1
|
Ji J, Xiong C, Yang H, Jiang Z, Zhang Y, Wang X, Yu T, Li Q, Zhu S, Zhou Y. The aryl hydrocarbon receptor: A crucial mediator in ocular disease pathogenesis and therapeutic target. Exp Eye Res 2024; 249:110144. [PMID: 39486499 DOI: 10.1016/j.exer.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a pivotal nuclear receptor involved in mediating cellular responses to a wide range of environmental pollutants and endogenous ligands. AHR plays a central role in regulating essential physiological processes, including xenobiotic metabolism, immune response modulation, cell cycle control, tumorigenesis, and developmental events. Recent studies have identified AHR as a critical mediator and a potential therapeutic target in the pathogenesis of ocular diseases. This review provides a thorough analysis of the various functions of AHR signalling in the ocular environment, with a specific emphasis on its effects on the retina, retinal pigment epithelium (RPE), choroid, and cornea. We provide a detailed discussion on the molecular mechanisms through which AHR integrates environmental and endogenous signals, influencing the development and progression of age-related macular degeneration (AMD), retinitis pigmentosa, uveitis, and other major ocular disorders. Furthermore, we evaluate the therapeutic potential of modulating AHR activity through novel ligands and agonists as a strategy for treating eye diseases. Understanding the molecular mechanisms of AHR in ocular tissues may facilitate the development of AHR-targeted therapies, which is crucial for addressing the pressing clinical demand for novel treatment strategies in ocular diseases.
Collapse
Affiliation(s)
- Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chanyu Xiong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Liu Y, Zong X, Cao W, Zhang W, Zhang N, Yang N. Gene Therapy for Retinitis Pigmentosa: Current Challenges and New Progress. Biomolecules 2024; 14:903. [PMID: 39199291 PMCID: PMC11352491 DOI: 10.3390/biom14080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Retinitis pigmentosa (RP) poses a significant threat to eye health worldwide, with prevalence rates of 1 in 5000 worldwide. This genetically diverse retinopathy is characterized by the loss of photoreceptor cells and atrophy of the retinal pigment epithelium. Despite the involvement of more than 3000 mutations across approximately 90 genes in its onset, finding an effective treatment has been challenging for a considerable time. However, advancements in scientific research, especially in gene therapy, are significantly expanding treatment options for this most prevalent inherited eye disease, with the discovery of new compounds, gene-editing techniques, and gene loci offering hope for more effective treatments. Gene therapy, a promising technology, utilizes viral or non-viral vectors to correct genetic defects by either replacing or silencing disease-causing genes, potentially leading to complete recovery. In this review, we primarily focus on the latest applications of gene editing research in RP. We delve into the most prevalent genes associated with RP and discuss advancements in genome-editing strategies currently employed to correct various disease-causing mutations.
Collapse
Affiliation(s)
| | | | | | | | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| |
Collapse
|
3
|
Miyagishima KJ, Qiao F, Stasheff SF, Nadal-Nicolás FM. Visual Deficits and Diagnostic and Therapeutic Strategies for Neurofibromatosis Type 1: Bridging Science and Patient-Centered Care. Vision (Basel) 2024; 8:31. [PMID: 38804352 PMCID: PMC11130890 DOI: 10.3390/vision8020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an inherited autosomal dominant disorder primarily affecting children and adolescents characterized by multisystemic clinical manifestations. Mutations in neurofibromin, the protein encoded by the Nf1 tumor suppressor gene, result in dysregulation of the RAS/MAPK pathway leading to uncontrolled cell growth and migration. Neurofibromin is highly expressed in several cell lineages including melanocytes, glial cells, neurons, and Schwann cells. Individuals with NF1 possess a genetic predisposition to central nervous system neoplasms, particularly gliomas affecting the visual pathway, known as optic pathway gliomas (OPGs). While OPGs are typically asymptomatic and benign, they can induce visual impairment in some patients. This review provides insight into the spectrum and visual outcomes of NF1, current diagnostic techniques and therapeutic interventions, and explores the influence of NF1-OPGS on visual abnormalities. We focus on recent advancements in preclinical animal models to elucidate the underlying mechanisms of NF1 pathology and therapies targeting NF1-OPGs. Overall, our review highlights the involvement of retinal ganglion cell dysfunction and degeneration in NF1 disease, and the need for further research to transform scientific laboratory discoveries to improved patient outcomes.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Fengyu Qiao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Steven F. Stasheff
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
- Center for Neuroscience and Behavioral Medicine, Gilbert Neurofibromatosis Institute, Children’s National Health System, Washington, DC 20010, USA
