1
|
Li J, Veeraraghavan P, Young SM. Ca V 2.1 α 1 subunit motifs that control presynaptic Ca V 2.1 subtype abundance are distinct from Ca V 2.1 preference. J Physiol 2024; 602:485-506. [PMID: 38155373 PMCID: PMC10872416 DOI: 10.1113/jp284957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Presynaptic voltage-gated Ca2+ channel (CaV ) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system (CNS), most presynaptic terminals are CaV 2.1 dominant with a developmental reduction in CaV 2.2 and CaV 2.3 levels, and CaV 2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV 2 subtype levels are largely unsolved. Because the CaV 2 α1 subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV 2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV 2.1 α1 subunits containing swapped motifs with the CaV 2.2 and CaV 2.3 α1 subunit on a CaV 2.1/CaV 2.2 null background at the calyx of Held presynaptic terminals. We found that expression of CaV 2.1 α1 subunit chimeras containing the CaV 2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV 2.1 α1 subunit. However, the Ca2+ current sensitivity to the CaV 2.1 blocker agatoxin-IVA was the same between the chimeras and the CaV 2.1 α1 subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV 2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV 2.1 loop II-III and CT do not individually regulate CaV 2.1 preference, although these motifs control CaV 2.1 levels and the CaV 2.3 CT contains motifs that negatively regulate presynaptic CaV 2.3 levels. We propose that the motifs controlling presynaptic CaV 2.1 preference are distinct from those regulating CaV 2.1 levels and may act synergistically to impact pathways regulating CaV 2.1 preference and abundance. KEY POINTS: Presynaptic CaV 2 subtype abundance regulates neuronal circuit properties, although the mechanisms regulating presynaptic CaV 2 subtype abundance and preference remain enigmatic. The CaV α1 subunit determines subtype and contains multiple motifs implicated in regulating presynaptic subtype abundance and preference. The CaV 2.1 α1 subunit domain II-III loop and cytoplasmic C-terminus are positive regulators of presynaptic CaV 2.1 abundance but do not regulate preference. The CaV 2.3 α1 subunit cytoplasmic C-terminus negatively regulates presynaptic CaV 2 subtype abundance but not preference, whereas the CaV 2.2 α1 subunit cytoplasmic C-terminus is not a key regulator of presynaptic CaV 2 subtype abundance or preference. The CaV 2 α1 subunit motifs determining the presynaptic CaV 2 preference are distinct from abundance.
Collapse
Affiliation(s)
- Jianing Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Cell Developmental Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | | - Samuel M. Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Li J, Veeraraghavan P, Young SM. CaV2.1 α1 subunit motifs that control presynaptic CaV2.1 subtype abundance are distinct from CaV2.1 preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538778. [PMID: 37162941 PMCID: PMC10168310 DOI: 10.1101/2023.04.28.538778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Presynaptic voltage-gated Ca2+ channels (CaV) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system, most presynaptic terminals are CaV2.1 dominant with a developmental reduction in CaV2.2 and CaV2.3 levels, and CaV2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV2 subtype levels are largely unsolved. Since the CaV2 α1 subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV2.1 α1subunits containing swapped motifs with the CaV2.2 and CaV2.3 α1 subunit on a CaV2.1/CaV2.2 null background at the calyx of Held presynaptic terminal. We found that expression of CaV2.1 α1 subunit chimeras containing the CaV2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV2.1 α1 subunit. However, the Ca2+ current sensitivity to the CaV2.1 blocker Agatoxin-IVA, was the same between the chimeras and the CaV2.1 α1 subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV2.1 loop II-III and CT do not individually regulate CaV2.1 preference, but these motifs control CaV2.1 levels and the CaV2.3 CT contains motifs that negatively regulate presynaptic CaV2.3 levels. We propose that the motifs controlling presynaptic CaV2.1 preference are distinct from those regulating CaV2.1 levels and may act synergistically to impact pathways regulating CaV2.1 preference and abundance.
Collapse
|
3
|
García M, Bonafont J, Martínez-Palacios J, Xu R, Turchiano G, Svensson S, Thrasher AJ, Larcher F, Del Rio M, Hernández-Alcoceba R, Garín MI, Mencía Á, Murillas R. Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors. Mol Ther Methods Clin Dev 2022; 27:96-108. [PMID: 36212909 PMCID: PMC9531050 DOI: 10.1016/j.omtm.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anchoring fibrils that bind the dermis and epidermis. Ex vivo correction of COL7A1 by gene editing in patients' cells has been achieved before. However, in vivo editing approaches are necessary to address the direct treatment of the blistering lesions characteristic of this disease. We have now generated adenoviral vectors for CRISPR-Cas9 delivery to remove exon 80 of COL7A1, which contains a highly prevalent frameshift mutation in Spanish patients. For in vivo testing, a humanized skin mouse model was used. Efficient viral transduction of skin was observed after excisional wounds generated with a surgical punch on regenerated patient skin grafts were filled with the adenoviral vectors embedded in a fibrin gel. Type VII collagen deposition in the basement membrane zone of the wounded areas treated with the vectors correlated with restoration of dermal-epidermal adhesion, demonstrating that recessive dystrophic epidermolysis bullosa (RDEB) patient skin lesions can be directly treated by CRISPR-Cas9 delivery in vivo.
Collapse
Affiliation(s)
- Marta García
- Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Jose Bonafont
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Jesús Martínez-Palacios
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Rudan Xu
- Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stina Svensson
- Infection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Adrian J. Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fernando Larcher
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Marcela Del Rio
- Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Rubén Hernández-Alcoceba
- Universidad de Navarra, CIMA, Programa de Terapia Génica y Regulación de la Expresión Génica, Pamplona, Spain
| | - Marina I. Garín
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Ángeles Mencía
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Rodolfo Murillas
- Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
4
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
5
|
Aman ZS, DePhillipo NN, Familiari F, Dickens JF, LaPrade RF, Dekker TJ. Acute Intervention With Selective Interleukin-1 Inhibitor Therapy May Reduce the Progression of Posttraumatic Osteoarthritis of the Knee: A Systematic Review of Current Evidence. Arthroscopy 2022; 38:2543-2556. [PMID: 35189307 DOI: 10.1016/j.arthro.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the efficacy of selective interleukin (IL)-1 inhibitor therapy in the reduction of posttraumatic osteoarthritis (PTOA) progression following knee ligament or meniscal injury. METHODS A systematic review was conducted evaluating the disease-modifying efficacy of selective IL-1 inhibition in the setting of knee PTOA. RESULTS The literature search identified 364 articles and 11 studies were included (n = 10 preclinical, n = 1 clinical). Drug delivery in preclinical studies was administered using IL-1Ra-encoded helper-dependent adenovirus particles (n = 3), synovial cells transfected with an IL-1Ra-encoded retroviral vector (n = 3), or varying chemical compositions of nonviral microcapsule gene carriers (n = 4). Intervention with selective IL-1 inhibitor therapy within 2 weeks of injury provided the greatest protective benefits in reducing the progression of PTOA regardless of drug delivery methodology in preclinical models. The majority of studies reported significantly better cartilage integrity and reduction in lesion size in animals treated with gene therapy with the greatest effects seen in those treated within 5 to 7 days of injury. CONCLUSIONS Early intervention with selective IL-1 inhibitor therapy were effective in reducing proinflammatory IL-1β levels in the acute and subacute phases following traumatic knee injury in preclinical animal model studies, while significantly reducing cartilage damage, lesion size, and PTOA progression at short-term follow-up. However, it was found that the effect of these therapies diminished over time. CLINICAL RELEVANCE Acute, intra-articular injection of selective IL-1 inhibitors may reduce PTOA progression, supporting the need for additional basic and clinical investigation.
