1
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Del Pilar C, Garrido-Matilla L, Del Pozo-Filíu L, Lebrón-Galán R, Arias RF, Clemente D, Alonso JR, Weruaga E, Díaz D. Intracerebellar injection of monocytic immature myeloid cells prevents the adverse effects caused by stereotactic surgery in a model of cerebellar neurodegeneration. J Neuroinflammation 2024; 21:49. [PMID: 38355633 PMCID: PMC10867997 DOI: 10.1186/s12974-023-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) constitute a recently discovered bone-marrow-derived cell type useful for dealing with neuroinflammatory disorders. However, these cells are only formed during inflammatory conditions from immature myeloid cells (IMCs) that acquire immunosuppressive activity, thus being commonly gathered from diseased animals. Then, to obtain a more clinically feasible source, we characterized IMCs directly derived from healthy bone marrow and proved their potential immunosuppressive activity under pathological conditions in vitro. We then explored their neuroprotective potential in a model of human cerebellar ataxia, the Purkinje Cell Degeneration (PCD) mouse, as it displays a well-defined neurodegenerative and neuroinflammatory process that can be also aggravated by invasive surgeries. METHODS IMCs were obtained from healthy bone marrow and co-cultured with activated T cells. The proliferation and apoptotic rate of the later were analyzed with Tag-it Violet. For in vivo studies, IMCs were transplanted by stereotactic surgery into the cerebellum of PCD mice. We also used sham-operated animals as controls of the surgical effects, as well as their untreated counterparts. Motor behavior of mice was assessed by rotarod test. The Purkinje cell density was measured by immunohistochemistry and cell death assessed with the TUNEL technique. We also analyzed the microglial phenotype by immunofluorescence and the expression pattern of inflammation-related genes by qPCR. Parametric tests were applied depending on the specific experiment: one or two way ANOVA and Student's T test. RESULTS IMCs were proven to effectively acquire immunosuppressive activity under pathological conditions in vitro, thus acting as MDSCs. Concerning in vivo studios, sham-operated PCD mice suffered detrimental effects in motor coordination, Purkinje cell survival and microglial activation. After intracranial administration of IMCs into the cerebellum of PCD mice, no special benefits were detected in the transplanted animals when compared to untreated mice. Nonetheless, this transplant almost completely prevented the impairments caused by the surgery in PCD mice, probably by the modulation of the inflammatory patterns. CONCLUSIONS Our work comprise two main translational findings: (1) IMCs can be directly used as they behave as MDSCs under pathological conditions, thus avoiding their gathering from diseased subjects; (2) IMCs are promising adjuvants when performing neurosurgery.
Collapse
Affiliation(s)
- Carlos Del Pilar
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Lucía Garrido-Matilla
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Lucía Del Pozo-Filíu
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rafael Lebrón-Galán
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Hospital Universitario de Toledo, Avd. Río Guadiana, s/n, 45007, Toledo, Spain
| | - Raúl F Arias
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Diego Clemente
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Eduardo Weruaga
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| | - David Díaz
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| |
Collapse
|
3
|
Belansky J, Yelin D. Optimization study of plasmonic cell fusion. Sci Rep 2022; 12:7159. [PMID: 35504928 PMCID: PMC9065096 DOI: 10.1038/s41598-022-11168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/07/2022] [Indexed: 11/28/2022] Open
Abstract
Artificial cell fusion often serves as a valuable tool for studying different applications in biology and medicine, including natural development, immune response, cancer metastasis and production of therapeutic molecules. Plasmonic cell fusion, a technique that uses specific cell labeling by gold nanoparticles and resonant femtosecond pulse irradiation for fusing neighboring cells, has been demonstrated useful for such applications, allowing high cell specificity and an overall low toxicity. Despite these advantages, the numerous experimental factors contributing to plasmonic fusion have often led to subpar fusion efficiencies, requiring repeated experiments and extensive calibration protocols for achieving optimal results. In this work we present a study that aims to improve the overall performance of plasmonic cell fusion in terms of fusion efficiency and cell viability. By varying the pulse fluence, nanoparticle concentration, incubation times, and culture handling protocols, we demonstrate up to 100% fusion of malignant epithelial cells across the entire irradiated area of the culture. We also show that some of the smaller cells may stay viable for up to several days. The results would allow plasmonic fusion to play a key role in numerous studies and applications that require specific, high-efficiency cell-cell fusion.
Collapse
Affiliation(s)
- Julia Belansky
- Russel Berrie Nanotechnology Institute, Technion, 32000, Haifa, Israel
| | - Dvir Yelin
- Faculty of Biomedical Engineering, Technion, 32000, Haifa, Israel.
| |
Collapse
|
4
|
Issa SS, Shaimardanova AA, Valiullin VV, Rizvanov AA, Solovyeva VV. Mesenchymal Stem Cell-Based Therapy for Lysosomal Storage Diseases and Other Neurodegenerative Disorders. Front Pharmacol 2022; 13:859516. [PMID: 35308211 PMCID: PMC8924473 DOI: 10.3389/fphar.2022.859516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of approximately 50 genetic disorders caused by mutations in genes coding enzymes that are involved in cell degradation and transferring lipids and other macromolecules. Accumulation of lipids and other macromolecules in lysosomes leads to the destruction of affected cells. Although the clinical manifestations of different LSDs vary greatly, more than half of LSDs have symptoms of central nervous system neurodegeneration, and within each disorder there is a considerable variation, ranging from severe, infantile-onset forms to attenuated adult-onset disease, sometimes with distinct clinical features. To date, treatment options for this group of diseases remain limited, which highlights the need for further development of innovative therapeutic approaches, that can not only improve the patients' quality of life, but also provide full recovery for them. In many LSDs stem cell-based therapy showed promising results in preclinical researches. This review discusses using mesenchymal stem cells for different LSDs therapy and other neurodegenerative diseases and their possible limitations.
Collapse
Affiliation(s)
- Shaza S Issa
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victor V Valiullin
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
5
|
Köse S, Aerts-Kaya F, Uçkan Çetinkaya D, Korkusuz P. Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:135-162. [PMID: 33977438 DOI: 10.1007/5584_2021_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.
Collapse
Affiliation(s)
- Sevil Köse
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Hematology, Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
6
|
Díaz D, Piquer-Gil M, Recio JS, Martínez-Losa MM, Alonso JR, Weruaga E, Álvarez-Dolado M. Bone marrow transplantation improves motor activity in a mouse model of ataxia. J Tissue Eng Regen Med 2018; 12:e1950-e1961. [PMID: 29222849 DOI: 10.1002/term.2626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 01/11/2023]
Abstract
Ataxias are locomotor disorders that can have an origin both neural and muscular, although both impairments are related. Unfortunately, ataxia has no cure, and the current therapies are aimed at motor re-education or muscular reinforcement. Nevertheless, cell therapy is becoming a promising approach to deal with incurable neural diseases, including neuromuscular ataxias. Here, we have used a model of ataxia, the Purkinje Cell Degeneration (PCD) mutant mouse, to study the effect of healthy (wild-type) bone marrow transplantation on the restoration of defective mobility. Bone marrow transplants (from both mutant and healthy donors) were performed in wild-type and PCD mice. Then, a wide battery of behavioural tests was employed to determine possible motor amelioration in mutants. Finally, cerebellum, spinal cord, and muscle were analysed to study the integration of the transplant-derived cells and the origin of the behavioural changes. Our results demonstrated that the transplant of wild-type bone marrow restores the mobility of PCD mice, increasing their capabilities of movement (52-100% of recovery), exploration (20-71% of recovery), speed (35% of recovery), and motor coordination (25% of recovery). Surprisingly, our results showed that bone marrow transplant notably improves the skeletal muscle structure, which is severely damaged in the mutants, rather than ameliorating the central nervous system. Although a multimodal effect of the transplant is not discarded, muscular improvements appear to be the basis of this motor recovery. Furthermore, the results from our study indicate that bone marrow stem cell therapy can be a safe and effective alternative for dealing with movement disorders such as ataxias.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Marina Piquer-Gil
- Laboratory of Cell Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC, Seville, Spain
| | - Javier Sánchez Recio
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | - María Magdalena Martínez-Losa
- Laboratory of Cell Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC, Seville, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | | |
Collapse
|
7
|
Park MH, Kim N, Jin HK, Bae JS. Neuropeptide Y-based recombinant peptides ameliorate bone loss in mice by regulating hematopoietic stem/progenitor cell mobilization. BMB Rep 2017; 50:138-143. [PMID: 27998395 PMCID: PMC5422026 DOI: 10.5483/bmbrep.2017.50.3.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 12/30/2022] Open
Abstract
Ovariectomy-induced bone loss is related to an increased deposition of osteoclasts on bone surfaces. We reported that the 36-amino-acid-long neuropeptide Y (NPY) could mobilize hematopoietic stem/progenitor cells (HSPCs) from the bone marrow to the peripheral blood by regulating HSPC maintenance factors and that mobilization of HSPCs ameliorated low bone density in an ovariectomy-induced osteoporosis mouse model by reducing the number of osteoclasts. Here, we demonstrated that new NPY peptides, recombined from the cleavage of the full-length NPY, showed better functionality for HSPC mobilization than the full-length peptide. These recombinant peptides mediated HSPC mobilization with greater efficiency by decreasing HSPC maintenance factors. Furthermore, treatment with these peptides reduced the number of osteoclasts and relieved ovariectomy-induced bone loss in mice more effectively than treatment with full-length NPY. Therefore, these results suggest that peptides recombined from full-length NPY can be used to treat osteoporosis.