- Neurology Department, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Francisco M. Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| |
Collapse
|
4
|
Liu Y, Tai J, Yu C, Xu D, Xiao D, Pang J. Unlocking therapeutic potential: dual gene therapy for ameliorating the disease phenotypes in a mouse model of RPE65 Leber congenital amaurosis. Front Med (Lausanne) 2024; 10:1291795. [PMID: 38264046 PMCID: PMC10803578 DOI: 10.3389/fmed.2023.1291795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Leber congenital amaurosis (LCA) is the most common genetic cause of congenital visual impairment in infants and children. Patients with LCA who harbor RPE65 mutations exhibit a deficiency in photoreceptor rhodopsin, leading to severe night blindness and visual impairment following birth. Since either gene replacement therapy or anti-apoptosis therapy alone cannot maintain both functional and morphological normality for a long time in the animal model, we propose a robust treatment strategy, that is, gene replacement therapy combined with anti-apoptotic therapy to protect photoreceptors from further degeneration while compensating for lost RPE65 function. Here, rd12 mice were injected subretinally at postnatal day 14 with four vector administrations, respectively. At 6 months after treatment, it was discovered that injection of three vectors, AAV8 (Y733F)-CBA-hRPE65, AAV8(Y733F)-CBA-hRPE65-BCL-2-L10 and mixture of half-dose AAV8(Y733F)-CBA-hRPE65 and half-dose AAV8 (Y733F)-CBA-BCL-2-L10, could partially restore the visual function of rd12 mice. Meanwhile, these treated eyes also exhibited a thicker outer nuclear layer (ONL) structure. However, despite the fact that the eyes of rd12 mice injected with the AAV8 (Y733F)-CBA-BCL-2-L10 vector displayed a slightly thicker ONL structure compared to untreated eyes, the visual function of the treated eyes did not recover. Continuing the observation period to 12 months after treatment, we found that compared to rd12 mice at 6-month post-treatment, rd12 mice injected with AAV8 (Y733F)-CBA-hRPE65 or mixture of half-dose AAV8(Y733F)-CBA-hRPE65 and half-dose AAV8 (Y733F)-CBA-BCL-2-L10 exhibited varying degrees of decline in both visual function and ONL thickness. However, in the case of rd12 mice injected with the AAV8(Y733F)-CBA-hRPE65-BCL-2-L10 vector, the ONL thickness remains consistent at both 6 and 12 months after treatment. These mice continued to maintain a relatively strong visual function and showed restoration in the levels of RPE65 and Rhodopsin protein expression. Our findings illustrate that early postnatal treatment with AAV vectors containing both the hRPE65 gene and the Bcl-2L10 anti-apoptotic gene provide enhanced and sustained retinal protection.
Collapse
Affiliation(s)
- Yanbo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjie Tai
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Chaofeng Yu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Dan Xu
- Shenyang Weijing Biotechnology Co., Ltd., Shenyang, China
| | - Dan Xiao
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Jijing Pang
- Shenyang Weijing Biotechnology Co., Ltd., Shenyang, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- Shenyang He Eye Specialist Hospital, Shenyang, China
- Institute of Innovation Research for Precision Medical Treatment, He University, Shenyang, China
| |
Collapse
|
5
|
Hernández-Bazán S, Mata-Espinosa D, Ramos-Espinosa O, Lozano-Ordaz V, Barrios-Payán J, López-Casillas F, Hernández-Pando R. Adenoviral Vector Codifying for TNF as a Co-Adjuvant Therapy against Multi-Drug-Resistant Tuberculosis. Microorganisms 2023; 11:2934. [PMID: 38138078 PMCID: PMC10745769 DOI: 10.3390/microorganisms11122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Mycobacterium tuberculosis is the main causal agent of pulmonary tuberculosis (TB); the treatment of this disease is long and involves a mix of at least four different antibiotics that frequently lead to abandonment, favoring the surge of drug-resistant mycobacteria (MDR-TB), whose treatment becomes more aggressive, being longer and more toxic. Thus, the search for novel strategies for treatment that improves time or efficiency is of relevance. In this work, we used a murine model of pulmonary TB produced by the MDR-TB strain to test the efficiency of gene therapy with adenoviral vectors codifying TNF (AdTNF), a pro-inflammatory cytokine that has protective functions in TB by inducing apoptosis, granuloma formation and expression of other Th1-like cytokines. When compared to the control group that received an adenoviral vector that codifies for the green fluorescent protein (AdGFP), a single dose of AdTNF at the chronic active stage of the disease produced total survival, decreasing bacterial load and tissue damage (pneumonia), which correlated with an increase in cells expressing IFN-γ, iNOS and TNF in pneumonic areas and larger granulomas that efficiently contain and eliminate mycobacteria. Second-line antibiotic treatment against MDR-TB plus AdTNF gene therapy reduced bacterial load faster within a week of treatment compared to empty vector plus antibiotics or antibiotics alone, suggesting that AdTNF is a new potential type of treatment against MDR-TB that can shorten second-line chemotherapy but which requires further experimentation in other animal models (non-human primates) that develop a more similar disease to human pulmonary TB.