Collapse
Affiliation(s)
- Zachary S Aman
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | | | - Filippo Familiari
- Department of Orthopaedics and Trauma Surgery, Magna Graecia University, Catanzaro, Italy
| | | | | | | |
Collapse
|
6
|
Gao J, Mese K, Bunz O, Ehrhardt A. State‐of‐the‐art human adenovirus vectorology for therapeutic approaches. FEBS Lett 2019; 593:3609-3622. [DOI: 10.1002/1873-3468.13691] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Gao
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Kemal Mese
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Oskar Bunz
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Anja Ehrhardt
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| |
Collapse
|
7
|
Abstract
A resurgence in the development of newer gene therapy systems has led to recent successes in the treatment of B cell cancers, retinal degeneration and neuromuscular atrophy. Gene therapy offers the ability to treat the patient at the root cause of their malady by restoring normal gene function and arresting the pathological progression of their genetic disease. The current standard of care for most genetic diseases is based upon the symptomatic treatment with polypharmacy while minimizing any potential adverse effects attributed to the off-target and drug-drug interactions on the target or other organs. In the kidney, however, the development of gene therapy modifications to specific renal cells has lagged far behind those in other organ systems. Some positive strides in the past few years provide continued enthusiasm to invest the time and effort in the development of new gene therapy vectors for medical intervention to treat kidney diseases. This mini-review will systematically describe the pros and cons of the most commonly tested gene therapy vector systems derived from adenovirus, retrovirus, and adeno-associated virus and provide insight about their potential utility as a therapy for various types of genetic diseases in the kidney.
Collapse
Affiliation(s)
- Lori Davis
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
8
|
Stone A, Grol MW, Ruan MZC, Dawson B, Chen Y, Jiang MM, Song IW, Jayaram P, Cela R, Gannon F, Lee BHL. Combinatorial Prg4 and Il-1ra Gene Therapy Protects Against Hyperalgesia and Cartilage Degeneration in Post-Traumatic Osteoarthritis. Hum Gene Ther 2018; 30:225-235. [PMID: 30070147 DOI: 10.1089/hum.2018.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of synovial joints characterized by progressive loss of articular cartilage, subchondral bone remodeling, and intra-articular inflammation with synovitis that results in chronic pain and motor impairment. Despite the economic and health impacts, current medical therapies are targeted at symptomatic relief of OA and fail to alter its progression. Given the complexity of OA pathogenesis, we hypothesized that a combinatorial gene therapy approach, designed to inhibit inflammation with interleukin-1 receptor antagonist (IL-1Ra) while promoting chondroprotection using lubricin (PRG4), would improve preservation of the joint compared to monotherapy alone. Employing two surgical techniques to model mild, moderate and severe posttraumatic OA, we found that combined delivery of helper-dependent adenoviruses (HDVs), expressing IL-1Ra and PRG4, preserved articular cartilage better than either monotherapy in both models as demonstrated by preservation of articular cartilage volume and surface area. This improved protection was associated with increased expression of proanabolic and cartilage matrix genes together with decreased expression of catabolic genes and inflammatory mediators. In addition to improvements in joint tissues, this combinatorial gene therapy prolonged protection against thermal hyperalgesia compared to either monotherapy. Taken together, our results show that a combinatorial strategy is superior to monotherapeutic approaches for treatment of posttraumatic OA.
Collapse
Affiliation(s)
- Adrianne Stone
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,2 Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas
| | - Matthew W Grol
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Merry Z C Ruan
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Brian Dawson
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yuqing Chen
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ming-Ming Jiang
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - I-Wen Song
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Prathap Jayaram
- 3 H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,4 Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Racel Cela
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Francis Gannon
- 5 Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Brendan H L Lee
- 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Zafir-Lavie I, Miari R, Sherbo S, Krispel S, Tal O, Liran A, Shatil T, Badinter F, Goltsman H, Shapir N, Benhar I, Neil GA, Panet A. Sustained secretion of anti-tumor necrosis factor α monoclonal antibody from ex vivo genetically engineered dermal tissue demonstrates therapeutic activity in mouse model of rheumatoid arthritis. J Gene Med 2018; 19. [PMID: 28658716 DOI: 10.1002/jgm.2965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a symmetric inflammatory polyarthritis associated with high concentrations of pro-inflammatory, cytokines including tumor necrosis factor (TNF)-α. Adalimumab is a monoclonal antibody (mAb) that binds TNF-α, and is widely used to treat RA. Despite its proven clinical efficacy, adalimumab and other therapeutic mAbs have disadvantages, including the requirement for repeated bolus injections and the appearance of treatment limiting anti-drug antibodies. To address these issues, we have developed an innovative ex vivo gene therapy approach, termed transduced autologous restorative gene therapy (TARGT), to produce and secrete adalimumab for the treatment of RA. METHODS Helper-dependent (HD) adenovirus vector containing adalimumab light and heavy chain coding sequences was used to transduce microdermal tissues and cells of human and mouse origin ex vivo, rendering sustained secretion of active adalimumab. The genetically engineered tissues were subsequently implanted in a mouse model of RA. RESULTS Transduced human microdermal tissues implanted in SCID mice demonstrated 49 days of secretion of active adalimumab in the blood, at levels of tens of microgram per milliliter. In addition, transduced autologous dermal cells were implanted in the RA mouse model and demonstrated statistically significant amelioration in RA symptoms compared to naïve cell implantation and were similar to recombinant adalimumab bolus injections. CONCLUSIONS The results of the present study report microdermal tissues engineered to secrete active adalimumab as a proof of concept for sustained secretion of antibody from the novel ex vivo gene therapy TARGT platform. This technology may now be applied to a range of antibodies for the therapy of other diseases.
Collapse
Affiliation(s)
| | - Reem Miari
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | - Shay Sherbo
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | | | - Osnat Tal
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | - Atar Liran
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | | | | | | | - Nir Shapir
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - Garry A Neil
- Aevi Genomic Medicine, Inc., Wayne, Pennsylvania, USA
| | - Amos Panet
- Department of Biochemistry (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
10
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
11
|
Lübbert M, Goral RO, Satterfield R, Putzke T, van den Maagdenberg AM, Kamasawa N, Young SM. A novel region in the Ca V2.1 α 1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone. eLife 2017; 6. [PMID: 28786379 PMCID: PMC5548488 DOI: 10.7554/elife.28412] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/06/2017] [Indexed: 01/23/2023] Open
Abstract
In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant CaV2.1 α1 subunits on a CaV2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of CaV2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for CaV2.1 abundance and coupling. Therefore, our work advances our molecular understanding of CaV2.1 regulation of neurotransmitter release in mammalian CNS synapses.