Collapse
Affiliation(s)
- Min Hee Park
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 41566; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Namoh Kim
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 41566; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 41566; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Jae-Sung Bae
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 41566; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
8
|
Qi X, Pay SL, Yan Y, Thomas J, Lewin AS, Chang LJ, Grant MB, Boulton ME. Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration. Mol Ther 2017; 25:917-927. [PMID: 28202390 PMCID: PMC5383551 DOI: 10.1016/j.ymthe.2017.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/18/2023] Open
Abstract
Bone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis. Importantly, electroretinography and optokinetic response tests confirmed that visual function was significantly improved. Mice treated with non-modified BMDCs or BMDCs pre-programmed with LacZ did not exhibit significant improvement in visual deficit. RPE65-BMDC administration was most effective in early disease, when visual function and retinal morphology returned to near normal, and less effective in late-stage disease. This experimental paradigm offers a minimally invasive cellular therapy that can be given systemically overcoming the need for invasive ocular surgery and offering the potential to arrest progression in early AMD and other RPE-based diseases.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - S Louise Pay
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuanqing Yan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - James Thomas
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Lung-Ji Chang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Maria B Grant
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael E Boulton
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Herst PM, Rowe MR, Carson GM, Berridge MV. Functional Mitochondria in Health and Disease. Front Endocrinol (Lausanne) 2017; 8:296. [PMID: 29163365 PMCID: PMC5675848 DOI: 10.3389/fendo.2017.00296] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
The ability to rapidly adapt cellular bioenergetic capabilities to meet rapidly changing environmental conditions is mandatory for normal cellular function and for cancer progression. Any loss of this adaptive response has the potential to compromise cellular function and render the cell more susceptible to external stressors such as oxidative stress, radiation, chemotherapeutic drugs, and hypoxia. Mitochondria play a vital role in bioenergetic and biosynthetic pathways and can rapidly adjust to meet the metabolic needs of the cell. Increased demand is met by mitochondrial biogenesis and fusion of individual mitochondria into dynamic networks, whereas a decrease in demand results in the removal of superfluous mitochondria through fission and mitophagy. Effective communication between nucleus and mitochondria (mito-nuclear cross talk), involving the generation of different mitochondrial stress signals as well as the nuclear stress response pathways to deal with these stressors, maintains bioenergetic homeostasis under most conditions. However, when mitochondrial DNA (mtDNA) mutations accumulate and mito-nuclear cross talk falters, mitochondria fail to deliver critical functional outputs. Mutations in mtDNA have been implicated in neuromuscular and neurodegenerative mitochondriopathies and complex diseases such as diabetes, cardiovascular diseases, gastrointestinal disorders, skin disorders, aging, and cancer. In some cases, drastic measures such as acquisition of new mitochondria from donor cells occurs to ensure cell survival. This review starts with a brief discussion of the evolutionary origin of mitochondria and summarizes how mutations in mtDNA lead to mitochondriopathies and other degenerative diseases. Mito-nuclear cross talk, including various stress signals generated by mitochondria and corresponding stress response pathways activated by the nucleus are summarized. We also introduce and discuss a small family of recently discovered hormone-like mitopeptides that modulate body metabolism. Under conditions of severe mitochondrial stress, mitochondria have been shown to traffic between cells, replacing mitochondria in cells with damaged and malfunctional mtDNA. Understanding the processes involved in cellular bioenergetics and metabolic adaptation has the potential to generate new knowledge that will lead to improved treatment of many of the metabolic, degenerative, and age-related inflammatory diseases that characterize modern societies.
Collapse
Affiliation(s)
- Patries M. Herst
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| | - Matthew R. Rowe
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Georgia M. Carson
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Michael V. Berridge
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| |
Collapse
|
10
|
Huda F, Fan Y, Suzuki M, Konno A, Matsuzaki Y, Takahashi N, Chan JKY, Hirai H. Fusion of Human Fetal Mesenchymal Stem Cells with "Degenerating" Cerebellar Neurons in Spinocerebellar Ataxia Type 1 Model Mice. PLoS One 2016; 11:e0164202. [PMID: 27802273 PMCID: PMC5089746 DOI: 10.1371/journal.pone.0164202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) migrate to damaged tissues, where they participate in tissue repair. Human fetal MSCs (hfMSCs), compared with adult MSCs, have higher proliferation rates, a greater differentiation capacity and longer telomeres with reduced senescence. Therefore, transplantation of quality controlled hfMSCs is a promising therapeutic intervention. Previous studies have shown that intravenous or intracortical injections of MSCs result in the emergence of binucleated cerebellar Purkinje cells (PCs) containing an MSC-derived marker protein in mice, thus suggesting a fusion event. However, transdifferentiation of MSCs into PCs or transfer of a marker protein from an MSC to a PC cannot be ruled out. In this study, we unequivocally demonstrated the fusion of hfMSCs with murine PCs through a tetracycline-regulated (Tet-off) system with or without a Cre-dependent genetic inversion switch (flip-excision; FLEx). In the FLEx-Tet system, we performed intra-cerebellar injection of viral vectors expressing tetracycline transactivator (tTA) and Cre recombinase into either non-symptomatic (4-week-old) or clearly symptomatic (6–8-month-old) spinocerebellar ataxia type 1 (SCA1) mice. Then, the mice received an injection of 50,000 genetically engineered hfMSCs that expressed GFP only in the presence of Cre recombinase and tTA. We observed a significant emergence of GFP-expressing PCs and interneurons in symptomatic, but not non-symptomatic, SCA1 mice 2 weeks after the MSC injection. These results, together with the results obtained using age-matched wild-type mice, led us to conclude that hfMSCs have the potential to preferentially fuse with degenerating PCs and interneurons but not with healthy neurons.
Collapse
Affiliation(s)
- Fathul Huda
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
- Physiology Division, Department of Anatomy Physiology and Cell Biology, Faculty of Medicine Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Mamiko Suzuki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| | - Nobutaka Takahashi
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| | - Jerry K. Y. Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
- * E-mail:
| |
Collapse
|
11
|
Siddiqi F, Wolfe JH. Stem Cell Therapy for the Central Nervous System in Lysosomal Storage Diseases. Hum Gene Ther 2016; 27:749-757. [PMID: 27420186 DOI: 10.1089/hum.2016.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological diseases with genetic etiologies result in the loss or dysfunction of neural cells throughout the CNS. At present, few treatment options exist for the majority of neurogenetic diseases. Stem cell transplantation (SCT) into the CNS has the potential to be an effective treatment modality because progenitor cells may replace lost cells in the diseased brain, provide multiple trophic factors, or deliver missing proteins. This review focuses on the use of SCT in lysosomal storage diseases (LSDs), a large group of monogenic disorders with prominent CNS disease. In most patients the CNS disease results in intellectual disability that is refractory to current standard-of-care treatment. A large amount of preclinical work on brain-directed SCT has been performed in rodent LSD models. Cell types that have been used for direct delivery into the CNS include neural stem cells, embryonic and induced pluripotent stem cells, and mesenchymal stem cells. Hematopoietic stem cells have been an effective therapy for the CNS in a few LSDs and may be augmented by overexpression of the missing gene. Current barriers and potential strategies to improve SCT for translation into effective patient therapies are discussed.
