is related to common age-related disorders, including neurodegenerative diseases, metabolic syndrome, and carcinogenesis. Therefore, maintaining the functionality and integrity of mitochondria is important for human health. Herein, we found that sulfide:quinone oxidoreductase (Sqr), which oxidizes hydrogen sulfide to reactive sulfur species (RSS), was indispensable to mitochondria health in the eukaryotic model microorganism Schizosaccharomyces pombe. Sqr knock-out led to morphological changes and functional deficiencies of mitochondria and apoptosis in S. pombe. The Sqr knock-out strain displayed the same phenotypes as the cysteine-synthesis-deficient strain, and cysteine addition complemented the effects caused by Sqr knock-out. In S. pombe, Sqr was the main RSS producer in mitochondria, and RSS instead of H2S was used by cysteine synthase to synthesize cysteine. This finding rewrites the cysteine biosynthesis route in S. pombe and may also in other eukaryotes and prokaryotes, and highlights the importance of cysteine and RSS in maintaining mitochondrial health. Sqr is an important RSS producer in mitochondria. RSS is involved in cysteine de novo biosynthesis. It is the de facto substrate of cysteine synthase. Sqr is required for maintaining the health of mitochondria, might be a new target for inhibiting cell proliferation.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Yuping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Zhigang Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China; Department of Chemistry, School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-4630, USA.
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
10
|
Single-Agent and Fixed-Dose Combination HIV-1 Protease Inhibitor Drugs in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2021; 10:pathogens10070804. [PMID: 34202872 PMCID: PMC8308830 DOI: 10.3390/pathogens10070804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Successful combination antiretroviral therapies (cART) eliminate active replicating HIV-1, slow down disease progression, and prolong lives. However, cART effectiveness could be compromised by the emergence of viral multidrug resistance, suggesting the need for new drug discoveries. The objective of this study was to further demonstrate the utility of the fission yeast cell-based systems that we developed previously for the discovery and testing of HIV protease (PR) inhibitors (PIs) against wild-type or multi-PI drug resistant M11PR that we isolated from an infected individual. All thirteen FDA-approved single-agent and fixed-dose combination HIV PI drugs were tested. The effect of these drugs on HIV PR activities was tested in pure compounds or formulation drugs. All FDA-approved PI drugs, except for a prodrug FPV, were able to suppress the wild-type PR-induced cellular and enzymatic activities. Relative drug potencies measured by EC50 in fission yeast were discussed in comparison with those measured in human cells. In contrast, none of the FDA-approved drugs suppressed the multi-PI drug resistant M11PR activities. Results of this study show that fission yeast is a reliable cell-based system for the discovery and testing of HIV PIs and further demonstrate the need for new PI drugs against viral multi-PI resistance.
Collapse
|
11
|
Zhang J, Li Q, Cruz Cosme RS, Gerzanich V, Tang Q, Simard JM, Zhao RY. Genome-Wide Characterization of SARS-CoV-2 Cytopathogenic Proteins in the Search of Antiviral Targets. mBio 2021; 13:e0016922. [PMID: 35164548 PMCID: PMC8844912 DOI: 10.1128/mbio.00169-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Therapeutic inhibition of critical viral functions is important for curtailing coronavirus disease 2019 (COVID-19). We sought to identify antiviral targets through the genome-wide characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins that are crucial for viral pathogenesis and that cause harmful cytopathogenic effects. All 29 viral proteins were tested in a fission yeast cell-based system using inducible gene expression. Twelve proteins, including eight nonstructural proteins (NSP1, NSP3, NSP4, NSP5, NSP6, NSP13, NSP14, and NSP15) and four accessory proteins (ORF3a, ORF6, ORF7a, and ORF7b), were identified that altered cellular proliferation and integrity and induced cell death. Cell death correlated with the activation of cellular oxidative stress. Of the 12 proteins, ORF3a was chosen for further study in mammalian cells because it plays an important role in viral pathogenesis and its activities are linked to lung tissue damage and a cytokine storm. In human pulmonary and kidney epithelial cells, ORF3a induced cellular oxidative stress associated with apoptosis and necrosis and caused activation of proinflammatory response with production of the cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IFN-β1, possibly through the activation of nuclear factor kappa B (NF-κB). To further characterize the mechanism, we tested a natural ORF3a Beta variant, Q57H, and a mutant with deletion of the highly conserved residue, ΔG188. Compared with wild-type ORF3a, the ΔG188 variant yielded more robust activation of cellular oxidative stress, cell death, and innate immune response. Since cellular oxidative stress and inflammation contribute to cell death and tissue damage linked to the severity of COVID-19, our findings suggest that ORF3a is a promising, novel therapeutic target against COVID-19. IMPORTANCE The ongoing COVID-19 pandemic caused by SARS-CoV-2 has claimed over 5.5 million lives with more than 300 million people infected worldwide. While vaccines are effective, the emergence of new viral variants could jeopardize vaccine protection. Treatment of COVID-19 by antiviral drugs provides an alternative to battle against the disease. The goal of this study was to identify viral therapeutic targets that can be used in antiviral drug discovery. Utilizing a genome-wide functional analysis in a fission yeast cell-based system, we identified 12 viral candidates, including ORF3a, which cause cellular oxidative stress, inflammation, apoptosis, and necrosis that contribute to cytopathogenicity and COVID-19. Our findings indicate that antiviral agents targeting ORF3a could have a great impact on COVID-19.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Qi Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth S. Cruz Cosme
- Surgical Care Clinical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Surgical Care Clinical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Srivastava S, Kaur S, Verma HK, Rani S, Thakur M, Haldar S, Singh J. Reciprocal relation between reporter gene transcription and translation efficiency in fission yeast. Plasmid 2021; 115:102557. [PMID: 33539828 DOI: 10.1016/j.plasmid.2021.102557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
The fission yeast, Schizosaccharomyces pombe, is an excellent model for basic research but is not useful for commercial scale protein expression due to lack of strong expression vectors. Earlier, we showed that the lsd90 promoter elicited significantly greater GFP expression level than the adh1 and nmt1 promoters, albeit in different vector backbones. Here, we have systematically investigated the contribution of selectable markers, LEU2 and URA3m to GFP expression: while LEU2 elicited very low expression, the URA3m gene, with truncated promoter, elicited much greater GFP expression level with all promoters. Paradoxically, an inverse correlation was observed between the GFP transcription and translation efficiency. This system can be useful for understanding the factors governing recombinant gene expression and optimization of protein production.