Collapse
Affiliation(s)
- Sujhey Hernández-Bazán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Octavio Ramos-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Vasti Lozano-Ordaz
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| | - Fernando López-Casillas
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico;
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.H.-B.); (D.M.-E.); (O.R.-E.); (V.L.-O.); (J.B.-P.)
| |
Collapse
|
6
|
Kong L, Chu G, Ma W, Liang J, Liu D, Liu Q, Wei X, Jia S, Gu H, He Y, Luo W, Cao S, Zhou X, He R, Yuan Z. Mutations in VWA8 cause autosomal-dominant retinitis pigmentosa via aberrant mitophagy activation. J Med Genet 2023; 60:939-950. [PMID: 37012052 DOI: 10.1136/jmg-2022-108888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Although retinitis pigmentosa (RP) is the most common type of hereditary retinal dystrophy, approximately 25%-45% of cases remain without a molecular diagnosis. von Willebrand factor A domain containing 8 (VWA8) encodes a mitochondrial matrix-targeted protein; its molecular function and pathogenic mechanism in RP remain unexplained. METHODS Family members of patients with RP underwent ophthalmic examinations, and peripheral blood samples were collected for exome sequencing, ophthalmic targeted sequencing panel and Sanger sequencing. The importance of VWA8 in retinal development was demonstrated by a zebrafish knockdown model and cellular and molecular analysis. RESULTS This study recruited a Chinese family of 24 individuals with autosomal-dominant RP and conducted detailed ophthalmic examinations. Exome sequencing analysis of six patients revealed heterozygous variants in VWA8, namely, the missense variant c.3070G>A (p.Gly1024Arg) and nonsense c.4558C>T (p.Arg1520Ter). Furthermore, VWA8 expression was significantly decreased both at the mRNA and protein levels. The phenotypes of zebrafish with VWA8 knockdown are similar to those of clinical individuals harbouring VWA8 variants. Moreover, VWA8 defects led to severe mitochondrial damage, resulting in excessive mitophagy and the activation of apoptosis. CONCLUSIONS VWA8 plays a significant role in retinal development and visual function. This finding may provide new insights into RP pathogenesis and potential genes for molecular diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Linghui Kong
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guoming Chu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiajian Liang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiushi Liu
- Department of Ophthalmology, Fourth People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Gautier B, Meneux L, Feret N, Audrain C, Hudecek L, Kuony A, Bourdon A, Le Guiner C, Blouin V, Delettre C, Michon F. AAV2/9-mediated gene transfer into murine lacrimal gland leads to a long-term targeted tear film modification. Mol Ther Methods Clin Dev 2022; 27:1-16. [PMID: 36156877 PMCID: PMC9463184 DOI: 10.1016/j.omtm.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
Corneal blindness is the fourth leading cause of blindness worldwide. Since corneal epithelium is constantly renewed, non-integrative gene transfer cannot be used to treat corneal diseases. In many of these diseases, the tear film is defective. Tears are a complex biological fluid secreted by the lacrimal apparatus. Their composition is modulated according to the context. After a corneal wound, the lacrimal gland secretes reflex tears, which contain growth factors supporting the wound healing process. In various pathological contexts, the tear composition can support neither corneal homeostasis nor wound healing. Here, we propose to use the lacrimal gland as bioreactor to produce and secrete specific factors supporting corneal physiology. In this study, we use an AAV2/9-mediated gene transfer to supplement the tear film. First, we demonstrate that a single injection of AAV2/9 is sufficient to transduce all epithelial cell types of the lacrimal gland efficiently and widely. Second, we detect no adverse effect after AAV2/9-mediated nerve growth factor expression in the lacrimal gland. Only a transitory increase in tear flow is measured. Remarkably, AAV2/9 induces an important and long-lasting secretion of this growth factor in the tear film. Altogether, our findings provide a new clinically applicable approach to tackle corneal blindness.