Collapse
Affiliation(s)
- Faez Siddiqi
- 1 Research Institute of Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John H Wolfe
- 1 Research Institute of Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,2 Department of Pediatrics, Perelman School of Medicine and W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Cell-cell fusion in the nervous system: Alternative mechanisms of development, injury, and repair. Semin Cell Dev Biol 2016; 60:146-154. [PMID: 27375226 DOI: 10.1016/j.semcdb.2016.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Over a century ago, the seminal work of Ramón y Cajal revealed that the nervous system is made of individual units, the neurons, which are related to each other by contiguity rather than continuity. This view overturned the idea that the nervous system was a reticulum of fibers, a rete diffusa nervosa, as proposed and defined by Camillo Golgi. Although the neuron theory has been widely confirmed in every model system studied and constitutes the basis of modern neuroscience, evidence accumulated over the years suggests that neurons, similar to other types of cells, have the potential to fuse their membranes and undergo cell-cell fusion under certain conditions. This concept adds a substantial layer to our view of the nervous system and how it functions. Here, we bring together past and more recent discoveries on multiple aspects of neuronal fusion, discussing how this cellular event is generated, and what consequences it has for our understanding of nervous system development, disease, injury, and repair.
Collapse
|
13
|
Kemp KC, Cook AJ, Redondo J, Kurian KM, Scolding NJ, Wilkins A. Purkinje cell injury, structural plasticity and fusion in patients with Friedreich's ataxia. Acta Neuropathol Commun 2016; 4:53. [PMID: 27215193 PMCID: PMC4877974 DOI: 10.1186/s40478-016-0326-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 12/05/2022] Open
Abstract
Purkinje cell pathology is a common finding in a range of inherited and acquired cerebellar disorders, with the degree of Purkinje cell injury dependent on the underlying aetiology. Purkinje cells have an unparalleled resistance to insult and display unique regenerative capabilities within the central nervous system. Their response to cell injury is not typical of most neurons and likely represents both degenerative, compensatory and regenerative mechanisms. Here we present a pathological study showing novel and fundamental insights into Purkinje cell injury, remodelling and repair in Friedreich’s ataxia; the most common inherited ataxia. Analysing post-mortem cerebellum tissue from patients who had Friedreich's ataxia, we provide evidence of significant injury to the Purkinje cell axonal compartment with relative preservation of both the perikaryon and its extensive dendritic arborisation. Axonal remodelling of Purkinje cells was clearly elevated in the disease. For the first time in a genetic condition, we have also shown a disease-related increase in the frequency of Purkinje cell fusion and heterokaryon formation in Friedreich's ataxia cases; with evidence that underlying levels of cerebellar inflammation influence heterokaryon formation. Our results together further demonstrate the Purkinje cell’s unique plasticity and regenerative potential. Elucidating the biological mechanisms behind these phenomena could have significant clinical implications for manipulating neuronal repair in response to neurological injury.
Collapse
|
14
|
Sankavaram SR, Svensson MA, Olsson T, Brundin L, Johansson CB. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis. PLoS One 2015. [PMID: 26207625 PMCID: PMC4514791 DOI: 10.1371/journal.pone.0133903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss. Aim In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei. Results Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis), we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord. Conclusion This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy for spinal cord motor neurons or other neurons that are compromised in the central nervous system.
Collapse
Affiliation(s)
- Sreenivasa R. Sankavaram
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mikael A. Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lou Brundin
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Clas B. Johansson
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Public Dental Service at Gällö, Jämtland Härjedalen County Council, Gällö, Sweden
- * E-mail:
| |
Collapse
|
15
|
Pathological roles of the VEGF/SphK pathway in Niemann-Pick type C neurons. Nat Commun 2014; 5:5514. [PMID: 25417698 PMCID: PMC4263144 DOI: 10.1038/ncomms6514] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022] Open
Abstract
Sphingosine is a major storage compound in Niemann–Pick type C disease (NP–C), although the pathological role(s) of this accumulation have not been fully characterized. Here we found that sphingosine kinase (SphK) activity is reduced in NP–C patient fibroblasts and NP–C mouse Purkinje neurons (PNs) due to defective vascular endothelial growth factor (VEGF) levels. Sphingosine accumulation due to inactivation of VEGF/SphK pathway led to PNs loss via inhibition of autophagosome–lysosome fusion in NP–C mice. VEGF activates SphK by binding to VEGFR2, resulting in decreased sphingosine storage as well as improved PNs survival and clinical outcomes in NP–C cells and mice. We also show that induced pluripotent stem cell (iPSC)-derived human NP–C neurons are generated and the abnormalities caused by VEGF/SphK inactivity in these cells are corrected by replenishment of VEGF. Overall, these results reveal a pathogenic mechanism in NP–C neurons where defective SphK activity is due to impaired VEGF levels. Sphingosine is abnormally accumulated in Niemann–Pick type C disease (NP–C), but the causes of this accumulation have not been fully characterized. Here the authors show that sphingosine kinase activity is reduced in NP–C patient fibroblasts and NP–C mouse neurons due to defective vascular endothelial growth factor levels, suggesting therapeutic avenues.
Collapse
|
16
|
Kemp K, Wilkins A, Scolding N. Cell fusion in the brain: two cells forward, one cell back. Acta Neuropathol 2014; 128:629-38. [PMID: 24899142 PMCID: PMC4201757 DOI: 10.1007/s00401-014-1303-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/21/2014] [Accepted: 05/25/2014] [Indexed: 01/30/2023]
Abstract
Adult stem cell populations, notably those which reside in the bone marrow, have been shown to contribute to several neuronal cell types in the rodent and human brain. The observation that circulating bone marrow cells can migrate into the central nervous system and fuse with, in particular, cerebellar Purkinje cells has suggested, at least in part, a potential mechanism behind this process. Experimentally, the incidence of cell fusion in the brain is enhanced with age, radiation exposure, inflammation, chemotherapeutic drugs and even selective damage to the neurons themselves. The presence of cell fusion, shown by detection of increased bi-nucleated neurons, has also been described in a variety of human central nervous system diseases, including both multiple sclerosis and Alzheimer’s disease. Accumulating evidence is therefore raising new questions into the biological significance of cell fusion, with the possibility that it represents an important means of cell-mediated neuroprotection or rescue of highly complex neurons that cannot be replaced in adult life. Here, we discuss the evidence behind this phenomenon in the rodent and human brain, with a focus on the subsequent research investigating the physiological mechanisms of cell fusion underlying this process. We also highlight how these studies offer new insights into endogenous neuronal repair, opening new exciting avenues for potential therapeutic interventions against neurodegeneration and brain injury.