Collapse
Affiliation(s)
- Suchita Srivastava
- Central Research Institute, Kasauli, Distt, Solan, Himachal Pradesh 173204, India; Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Satinderdeep Kaur
- Central Research Institute, Kasauli, Distt, Solan, Himachal Pradesh 173204, India; Pharmacology Department, School of Science and Technology, Nottingham Trent University, Nottingha, NG11 8NS, UK
| | - Hemant K Verma
- Biotech Department, Mankind Research Center, 191-E, Sector 4-11, IMT, Manesar, Haryana 122050, India
| | - Suman Rani
- Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Manisha Thakur
- Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Swati Haldar
- Microbiology Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Jagmohan Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector- 39 A, Chandigarh 160036, India.
| |
Collapse
|
13
|
Benko Z, Zhang J, Zhao RY. Development of A Fission Yeast Cell-Based Platform for High Throughput Screening of HIV-1 Protease Inhibitors. Curr HIV Res 2021; 17:429-440. [PMID: 31782368 DOI: 10.2174/1570162x17666191128102839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND HIV-1 protease inhibitor (PI) is one of the most potent classes of drugs in combinational antiretroviral therapies (cART). When a PI is used in combination with other anti- HIV drugs, cART can often suppress HIV-1 below detection thus prolonging the patient's lives. However, the challenge often faced by patients is the emergence of HIV-1 drug resistance. Thus, PIs with high genetic-barrier to drug-resistance are needed. OBJECTIVE The objective of this study was to develop a novel and simple fission yeast (Schizosaccharomyces pombe) cell-based system that is suitable for high throughput screening (HTS) of small molecules against HIV-1 protease (PR). METHODS A fission yeast RE294-GFP strain that stably expresses HIV-1 PR and green fluorescence protein (GFP) under the control of an inducible nmt1 promoter was used. Production of HIV-1 PR induces cellular growth arrest, which was used as the primary endpoint for the search of PIs and was quantified by an absorbance-based method. Levels of GFP production were used as a counter-screen control to eliminate potential transcriptional nmt1 inhibitors. RESULTS Both the absorbance-based HIV-1 PR assay and the GFP-based fluorescence assay were miniaturized and optimized for HTS. A pilot study was performed using a small drug library mixed with known PI drugs and nmt1 inhibitors. With empirically adjusted and clearly defined double-selection criteria, we were able to correctly identify the PIs and to exclude all hidden nmt1 inhibitors. CONCLUSION We have successfully developed and validated a fission yeast cell-based HTS platform for the future screening and testing of HIV-1 PR inhibitors.
Collapse
Affiliation(s)
- Zsigmond Benko
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States
| | - Jiantao Zhang
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States
| | - Richard Y Zhao
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Department of Microbiology- Immunology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Institute of Human Virology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Institute of Global Health, University of Maryland Medical School, Baltimore, MD 21201, United States
| |
Collapse
|
14
|
Abstract
Enzyme immobilization to solid matrices often presents a challenge due to protein conformation sensitivity, desired enzyme purity, and requirements for the particular carrier properties and immobilization technique. Surface display of enzymes at the cell walls of microorganisms presents an alternative that has been the focus of many research groups worldwide in different fields, such as biotechnology, energetics, pharmacology, medicine, and food technology. The range of systems by which a heterologous protein can be displayed at the cell surface allows the appropriate one to be found for almost every case. However, the efficiency of display systems is still quite low. The most frequently used yeast for the surface display of proteins is Saccharomyces cerevisiae. However, apart from its many advantages, Saccharomyces cerevisiae has some disadvantages, such as low robustness in industrial applications, hyperglycosylation of some heterologous proteins, and relatively low efficiency of surface display. Thus, in the recent years the display systems for alternative yeast hosts with better performances including Pichia pastoris, Hansenula polymorpha, Blastobotrys adeninivorans, Yarrowia lipolytica, Kluyveromyces marxianus, and others have been developed. Different strategies of surface display aimed to increase the amount of displayed protein, including new anchoring systems and new yeast hosts are reviewed in this paper.
Collapse
|
15
|
Schesser Bartra S, Lorica C, Qian L, Gong X, Bahnan W, Barreras H, Hernandez R, Li Z, Plano GV, Schesser K. Chromosomally-Encoded Yersinia pestis Type III Secretion Effector Proteins Promote Infection in Cells and in Mice. Front Cell Infect Microbiol 2019; 9:23. [PMID: 30854334 PMCID: PMC6396649 DOI: 10.3389/fcimb.2019.00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/22/2019] [Indexed: 11/17/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, possesses a number of virulence mechanisms that allows it to survive and proliferate during its interaction with the host. To discover additional infection-specific Y. pestis factors, a transposon site hybridization (TraSH)-based genome-wide screen was employed to identify genomic regions required for its survival during cellular infection. In addition to several well-characterized infection-specific genes, this screen identified three chromosomal genes (y3397, y3399, and y3400), located in an apparent operon, that promoted successful infection. Each of these genes is predicted to encode a leucine-rich repeat family protein with or without an associated ubiquitin E3 ligase domain. These genes were designated Yersinia leucine-rich repeat gene A (ylrA), B (ylrB), and C (ylrC). Engineered strains with deletions of y3397 (ylrC), y3399 (ylrB), or y3400 (ylrA), exhibited infection defects both in cultured cells and in the mouse. C-terminal FLAG-tagged YlrA, YlrB, and YlrC were secreted by Y. pestis in the absence but not the presence of extracellular calcium and deletions of the DNA sequences encoding the predicted N-terminal type III secretion signals of YlrA, YlrB, and YlrC prevented their secretion, indicating that these proteins are substrates of the type III secretion system (T3SS). Further strengthening the connection with the T3SS, YlrB was readily translocated into HeLa cells and expression of the YlrA and YlrC proteins in yeast inhibited yeast growth, indicating that these proteins may function as anti-host T3S effector proteins.
Collapse
Affiliation(s)
- Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Cherish Lorica
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lianfen Qian
- Department of Mathematics, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Xin Gong
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Wael Bahnan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Henry Barreras
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rosmely Hernandez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhongwei Li
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kurt Schesser
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
16
|
Abstract
Fission yeast is a single-cell eukaryote that has been used extensively as a model organism to study cell biology and virology of higher eukaryotes including plants and humans. In particular, it is a very well-tested model to study evolutionary highly conserved cellular activities such as cell proliferation, cell cycle regulation, and cell death. Some of the advantages of using fission yeast as a surrogate system: easy to carry out functional and genome-wide analysis of small viral genome, easy to maintain in the laboratory with a relatively short doubling time. It is genetically amendable and can be used to test the effect of gain-of-function or loss-of-function of a gene product. Here, we describe a streamlined and large-scale molecular cloning strategy for genome-wide characterization of small viruses in fission yeast.