Collapse
Affiliation(s)
- Matthias Lübbert
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - R Oliver Goral
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States
| | - Rachel Satterfield
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Travis Putzke
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | | | - Naomi Kamasawa
- Max Planck Florida Electron Microscopy Core, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Samuel M Young
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States.,Department of Otolaryngology, University of Iowa, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States.,Aging Mind Brain Initiative, University of Iowa, Iowa City, United States
| |
Collapse
|
12
|
Machitani M, Sakurai F, Wakabayashi K, Takayama K, Tachibana M, Mizuguchi H. Type I Interferons Impede Short Hairpin RNA-Mediated RNAi via Inhibition of Dicer-Mediated Processing to Small Interfering RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:173-182. [PMID: 28325284 PMCID: PMC5363498 DOI: 10.1016/j.omtn.2016.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
RNAi by short hairpin RNA (shRNA) is a powerful tool not only for studying gene functions in various organisms, including mammals, but also for the treatment of severe disorders. However, shRNA-expressing vectors can induce type I interferon (IFN) expression by activation of innate immune responses, leading to off-target effects and unexpected side effects. Several strategies have been developed to prevent type I IFN induction. On the other hand, it has remained unclear whether type I IFNs have effects on shRNA-mediated RNAi. Here, we show that the type I IFNs significantly inhibit shRNA-mediated RNAi. Treatment with recombinant human IFN-α significantly inhibited shRNA-mediated knockdown of target genes, while it did not inhibit small interfering RNA (siRNA)-mediated knockdown. Following treatment with IFN-α, increased and decreased copy numbers of shRNA and its processed form, respectively, were found in the cells transfected with shRNA-expressing plasmids. Dicer protein levels were not altered by IFN-α. These results indicate that type I IFNs inhibit shRNA-mediated RNAi via inhibition of dicer-mediated processing of shRNA to siRNA. Our findings should provide important clues for efficient RNAi-mediated knockdown of target genes in both basic researches and clinical gene therapy.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keisaku Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Abstract
Gene therapy has recently shown great promise as an effective treatment for a number of metabolic diseases caused by genetic defects in both animal models and human clinical trials. Most of the current success has been achieved using a viral mediated gene addition approach, but gene-editing technology has progressed rapidly and gene modification is being actively pursued in clinical trials. This review focuses on viral mediated gene addition approaches, because most of the current clinical trials utilize this approach to treat metabolic diseases.
Collapse
Affiliation(s)
- Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16008. [PMID: 27626040 PMCID: PMC5008224 DOI: 10.1038/mtm.2016.8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022]
Abstract
Osteoarthritis (OA) is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs). Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab). We show that a10mab-conjugated HDV (a10mabHDV)-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4) into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting.
Collapse
|
15
|
Abstract
Neuroscience research has been revolutionized by the use of recombinant viral vector technology from the basic, preclinical and clinical levels. Currently, multiple recombinant viral vector types are employed with each having its strengths and weaknesses depending on the proposed application. Helper-dependent adenoviral vectors (HdAd) are emerging as ideal viral vectors that solve a major need in the neuroscience field: (1) expression of transgenes that are too large to be packaged by other viral vectors and (2) rapid onset of transgene expression in the absence of cytotoxicity. Here, we describe the methods for large-scale production of HdAd viral vectors for in vivo use with neurospecific transgene expression.
Collapse
|
16
|
BTK gene targeting by homologous recombination using a helper-dependent adenovirus/adeno-associated virus hybrid vector. Gene Ther 2015; 23:205-13. [PMID: 26280081 DOI: 10.1038/gt.2015.91] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022]
Abstract
X-linked agammaglobulinemia (XLA) is one of the most common humoral immunodeficiencies, which is caused by mutations in Bruton's tyrosine kinase (BTK) gene. To examine the possibility of using gene therapy for XLA, we constructed a helper-dependent adenovirus/adeno-associated virus BTK targeting vector (HD-Ad.AAV BTK vector) composed of a genomic sequence containing BTK exons 6-19 and a green fluorescence protein-hygromycin cassette driven by a cytomegalovirus promoter. We first used NALM-6, a human male pre-B acute lymphoblastic leukemia cell line, as a recipient to measure the efficiency of gene targeting by homologous recombination. We identified 10 clones with the homologous recombination of the BTK gene among 107 hygromycin-resistant stable clones isolated from two independent experiments. We next used cord blood CD34⁺ cells as the recipient cells for the gene targeting. We isolated colonies grown in medium containing cytokines and hygromycin. We found that the targeting of the BTK gene occurred in four of the 755 hygromycin-resistant colonies. Importantly, the gene targeting was also observed in CD19⁺ lymphoid progenitor cells that were differentiated from the homologous recombinant CD34⁺ cells during growth in selection media. Our study shows the potential for the BTK gene therapy using the HD-Ad.AAV BTK vector via homologous recombination in hematopoietic stem cells.
Collapse
|
17
|
Rastall DP, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. APPLICATION OF CLINICAL GENETICS 2015; 8:157-69. [PMID: 26170711 PMCID: PMC4485851 DOI: 10.2147/tacg.s57682] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme’s substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.
Collapse
Affiliation(s)
- David Pw Rastall
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA ; Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Morró M, Teichenne J, Jimenez V, Kratzer R, Marletta S, Maggioni L, Mallol C, Ruberte J, Kochanek S, Bosch F, Ayuso E. Pancreatic transduction by helper-dependent adenoviral vectors via intraductal delivery. Hum Gene Ther 2015; 25:824-36. [PMID: 25046147 DOI: 10.1089/hum.2013.182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue.