Collapse
|
17
|
Díaz D, Muñoz-Castañeda R, Alonso JR, Weruaga E. Bone Marrow-Derived Stem Cells and Strategies for Treatment of Nervous System Disorders: Many Protocols, and Many Results. Neuroscientist 2014; 21:637-52. [PMID: 25171812 DOI: 10.1177/1073858414547538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone marrow stem cells are the best known stem cell type and have been employed for more than 50 years, especially in pathologies of the hematopoietic and immune systems. However, their therapeutic potential is much broader, and they can also be employed to palliate neural diseases. Apart from their plastic properties, these cells lack the legal or ethical constraints of other stem cell populations, that is, embryonic stem cells. Current research addressing the integration of bone marrow-derived cells into the neural circuits of the central nervous system, their features, and applications is a hotspot in neurobiology. Nevertheless, as in other leading research lines the efficacy and possibilities of their application depend on technical procedures, which are still far from being standardized. Accordingly, for efficient research this large range of variants should be taken into account as they could lead to unexpected results. Rather than focusing on clinical aspects, this review offers a compendium of the methodologies aimed at providing a guide for researchers who are working in the field of bone marrow transplantation in the central nervous system. It seeks to be useful for both introductory and trouble-shooting purposes, and in particular for dealing with the large array of bone marrow transplantation protocols available.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| | - Rodrigo Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| |
Collapse
|
18
|
Díaz D, Recio JS, Weruaga E, Alonso JR. Mild cerebellar neurodegeneration of aged heterozygous PCD mice increases cell fusion of Purkinje and bone marrow-derived cells. Cell Transplant 2013; 21:1595-602. [PMID: 22507630 DOI: 10.3727/096368912x638900] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bone marrow-derived cells have different plastic properties, especially regarding cell fusion, which increases with time and is prompted by tissue injury. Several recessive mutations, including Purkinje Cell Degeneration, affect the number of Purkinje cells in homozygosis; heterozygous young animals have an apparently normal phenotype but they undergo Purkinje cell loss as they age. Our findings demonstrate that heterozygous pcd mice undergo Purkinje cell loss at postnatal day 300, this slow but steadily progressing cell death starting sooner than has been reported previously and without massive reactive gliosis or inflammation. Here, transplantation of bone marrow stem cells was performed to assess the arrival of bone marrow-derived cells in the cerebellum in these heterozygous mice. Our results reveal that a higher number of cell fusion events occurs in heterozygous animals than in the controls, on days 150 and 300 postnatally. In sum, this study indicates that mild cell death promotes the fusion of bone marrow-derived cells with surviving Purkinje neurons. This phenomenon suggests new therapies for long-lasting neurodegenerative disorders.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León and Institute of Biomedical Research of Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
19
|
Lee H, Kang JE, Lee JK, Bae JS, Jin HK. Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum Gene Ther 2013; 24:655-69. [PMID: 23659480 DOI: 10.1089/hum.2013.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a neurodegenerative disorder characterized neuropathologically by ballooned neurons distended with lipid storage and widespread neuronal loss. Neural stem cells (NSC) derived from NP-C disease models have decreased ability for self-renewal and neuronal differentiation. Investigation of neurogenesis in the adult brain has suggested that NP-C disease can be overcome, or at least ameliorated, by the generation of new neurons. Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are regarded as potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. The underlying mechanisms of BM-MSC-induced promotion of neurogenesis, however, have not been resolved. The aim of the present study was to examine the mechanism of neurogenesis by BM-MSCs in NP-C disease. Coculture of embryonic NSCs from NP-C mice that exhibit impaired ability for self-renewal and decreased rates of neuronal differentiation with BM-MSCs resulted in an enhanced capacity for self-renewal and an increased ability for differentiation into neurons or oligodendrocytes. In addition, results of in vivo studies have demonstrated that transplantation of intracerebral BM-MSCs resulted in stimulated proliferation and neuronal differentiation of NSCs within the subventricular zone. Of particular interest, enhanced proliferation and neuronal differentiation of endogenous NP-C mouse NSCs showed an association with elevated release of the chemokine (C-C motif) ligand 2 (CCL2) from BM-MSCs. These effects suggest that soluble CCL2 derived from BM-MSCs can modulate endogenous NP-C NSCs, resulting in their improved proliferation and neuronal differentiation in mice.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | | | |
Collapse
|
20
|
Autologous bone marrow-derived mesenchymal stem cell transplantation promotes liver regeneration after portal vein embolization in cirrhotic rats. J Surg Res 2013; 184:1161-73. [PMID: 23809154 DOI: 10.1016/j.jss.2013.04.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/14/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Preexisting cirrhosis usually leads to an inadequate and delayed regeneration of the future liver remnant (FLR) after portal vein embolization (PVE). Bone marrow-derived mesenchymal stem cells (BMSC) are promising candidates for therapeutic applications in liver diseases. In this study, the efficacy of autologous BMSCs transplantation to promote FLR regeneration was investigated in a rat cirrhotic model. METHODS Autologous BMSCs were expanded and labeled with PKH26, and then were injected immediately into nonembolized lobes after PVE through portal vein in cirrhotic rat. At 7, 14, and 28 d after this, liver weight and Ki-67 labeling index were measured, and blood analysis was performed. Cirrhotic degree of FLR was assessed by hydroxyproline content assay and histopathology. Gene expressions of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), interleukin-10 (IL-10), and matrix metalloproteinase-9 (MMP-9) were detected with real-time reverse transcriptase-polymerase chain reaction. Distribution and hepatocyte differentiation of BMSCs in FLR were determined by confocal microscopy. RESULTS Autologous BMSCs significantly increased the FLR weight ratio to the total liver and the Ki-67 labeling index, and serum albumin levels were significantly higher and total bilirubin levels were significantly lower in the BMSCs group compared with the controls without BMSCs transplantation 14 and 28 d post-PVE. BMSCs significantly decreased the hydroxyproline content and collagen accumulation, up-regulated the expressions of HGF, IL-10, VEGF, and MMP-9 28 d post-PVE, and expressed hepatocyte-specific markers, such as α-fetoprotein, cytokeratin 18, and albumin in a time-dependent manner in FLR. CONCLUSIONS Autologous BMSCs can differentiate into hepatocyte and promote FLR regeneration after PVE in cirrhotic liver, which may be through improving local microenvironment by decreasing cirrhosis, up-regulating the gene expressions of VEGF, HGF, IL-10, and MMP-9.
Collapse
|
21
|
Brilli E, Reitano E, Conti L, Conforti P, Gulino R, Consalez GG, Cesana E, Smith A, Rossi F, Cattaneo E. Neural stem cells engrafted in the adult brain fuse with endogenous neurons. Stem Cells Dev 2013; 22:538-47. [PMID: 23009360 DOI: 10.1089/scd.2012.0530] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neural stem cells (NSCs) have become promising tools for basic research and regenerative medicine. Intracerebral transplantation studies have suggested that these cells may be able to adopt neuronal phenotypes typical of their engraftment site and to establish appropriate connections in the recipient circuitries. Here, we examined the in vivo neurogenic competence of well-characterized NSC lines subjected to in vitro priming and subsequent implantation into the adult intact mouse brain. Upon implantation into the hippocampus and, less frequently, in the striatum and in the cerebral cortex, numerous green fluorescent protein (GFP)-tagged cells acquired differentiated features indistinguishable from resident neurons. Upon closer examination, however, we found that this outcome resulted from fusion of donor cells with local neuronal elements generating long-term persistent GFP(+) neuronal hybrids. This fusogenic behavior of NSCs was unexpected and also observed in coculture with E18 hippocampal immature neural cells, but not with microglia or astrocytes. Similar findings were consistently obtained with different NSC lines, mouse recipients, and donor cell-labeling methods. The frequent and cell type-specific fusion of donor NSCs with host neurons highlights a previously underestimated biological property of the nervous tissue that might prove profitable for basic and therapeutically oriented studies.
Collapse
Affiliation(s)
- Elisa Brilli
- Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
G-substrate: the cerebellum and beyond. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:381-416. [PMID: 22340725 DOI: 10.1016/b978-0-12-396456-4.00004-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of nitric oxide (NO) as an activator of soluble guanylate cyclase (sGC) has stimulated extensive research on the NO-sGC-3':5'-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase (PKG) pathway. However, the restricted localization of pathway components and the lack of information on PKG substrates have hindered research seeking to examine the physiological roles of the NO-sGC-cGMP-PKG pathway. An excellent substrate for PKG is the G-substrate, which was originally discovered in the cerebellum. The role of G-substrate in the cerebellum and other brain structures has been revealed in recent years. This review discusses the relationship between the G-substrate and other components of the NO-sGC-cGMP-PKG pathway and describes the characteristics of the G-substrate gene and protein related to diseases. Finally, we discuss the physiological role of G-substrate in the cerebellum, where it regulates cerebellum-dependent long-term memory, and its role in the ventral tegmental area and retina, where it acts as an effective neuroprotectant.
Collapse
|
23
|
Batzios SP, Zafeiriou DI. Developing treatment options for metachromatic leukodystrophy. Mol Genet Metab 2012; 105:56-63. [PMID: 22078456 DOI: 10.1016/j.ymgme.2011.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 12/25/2022]
Abstract
Metachromatic leukodystrophy (MLD) represents a devastating lysosomal storage disease characterized by intralysosomal accumulation of the sphingolipid sulfatide in various tissues. Three types of the disease are currently distinguished: the late-infantile, which is the most commonly observed, the juvenile and the adult type. Demyelination represents the main histopathological feature of the disorder, leading to neurological impairment with no curative treatment currently available. Nevertheless, the increased scientific interest on the disease has led to the experimental use of innovative therapeutic approaches in animal models, aiming to provide an effective therapeutic regimen for human patients, as well. This paper provides an overview of developing treatment options among patients with MLD. Apart from hematopoietic stem cell transplantation, already in use for decades, other recent data discussed includes umbilical cord blood and stem cell transplantation, enzyme replacement therapy, gene therapy and autologous hematopoietic transplantation of genetically modified stem cells. Gene therapy with oligodedroglial, neural progenitor, embryonic and microencapsulated recombinant cells represents add-on treatment options still on experimental level.