Collapse
Affiliation(s)
- Ge Li
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard Y Zhao
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Nigatu D, Sobetzko P, Yousef M, Henkel W. Sequence-based information-theoretic features for gene essentiality prediction. BMC Bioinformatics 2017; 18:473. [PMID: 29121868 PMCID: PMC5679510 DOI: 10.1186/s12859-017-1884-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Identification of essential genes is not only useful for our understanding of the minimal gene set required for cellular life but also aids the identification of novel drug targets in pathogens. In this work, we present a simple and effective gene essentiality prediction method using information-theoretic features that are derived exclusively from the gene sequences. Results We developed a Random Forest classifier and performed an extensive model performance evaluation among and within 15 selected bacteria. In intra-organism predictions, where training and testing sets are taken from the same organism, AUC (Area Under the Curve) scores ranging from 0.73 to 0.90, 0.84 on average, were obtained. Cross-organism predictions using 5-fold cross-validation, pairwise, leave-one-species-out, leave-one-taxon-out, and cross-taxon yielded average AUC scores of 0.88, 0.75, 0.80, 0.82, and 0.78, respectively. To further show the applicability of our method in other domains of life, we predicted the essential genes of the yeast Schizosaccharomyces pombe and obtained a similar accuracy (AUC 0.84). Conclusions The proposed method enables a simple and reliable identification of essential genes without searching in databases for orthologs and demanding further experimental data such as network topology and gene-expression. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1884-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dawit Nigatu
- Transmission Systems Group, Jacobs University Bremen, Campus Ring 1, Bremen, D-28759, Germany.
| | - Patrick Sobetzko
- Philipps-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, Mehrzweckgebäude, Marburg, 35043, Germany
| | - Malik Yousef
- Community Information Systems, Zefat Academic College, Zefat, 13206, Israel
| | - Werner Henkel
- Transmission Systems Group, Jacobs University Bremen, Campus Ring 1, Bremen, D-28759, Germany
| |
Collapse
|
18
|
Zhao RY. Yeast for virus research. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:311-330. [PMID: 29082230 PMCID: PMC5657823 DOI: 10.15698/mic2017.10.592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/27/2017] [Indexed: 12/25/2022]
Abstract
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented.
Collapse
Affiliation(s)
- Richard Yuqi Zhao
- Department of Pathology, Department of Microbiology and Immunology, Institute of Global Health, and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Ozaki A, Konishi R, Otomo C, Kishida M, Takayama S, Matsumoto T, Tanaka T, Kondo A. Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose. Metab Eng Commun 2017; 5:60-67. [PMID: 29188185 PMCID: PMC5699526 DOI: 10.1016/j.meteno.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 12/14/2022] Open
Abstract
Modification of the Schizosaccharomyces pombe genome is often laborious, time consuming due to the lower efficiency of homologous recombination. Here, we constructed metabolically engineered S. pombe strains using a CRISPR-Cas9 system and also demonstrated D-lactic acid (D-LA) production from glucose and cellobiose. Genes encoding two separate pyruvate decarboxylases (PDCs), an L-lactic acid dehydrogenase (L-LDH), and a minor alcohol dehydrogenase (SPBC337.11) were disrupted, thereby attenuating ethanol production. To increase the cellular supply of acetyl-CoA, an important metabolite for growth, we introduced genes encoding bacterial acetylating acetaldehyde dehydrogenase enzymes (Escherichia coli MhpF and EutE). D-LA production by the resulting strain was achieved by expressing a Lactobacillus plantarum gene encoding D-lactate dehydrogenase. The engineered strain efficiently consumed glucose and produced D-LA at 25.2 g/L from 35.5 g/L of consumed glucose with a yield of 0.71 g D-LA / g glucose. We further modified this strain by expressing beta-glucosidase by cell surface display; the resulting strain produced D-LA at 24.4 g/L from 30 g/L of cellobiose in minimal medium, with a yield of 0.68 g D-LA / g glucose. To our knowledge, this study represents the first report of a S. pombe strain that was metabolically engineered using a CRISPR-Cas9 system, and demonstrates the possibility of engineering S. pombe for the production of value-added chemicals. Schizosaccharomyces pombe were metabolically engineered using a CRISPR-Cas9 system. D-lactic acid (D-LA) producing Schizosaccharomyces pombe strains were constructed. 25.2 g/L of D-LA was produced with a yield of 0.71 g-D-LA / g-glucose. Beta-glucosidase was expressed on this engineered S. pombe strain. D-LA was produced at 24.4 g/L from 30 g/L of cellobiose directly.
Collapse
Affiliation(s)
- Aiko Ozaki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Rie Konishi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Chisako Otomo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Mayumi Kishida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Seiya Takayama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Takuya Matsumoto
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
20
|
Choi JW, Park HY, Oh MS, Yoo HH, Lee SH, Ha SK. Neuroprotective effect of 6-paradol enriched ginger extract by fermentation using Schizosaccharomyces pombe. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Benko Z, Liang D, Li G, Elder RT, Sarkar A, Takayama J, Ghosh AK, Zhao RY. A fission yeast cell-based system for multidrug resistant HIV-1 proteases. Cell Biosci 2017; 7:5. [PMID: 28096973 PMCID: PMC5225522 DOI: 10.1186/s13578-016-0131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/16/2016] [Indexed: 02/03/2023] Open
Abstract
Background HIV-1 protease (PR) is an essential enzyme for viral production. Thus, PR inhibitors (PIs) are the most effective class of anti-HIV drugs. However, the main challenge to the successful use of PI drugs in patient treatment is the emergence of multidrug resistant PRs (mdrPRs). This study aimed to develop a fission yeast cell-based system for rapid testing of new PIs that combat mdrPRs. Results Three mdrPRs were isolated from HIV-infected patients that carried seven (M7PR), ten (M10PR) and eleven (M11PR) PR gene mutations, respectively. They were cloned and expressed in fission yeast under an inducible promoter to allow the measurement of PR-specific proteolysis and drug resistance. The results showed that all three mdrPRs maintained their abilities to proteolyze HIV viral substrates (MA↓CA and p6) and to confer drug resistance. Production of these proteins in the fission yeast caused cell growth inhibition, oxidative stress and altered mitochondrial morphologies that led to cell death. Five investigational PIs were used to test the utility of the established yeast system with an FDA-approved PI drug Darunavir (DRV) as control. All six compounds suppressed the wildtype PR (wtPR) and the M7PR-mediated activities. However, none of them were able to suppress the M10PR or the M11PR. Conclusions The three clinically isolated mdrPRs maintained their viral proteolytic activities and drug resistance in the fission yeast. Furthermore, those viral mdrPR activities were coupled with the induction of growth inhibition and cell death, which could be used to test the PI activities. Indeed, the five investigational PIs and DRV suppressed the wtPR in fission yeast as they did in mammalian cells. Significantly, two of the high level mdrPRs (M10PR and M11PR) were resistant to all of the existing PI drugs including DRV. This observation underscores the importance of continued searching for new PIs against mdrPRs. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0131-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zsigmond Benko
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ; Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, SAS, 84005 Bratislava, Slovakia
| | - Dong Liang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Robert T Elder
- Children's Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 10164 USA
| | - Anindya Sarkar
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Jun Takayama
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ; Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ; Children's Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 10164 USA
| |
Collapse
|
22
|
Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast. Proc Natl Acad Sci U S A 2017; 114:E376-E385. [PMID: 28049830 DOI: 10.1073/pnas.1619735114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases.