Collapse
Affiliation(s)
- Meritxell Morró
- 1 Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona , Bellaterra 08193, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee CH, Kim HW, Kim T, Lee SW. Recombinant adenovirus infection suppresses hTERT expression through virus-associated RNA-mediated induction of type 1 interferon. Biochem Biophys Res Commun 2015; 458:830-5. [DOI: 10.1016/j.bbrc.2015.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
20
|
Saydaminova K, Ye X, Wang H, Richter M, Ho M, Chen H, Xu N, Kim JS, Papapetrou E, Holmes MC, Gregory PD, Palmer D, Ng P, Ehrhardt A, Lieber A. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 1:14057. [PMID: 26052525 PMCID: PMC4448996 DOI: 10.1038/mtm.2014.57] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022]
Abstract
Genome editing with site-specific endonucleases has implications for basic biomedical research as well as for gene therapy. We generated helper-dependent, capsid-modified adenovirus (HD-Ad5/35) vectors for zinc-finger nuclease (ZFN)– or transcription activator-like effector nuclease (TALEN)–mediated genome editing in human CD34+ hematopoietic stem cells (HSCs) from mobilized adult donors. The production of these vectors required that ZFN and TALEN expression in HD-Ad5/35 producer 293-Cre cells was suppressed. To do this, we developed a microRNA (miRNA)-based system for regulation of gene expression based on miRNA expression profiling of 293-Cre and CD34+ cells. Using miR-183-5p and miR-218-5p based regulation of transgene gene expression, we first produced an HD-Ad5/35 vector expressing a ZFN specific to the HIV coreceptor gene ccr5. We demonstrated that HD-Ad5/35.ZFNmiR vector conferred ccr5 knock out in primitive HSC (i.e., long-term culture initiating cells and NOD/SCID repopulating cells). The ccr5 gene disruption frequency achieved in engrafted HSCs found in the bone marrow of transplanted mice is clinically relevant for HIV therapy considering that these cells can give rise to multiple lineages, including all the lineages that represent targets and reservoirs for HIV. We produced a second HD-Ad5/35 vector expressing a TALEN targeting the DNase hypersensitivity region 2 (HS2) within the globin locus control region. This vector has potential for targeted gene correction in hemoglobinopathies. The miRNA regulated HD-Ad5/35 vector platform for expression of site-specific endonucleases has numerous advantages over currently used vectors as a tool for genome engineering of HSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Kamola Saydaminova
- Division of Medical Genetics, University of Washington , Seattle, Washington, USA
| | - Xun Ye
- Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Hongjie Wang
- Division of Medical Genetics, University of Washington , Seattle, Washington, USA
| | - Maximilian Richter
- Division of Medical Genetics, University of Washington , Seattle, Washington, USA
| | - Martin Ho
- Division of Medical Genetics, University of Washington , Seattle, Washington, USA
| | - HongZhuan Chen
- Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Ning Xu
- Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Jin-Soo Kim
- National Creative Initiatives Center for Genome Engineering, Department of Chemistry, Seoul National University , Seoul, Korea
| | - Eirini Papapetrou
- Division of Hematology, Department of Medicine, University of Washington , Seattle, Washington, USA
| | | | | | - Donna Palmer
- Baylor College of Medicine , Houston, Texas, USA
| | - Philip Ng
- Baylor College of Medicine , Houston, Texas, USA
| | | | - André Lieber
- Division of Medical Genetics, University of Washington , Seattle, Washington, USA ; Department of Pathology, University of Washington , Seattle, Washington, USA
| |
Collapse
|
21
|
Salem ML, Gadalla KKE, Fielding BC, Thorne SH. Gene Therapy and Virus-Based Cancer Vaccines. CANCER IMMUNOLOGY 2015:131-150. [DOI: 10.1007/978-3-662-44946-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14008. [PMID: 27119096 PMCID: PMC4782941 DOI: 10.1038/mto.2014.8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023]
Abstract
Oncolytic adenoviruses (Onc.Ads) produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD) Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy.
Collapse
|
23
|
The adenovirus genome contributes to the structural stability of the virion. Viruses 2014; 6:3563-83. [PMID: 25254384 PMCID: PMC4189039 DOI: 10.3390/v6093563] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/17/2022] Open
Abstract
Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design.
Collapse
|
24
|
McFall ER, Murray LM, Lunde JA, Jasmin BJ, Kothary R, Parks RJ. A reduction in the human adenovirus virion size through use of a shortened fibre protein does not enhance muscle transduction following systemic or localised delivery in mice. Virology 2014; 468-470:444-453. [PMID: 25243333 DOI: 10.1016/j.virol.2014.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
Abstract
We have investigated whether reducing the overall size of adenovirus (Ad), through use of a vector containing a shortened fibre, leads to enhanced distribution and dissemination of the vector. Intravenous or intraperitoneal injection of Ad5SlacZ (12 nm fibre versus the normal Ad5 37 nm fibre) or Ad5SpKlacZ (shortened fibre with polylysine motif in the H-I loop of fibre knob domain) led to similar levels of lacZ expression compared to Ad5LlacZ (native Ad5 fibre) in the liver of treated animals, but did not enhance extravasation into the tibialis anterior muscle. Direct injection of the short-fibre vectors into the tibialis anterior muscle did not result in enhanced spread of the vector through muscle tissue, and led to only sporadic transgene expression in the spinal cord, suggesting that modifying the fibre length or redirecting viral infection to a more common cell surface receptor does not enhance motor neuron uptake or retrograde transport.
Collapse
Affiliation(s)
- Emily R McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lyndsay M Murray
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - John A Lunde
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
25
|
Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, Gu Y, Yi F, Xu X, Zhang W, Ruiz S, Plongthongkum N, Zhang K, Masuda S, Nivet E, Tsunekawa Y, Soligalla RD, Goebl A, Aizawa E, Kim NY, Kim J, Dubova I, Li Y, Ren R, Benner C, Del Sol A, Bueren J, Trujillo JP, Surralles J, Cappelli E, Dufour C, Esteban CR, Belmonte JCI. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun 2014; 5:4330. [PMID: 24999918 DOI: 10.1038/ncomms5330] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/09/2014] [Indexed: 12/21/2022] Open
Abstract
Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA patient BM cells.
Collapse
Affiliation(s)
- Guang-Hui Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.,Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Mo Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jing Qu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.,Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Nuria Montserrat
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Carolina Tarantino
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ying Gu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Fei Yi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Xiuling Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sergio Ruiz
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Nongluk Plongthongkum
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA
| | - Shigeo Masuda
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Emmanuel Nivet
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Yuji Tsunekawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Rupa Devi Soligalla
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - April Goebl
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Na Young Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jessica Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ilir Dubova
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ying Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chris Benner
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-1511, Luxembourg, Luxembourg
| | - Juan Bueren
- Hematopoiesis and Gene Therapy Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid 28040, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid 28040, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid 28040, Spain
| | - Juan Pablo Trujillo
- Department of Genetics and Microbiology and Center for Biomedical Network Research on Rare Diseases (CIBERER), Universitat Autonoma de Barcelona, Campus de Bellaterra s/n 08193 Bellaterra, Spain
| | - Jordi Surralles
- Department of Genetics and Microbiology and Center for Biomedical Network Research on Rare Diseases (CIBERER), Universitat Autonoma de Barcelona, Campus de Bellaterra s/n 08193 Bellaterra, Spain
| | - Enrico Cappelli
- G. Gaslini Children's Hospital, Largo G. Gaslini 5, 16147 Genova Quarto, Italy
| | - Carlo Dufour
- G. Gaslini Children's Hospital, Largo G. Gaslini 5, 16147 Genova Quarto, Italy
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
26
|
Abi-Nader KN, Rodeck CH, David AL. Prenatal gene therapy for the early treatment of genetic disorders. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.4.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Chandler RJ, Tarasenko TN, Cusmano-Ozog K, Sun Q, Sutton VR, Venditti CP, McGuire PJ. Liver-directed adeno-associated virus serotype 8 gene transfer rescues a lethal murine model of citrullinemia type 1. Gene Ther 2013; 20:1188-91. [PMID: 24131980 PMCID: PMC3855546 DOI: 10.1038/gt.2013.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 12/17/2022]
Abstract
Citrullinemia type 1 (CTLN1) is an autosomal recessive disorder of metabolism caused by a deficiency of argininosuccinate synthetase. Despite optimal management, CTLN1 patients still suffer from lethal metabolic instability and experience life threatening episodes of acute hyperammonemia. A murine model of CTLN1 (fold/fold) that displays lethality within the first 21 days of life was used to determine the efficacy of adeno-associated viral (AAV) gene transfer as a potential therapy. An AAV serotype 8 (AAV8) vector was engineered to express the human ASS1 cDNA under the control of a liver-specific promoter (thyroxine binding globulin, TBG), AAV8-TBG-hASS1, and delivered to 7–10 day old mice via intraperitoneal injection. Greater than 95% of the mice were rescued from lethality and survival was extended beyond 100 days after receiving a single dose of vector. AAV8-TBG-hASS1 treatment resulted in liver specific expression of hASS1, increased ASS1 enzyme activity, reduction in plasma ammonia and citrulline concentrations, and significant phenotypic improvement of the fold/fold growth and skin phenotypes. These experiments highlight a gene transfer approach using AAV8 vector for liver targeted gene therapy that could serve as a treatment for CTLN1.