Collapse
Affiliation(s)
- Spyros P Batzios
- 1st Department of Paediatrics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
24
|
Lin DS, Hsiao CD, Liau I, Lin SP, Chiang MF, Chuang CK, Wang TJ, Wu TY, Jian YR, Huang SF, Liu HL. CNS-targeted AAV5 gene transfer results in global dispersal of vector and prevention of morphological and function deterioration in CNS of globoid cell leukodystrophy mouse model. Mol Genet Metab 2011; 103:367-77. [PMID: 21620749 DOI: 10.1016/j.ymgme.2011.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 12/12/2022]
Abstract
Globoid cell leukodystrophy (GLD) is a devastating lysosomal storage disease caused by deficiency of the enzyme galactocerebrosidase (GALC). Currently, there is no definite cure for GLD. Several attempts with CNS-directed gene therapy in twitcher mice (a murine model of GLD) demonstrated restricted expression of GALC activity in CNS and failure of therapeutic efficacy in cerebellum and spinal cord, resulting in various degrees of correction of biochemical, pathological and clinical phenotype. More recently, twitcher mice receiving a combination of hematopoietic and viral vector gene transfer therapies were not protected from neurodegeneration and axonopathy in both cerebellum and spinal cord. This evidence indicates the requirement of sufficient and widespread GALC expression in CNS and rescue of cerebellum and spinal cord in the therapeutic intervention of murine model of GLD. In this study, we have optimized intracranial delivery of AAV2/5-GALC to the neocortex, hippocampus and cerebellum, instead of the thalamus as was previously conducted, of twitcher mice. The CNS-targeted AAV2/5 gene transfer effectively dispersed GALC transgene along the neuraxis of CNS as far as the lumbar spinal cord, and reduced the accumulation of psychosine in the CNS of twitcher mice. Most importantly, the treated twitcher mice were protected from loss of oligodendrocytes and Purkinje cells, axonopathy and marked gliosis, and had significantly improved neuromotor function and prolonged lifespan. These preclinical findings with our approach are encouraging, although a more robust response in the spinal cord would be desirable. Collectively, the information in this study validates the efficacy of this gene delivery approach to correct enzymatic deficiency, psychosine accumulation and neuropathy in CNS of GLD. Combining cell therapy such as bone marrow transplantation with treatment with the aim of reducing inflammation, replacing dead or dying oligodendrocytes and targeting PNS may provide a synergistic and more complete correction of this disease.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kemp K, Gordon D, Wraith DC, Mallam E, Hartfield E, Uney J, Wilkins A, Scolding N. Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 2011; 37:166-78. [PMID: 20819172 PMCID: PMC4150530 DOI: 10.1111/j.1365-2990.2010.01122.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS we explored whether cellular fusion and heterokaryon formation between human and rodent cells in the cerebellum of mice occurs after intravenous injection of human bone marrow-derived mesenchymal stem cells (MSCs). The influence of central nervous system inflammation on this process was also assessed. In addition, we examined whether tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma, factors associated with inflammation, increase cellular fusion between human MSCs and rodent cerebellar neurons in vitro. METHODS AND RESULTS human MSCs were intravenously injected into mice with experimental autoimmune encephalomyelitis (EAE) and control mice. After 22 days, mouse Purkinje cells expressing human Golgi Zone were found within the Purkinje cell layer of the cerebellum, indicating that fusion and heterokaryon formation had occurred. The numbers of heterokaryons in the cerebellum were markedly increased in mice with EAE compared with control mice. Rodent cerebellar neuronal cells labelled with enhanced green fluorescent proteinin vitro were co-cultured with human bone marrow-derived MSCs in the presence of TNF-alpha and/or IFN-gamma to determine their influence on fusion events. We found that fusion between MSCs and cerebellar neurons did occur in vitro and that the frequency of cellular fusion increased in the presence of TNF-alpha and/or IFN-gamma. CONCLUSIONS we believe that this is the first paper to define fusion and heterokaryon formation between human MSCs and rodent cerebellar neurons in vivo. We have also demonstrated that fusion between these cell populations occurs in vitro. These findings indicate that MSCs may be potential therapeutic agents for cerebellar diseases, and other neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- K Kemp
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen KA, Cruz PE, Lanuto DJ, Flotte TR, Borchelt DR, Srivastava A, Zhang J, Steindler DA, Zheng T. Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol Cell Neurosci 2011; 47:61-70. [PMID: 21420496 DOI: 10.1016/j.mcn.2011.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/10/2023] Open
Abstract
Cerebellar Purkinje neurons (PNs) possess a well characterized propensity to fuse with bone marrow-derived cells (BMDCs), producing heterokaryons with Purkinje cell identities. This offers the potential to rescue/repair at risk or degenerating PNs in the inherited ataxias, including Spinocerebellar Ataxia 1 (SCA1), by introducing therapeutic factors through BMDCs to potentially halt or reverse disease progression. In this study, we combined gene therapy and a stem cell-based treatment to attempt repair of at-risk PNs through cell-cell fusion in a Sca1(154Q/2Q) knock-in mouse model. BMDCs enriched for the hematopoietic stem cell (HSC) population were genetically modified using adeno-associated viral vector 7 (AAV7) to carry SCA1 modifier genes and transplanted into irradiated Sca1(154Q/2Q) mice. Binucleated Purkinje heterokaryons with sex-mismatched donor Y chromosomes were detected and successfully expressed the modifier genes in vivo. Potential effects of the new genome within Purkinje heterokaryons were evaluated using nuclear inclusions (NIs) as a biological marker to reflect possible modifications of the SCA1 disease process. An overall decrease in number of NIs and an increase in the number of surviving PNs were observed in treated Sca1(154Q/2Q). Furthermore, Bergmann glia were found to have fusogenic potential with the donor population and reveal another potential route of therapeutic entry into at-risk cells of the SCA1 cerebellum. This study presents a first step towards a proof-of-principle that combines somatic cellular fusion events with a neuroprotective gene therapy approach for providing potential neuronal protection/repair in a variety of neurodegenerative disorders.
Collapse
Affiliation(s)
- K Amy Chen
- Department of Neuroscience, The Evelyn F. and William L. McKnight Brain Institute of the University of Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Recio JS, Álvarez-Dolado M, Díaz D, Baltanás FC, Piquer-Gil M, Alonso JR, Weruaga E. Bone marrow contributes simultaneously to different neural types in the central nervous system through different mechanisms of plasticity. Cell Transplant 2011; 20:1179-92. [PMID: 21294954 DOI: 10.3727/096368910x552826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies have reported the contribution of bone marrow-derived cells (BMDC) to the CNS, raising the possibility of using them as a new source to repair damaged brain tissue or restore neuronal function. This process has mainly been investigated in the cerebellum, in which a degenerative microenvironment has been suggested to be responsible for its modulation. The present study further analyzes the contribution of BMDC to different neural types in other adult brain areas, under both physiological and neurodegenerative conditions, together with the mechanisms of plasticity involved. We grafted genetically marked green fluorescent protein/Cre bone marrow in irradiated recipients: a) the PCD (Purkinje Cell Degeneration) mutant mice, suffering a degeneration of specific neuronal populations at different ages, and b) their corresponding healthy controls. These mice carried the conditional lacZ reporter gene to allow the identification of cell fusion events. Our results demonstrate that BMDC mainly generate microglial cells, although to a lesser extent a clear formation of neuronal types also exists. This neuronal recruitment was not increased by the neurodegenerative processes occurring in PCD mice, where BMDC did not contribute to rescuing the degenerated neuronal populations either. However, an increase in the number of bone marrow-derived microglia was found along the life span in both experimental groups. Six weeks after transplantation more bone marrow-derived microglial cells were observed in the olfactory bulb of the PCD mice compared to the control animals, where the degeneration of mitral cells was in process. In contrast, this difference was not observed in the cerebellum, where Purkinje cell degeneration had been completed. These findings demonstrated that the degree of neurodegenerative environment can foster the recruitment of neural elements derived from bone marrow, but also provide the first evidence that BMDC can contribute simultaneously to different encephalic areas through different mechanisms of plasticity: cell fusion for Purkinje cells and differentiation for olfactory bulb interneurons.