Collapse
|
23
|
HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe. PLoS One 2016; 11:e0151286. [PMID: 26982200 PMCID: PMC4794156 DOI: 10.1371/journal.pone.0151286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/25/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. RESULTS A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. CONCLUSIONS This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.
Collapse
|
24
|
Nkeze J, Li L, Benko Z, Li G, Zhao RY. Molecular characterization of HIV-1 genome in fission yeast Schizosaccharomyces pombe. Cell Biosci 2015; 5:47. [PMID: 26309721 PMCID: PMC4549081 DOI: 10.1186/s13578-015-0037-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022] Open
Abstract
Background The human immunodeficiency virus type 1 (HIV-1) genome (~9 kb RNA) is flanked by two long terminal repeats (LTR) promoter regions with nine open reading frames, which encode Gag, Pol and Env polyproteins, four accessory proteins (Vpu, Vif, Vpr, Nef) and two regulatory proteins (Rev, Tat). In this study, we carried out a genome-wide and functional analysis of the HIV-1 genome in fission yeast (Schizosaccharomyces pombe). Results Each one of the HIV-1 genes was cloned and expressed individually in fission yeast. Subcellular localization of each viral protein was first examined. The effect of protein expression on cellular proliferation and colony formations, an indication of cytotoxicity, were observed. Overall, there is a general correlation of subcellular localization of each viral protein between fission yeast and mammalian cells. Three viral proteins, viral protein R (Vpr), protease (PR) and regulator of expression of viral protein (Rev), were found to inhibit cellular proliferation. Rev was chosen for further analysis in fission yeast and mammalian cells. Consistent with the observation in fission yeast, expression of HIV-1 rev gene also caused growth retardation in mammalian cells. However, the observed growth delay was neither due to the cytotoxic effect nor due to alterations in cell cycling. Mechanistic testing of the Rev effect suggests it triggers transient induction of cellular oxidative stress. Conclusions Some of the behavioral and functional similarities of Rev between fission yeast and mammalian cells suggest fission yeast might be a useful model system for further studies of molecular functions of Rev and other HIV-1 viral proteins.
Collapse
Affiliation(s)
- Joseph Nkeze
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| | - Lin Li
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,AIDS Research Department, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Zsigmond Benko
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ge Li
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| | - Richard Y Zhao
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| |
Collapse
|
25
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|
26
|
Abstract
HIV-1 viral protein R (VpR) is a multifunctional protein that plays specific roles at multiple stages of the HIV-1 viral life cycle and affects anti-HIV functions of the immune cells. VpR is required for efficient viral replication in nondividing cells such as macrophages, and it promotes, to some extent, viral replication in the proliferating target CD4+ T cells. A number of specific activities that may contribute to these effects of VpR have been proposed. In this chapter, we describe two best characterized activities of VpR, nuclear import of the HIV-1 preintegration complex (PIC) and induction of cell cycle G2 arrest, focusing on the methods used for their demonstration.
Collapse
|
27
|
Display of active beta-glucosidase on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. Appl Microbiol Biotechnol 2013; 97:4343-52. [PMID: 23385477 DOI: 10.1007/s00253-013-4733-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
Here, we demonstrate display of beta-glucosidase (BGL) on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. A total of four candidate anchor proteins (SPBC21D10.06c, SPBC947.04, SPBC19C7.05, and SPBC359.04c) were selected from among almost all of S. pombe membrane proteins. The C-terminus of each anchor protein was genetically fused to the N-terminus of BGL, and the fusion protein was expressed using S. pombe as a host. The highest cell surface-associated BGL activity (107 U/10(5) cells was achieved with SPBC359.04c serving as the anchor, followed by SPBC947.04 (44 U/10(5) cells) and SPBC21D10.06c (38 U/10(5) cells). S. pombe displaying BGL with SPBC359.04c as an anchor showed the highest growth on 2 % cellobiose (10.7 × 10(7) cells/mL after 41 h of cultivation from an initial density of 0.1 × 10(7) cells/mL). Additionally, culturing BGL-displaying S. pombe in medium containing cellobiose as the sole carbon source did not affect protein expression, and ethanol fermentation from cellobiose was successfully demonstrated using BGL-displaying S. pombe. This is the first report describing a cell surface display system for the functionalization of S. pombe.
Collapse
|
28
|
Yang H, Nkeze J, Zhao RY. Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy. Cell Biosci 2012; 2:32. [PMID: 22971934 PMCID: PMC3490751 DOI: 10.1186/2045-3701-2-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022] Open
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) protease inhibitors (PIs) are the most potent class of drugs in antiretroviral therapies. However, viral drug resistance to PIs could emerge rapidly thus reducing the effectiveness of those drugs. Of note, all current FDA-approved PIs are competitive inhibitors, i.e., inhibitors that compete with substrates for the active enzymatic site. This common inhibitory approach increases the likelihood of developing drug resistant HIV-1 strains that are resistant to many or all current PIs. Hence, new PIs that move away from the current target of the active enzymatic site are needed. Specifically, allosteric inhibitors, inhibitors that prohibit PR enzymatic activities through non-competitive binding to PR, should be sought. Another common feature of current PIs is they were all developed based on the structure-based design. Drugs derived from a structure-based strategy may generate target specific and potent inhibitors. However, this type of drug design can only target one site at a time and drugs discovered by this method are often associated with strong side effects such as cellular toxicity, limiting its number of target choices, efficacy, and applicability. In contrast, a cell-based system may provide a useful alternative strategy that can overcome many of the inherited shortcomings associated with structure-based drug designs. For example, allosteric PIs can be sought using a cell-based system without considering the site or mechanism of inhibition. In addition, a cell-based system can eliminate those PIs that have strong cytotoxic effect. Most importantly, a simple, economical, and easy-to-maintained eukaryotic cellular system such as yeast will allow us to search for potential PIs in a large-scaled high throughput screening (HTS) system, thus increasing the chances of success. Based on our many years of experience in using fission yeast as a model system to study HIV-1 Vpr, we propose the use of fission yeast as a possible surrogate system to study the effects of HIV-1 protease on cellular functions and to explore its utility as a HTS system to search for new PIs to battle HIV-1 resistant strains.