Collapse
Affiliation(s)
- R J Chandler
- Organic Acid Research Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Pastore N, Nusco E, Piccolo P, Castaldo S, Vaníkova J, Vetrini F, Palmer DJ, Vitek L, Ng P, Brunetti-Pierri N. Improved Efficacy and Reduced Toxicity by Ultrasound-Guided Intrahepatic Injections of Helper-Dependent Adenoviral Vector in Gunn Rats. Hum Gene Ther Methods 2013; 24:321-7. [DOI: 10.1089/hgtb.2013.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nunzia Pastore
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | | | - Jana Vaníkova
- Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague 12808, Czech Republic
| | - Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Donna J. Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague 12808, Czech Republic
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague 12808, Czech Republic
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples 80131, Italy
| |
Collapse
|
29
|
Machitani M, Sakurai F, Katayama K, Tachibana M, Suzuki T, Matsui H, Yamaguchi T, Mizuguchi H. Improving adenovirus vector-mediated RNAi efficiency by lacking the expression of virus-associated RNAs. Virus Res 2013; 178:357-63. [PMID: 24055658 DOI: 10.1016/j.virusres.2013.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 01/29/2023]
Abstract
Several studies have reported that short hairpin RNA (shRNA)-mediated RNA interference (RNAi) was competitively inhibited by the expression of adenovirus (Ad)-encoded small RNAs (VA-RNAs), which are expressed from a replication-incompetent Ad vector, as well as a wild-type Ad; however, it remained to be clarified whether an shRNA-expressing Ad vector-mediated knockdown was inhibited by VA-RNAs transcribed from the same Ad vector genome. In this study, we demonstrated that a lack of VA-RNA expression from the Ad vector leads to an increase in knockdown efficiencies of Ad vector-mediated RNAi. In the cells transduced with a first-generation Ad vector (FG-Ad) expressing shRNA (FG-Ad-shRNA), the copy numbers of shRNA and VA-RNAs incorporated into the RNA-induced silencing complex (RISC) was comparable. In contrast, higher amounts of shRNA were found in the RISC when the cells were transduced with an shRNA-expressing helper-dependent Ad (HD-Ad) vector, in which all viral genes, including VA-RNAs, were deleted (HD-Ad-shRNA), compared with FG-Ad-shRNA. HD-Ad vectors expressing shRNA against luciferase and p53 showed 7.4% and 37.3% increases in the knockdown efficiencies compared to the corresponding FG-Ad-shRNA, respectively, following in vitro transduction. Furthermore, higher levels of knockdown efficiencies were also found by the transduction with shRNA-expressing Ad vectors lacking VA-RNA expression (AdΔVR-shRNA) than by transduction with FG-Ad-shRNA. These results indicate that VA-RNAs expressed from an Ad vector inhibit knockdown by the shRNA-expressing Ad vector and that HD-Ad-shRNA and AdΔVR-shRNA are a powerful framework for shRNA-mediated knockdown.
Collapse
Affiliation(s)
- M Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ruan MZC, Erez A, Guse K, Dawson B, Bertin T, Chen Y, Jiang MM, Yustein J, Gannon F, Lee BHL. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med 2013; 5:176ra34. [PMID: 23486780 DOI: 10.1126/scitranslmed.3005409] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoarthritis (OA) is a common degenerative condition that afflicts more than 70% of the population between 55 and 77 years of age. Although its prevalence is rising globally with aging of the population, current therapy is limited to symptomatic relief and, in severe cases, joint replacement surgery. We report that intra-articular expression of proteoglycan 4 (Prg4) in mice protects against development of OA. Long-term Prg4 expression under the type II collagen promoter (Col2a1) does not adversely affect skeletal development but protects from developing signs of age-related OA. The protective effect is also shown in a model of posttraumatic OA created by cruciate ligament transection. Moreover, intra-articular injection of helper-dependent adenoviral vector expressing Prg4 protected against the development of posttraumatic OA when administered either before or after injury. Gene expression profiling of mouse articular cartilage and in vitro cell studies show that Prg4 expression inhibits the transcriptional programs that promote cartilage catabolism and hypertrophy through the up-regulation of hypoxia-inducible factor 3α. Analyses of available human OA data sets are consistent with the predictions of this model. Hence, our data provide insight into the mechanisms for OA development and offer a potential chondroprotective approach to its treatment.
Collapse
Affiliation(s)
- Merry Z C Ruan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS 227, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou X, Zeng Y, Li J, Guo Y, Fu Y, He J, Sun S, Zhou Y. A novel helper-dependent adenovirus-based cell culture model for Hepatitis C virus replication and production. Virol J 2013; 10:273. [PMID: 23987099 PMCID: PMC3765914 DOI: 10.1186/1743-422x-10-273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 08/26/2013] [Indexed: 12/16/2022] Open
Abstract
Background By using the hepatitis C virus (HCV) genotype 2a JFH-1 or its chimeric strains, a HCV infection system has been previously developed through several methods– such as in vitro-transcribed JFH1-RNA transfection or stable transfection of the JFH1 cDNA into human hepatoma Huh-7 cell line or its derivatives. However, other reliable methods for delivery of the HCV genome into cells are still worth trying. The helper-dependent adenovirus (HDAd) is devoid of all viral coding sequences and has a package capacity of 37 kb, which is suitably large for the delivery of the HCV genome. Here we report a new method for delivery of the HCV genome into Huh-7 and HepG2 cells by using the HDAd vector. Results Our results demonstrated that the infection of Huh-7 cells with the HDAdJFH1 virus led to efficient HCV replication and virion production. We found that the HCV viral RNA levels could reach 107 copies per milliliter (ml) in the culture medium. HDAdJFH1-infected Huh-7 cells could be cultured for 8 passages with the culture medium remaining infectious for naïve Huh-7 cells throughout this period. This infection system proved effective for evaluating the anti-HCV effects of IFN-α in Huh-7 cells. Co-infection of HepG2 cells with the HDAdJFH1 and HDAdmiR-122 virus also resulted in HCV expression and replication. Conclusion This is the first report of an HDAd-based strategy for HCV replication and production in vitro.