Collapse
Affiliation(s)
- Javier S Recio
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Cell Fusion and Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:161-75. [DOI: 10.1007/978-94-007-0763-4_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Curril IM, Koide M, Yang CH, Segal A, Wellman GC, Spees JL. Incomplete reprogramming after fusion of human multipotent stromal cells and bronchial epithelial cells. FASEB J 2010. [DOI: 10.1096/fj.09.152991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ingrid M. Curril
- Cell and Molecular Biology Program and Vermont Lung Center Burlington Vermont USA
| | - Masayo Koide
- Department of PharmacologyUniversity of Vermont Burlington Vermont USA
| | | | - Alan Segal
- Department of MedicineUniversity of Vermont Colchester Vermont USA
| | - George C. Wellman
- Department of PharmacologyUniversity of Vermont Burlington Vermont USA
| | - Jeffrey L. Spees
- Cell and Molecular Biology Program and Vermont Lung Center Burlington Vermont USA
- Stem Cell Core Colchester Vermont USA
- Department of MedicineUniversity of Vermont Colchester Vermont USA
| |
Collapse
|
30
|
Díaz D, Recio JS, Baltanás FC, Gómez C, Weruaga E, Alonso JR. Long-lasting changes in the anatomy of the olfactory bulb after ionizing irradiation and bone marrow transplantation. Neuroscience 2010; 173:190-205. [PMID: 21056092 DOI: 10.1016/j.neuroscience.2010.10.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 12/22/2022]
Abstract
The adult brain is considered to be a radioresistant organ since it is mainly composed of non-dividing cells. However, in adult animals there are a few neurogenic brain areas that are affected by ionizing radiation whose plasticity and capacity for recovery are still unclear. Here, mice were irradiated with a minimal lethal dose of radiation in order to determine its effects on the subventricular zone (SVZ), the rostral migratory stream (RMS), and the olfactory bulb (OB). These regions underwent a dramatic reduction in cell proliferation and ensuing morphological alterations, accompanied by a patent reactive gliosis. Bone marrow stem cell (BMSC) transplants were also performed after the radiation treatment to allow the mouse survival with a view to analyzing long-term effects. Normal proliferation rates were not recovered over time and although bone marrow-derived cells reached the brain, they were not incorporated into the SVZ-RMS-OB pathway in an attempt to rescue the damaged regions. Since neurogenesis produces new interneurones in the OB, thus feeding cell turnover, the volume and lamination of the OB were analyzed. The volume of the OB proved to be dramatically reduced at postnatal day 300 (P300), and this shrinkage affected the periependymal white matter, the granule cell layer, the external plexiform layer, and the glomerular layer. These results should be taken into account in cell therapies employing BMSC, since such cells reach the encephalon, although they cannot restore the damage produced in neurogenic areas. This study thus provides new insight into the long-term effects of ionizing radiation, widely employed in animal experimentation and even in clinical therapies for human beings.
Collapse
Affiliation(s)
- D Díaz
- Laboratory of Cell Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Curril IM, Koide M, Yang CH, Segal A, Wellman GC, Spees JL. Incomplete reprogramming after fusion of human multipotent stromal cells and bronchial epithelial cells. FASEB J 2010; 24:4856-64. [PMID: 20724526 DOI: 10.1096/fj.09-152991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone marrow-derived progenitor cells can fuse with cells of several different tissues, including lung, especially following injury. Despite many reports of cell fusion, few studies have examined the function of the resulting hybrid cells. We cocultured human multipotent stromal cells (hMSCs) and normal human bronchial epithelial cells (NHBEs) and observed the formation of hMSC/NHBE heterokaryons. The heterokaryons expressed several proteins characteristic of epithelial cells, such as keratin and occludin. Hybrid cells also expressed the mRNAs and proteins for 2 important ion channels that maintain bronchial and alveolar fluid balance: the cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial Na(+) channel (ENaC). By immunocytochemistry, CFTR was expressed in many hybrid cells but was absent or low in others. Whole-cell patch-clamp recordings demonstrated a glibenclamide-sensitive current in the presence of barium chloride, consistent with functional CFTR channels, in control NHBEs and hMSC/NHBE heterokaryons. Total cell capacitance measurements showed that the membrane surface area of heterokaryons was similar to that of NHBEs. Heterokaryons expressed the α- and γ-ENaC subunits but did not express the β-ENaC subunit, indicating the inability to form a complete ENaC channel. In addition, hybrid cells formed by the fusion of hMSCs with immortalized bronchial cells that expressed CFTR ΔF508 did not lead to reprogramming of the hMSC nucleus and expression of wild-type CFTR mRNA. Our data show that reprogramming can be incomplete following fusion of adult progenitor cells and somatic cells and may lead to altered cell function.
Collapse
Affiliation(s)
- Ingrid M Curril
- Cell and Molecular Biology Program and Vermont Lung Center, Burlington, Vermont, USA
| | | | | | | | | | | |
Collapse
|
32
|
Jones J, Jaramillo-Merchán J, Bueno C, Pastor D, Viso-León M, Martínez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 2010; 40:415-23. [PMID: 20638477 DOI: 10.1016/j.nbd.2010.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Of these, cerebellar ataxia is a group of disorders characterized by the degeneration of the cerebellum, particularly the Purkinje cells, responsible for motor coordination and control of the motor functions. To analyze the possibility of using bone marrow-derived mesenchymal stem cells in treating ataxia, we transplanted these cells in the cerebellum of newborn Lurcher mutant mice, a very aggressive mouse model characterized by the selective early post-natal death of Purkinje cells in the cerebellum. Two months after the surgical procedure, the treated mice presented significant improvements in the motor behavior tests performed. Histological analysis of the cerebellum indicated that the donor cells had migrated throughout the cerebellum, as well as a significant increase in the number of Purkinje cells. Many grafted stem cells were located adjacent to the Purkinje cell layer, and expressed BDNF, NT-3 or GDNF, neurotrophic factors implicated in Purkinje cell survival. Also, a small percentage of the grafted stem cells had fused with Purkinje cells. Thus, we have shown that mesenchymal stem cells are capable of integrating into the central nervous system, migrate towards the areas where neurodegenerative processes are occurring, and rescue the degenerating cells through cell trophic effects. This is an adequate and feasible model that could be translated into a therapeutic approach for clinical assays in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Jones
- Neuroscience Institute, University Miguel Hernandez (UMH-CSIC), San Juan, Alicante, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, Bae JS, Jin HK. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells 2010; 28:821-31. [PMID: 20201063 DOI: 10.1002/stem.401] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Niemann-Pick type C (NP-C) disease exhibits neuronal sphingolipid storage and cerebellar Purkinje neuron (PN) loss. Although it is clear that PNs are compromised in this disorder, it remains to be defined how neuronal lipid storage causes the PN loss. Our previous studies have shown that bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation prevent PN loss in NP-C mice. The aim of the present study was therefore to examine the neuroprotective mechanism of BM-MSCs on PNs. We found that NP-C PNs exhibit abnormal sphingolipid metabolism and defective lysosomal calcium store compared to wild-type mice PNs. BM-MSCs promote the survival of NP-C PNs by correction of the altered calcium homeostasis, restoration of the sphingolipid imbalance, as evidenced by increased sphingosine-1-phosphate levels and decreased sphingosine, and ultimately, inhibition of apoptosis pathways. These effects suggest that BM-MSCs modulate sphingolipid metabolism of endogenous NP-C PNs, resulting in their survival and improved clinical outcome in mice.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Daegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses. Stem Cells 2010; 28:329-43. [PMID: 20014009 DOI: 10.1002/stem.277] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta peptide (Abeta) and the formation of neurofibrillary tangles. Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) has been suggested as a potential therapeutic approach to prevent various neurodegenerative disorders, including AD. However, the actual therapeutic impact of BM-MSCs and their mechanism of action in AD have not yet been ascertained. The aim of this study was therefore to evaluate the therapeutic effect of BM-MSC transplantation on the neuropathology and memory deficits in amyloid precursor protein (APP) and presenilin one (PS1) double-transgenic mice. Here we show that intracerebral transplantation of BM-MSCs into APP/PS1 mice significantly reduced amyloid beta-peptide (Abeta) deposition. Interestingly, these effects were associated with restoration of defective microglial function, as evidenced by increased Abeta-degrading factors, decreased inflammatory responses, and elevation of alternatively activated microglial markers. Furthermore, APP/PS1 mice treated with BM-MSCs had decreased tau hyperphosphorylation and improved cognitive function. In conclusion, BM-MSCs can modulate immune/inflammatory responses in AD mice, ameliorate their pathophysiology, and improve the cognitive decline associated with Abeta deposits. These results demonstrate that BM-MSCs are a potential new therapeutic agent for AD.