Collapse
Affiliation(s)
- Hailiu Yang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
29
|
Matsuzawa T, Ohashi T, Nakase M, Yoritsune KI, Takegawa K. Galactose-Specific Recognition System in the Fission Yeast Schizosaccharomyces pombe. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tomohiko Matsuzawa
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Takao Ohashi
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Mai Nakase
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Ken-ichi Yoritsune
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kaoru Takegawa
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
30
|
Biosorption of Ni (II) by Schizosaccharomyces pombe: kinetic and thermodynamic studies. Bioprocess Biosyst Eng 2011; 34:997-1005. [DOI: 10.1007/s00449-011-0550-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/07/2011] [Indexed: 11/26/2022]
|
31
|
Mukaiyama H, Tohda H, Takegawa K. Overexpression of protein disulfide isomerases enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2009; 86:1135-43. [DOI: 10.1007/s00253-009-2393-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 11/26/2009] [Accepted: 11/28/2009] [Indexed: 01/20/2023]
|
32
|
Lukasiewicz KB, Lingle WL. Aurora A, centrosome structure, and the centrosome cycle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:602-619. [PMID: 19774610 DOI: 10.1002/em.20533] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The centrosome, also known as the microtubule organizing center of the cell, is a membrane-less organelle composed of a pair of barrel-shaped centrioles surrounded by electron-dense pericentriolar material. The centrosome progresses through the centrosome cycle in step with the cell cycle such that centrosomes are duplicated in time to serve as the spindle poles during mitosis and that each resultant daughter cell contains a single centrosome. Regulation of the centrosome cycle with relation to the cell cycle is an essential process to maintain the ratio of one centrosome per new daughter cell. Numerous mitosis-specific kinases have been implicated in this regulation, and phosphorlyation plays an important role in coordinating the centrosome and cell cycles. Centrosome amplification can occur when the cycles are uncoupled, and this amplification is associated with cancer and with an increase in the levels of chromosomal instability. The aurora kinases A, B, and C are serine/threonine kinases that are active during mitosis. Aurora A is associated with centrosomes, being localized at the centrosome just prior to the onset of mitosis and for the duration of mitosis. Overexpression of aurora A leads to centrosome amplification and cellular transformation. The activity of aurora A is regulated by phosphorlyation and proteasomal degradation.
Collapse
Affiliation(s)
- Kara B Lukasiewicz
- Section on Cell Cycle Regulation, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
33
|
Lee M. Overexpression of human Raf-1 enhances radiosensitivity in fission yeast, Schizosaccharomyces pombe. Cell Biochem Funct 2009; 26:125-31. [PMID: 17614099 DOI: 10.1002/cbf.1428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently we isolated Rad24, a 14-3-3 homologue, which is essential for DNA damage checkpoint, as a Raf-1 interacting protein by screening a Schizosaccharomyces pombe (S. pombe) cDNA library. Raf-1 was also found to recognize Cdc25 that is sequestered and inactivated by Rad24. In the present study, experiments were performed to determine the effect of overexpression of Raf-1 proteins on asynchronously growing S. pombe cells. The overexpression of Rad24 induced elongated cell morphology and reduction in growth rate, resulting in cell cycle arrest while the overexpression of catalytically active Raf-1 led to a decrease in cell size at division in S. pombe. However, the active Raf-1 failed to rescue the growth arrest induced by Rad24 overexpression. In addition, the cells carrying catalytically active Raf-1 were significantly more radiosensitive than those from a normal control as assessed by ultraviolet sensitivity assay, suggesting that constitutive overproduction of Raf-1 kinase can revert DNA replication checkpoint arrest caused by UV irradiation. Taken together, these data suggest that Raf-1 may interfere with the role of Rad24 by competing with Rad24 for binding to Cdc25 in DNA repair, bypassing the checkpoint pathway through Cdc25 activation.
Collapse
Affiliation(s)
- Michael Lee
- Department of Biology, College of Natural Sciences, University of Incheon, Incheon, Korea.
| |
Collapse
|
34
|
Dextran sodium sulfate enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2009; 85:155-64. [DOI: 10.1007/s00253-009-2130-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/04/2009] [Accepted: 07/06/2009] [Indexed: 11/26/2022]
|
35
|
Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem 2009; 53:227-35. [PMID: 19531030 DOI: 10.1042/ba20090048] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is a particularly useful model for studying the function and regulation of genes from higher eukaryotes. The genome of Sc. pombe has been sequenced, and DNA microarray, proteome and transcriptome analyses have been carried out. Among the well-characterized yeast species, Sc. pombe is considered an attractive host for the production of heterologous proteins. Expression vectors for high-level expression in Sc. pombe have been developed and many foreign proteins have been successfully expressed. However, further improvements in the protein-expressing host systems are still required for the production of heterologous proteins involved in post-translational modification, metabolism and intracellular trafficking. This minireview focuses on recent advances in heterologous protein production by use of engineered fission-yeast strains.
Collapse
|
36
|
Li G, Bukrinsky M, Zhao RY. HIV-1 viral protein R (Vpr) and its interactions with host cell. Curr HIV Res 2009; 7:178-83. [PMID: 19275587 DOI: 10.2174/157016209787581436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is engaged in dynamic and antagonistic interactions with host cells. Once infected by HIV-1, host cells initiate various antiviral strategies, such as innate antiviral defense mechanisms, to counteract viral invasion. In contrast, the virus has different strategies to suppress these host responses to infection. The final balance between these interactions determines the outcome of the viral infection and disease progression. Recent findings suggest that HIV-1 viral protein R (Vpr) interacts with some of the host innate antiviral factors, such as heat shock proteins, and plays an active role as a viral pathogenic factor. Cellular heat stress response factors counteract Vpr activities and inhibit HIV replication. However, Vpr overcomes these heat-stress-like responses by preventing heat shock factor-1 (HSF-1)-mediated activation of heat shock proteins. In this review, we will focus on the virus-host interactions involving Vpr. In addition to heat stress response proteins, we will discuss interactions of Vpr with other proteins, such as EF2 and Skp1/GSK3, their involvements in cellular responses to Vpr, as well as strategies to develop novel antiviral therapies aimed at enhancing anti-Vpr responses of the host cell.