Collapse
Affiliation(s)
- Benoit Gautier
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Corresponding author Benoit Gautier, Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| | - Léna Meneux
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Nadège Feret
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Christine Audrain
- TarGeT, Nantes University, INSERM UMR 1089, CHU Nantes, Nantes, France
| | - Laetitia Hudecek
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- MRI, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alison Kuony
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Cell Adhesion and Mechanics Lab, Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Audrey Bourdon
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | - Véronique Blouin
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Cécile Delettre
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Frédéric Michon
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Corresponding author Frédéric Michon, Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
8
|
Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, Li Y, Huang W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics 2022; 14:2682. [PMID: 36559175 PMCID: PMC9787894 DOI: 10.3390/pharmaceutics14122682] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Messenger RNA (mRNA), which is composed of ribonucleotides that carry genetic information and direct protein synthesis, is transcribed from a strand of DNA as a template. On this basis, mRNA technology can take advantage of the body's own translation system to express proteins with multiple functions for the treatment of various diseases. Due to the advancement of mRNA synthesis and purification, modification and sequence optimization technologies, and the emerging lipid nanomaterials and other delivery systems, mRNA therapeutic regimens are becoming clinically feasible and exhibit significant reliability in mRNA stability, translation efficiency, and controlled immunogenicity. Lipid nanoparticles (LNPs), currently the leading non-viral delivery vehicles, have made many exciting advances in clinical translation as part of the COVID-19 vaccines and therefore have the potential to accelerate the clinical translation of gene drugs. Additionally, due to their small size, biocompatibility, and biodegradability, LNPs can effectively deliver nucleic acids into cells, which is particularly important for the current mRNA regimens. Therefore, the cutting-edge LNP@mRNA regimens hold great promise for cancer vaccines, infectious disease prevention, protein replacement therapy, gene editing, and rare disease treatment. To shed more lights on LNP@mRNA, this paper mainly discusses the rational of choosing LNPs as the non-viral vectors to deliver mRNA, the general rules for mRNA optimization and LNP preparation, and the various parameters affecting the delivery efficiency of LNP@mRNA, and finally summarizes the current research status as well as the current challenges. The latest research progress of LNPs in the treatment of other diseases such as oncological, cardiovascular, and infectious diseases is also given. Finally, the future applications and perspectives for LNP@mRNA are generally introduced.
Collapse
Affiliation(s)
- Lei Yang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinghui Zhao
- Beijing Bio-Bank Co., Ltd., Beijing 100107, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1477-1507. [PMID: 36107200 PMCID: PMC9630211 DOI: 10.1007/s00210-022-02287-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Blindness affects more than 60 million people worldwide. Retinal disorders, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the leading causes of blindness. Finding means to optimize local and sustained delivery of drugs or genes to the eye and retina is one goal to advance the development of new therapeutics. Despite the ease of accessibility of delivering drugs via the ocular surface, the delivery of drugs to the retina is still challenging due to anatomic and physiologic barriers. Designing a suitable delivery platform to overcome these barriers should enhance drug bioavailability and provide a safe, controlled, and sustained release. Current inventions for posterior segment treatments include intravitreal implants and subretinal viral gene delivery that satisfy these criteria. Several other novel drug delivery technologies, including nanoparticles, micelles, dendrimers, microneedles, liposomes, and nanowires, are now being widely studied for posterior segment drug delivery, and extensive research on gene delivery using siRNA, mRNA, or aptamers is also on the rise. This review discusses the current state of retinal drug/gene delivery and highlights future therapeutic opportunities.