Collapse
Affiliation(s)
- Jong Kil Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Archakova LI, Sotnikov OS, Novakovskaya SA, Solov’eva IA, Krasnova TV. Syncytial Cytoplasmic Anastomoses between Neurites in Caudal Mesenteric Ganglion Cells in Adult Cats. ACTA ACUST UNITED AC 2010; 40:447-50. [DOI: 10.1007/s11055-010-9277-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/04/2008] [Indexed: 11/30/2022]
|
36
|
Lee JM, Bae JS, Jin HK. Intracerebellar transplantation of neural stem cells into mice with neurodegeneration improves neuronal networks with functional synaptic transmission. J Vet Med Sci 2010; 72:999-1009. [PMID: 20339259 DOI: 10.1292/jvms.09-0514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that many kinds of stem cells are beneficial for patients suffering with neurodegenerative diseases. We investigated the effects of neural stem cell (NSC), Maudsley hippocampal clone 36 (MHP36) in the Niemann-Pick disease type C (NP-C) model mice. Herein, we demonstrate that MHP36 transplantation improves the neuropathological features without acute immune response and promotes neuronal networks with functional synaptic transmission. The number of surviving Purkinje neurons substantially increased in MHP36 transplanted NP-C mice compared with sham-transplanted NP-C mice. MHP36 significantly reduced both of astrocytic and microglial activations. We also found that these surviving Purkinje neurons have normal functional synapses with parallel fibers that have normal glutamate release probability in MHP36 transplanted NP-C mice. Furthermore, real-time PCR analysis revealed up-regulation of genes involved in both excitatory and inhibitory neurotransmission encoding subunits of the ionotropic glutamate receptors GluR2, 3 and GABAA receptor beta2. These findings suggest that NSC, MHP36 transplantation may have therapeutic effects in the treatment of NP-C and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji Min Lee
- Stem Cell Neuroplasticity Research Group, Department of Laboratory Animal Medicine, Kyungpook National University, Daegu, Korea
| | | | | |
Collapse
|
37
|
Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res 2010; 340:357-69. [DOI: 10.1007/s00441-010-0942-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/03/2010] [Indexed: 12/19/2022]
|
38
|
Lluis F, Cosma MP. Cell-fusion-mediated somatic-cell reprogramming: a mechanism for tissue regeneration. J Cell Physiol 2010; 223:6-13. [PMID: 20049847 DOI: 10.1002/jcp.22003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Spontaneous cell fusion between two cells of different lineages will originate new hybrid cells that have different features from the original parent cells. It has been shown that injury to a tissue can enhance spontaneous cell-cell fusion events. If one of the parent cells of a cell-cell fusion is highly plastic, such as a stem cell, and the other is a somatic cell, their fusion can be followed by reprogramming events that can generate new hybrid pluripotent cells. These, in turn, have the potential to differentiate and regenerate the damaged tissue. However, if this process is deregulated, this would provide a mechanism for cancer development.
Collapse
Affiliation(s)
- Frederic Lluis
- Telethon Institute of Genetics and Medicine and Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | |
Collapse
|
39
|
Gu H, Yue Z, Leong WS, Nugraha B, Tan LP. Control of in vitro neural differentiation of mesenchymal stem cells in 3D macroporous, cellulosic hydrogels. Regen Med 2010; 5:245-53. [DOI: 10.2217/rme.09.89] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are multipotent cells that can be induced to differentiate into multiple cell lineages, including neural cells. They are a good cell source for neural tissue-engineering applications. Cultivation of human (h)MSCs in 3D scaffolds is an effective means for the development of novel neural tissue-engineered constructs, and may serve as a promising strategy in the treatment of nerve injury. Aim: This study presents the in vitro growth and neural differentiation of hMSCs in 3D macroporous, cellulosic hydrogels. Results: The number of hMSCs cultivated in the 3D scaffolds increased by more than 14-fold after 7 days. After 2 days induction, most of the hMSCs in the 3D scaffolds were positive for nestin, a marker of neural stem cells. After 7 days induction, most of the hMSCs in the 3D scaffolds showed glial fibrillary acidic protein, tubulin or neurofilament M-positive reaction and a few hMSCs were positive for nestin. After 14 days induction, hMSCs in the 3D scaffolds could completely differentiate into neurons and glial cells. The neural differentiation of hMSCs in the 3D scaffolds was further demonstrated by real-time PCR. Conclusion: These results show that the 3D macroporous cellulosic hydrogel could be an appropriate substrate for neural differentiation of hMSCs and its possible applications in neural tissue engineering are discussed.
Collapse
Affiliation(s)
- Haigang Gu
- Division of Materials Technology, School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhilian Yue
- Institute of Biotechnology & Nanotechnology, A*STAR, The Nanos, #04-01, 31, Biopolis Way, 138669, Singapore
| | - Wen Shing Leong
- Division of Materials Technology, School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bramasta Nugraha
- Institute of Biotechnology & Nanotechnology, A*STAR, The Nanos, #04-01, 31, Biopolis Way, 138669, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, 117456, Singapore
| | - Lay Poh Tan
- Division of Materials Technology, School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
40
|
Lee H, Bae JS, Jin HK. Human umbilical cord blood-derived mesenchymal stem cells improve neurological abnormalities of Niemann-Pick type C mouse by modulation of neuroinflammatory condition. J Vet Med Sci 2010; 72:709-17. [PMID: 20124762 DOI: 10.1292/jvms.09-0495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a devastating developmental disorder with progressive and fatal neurodegeneration. We have used a mouse model of Niemann-Pick type C (NP-C) disease to evaluate the effects of direct intracerebral transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) on the progression of neurological disease in this order. Here, we show that hUCB-MSCs transplantation into NP-C mice prevents the loss of Purkinje neurons and inhibits cerebellar apoptotic cell death. Interestingly, these effects were associated with the modulation of inflammatory responses, as evidenced by increased anti-inflammatory cytokine IL-10, and reduced abnormal astrocytic activation. Furthermore, our results show that the hUCB-MSCs transplantation reduced the cholesterol accumulation level in neurons in NP-C mice compared with sham-transplanted animals. This study provides the first evidence that hUCB-MSCs can improve neurological symptoms in NP-C disease, suggesting it as a potential therapeutic agent against neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Korea
| | | | | |
Collapse
|
41
|
Sawada T, Tanaka A, Higaki K, Takamura A, Nanba E, Seto T, Maeda M, Yamaguchi E, Matsuda J, Yamano T. Intracerebral cell transplantation therapy for murine GM1 gangliosidosis. Brain Dev 2009; 31:717-24. [PMID: 19118961 DOI: 10.1016/j.braindev.2008.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/15/2008] [Accepted: 11/01/2008] [Indexed: 11/25/2022]
Abstract
We performed a cell transplantation study to treat the brain involvement in lysosomal storage diseases. We used acid beta-galactosidase knock-out mice (BKO) from C57BL/6 as recipients. To minimize immune responses, we used cells derived from transgenic mice of C57BL/6 overexpressing the normal human beta-galactosidase. Fetal brain cells (FBC), bone marrow-derived mesenchymal stem cells (MSC), and mixed FBC and MSC cells were prepared and injected into the ventricle of newborn BKO mouse brain. The mice were examined at 1, 2, 4, and 8 weeks and 6 months after injection. In each experiment, the injected cells migrated into the whole brain effectively and survived for at least 8 weeks. Decrease in ganglioside GM1 level was also observed. FBC could survive for 6 months in recipient brain. However, the number of transplanted FBC decreased. In the brains of MSC- or mixed cell-treated mice, no grafted cells could be found at 6 months. To achieve sufficient long-term effects on the brain, a method of steering the immune response away from cytotoxic responses or of inducing tolerance to the products of therapeutic genes must be developed.