Collapse
Affiliation(s)
- Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
37
|
Ma Y, Sugiura R, Saito M, Koike A, Sio SO, Fujita Y, Takegawa K, Kuno T. Six new amino acid-auxotrophic markers for targeted gene integration and disruption in fission yeast. Curr Genet 2007; 52:97-105. [PMID: 17622533 DOI: 10.1007/s00294-007-0142-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 06/30/2007] [Accepted: 07/01/2007] [Indexed: 10/23/2022]
Abstract
Fission yeast Schizosaccharomyces pombe is amenable to genetics and is an excellent model system for studying eukaryotic cell biology. However, auxotrophic markers that can be used for both targeted gene integration and disruption are very limited. Here we performed a forward genetic screen in an effort to develop a new set of selectable markers for use in this yeast. Mutants that were auxotrophic for arginine, asparagine, cysteine, lysine, methionine and phenylalanine were isolated. Six genes were analyzed in detail and the mutations in the genes were identified. Among these six are three new genes: asn1 (+), cys2 (+) and pha2 (+) were required for biosynthesis of asparagine, cysteine and phenylalanine, respectively. New alleles of arg1 (+), lys3 (+) and met6 (+) were also identified. All of these genes proved to be suitable as selectable markers for targeted gene integration and disruption. We also showed that in Schizosaccharomyces pombe there are two apparent homologues of Saccharomyces cerevisiae MET2: the previously known met6 (+), and SPBC106.17c (named cys2 (+)). The cys2 mutation required cysteine rather than methionine. These new tools, specifically, new selectable markers, will be useful in further genetic and biological studies in fission yeast.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Benko Z, Liang D, Agbottah E, Hou J, Taricani L, Young PG, Bukrinsky M, Zhao RY. Antagonistic interaction of HIV-1 Vpr with Hsf-mediated cellular heat shock response and Hsp16 in fission yeast (Schizosaccharomyces pombe). Retrovirology 2007; 4:16. [PMID: 17341318 PMCID: PMC1828740 DOI: 10.1186/1742-4690-4-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 03/07/2007] [Indexed: 01/08/2023] Open
Abstract
Background Expression of the HIV-1 vpr gene in human and fission yeast cells displays multiple highly conserved activities, which include induction of cell cycle G2 arrest and cell death. We have previously characterized a yeast heat shock protein 16 (Hsp16) that suppresses the Vpr activities when it is overproduced in fission yeast. Similar suppressive effects were observed when the fission yeast hsp16 gene was overexpressed in human cells or in the context of viral infection. In this study, we further characterized molecular actions underlying the suppressive effect of Hsp16 on the Vpr activities. Results We show that the suppressive effect of Hsp16 on Vpr-dependent viral replication in proliferating T-lymphocytes is mediated through its C-terminal end. In addition, we show that Hsp16 inhibits viral infection in macrophages in a dose-dependent manner. Mechanistically, Hsp16 suppresses Vpr activities in a way that resembles the cellular heat shock response. In particular, Hsp16 activation is mediated by a heat shock factor (Hsf)-dependent mechanism. Interestingly, vpr gene expression elicits a moderate increase of endogenous Hsp16 but prevents its elevation when cells are grown under heat shock conditions that normally stimulate Hsp16 production. Similar responsive to Vpr elevation of Hsp and counteraction of this elevation by Vpr were also observed in our parallel mammalian studies. Since Hsf-mediated elevation of small Hsps occurs in all eukaryotes, this finding suggests that the anti-Vpr activity of Hsps is a conserved feature of these proteins. Conclusion These data suggest that fission yeast could be used as a model to further delineate the potential dynamic and antagonistic interactions between HIV-1 Vpr and cellular heat shock responses involving Hsps.
Collapse
Affiliation(s)
- Zsigmond Benko
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dong Liang
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Departments of Pathology, Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel Agbottah
- Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jason Hou
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lorena Taricani
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Michael Bukrinsky
- Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Richard Y Zhao
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Departments of Pathology, Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Abstract
The fission yeast Schizosaccharomyces pombe, widely used for studies of cell cycle control and differentiation, provides an alternative and complementary model to the budding yeast Saccharomyces cerevisiae for studies of nucleo-mitochondrial interactions. There are striking similarities between S. pombe and mammalian cells, in both their respiratory physiology and their mitochondrial genome structure. This technical review briefly lists the general and specific properties that are helpful to know when starting to use fission yeast as a model system for mitochondrial studies. In addition, advice is given for cell growth and genetic techniques, tips for disruption of genes involved in respiration are presented. and a basic differential centrifugation protocol is provided for the isolation of purified mitochondria that are suitable for diverse applications such as subfractionation and in vitro import.
Collapse
|
40
|
Mishra NS, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys 2006; 452:55-68. [PMID: 16806044 DOI: 10.1016/j.abb.2006.05.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.
Collapse
Affiliation(s)
- Neeti Sanan Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
41
|
Idiris A, Tohda H, Bi KW, Isoai A, Kumagai H, Giga-Hama Y. Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2006; 73:404-20. [PMID: 16802154 DOI: 10.1007/s00253-006-0489-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/25/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
The creation of protease-deficient mutants to avoid product degradation is one of the current strategies employed to improve productivity and secretion efficiency of heterologous protein expression. We previously constructed a set of single protease-deficient mutants of the fission yeast Schizosaccharomyces pombe by respective disruption of 52 protease genes, and we succeeded in confirming useful disruptants (Idiris et al., Yeast 23:83-99, 2006). In the present study, we attempted multiple deletions of 13 protease genes, single deletions of which were previously confirmed as being beneficial for reducing extracellular product degradation. Using PCR-based gene replacement, a series of multiple deletion strains was constructed by multiple disruption of a maximum of seven protease genes. Effects of the resultant multiple deletion strains on heterologous expression were then measured by practical expression of a proteolytically sensitive model protein, the human growth hormone (hGH). Time profiles of hGH secretion from each resultant mutant demonstrated significantly enhanced hGH productivity with processing of the multiple protease deletions. The data clearly indicated that disruption of multiple protease genes in the fission yeast is an effective method for controlling proteolytic degradation of heterologous proteins particularly susceptible to proteases.