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Fang Chen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
10
|
Hernández-Bazán S, Mata-Espinosa D, Lozano-Ordaz V, Ramos-Espinosa O, Barrios-Payán J, López-Casillas F, Hernández-Pando R. Immune regulatory effect of osteopontin gene therapy in a murine model of multi-drug resistant pulmonary tuberculosis. Hum Gene Ther 2022; 33:1037-1051. [PMID: 35615876 DOI: 10.1089/hum.2022.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tuberculosis (TB) has been for many years a major public health problem since treatment is long and sometimes ineffective favoring the increase of multi-drug-resistant mycobacteria (MDR). Gene therapy is a novel and effective tool to regulate immune responses. In this study we evaluated the therapeutic effect of an adenoviral vector codifying osteopontin (AdOPN), a molecule known for their roles to favour Th1 and Th17 type-cytokine expression which are crucial in TB containment. A single-dose of AdOPN administration in BALB/c mice suffering late progressive pulmonary MDR-TB, produced significant lower bacterial load and pneumonia, due to higher expression of IFN-γ, IL-12 and IL-17 in coexistence with increase of granulomas in number and size, resulting in higher survival, in contrast with mice treated with the control adenovirus that codify the green fluorescent protein (AdGFP). Combined therapy of AdOPN with a regimen of 2nd line antibiotics produced a better control of bacterial load in lung during the first days of treatment, suggesting that AdOPN can shorten chemotherapy. Taken together, gene therapy with AdOPN leads to higher immune responses against TB infection, resulting in a new potential treatment against pulmonary TB that can co-adjuvant chemotherapy.
Collapse
Affiliation(s)
- Sujhey Hernández-Bazán
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Dulce Mata-Espinosa
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Vasti Lozano-Ordaz
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Octavio Ramos-Espinosa
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Jorge Barrios-Payán
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| | - Fernando López-Casillas
- Universidad Nacional Autónoma de México Instituto de Fisiología Celular, 61739, Department of Cellular and Developmental Biology, Coyoacán, CDMX, Mexico;
| | - Rogelio Hernández-Pando
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, 42559, Department of Pathology, Experimental Pathology Section, Tlalpan, CDMX, Mexico;
| |
Collapse
|
11
|
Vats A, Xi Y, Feng B, Clinger OD, St Leger AJ, Liu X, Ghosh A, Dermond CD, Lathrop KL, Tochtrop GP, Picaud S, Chen Y. Non-retinoid chaperones improve rhodopsin homeostasis in a mouse model of retinitis pigmentosa. JCI Insight 2022; 7:153717. [PMID: 35472194 PMCID: PMC9220944 DOI: 10.1172/jci.insight.153717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Rhodopsin-associated (RHO-associated) retinitis pigmentosa (RP) is a progressive retinal disease that currently has no cure. RHO protein misfolding leads to disturbed proteostasis and the death of rod photoreceptors, resulting in decreased vision. We previously identified nonretinoid chaperones of RHO, including YC-001 and F5257-0462, by small-molecule high-throughput screening. Here, we profile the chaperone activities of these molecules toward the cell-surface level of 27 RP-causing human RHO mutants in NIH3T3 cells. Furthermore, using retinal explant culture, we show that YC-001 improves retinal proteostasis by supporting RHO homeostasis in RhoP23H/+ mouse retinae, which results in thicker outer nuclear layers (ONL), indicating delayed photoreceptor degeneration. Interestingly, YC-001 ameliorated retinal immune responses and reduced the number of microglia/macrophages in the RhoP23H/+ retinal explants. Similarly, F5257-0462 also protects photoreceptors in RhoP23H/+ retinal explants. In vivo, intravitreal injection of YC-001 or F5257-0462 microparticles in PBS shows that F5257-0462 has a higher efficacy in preserving photoreceptor function and delaying photoreceptor death in RhoP23H/+ mice. Collectively, we provide proof of principle that nonretinoid chaperones are promising drug candidates in treating RHO-associated RP.