Collapse
Affiliation(s)
- Xiaojun Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wong CM, McFall ER, Burns JK, Parks RJ. The role of chromatin in adenoviral vector function. Viruses 2013; 5:1500-15. [PMID: 23771241 PMCID: PMC3717718 DOI: 10.3390/v5061500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
Vectors based on adenovirus (Ad) are one of the most commonly utilized platforms for gene delivery to cells in molecular biology studies and in gene therapy applications. Ad is also the most popular vector system in human clinical gene therapy trials, largely due to its advantageous characteristics such as high cloning capacity (up to 36 kb), ability to infect a wide variety of cell types and tissues, and relative safety due to it remaining episomal in transduced cells. The latest generation of Ad vectors, helper‑dependent Ad (hdAd), which are devoid of all viral protein coding sequences, can mediate high-level expression of a transgene for years in a variety of species ranging from rodents to non-human primates. Given the importance of histones and chromatin in modulating gene expression within the host cell, it is not surprising that Ad, a nuclear virus, also utilizes these proteins to protect the genome and modulate virus- or vector‑encoded genes. In this review, we will discuss our current understanding of the contribution of chromatin to Ad vector function.
Collapse
Affiliation(s)
- Carmen M. Wong
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada; E-Mails: (C.M.W.); (E.R.M.); (J.K.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Emily R. McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada; E-Mails: (C.M.W.); (E.R.M.); (J.K.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Joseph K. Burns
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada; E-Mails: (C.M.W.); (E.R.M.); (J.K.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada; E-Mails: (C.M.W.); (E.R.M.); (J.K.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-613-737-8123; Fax: +1-613-737-8803
| |
Collapse
|
33
|
Robert MA, Lin Y, Bendjelloul M, Zeng Y, Dessolin S, Broussau S, Larochelle N, Nalbantoglu J, Massie B, Gilbert R. Strength and muscle specificity of a compact promoter derived from the slow troponin I gene in the context of episomal (gutless adenovirus) and integrating (lentiviral) vectors. J Gene Med 2013; 14:746-60. [PMID: 23071006 DOI: 10.1002/jgm.2675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 08/16/2012] [Accepted: 10/12/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Gutless adenovirus (helper-dependent adenoviral vector; HDAd) and lentiviral vectors (LV) are attractive vectors for the gene therapy of muscle diseases. Because the organization of their DNA (episomal versus integrated) differs, we investigated whether the strength and specificity of ΔUSEx3, a novel muscle-specific promoter previously tested with plasmid, were maintained in the context of these vectors. METHODS Two HDAds expressing β-galactosidase regulated by ΔUSEx3 or CAG [cytomegalovirus (CMV) enhancer/β-actin promoter], and three LV expressing green fluorescent protein regulated by ΔUSEx3, CMV or a modified skeletal α-actin promoter (SPcΔ5-12), were constructed. Gene expression was compared in cell culture and after intravenous (HDAd only) and intramuscular injection of mice. RESULTS Irrespective of the vector used, ΔUSEx3 remained poorly active in nonmuscle cells and tissues. In myotubes, ΔUSEx3 was as strong as CMV and SPcΔ5-12, although it was ten-fold weaker than CAG, a proven powerful promoter in muscle. In cell culture, ΔUSEx3 activity in the context of LV was more stable than CMV, indicating it is less prone to silencing. In the context of HDAd, the behavior of ΔUSEx3 in skeletal muscle mirrored that of cell culture (10% of the CAG activity and half the number of transduced fibers). Surprisingly, in muscles treated with LV, ΔUSEx3 activity was five-fold lower than SPcΔ5-12. CONCLUSIONS The data obtained in the present study confirm that ΔUSEx3 is a strong and robust muscle-specific promoter in the context of HDAd (cell culture and in vivo) and LV (cell culture). However, it was less efficient in vivo in the context of LV.
Collapse
Affiliation(s)
- Marc-André Robert
- Biotechnology Research Institute, National Research Council Canada, Montreal, Québec, Canada. renald
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Voigtlander R, Haase R, Mück-Hausl M, Zhang W, Boehme P, Lipps HJ, Schulz E, Baiker A, Ehrhardt A. A Novel Adenoviral Hybrid-vector System Carrying a Plasmid Replicon for Safe and Efficient Cell and Gene Therapeutic Applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e83. [PMID: 23549553 PMCID: PMC3650243 DOI: 10.1038/mtna.2013.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In dividing cells, the two aims a gene therapeutic approach should accomplish are efficient nuclear delivery and retention of therapeutic DNA. For stable transgene expression, therapeutic DNA can either be maintained by somatic integration or episomal persistence of which the latter approach would diminish the risk of insertional mutagenesis. As most monosystems fail to fulfill both tasks with equal efficiency, hybrid-vector systems represent promising alternatives. Our hybrid-vector system synergizes high-capacity adenoviral vectors (HCAdV) for efficient delivery and the scaffold/matrix attachment region (S/MAR)–based pEPito plasmid replicon for episomal persistence. After proving that this plasmid replicon can be excised from adenovirus in vitro, colony forming assays were performed. We found an increased number of colonies of up to sevenfold in cells that received the functional plasmid replicon proving that the hybrid-vector system is functional. Transgene expression could be maintained for 6 weeks and the extrachromosomal plasmid replicon was rescued. To show efficacy in vivo, the adenoviral hybrid-vector system was injected into C57Bl/6 mice. We found that the plasmid replicon can be released from adenoviral DNA in murine liver resulting in long-term transgene expression. In conclusion, we demonstrate the efficacy of our novel HCAdV-pEPito hybrid-vector system in vitro and in vivo.