Collapse
Affiliation(s)
- Alimjan Idiris
- ASPEX Division, Research Center, Asahi Glass Co., Ltd., Yokohama 221-8755, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Idiris A, Bi K, Tohda H, Kumagai H, Giga-Hama Y. Construction of a protease-deficient strain set for the fission yeast Schizosaccharomyces pombe, useful for effective production of protease-sensitive heterologous proteins. Yeast 2006; 23:83-99. [PMID: 16491466 DOI: 10.1002/yea.1342] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the major problems hindering effective production and purification of heterologous proteins from the fission yeast Schizosaccharomyces pombe is proteolytic degradation of the recombinant gene products by host-specific proteases. As an initial solution to this problem, we constructed a protease-deficient disruptant set by respective disruption of 52 Sz. pombe protease genes. Functional screening of the resultant set was performed by observing secretory production of a proteolytically sensitive model protein, human growth hormone (hGH). The results indicated that some of the resultant disruptants were effective in reducing hGH degradation, as observed during the hGH expression procedure and mainly as a result of unknown serine- and/or cysteine-type proteases in the culture medium. These findings also demonstrated that construction of a protease-deficient strain set is not only useful for practical application in protein production, but also for functional screening, specification and modification of proteases in Sz. pombe, where further investigations of proteolytic processes and improvement through multiple gene manipulations are required.
Collapse
Affiliation(s)
- Alimjan Idiris
- ASPEX Division, Research Centre, Asahi Glass Co. Ltd, 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755, Japan
| | | | | | | | | |
Collapse
|
43
|
Zelivianski S, Liang D, Chen M, Mirkin BL, Zhao RY. Suppressive effect of elongation factor 2 on apoptosis induced by HIV-1 viral protein R. Apoptosis 2006; 11:377-88. [PMID: 16520893 DOI: 10.1007/s10495-006-4030-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rapid CD4+ lymphocyte depletion due to cell death caused by HIV infection is one of the hallmarks of acquired immunodeficiency syndrome. HIV-1 viral protein R (Vpr) induces apoptosis and is believed to contribute to CD4+ lymphocyte depletion. Thus, identification of cellular factors that potentially counteract this detrimental viral effect will not only help us to understand the molecular action of Vpr but also to design future antiviral therapies. In this report, we describe identification of elongation factor 2 (EF2) as such a cellular factor. Specifically, EF2 protein level is responsive to vpr gene expression; it is able to suppress Vpr-induced apoptosis when it is overproduced beyond its physiological level. EF2 was initially identified through a genome-wide multicopy suppressor search for Vpr-induced apoptosis in a fission yeast model system. Overproduction of fission yeast Ef2 completely abolishes Vpr-induced cell killing in fission yeast. Similarly, overexpression of the human homologue of yeast Ef2 in a neuroblastoma SKN-SH cell line and two CD4+ H9 and CEM-SS T-cell lines also blocked Vpr-induced apoptosis. The anti-apoptotic property of EF2 is demonstrated by its ability to suppress caspase 9 and caspase 3-mediated apoptosis induced by Vpr. In addition, it also reduces cytochrome c release induced by Vpr, staurosporine and TNFalpha. The fact that overproduction of EF2 blocks Vpr-induced cell death both in fission yeast and human cells, suggested that EF2 posses a highly conserved anti-apoptotic activity. Moreover, the responsive elevation of EF2 to Vpr suggests a possible host innate antiviral response.
Collapse
Affiliation(s)
- S Zelivianski
- Children's Memorial Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | | | | | |
Collapse
|
44
|
DeVeaux LC, Durtschi LS, Case JG, Wells DP. Bystander effects in unicellular organisms. Mutat Res 2006; 597:78-86. [PMID: 16413587 DOI: 10.1016/j.mrfmmm.2005.06.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 05/31/2005] [Accepted: 06/03/2005] [Indexed: 12/28/2022]
Abstract
Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-d-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results.
Collapse
Affiliation(s)
- Linda C DeVeaux
- Idaho Accelerator Center, Campus Box 8263, Idaho State University, Pocatello, ID 83209, USA.
| | | | | | | |
Collapse
|
45
|
Vogt A, Lazo JS. Chemical complementation: A definitive phenotypic strategy for identifying small molecule inhibitors of elusive cellular targets. Pharmacol Ther 2005; 107:212-21. [PMID: 15925410 DOI: 10.1016/j.pharmthera.2005.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
Forward Pharmacology seeks to identify small or large molecules that modulate a normal or abnormal biological process in living cells or whole organisms and historically has been responsible for the discovery of many clinically used drugs. Forward Pharmacology approaches have become particularly attractive because advances in combinatorial chemistry and laboratory automation have made it possible to generate and interrogate large compound collections in a short period of time. Because many drug discovery efforts are now directed against specific biochemical targets, however, the utility of Forward Pharmacology is limited by the fact that assays to investigate compounds in biological systems are often phenotypic rather than target specific. We discuss here a novel strategy to discover target-based small molecules in intact cells using contemporary Forward Pharmacology in cells with specific genetic manipulations. The method, which we have termed "chemical complementation", is defined as the ability of small molecules to reverse a genetically induced phenotypic change in intact cells. Chemical complementation represents an extension of the commonly used genetic complementation approach, where cDNA libraries are used to investigate the function of genes based on their ability to rescue a specific genetic defect. We present examples of how chemical complementation has been used to identify and credential cell-active, small molecule inhibitors of 2 dual-specificity phosphatases, Cdc25A and MKP-3, which heretofore have eluded small molecule drug discovery efforts.
Collapse
Affiliation(s)
- Andreas Vogt
- Department of Pharmacology, Biomedical Science Tower E-1340, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
46
|
Fujita Y, Giga-Hama Y, Takegawa K. Development of a genetic transformation system using new selectable markers for fission yeast Schizosaccharomyces pombe. Yeast 2005; 22:193-202. [PMID: 15704224 DOI: 10.1002/yea.1201] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We describe the development of a new transformation system, using multiple auxotrophic marker genes, for the fission yeast Schizosaccharomyces pombe. We developed three new auxotrophic marker genes (arg12(+), tyr1(+) and ade7(+)) and generated a new host strain, YF043, by Cre-loxP-mediated gene disruption. YF043 possessed six mutated biosynthetic genes (leu1-32, ura4-M190T, arg12::loxP, tyr1::loxP, ade7::loxP and his2::loxP). The combination of this host strain and the new selectable markers can be used for gene disruption using the same preexisting transformation systems. In addition, Sz. pombe vectors were constructed, containing selectable marker genes that complement the auxotrophies of YF043. These new vectors are available for gene disruption and heterologous protein expression in strain YF043. The new Sz. pombe host strain will be a useful tool for molecular genetic studies of Sz. pombe where multiple recombinant modifications or multiple mutations are needed.