Collapse
Affiliation(s)
- Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Yibo Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Archisha Ghosh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Chase D Dermond
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, United States of America
| | - Serge Picaud
- Institut de la Vision, Sorbonne Université, Paris, France
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
12
|
Michalakis S, Gerhardt M, Rudolph G, Priglinger S, Priglinger C. Achromatopsia: Genetics and Gene Therapy. Mol Diagn Ther 2022; 26:51-59. [PMID: 34860352 PMCID: PMC8766373 DOI: 10.1007/s40291-021-00565-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/02/2023]
Abstract
Achromatopsia (ACHM), also known as rod monochromatism or total color blindness, is an autosomal recessively inherited retinal disorder that affects the cones of the retina, the type of photoreceptors responsible for high-acuity daylight vision. ACHM is caused by pathogenic variants in one of six cone photoreceptor-expressed genes. These mutations result in a functional loss and a slow progressive degeneration of cone photoreceptors. The loss of cone photoreceptor function manifests at birth or early in childhood and results in decreased visual acuity, lack of color discrimination, abnormal intolerance to light (photophobia), and rapid involuntary eye movement (nystagmus). Up to 90% of patients with ACHM carry mutations in CNGA3 or CNGB3, which are the genes encoding the alpha and beta subunits of the cone cyclic nucleotide-gated (CNG) channel, respectively. No authorized therapy for ACHM exists, but research activities have intensified over the past decade and have led to several preclinical gene therapy studies that have shown functional and morphological improvements in animal models of ACHM. These encouraging preclinical data helped advance multiple gene therapy programs for CNGA3- and CNGB3-linked ACHM into the clinical phase. Here, we provide an overview of the genetic and molecular basis of ACHM, summarize the gene therapy-related research activities, and provide an outlook for their clinical application.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany.
| | - Maximilian Gerhardt
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Günther Rudolph
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| |
Collapse
|
13
|
Kattar A, Concheiro A, Alvarez-Lorenzo C. Diabetic eye: associated diseases, drugs in clinic, and role of self-assembled carriers in topical treatment. Expert Opin Drug Deliv 2021; 18:1589-1607. [PMID: 34253138 DOI: 10.1080/17425247.2021.1953466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Diabetes is a pandemic disease that causes relevant ocular pathologies. Diabetic retinopathy, macular edema, cataracts, glaucoma, or keratopathy strongly impact the quality of life of the patients. In addition to glycemic control, intense research is devoted to finding more efficient ocular drugs and improved delivery systems that can overcome eye barriers. Areas covered: The aim of this review is to revisit first the role of diabetes in the development of chronic eye diseases. Then, commercially available drugs and new candidates in clinical trials are tackled together with the pros and cons of their administration routes. Subsequent sections deal with self-assembled drug carriers suitable for eye instillation combining patient-friendly administration with high ocular bioavailability. Performance of topically administered polymeric micelles, liposomes, and niosomes for the management of diabetic eye diseases is analyzed in the light of ex vivo and in vivo results and outcomes of clinical trials. Expert opinion: Self-assembled carriers are being shown useful for efficient delivery of not only a variety of small drugs but also macromolecules (e.g. antibodies) and genes. Successful design of drug carriers may offer alternatives to intraocular injections and improve the treatment of both anterior and posterior segments diabetic eye diseases.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Development of a stable lyophilized adeno-associated virus gene therapy formulation. Int J Pharm 2021; 606:120912. [PMID: 34298099 DOI: 10.1016/j.ijpharm.2021.120912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022]
Abstract
Adeno-associated viruses (AAV) are among the most actively investigated vectors for gene therapy. Supply of early clinical studies with frozen drug product (DP) can accelerate timelines and minimize degradation risks. In the long-term, logistical challenges of frozen DP may limit patient access. In this work, we developed a lyophilized (freeze-dried) formulation of AAV. The mass concentration of AAV is typically low, and AAV also requires a minimum ionic strength to inhibit aggregation. These factors result in a low collapse temperature, which is limiting to lyophilization. Mannitol crystallization was found to cause extensive degradation and potency loss of AAV during the freezing step. With further development, we determined that AAV could be lyophilized in a sucrose and citrate formulation with a more desirable high glass transition temperature of the dried cake. An optimal residual moisture range (1-3%) was found to be critical to maintaining AAV8 stability. Glycerol was found to protect AAV8 from over-drying by preventing capsid damage and genome DNA release. A lyophilized formulation was identified that maintained potency for 24 months at 2-8 °C, indicating the feasibility of a dried formulation for AAV gene therapy.