Collapse
Affiliation(s)
- Richard Voigtlander
- 1] Virology, Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany [2] Current address: Research Laboratory Endocrinology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Umeda K, Suzuki K, Yamazoe T, Shiraki N, Higuchi Y, Tokieda K, Kume K, Mitani K, Kume S. Albumin gene targeting in human embryonic stem cells and induced pluripotent stem cells with helper-dependent adenoviral vector to monitor hepatic differentiation. Stem Cell Res 2013; 10:179-94. [PMID: 23276698 DOI: 10.1016/j.scr.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 11/09/2012] [Indexed: 01/16/2023] Open
Abstract
Although progresses in developing differentiation procedures have been achieved, it remains challenging to generate hES/iPS cell-derived mature hepatocytes. We performed knock-in of a monomeric Kusabira orange (mKO1) cassette in the albumin (ALB) gene, in human embryonic stem (hES) cells and induced pluripotent stem (hiPS) cells, with the use of the helper-dependent adenovirus vector (HDAdV). Upon induction into the hepatic lineages, these knock-in hES/iPS cells differentiated into cells that displayed several known hepatic functions. The mKO1 knock-in (ALB/mKo1) hES/hiPS cells were used to visualize hepatic differentiation in vitro. mKO1 reporter expression recapitulated endogenous ALB transcriptional activity. ALB/mKo1 [Hi] population isolated by flow cytometry was confirmed to be enriched with ALB mRNA. Expression profile analyses revealed that characteristic hepatocyte genes and genes related to drug metabolism and many aspects of liver function were highly enriched in the ALB/mKo1 [Hi] population. Our data demonstrate that ALB/mKo1 knock-in hES/iPS cells are valuable resources for monitoring in vitro hepatic differentiation, isolation and analyses of hES and hiPS cells-derived hepatic cells that actively transcribing ALB. These knock-in hES/iPS cell lines could provide further insights into the mechanism of hepatic differentiation and molecular signatures of the hepatic cells derived from hES/iPS cells.
Collapse
Affiliation(s)
- Kahoko Umeda
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bagutti C, Schmidlin M, Mueller M, Brodmann P. Washout Kinetics of Viral Vectors from Cultured Mammalian Cells. APPLIED BIOSAFETY 2012. [DOI: 10.1177/153567601201700404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Kanegae Y, Ishimura M, Kondo S, Saito I. Influence of loxP insertion upstream of the cis-acting packaging domain on adenovirus packaging efficiency. Microbiol Immunol 2012; 56:447-55. [PMID: 22734445 DOI: 10.1111/j.1348-0421.2012.00454.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
First-generation AdV enables efficient gene transduction, although its immunogenicity is an important problem in vivo. Helper-dependent AdV (HD-AdV) is one possible solution to this problem. The construction of HD-AdV requires a helper virus, in which the viral packaging domain is flanked by two inserted loxP to hamper its packaging in Cre-expressing 293 cells. Here, we constructed 19L viruses containing loxP at 191 nt from the left end of the genome upstream of the packaging domain, 15L viruses bearing loxP at 143 nt, and a control ΔL virus lacking loxP at these positions. The 19L position is used worldwide, and the 15L position has been reported to result in a lower titer than that of 19L. When the titers were compared for six pairs of 19L and 15L AdV, the 19L AdV produced titers similar to, or sometimes lower than, the 15L and ΔL AdV, unlike the results of previous reports. We next chose one pair of 15L and 19L AdV that produced titers similar to that of ΔL and a competitor AdV lacking loxP for use in a competition assay. When a small amount of the competitor AdV was co-infected, both the 15L and the 19L AdV, but not ΔL, gradually became minority components during subsequent viral passages. Therefore, the loxP insertions at 143 nt and 191 nt decreased the viral packaging efficiency.
Collapse
Affiliation(s)
- Yumi Kanegae
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | |
Collapse
|
38
|
Castro M, Xiong W, Puntel M, Farrokhi C, Kroeger KM, Pechnick RN, Ng P, Lowenstein P, Ghulam Muhammad AKM, Salem A, Lacayo L, Kelson KR, Palmer DJ, Liu C, Appelhans A. Safety Profile of Gutless Adenovirus Vectors Delivered into the Normal Brain Parenchyma: Implications for a Glioma Phase I Clinical Trial. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Abstract
Despite the fact that insulin injection can protect diabetic patients from developing diabetes-related complications, recent meta-analyses indicate that rapid and long-acting insulin analogues only provide a limited benefit compared with conventional insulin regarding glycemic control. As insulin deficiency is the main sequel of type-1 diabetes (T1D), transfer of the insulin gene-by-gene therapy is becoming an attractive treatment modality even though T1D is not caused by a single genetic defect. In contrast to human insulin and insulin analogues, insulin gene therapy targets to supplement patients not only with insulin but also with C-peptide. So far, insulin gene therapy has had limited success because of delayed and/or transient gene expression. Sustained insulin gene expression is now feasible using current gene-therapy vectors providing patients with basal insulin coverage, but management of postprandial hyperglycaemia is still difficult to accomplish because of the inability to properly control insulin secretion. Enteroendocrine cells of the gastrointestinal track (K cells and L cells) may be ideal targets for insulin gene therapy, but cell-targeting difficulties have limited practical implementation of insulin gene therapy for diabetes treatment. Therefore, recent gene transfer technologies developed to generate authentic beta cells through transdifferentiation are also highlighted in this review.
Collapse
|
40
|
Jiang B, Du L, Flynn R, Dronadula N, Zhang J, Kim F, Dichek D. Overexpression of endothelial nitric oxide synthase improves endothelium-dependent vasodilation in arteries infused with helper-dependent adenovirus. Hum Gene Ther 2012; 23:1166-75. [PMID: 22906141 DOI: 10.1089/hum.2012.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adenoviral vectors (Ad) are useful tools for in vivo gene transfer into endothelial cells. However, endothelium-dependent vasodilation is impaired after Ad infusion, and this impairment is not prevented by use of advanced-generation "helper-dependent" (HD) Ad that lack all viral genes. We hypothesized that endothelium-dependent vasodilation could be improved in Ad-infused arteries by overexpression of endothelial nitric oxide synthase (eNOS). We tested this hypothesis in hyperlipidemic, atherosclerosis-prone rabbits because HDAd will likely be used for treating and preventing atherosclerosis. Moreover, the consequences of eNOS overexpression might differ in normal and atherosclerosis-prone arteries and could include atherogenic effects, as reported in transgenic mice. We cloned rabbit eNOS and constructed an HDAd that expresses it. HDAdeNOS increased NO production by cultured endothelial cells and increased arterial eNOS mRNA in vivo by ∼10-fold. Compared to arteries infused with a control HDAd, HDAdeNOS-infused arteries of hyperlipidemic rabbits had significantly improved endothelium-dependent vasodilation, and similar responses to phenylephrine and nitroprusside. Moreover, infusion of HDAdeNOS had local atheroprotective effects including large, significant decreases in intimal lipid accumulation and arterial tumor necrosis factor (TNF)-α expression (p≤0.04 for both). HDAdeNOS infusion yields a durable (≥2 weeks) increase in arterial eNOS expression, improves vasomotor function, and reduces artery wall inflammation and lipid accumulation. Addition of an eNOS expression cassette improves the performance of HDAd, has no harmful effects, and may reduce atherosclerotic lesion growth.