Collapse
Affiliation(s)
- Yasuko Fujita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | |
Collapse
|
47
|
Sun N, Jang J, Lee S, Kim S, Lee S, Hoe KL, Chung KS, Kim DU, Yoo HS, Won M, Song KB. The first two-dimensional reference map of the fission yeast,Schizosaccharomyces pombe proteins. Proteomics 2005; 5:1574-9. [PMID: 15800968 DOI: 10.1002/pmic.200401053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytosolic proteins of Schizosaccharomyces pombe were separated by two-dimensional (2-D) gel electrophoresis, to construct the first 2-D reference map. In the pI range 4-7, more than 500 spots were detected by silver staining, and 70 different proteins corresponding to 111 spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and tandem mass spectrometry, where necessary. In the pI range 6-9, approximately 330 spots were detected, and 31 proteins corresponding to 38 spots were identified by mass spectrometry. More than 50% of the identified proteins were involved in amino acid, carbohydrate or nucleotide metabolism, and energy production. A second large group of identified proteins comprises heat shock and other stress related proteins and chaperones.
Collapse
Affiliation(s)
- Namkyu Sun
- Laboratory of Protein Chemistry, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chiron S, Suleau A, Bonnefoy N. Mitochondrial translation: elongation factor tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast. Genetics 2005; 169:1891-901. [PMID: 15695360 PMCID: PMC1449603 DOI: 10.1534/genetics.104.037473] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The translation elongation factor EF-Tu is a GTPase that delivers amino-acylated tRNAs to the ribosome during the elongation step of translation. EF-Tu/GDP is recycled by the guanine nucleotide exchange factor EF-Ts. Whereas EF-Ts is lacking in S. cerevisiae, both translation factors are found in S. pombe and H. sapiens mitochondria, consistent with the known similarity between fission yeast and human cell mitochondrial physiology. We constructed yeast mutants lacking these elongation factors. We show that mitochondrial translation is vital for S. pombe, as it is for human cells. In a genetic background allowing the loss of mitochondrial functions, a block in mitochondrial translation in S. pombe leads to a major depletion of mtDNA. The relationships between EF-Ts and EF-Tu from both yeasts and humans were investigated through functional complementation and coexpression experiments and by a search for suppressors of the absence of the S. pombe EF-Ts. We find that S. cerevisiae EF-Tu is functionally equivalent to the S. pombe EF-Tu/EF-Ts couple. Point mutations in the S. pombe EF-Tu can render it independent of its exchange factor, thereby mimicking the situation in S. cerevisiae.
Collapse
Affiliation(s)
- Stéphane Chiron
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | | | |
Collapse
|
49
|
Benko Z, Liang D, Agbottah E, Hou J, Chiu K, Yu M, Innis S, Reed P, Kabat W, Elder RT, Di Marzio P, Taricani L, Ratner L, Young PG, Bukrinsky M, Zhao RY. Anti-Vpr activity of a yeast chaperone protein. J Virol 2004; 78:11016-29. [PMID: 15452222 PMCID: PMC521794 DOI: 10.1128/jvi.78.20.11016-11029.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during viral infection, including nuclear transport of the proviral integration complex, induction of cell cycle G(2) arrest, and cell death. In this report, we show that a fission yeast chaperone protein Hsp16 inhibits HIV-1 by suppressing these Vpr activities. This protein was identified through three independent genome-wide screens for multicopy suppressors of each of the three Vpr activities. Consistent with the properties of a heat shock protein, heat shock-induced elevation or overproduction of Hsp16 suppressed Vpr activities through direct protein-protein interaction. Even though Hsp16 shows a stronger suppressive effect on Vpr in fission yeast than in mammalian cells, similar effects were also observed in human cells when fission yeast hsp16 was expressed either in vpr-expressing cells or during HIV-1 infection, indicating a possible highly conserved Vpr suppressing activity. Furthermore, stable expression of hsp16 prior to HIV-1 infection inhibits viral replication in a Vpr-dependent manner. Together, these data suggest that Hsp16 inhibits HIV-1 by suppressing Vpr-specific activities. This finding could potentially provide a new approach to studying the contribution of Vpr to viral pathogenesis and to reducing Vpr-mediated detrimental effects in HIV-infected patients.
Collapse
Affiliation(s)
- Zsigmond Benko
- Children's Memorial Institute for Education and Research, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 2430 N. Halsted St. #218, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ, Joyner AL, Lieberman HB. Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol 2004; 24:7235-48. [PMID: 15282322 PMCID: PMC479733 DOI: 10.1128/mcb.24.16.7235-7248.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe rad9 gene promotes cell survival through activation of cell cycle checkpoints induced by DNA damage. Mouse embryonic stem cells with a targeted deletion of Mrad9, the mouse ortholog of this gene, were created to evaluate its function in mammals. Mrad9(-/-) cells demonstrated a marked increase in spontaneous chromosome aberrations and HPRT mutations, indicating a role in the maintenance of genomic integrity. These cells were also extremely sensitive to UV light, gamma rays, and hydroxyurea, and heterozygotes were somewhat sensitive to the last two agents relative to Mrad9(+/+) controls. Mrad9(-/-) cells could initiate but not maintain gamma-ray-induced G(2) delay and retained the ability to delay DNA synthesis rapidly after UV irradiation, suggesting that checkpoint abnormalities contribute little to the radiosensitivity observed. Ectopic expression of Mrad9 or human HRAD9 complemented Mrad9(-/-) cell defects, indicating that the gene has radioresponse and genomic maintenance functions that are evolutionarily conserved. Mrad9(+/-) mice were generated, but heterozygous intercrosses failed to yield Mrad9(-/-) pups, since embryos died at midgestation. Furthermore, Mrad9(-/-) mouse embryo fibroblasts were not viable. These investigations establish Mrad9 as a key mammalian genetic element of pathways that regulate the cellular response to DNA damage, maintenance of genomic integrity, and proper embryonic development.
Collapse
Affiliation(s)
- Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|