Collapse
Affiliation(s)
- Tomo Sawada
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Aizman I, Tate CC, McGrogan M, Case CC. Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res 2009; 87:3198-206. [DOI: 10.1002/jnr.22146] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Burns TC, Verfaillie CM, Low WC. Stem cells for ischemic brain injury: a critical review. J Comp Neurol 2009; 515:125-44. [PMID: 19399885 DOI: 10.1002/cne.22038] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
No effective therapy is currently available to promote recovery following ischemic stroke. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury, as well as a source of trophic molecules to minimize damage and promote recovery. We undertook a detailed review of data from recent basic science and preclinical studies to investigate the potential application of endogenous and exogenous stem cell therapies for treatment of cerebral ischemia. To date, spontaneous endogenous neurogenesis has been observed in response to ischemic injury, and can be enhanced via infusion of appropriate cytokines. Exogenous stem cells from multiple sources can generate neural cells that survive and form synaptic connections after transplantation in the stroke-injured brain. Stem cells from multiple sources cells also exhibit neuroprotective properties that may ameliorate stroke deficits. In many cases, functional benefits observed are likely independent of neural differentiation, although the exact mechanisms remain poorly understood. Future studies of neuroregeneration will require the demonstration of function in endogenously born neurons following focal ischemia. Further, methods are currently lacking to demonstrate definitively the therapeutic effect of newly introduced neural cells. Increased plasticity following stroke may facilitate the functional integration of new neurons, but the loss of appropriate guidance cues and supporting architecture in the infarct cavity will likely impede the restoration of lost circuitry. Thus careful investigation of the mechanisms underlying trophic benefits will be essential. Evidence to date suggests that continued development of stem cell therapies may ultimately lead to viable treatment options for ischemic brain injury.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
44
|
Jin HK, Bae JS, Furuya S, Carter JE. Amyloid beta-derived neuroplasticity in bone marrow-derived mesenchymal stem cells is mediated by NPY and 5-HT2B receptors via ERK1/2 signalling pathways. Cell Prolif 2009; 42:571-86. [PMID: 19614678 DOI: 10.1111/j.1365-2184.2009.00625.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE In Alzheimer's disease, toxic soluble and insoluble forms of amyloid beta (Abeta) cause synaptic dysfunction and neuronal loss. Given its potential role in producing a toxic host microenvironment for transplanted donor stem cells, we investigated the interaction between Abeta and proliferation, survival, and differentiation of bone marrow-derived mesenchymal stem cells (BM-MSC) in culture. MATERIALS AND METHODS We used BM-MSC that had been isolated from mouse bone marrow and cultured, and we also assessed relevant reaction mechanisms using gene microarray, immunocytochemistry, and inhibitors of potential signalling molecules, such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)1/2 and tyrosine protein kinase. RESULTS AND CONCLUSIONS Interestingly, we found that treatment with aggregated (1-40 or 1-42) and oligomeric (1-42) Abeta promoted neuronal-like differentiation of BM-MSC without toxic effects. This was not dependent on soluble factors released from BM-MSC progeny nor solely on formation of Abeta fibrils. The effect of Abeta is mediated by G-protein coupled receptors, neuropeptide Y1 (NPY1R) and serotonin (5-hydroxytryptamine) receptor 2B, via phosphatidylinositol-3-OH kinase-dependent activation of the MAPK/ERK1/2. Our results lend support to the idea that reciprocal donor stem cell-host interactions may promote a regenerative response that can be exploited by epigenetic modulation of NPY/serotonergic gene expression, for stem cell therapy, in Alzheimer's disease.
Collapse
Affiliation(s)
- H K Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Jung-Gu, Daegu, South Korea
| | | | | | | |
Collapse
|
45
|
Jackson J, Chapon C, Jones W, Hirani E, Qassim A, Bhakoo K. In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson's disease. J Neurosci Methods 2009; 183:141-8. [PMID: 19559725 DOI: 10.1016/j.jneumeth.2009.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 12/16/2022]
Abstract
Stem cell therapy in the nervous system aims to replace the lost neurons and provide functional recovery. However, it is imperative that we understand the in vivo behaviour of these cells post-implantation. We report visualisation of iron oxide labelled bone marrow-derived stem cells (BMSCs) implanted into the striatum of hemi-parkinsonian rats by magnetic resonance imaging (MRI). Functional efficacy of the donor cells was monitored in vivo using the positron emission tomography (PET) radioligand [11C]raclopride. The cells were visible for 28 days by in vivo MRI. BMSCs provided functional recovery demonstrated by a decreased binding of [11C]raclopride. Although, histology confirmed the persistence of donor cells, no tyrosine hydroxylase positive cells were present. This suggests that BMSCs may have a limited paracrine effect and influence functional recovery. We demonstrate, using multimodal imaging, that we can not only track BMSCs but also establish their effects in a pre-clinical model of Parkinson's disease.
Collapse
Affiliation(s)
- Johanna Jackson
- Stem Cell Imaging, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
46
|
Sotnikov OS, Archakova LI, Novakovskaya SA, Solovyova IA. The problem of neuronal syncytical connection in disease. Bull Exp Biol Med 2009; 147:245-8. [PMID: 19513432 DOI: 10.1007/s10517-009-0485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membranes of neuron profiles adjacent to each other in the caudal mesenteric ganglion were examined electron microscopically during the first 3 days after crossing of the preganglionar or postganglionar branches. The contacting membranes were thinned and perforated, and neuron-to-neuron syncytial connections were forming. Multiple connections were formed between the nerve processes and terminals in the synapse. The pre- and even postsynapses were clear in pronounced perforations.
Collapse
Affiliation(s)
- O S Sotnikov
- Laboratory of Functional Morphology and Physiology of the Neuron, IP Pavlov Institute of Physiology, the Russian Academy of Sciences, St Petersburg, Russia.
| | | | | | | |
Collapse
|
47
|
Sotnikov OS, Kamardin NN, Rybakova GI, Solov’eva IA. Cytoplasmic syncytial interneuronal connection in molluscs. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Zong ZW, Cheng TM, Su YP, Ran XZ, Shen Y, Li N, Ai GP, Dong SW, Xu H. Recruitment of transplanted dermal multipotent stem cells to sites of injury in rats with combined radiation and wound injury by interaction of SDF-1 and CXCR4. Radiat Res 2009; 170:444-50. [PMID: 19024651 DOI: 10.1667/rr0744.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Systemic transplantation of dermal multipotent stem cells has been shown to accelerate both hematopoietic recovery and wound healing in rats with combined radiation and wound injury. In the present study, we explored the mechanisms governing the recruitment of dermal multipotent stem cells to the sites of injury in rats with combined injury. Male dermal multipotent stem cells were transplanted into female rats, and using quantitative real-time PCR for the sex-determining region of Y chromosome, it was found that the amounts of dermal multipotent stem cells in irradiated bone marrow and wounded skin were far greater than those in normal bone marrow and skin (P < 0.01). However, incubation of dermal multipotent stem cells with AMD3100 before transplantation, which specifically blocks binding of stromal cell-derived factor 1 (SDF-1) to its receptor CXCR4, diminished the recruitment of dermal multipotent stem cells to the irradiated bone marrow and wounded skin by 58 +/- 4% and 60 +/- 4%, respectively (P < 0.05). In addition, it was confirmed that the expression of SDF-1 in irradiated bone marrow and wounded skin was up-regulated compared to that in their normal counterparts, and in vitro analysis revealed that irradiated bone marrow and wounded skin extracts had a strong chemotactic effect on dermal multipotent stem cells but that the effect decreased significantly when dermal multipotent stem cells were preincubated with AMD3100 (P < 0.05). These data suggest that transplanted dermal multipotent stem cells were recruited more frequently to the irradiated bone marrow and wounded skin than normal bone marrow and skin and that the interactions of SDF-1 and CXCR4 played a crucial role in this process.
Collapse
Affiliation(s)
- Zhao-Wen Zong
- Division 2, Department of Traumatology, Daping Hospital, Third Military Medical University, ChongQing, 400042, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee JK, Jin HK, Bae JS. Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer's disease mouse model. Neurosci Lett 2008; 450:136-41. [PMID: 19084047 DOI: 10.1016/j.neulet.2008.11.059] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 12/11/2022]
Abstract
The therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) has recently been explored in various pathological conditions of the central nervous system (CNS). However, the application of BM-MSCs in acutely induced Alzheimer's disease (AD) has not yet been reported. Herein the feasibility of using the BM-MSCs, as a therapeutic agent for AD has been tested. To assess this possibility, an acutely induced AD model induced by injecting amyloid-beta (Abeta) into the dentate gyrus (DG) of hippocampus of C57BL/6 mice was used. Intracerebral transplantation of BM-MSCs into the brain of an induced AD model reduced their Abeta levels when compared to sham-transplanted animals. The diminution of Abeta deposits was accompanied by the activation of microglia. In addition, the activated microglia was located near the Abeta deposits, and their morphology was changed from ramified to ameboid as a sign of microglial phagocytosis. This study provides evidence that BM-MSCs can promote the reduction of Abeta through the microglial activation in this acutely induced AD brain, suggesting a potential therapeutic agent against AD.
Collapse
Affiliation(s)
- Jong Kil Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, South Korea
| | | | | |
Collapse
|
50
|
Syncytial coupling of neurons in tissue culture and early ontogenesis. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2008; 38:323-31. [PMID: 18401721 DOI: 10.1007/s11055-008-0045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Indexed: 12/13/2022]
Abstract
Computerized time-lapse video recording was used to detect the process of formation of syncytial couplings between the processes of different neurons in dissociated neuron cultures. These studies showed that once the processes of one neuron had formed connections with another neuron, death of the cell body (its trophic center) was not followed by Wallerian degeneration. Translocation of cytoplasmic varicosities along the branches of one neuron to another was observed over periods of several hours. Electron microscopic studies of the nerve processes of cells in the intramural intestinal plexus in the early postnatal period demonstrated all the transitional states from fusion and perforation of the membranes of contacting dendrites to complete fusion of the neuroplasm of processes with formation of residual membranous structures at the location of the former intercellular contact.
Collapse
|