Collapse
Affiliation(s)
- Bo Jiang
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Muhammad AKMG, Xiong W, Puntel M, Farrokhi C, Kroeger KM, Salem A, Lacayo L, Pechnick RN, Kelson KR, Palmer D, Ng P, Liu C, Lowenstein PR, Castro MG. Safety profile of gutless adenovirus vectors delivered into the normal brain parenchyma: implications for a glioma phase 1 clinical trial. Hum Gene Ther Methods 2012; 23:271-84. [PMID: 22950971 DOI: 10.1089/hgtb.2012.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenoviral vectors (Ads) have been evaluated in clinical trials for glioma. However, systemic immunity against the vectors can hamper therapeutic efficacy. We demonstrated that combined immunostimulation and cytotoxic gene therapy provides long-term survival in preclinical glioma models. Because helper-dependent high-capacity Ads (HC-Ads) elicit sustained transgene expression, in the presence of antiadenoviral immunity, we engineered HC-Ads encoding conditional cytotoxic herpes simplex type 1 thymidine kinase and immunostimulatory cytokine Fms-like tyrosine kinase ligand-3 under the control of the TetOn system. Escalating doses of combined HC-Ads (1×10(8), 1×10(9), and 1×10(10) viral particles [VP]) were delivered into the rat brain. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points after vector delivery. Histopathological analysis did not reveal any evidence of toxicity or long-term inflammation at the lower doses tested. Vector genomes were restricted to the injection site. Serum chemistry did not uncover adverse systemic side effects at any of the doses tested. Taken together, our data indicate that doses of up to 1×10(9) VP of each HC-Ad can be safely administered into the normal brain. This comprehensive toxicity and biodistribution study will lay the foundations for implementation of a phase 1 clinical trial for GBM using HC-Ads.
Collapse
Affiliation(s)
- A K M Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Keeler AM, Flotte TR. Cell and gene therapy for genetic diseases: inherited disorders affecting the lung and those mimicking sudden infant death syndrome. Hum Gene Ther 2012; 23:548-56. [PMID: 22642257 PMCID: PMC3392613 DOI: 10.1089/hum.2012.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
Some of the first human gene therapy trials targeted diseases of the lung and provided important information that will continue to help shape future trials. Here we describe both cell and gene therapies for lung diseases such as cystic fibrosis and alpha-1 antitrypsin disorder as well as fatty acid oxidation disorders that mimic sudden infant death syndrome (SIDS). Human clinical gene therapy trials for cystic fibrosis and alpha-1 antitrypsin have been performed using a variety of vectors including adenovirus, adeno-associated virus, and nonviral vectors. No human clinical gene therapy trials have been performed for disorders of fatty acid oxidation; however, important proof-of-principle studies have been completed for multiple fatty acid oxidation disorders. Important achievements have been made and have yet to come for cell and gene therapies for disorders of the lung and those mimicking SIDS.
Collapse
Affiliation(s)
- Allison M Keeler
- Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
44
|
Knockdown of ZNF403 inhibits cell proliferation and induces G2/M arrest by modulating cell-cycle mediators. Mol Cell Biochem 2012; 365:211-22. [DOI: 10.1007/s11010-012-1262-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 02/08/2012] [Indexed: 12/14/2022]
|
45
|
Efficient and accurate homologous recombination in hESCs and hiPSCs using helper-dependent adenoviral vectors. Mol Ther 2011; 20:424-31. [PMID: 22146343 DOI: 10.1038/mt.2011.266] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Low efficiencies of gene targeting via homologous recombination (HR) have limited basic research and applications using human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Here, we show highly and equally efficient gene knockout and knock-in at both transcriptionally active (HPRT1, KU80, LIG1, LIG3) and inactive (HB9) loci in these cells using high-capacity helper-dependent adenoviral vectors (HDAdVs). Without the necessity of introducing artificial DNA double-strand breaks, 7-81% of drug-resistant colonies were gene-targeted by accurate HR, which were not accompanied with additional ectopic integrations. Even at the motor neuron-specific HB9 locus, the enhanced green fluorescent protein (EGFP) gene was accurately knocked in in 23-57% of drug-resistant colonies. In these clones, induced differentiation into the HB9-positive motor neuron correlated with EGFP expression. Furthermore, HDAdV infection had no detectable adverse effects on the undifferentiated state and pluripotency of hESCs and hiPSCs. These results suggest that HDAdV is one of the best methods for efficient and accurate gene targeting in hESCs and hiPSCs and might be especially useful for therapeutic applications.
Collapse
|
46
|
Poulin KL, Tong G, Vorobyova O, Pool M, Kothary R, Parks RJ. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX. Virology 2011; 420:146-55. [DOI: 10.1016/j.virol.2011.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 12/01/2022]
|
47
|
Montesinos MS, Chen Z, Young SM. pUNISHER: a high-level expression cassette for use with recombinant viral vectors for rapid and long term in vivo neuronal expression in the CNS. J Neurophysiol 2011; 106:3230-44. [PMID: 21957229 DOI: 10.1152/jn.00713.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fast onset and high-level neurospecific transgene expression in vivo is of importance for many areas in neuroscience, from basic to translational, and can significantly reduce the amount of vector load required to maintain transgene expression in vivo. In this study, we tested various cis elements to optimize transgene expression at transcriptional, posttranscriptional, and posttranslational levels and combined them together to create the high-level neuronal transgene expression cassette pUNISHER. Using a second-generation adenoviral vector system in combination with the pUNISHER cassette, we characterized its rate of onset of detectable expression and levels of expression compared with a neurospecific expression cassette driven by the 470-bp human synapsin promoter in vitro and in vivo. Our results demonstrate in primary neurons that the pUNISHER cassette, in a recombinant adenovirus type 5 background, led to a faster rate of onset of detectable transgene expression and higher level of transgene expression. More importantly, this cassette led to highly correlated neuronal expression in vivo and to stable transgene expression up to 30 days in the auditory brain stem with no toxicity on the characteristics of synaptic transmission and plasticity at the calyx of Held synapse. Thus the pUNISHER cassette is an ideal high-level neuronal expression cassette for use in vivo for neuroscience applications.
Collapse
Affiliation(s)
- Monica S Montesinos
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute, 5353 Parkside Drive MC19-RE, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
48
|
Mohan RR, Tovey JCK, Sharma A, Tandon A. Gene therapy in the cornea: 2005--present. Prog Retin Eye Res 2011; 31:43-64. [PMID: 21967960 DOI: 10.1016/j.preteyeres.2011.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 12/13/2022]
Abstract
Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities has begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer toward establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, 800 Hospital Drive, Columbia, MO 65201, USA.
| | | | | | | |
Collapse
|
49
|
Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses. Pharmaceutics 2011; 3:338-53. [PMID: 24310584 PMCID: PMC3857070 DOI: 10.3390/pharmaceutics3030338] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 12/25/2022] Open
Abstract
The major limitation of the clinical use of replication-incompetent adenovirus (Ad) vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN), following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs). In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88) and toll-like receptor 9 (TLR9) play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs), which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1)-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.
Collapse
|
50
|
Palmer DJ, Ng P. Rescue, amplification, and large-scale production of helper-dependent adenoviral vectors. Cold Spring Harb Protoc 2011; 2011:857-66. [PMID: 21724821 DOI: 10.1101/pdb.prot5627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|