Collapse
|
15
|
Rieser R, Koch J, Faccioli G, Richter K, Menzen T, Biel M, Winter G, Michalakis S. Comparison of Different Liquid Chromatography-Based Purification Strategies for Adeno-Associated Virus Vectors. Pharmaceutics 2021; 13:pharmaceutics13050748. [PMID: 34070226 PMCID: PMC8158740 DOI: 10.3390/pharmaceutics13050748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have evolved as one of the most promising technologies for gene therapy due to their good safety profile, high transduction efficacy, and long-term gene expression in nondividing cells. rAAV-based gene therapy holds great promise for treating genetic disorders like inherited blindness, muscular atrophy, or bleeding disorders. There is a high demand for efficient and scalable production and purification methods for rAAVs. This is particularly true for the downstream purification methods. The current standard methods are based on multiple steps of gradient ultracentrifugation, which allow for the purification and enrichment of full rAAV particles, but the scale up of this method is challenging. Here, we explored fast, scalable, and universal liquid chromatography-based strategies for the purification of rAAVs. In contrast to the hydrophobic interaction chromatography (HIC), where a substantial amount of AAV was lost, the cation exchange chromatography (CEX) was performed robustly for multiple tested serotypes and resulted in a mixture of full and empty rAAVs with a good purity profile. For the used affinity chromatography (AC), a serotype dependence was observed. Anion exchange chromatography (AEX) worked well for the AAV8 serotype and achieved high levels of purification and a baseline separation of full and empty rAAVs. Depending on the AAV serotype, a combination of CEX and AEX or AC and AEX is recommended and holds promise for future translational projects that require highly pure and full particle-enriched rAAVs.
Collapse
Affiliation(s)
- Ruth Rieser
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
| | - Johanna Koch
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
| | - Greta Faccioli
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
| | - Klaus Richter
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; (K.R.); (T.M.)
| | - Tim Menzen
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; (K.R.); (T.M.)
| | - Martin Biel
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
| | - Gerhard Winter
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
- Correspondence: (G.W.); (S.M.)
| | - Stylianos Michalakis
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany; (R.R.); (J.K.); (G.F.); (M.B.)
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany
- Correspondence: (G.W.); (S.M.)
| |
Collapse
|
16
|
Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, Bartoe JT, Siedlecki J, Gerhardt MJ, Babutzka S, Bogedein J, Wagner JE, Priglinger SG, Biel M, Petersen‐Jones SM, Büning H, Michalakis S. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med 2021; 13:e13392. [PMID: 33616280 PMCID: PMC8033523 DOI: 10.15252/emmm.202013392] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy using recombinant adeno-associated virus (rAAV) vectors to treat blinding retinal dystrophies has become clinical reality. Therapeutically impactful targeting of photoreceptors still relies on subretinal vector delivery, which detaches the retina and harbours substantial risks of collateral damage, often without achieving widespread photoreceptor transduction. Herein, we report the development of novel engineered rAAV vectors that enable efficient targeting of photoreceptors via less invasive intravitreal administration. A unique in vivo selection procedure was performed, where an AAV2-based peptide-display library was intravenously administered in mice, followed by isolation of vector DNA from target cells after only 24 h. This stringent selection yielded novel vectors, termed AAV2.GL and AAV2.NN, which mediate widespread and high-level retinal transduction after intravitreal injection in mice, dogs and non-human primates. Importantly, both vectors efficiently transduce photoreceptors in human retinal explant cultures. As proof-of-concept, intravitreal Cnga3 delivery using AAV2.GL lead to cone-specific expression of Cnga3 protein and rescued photopic cone responses in the Cnga3-/- mouse model of achromatopsia. These novel rAAV vectors expand the clinical applicability of gene therapy for blinding human retinal dystrophies.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Christian Schön
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Laurence M Occelli
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMIUSA
| | - Axel Rossi
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
| | - Nadja Meumann
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Ryan F Boyd
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Joshua T Bartoe
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Jakob Siedlecki
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Sabrina Babutzka
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Jacqueline Bogedein
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Johanna E Wagner
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Martin Biel
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Hildegard Büning
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Stylianos Michalakis
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|
17
|
Michalakis S, Gerhardt M, Rudolph G, Priglinger S, Priglinger C. Gene Therapy for Inherited Retinal Disorders: Update on Clinical Trials. Klin Monbl Augenheilkd 2021; 238:272-281. [PMID: 33784790 DOI: 10.1055/a-1384-0818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Within the last decade, continuous advances in molecular biological techniques have made it possible to develop causative therapies for inherited retinal disorders (IRDs). Some of the most promising options are gene-specific approaches using adeno-associated virus-based vectors to express a healthy copy of the disease-causing gene in affected cells of a patient. This concept of gene supplementation therapy is already advocated for the treatment of retinal dystrophy in RPE65-linked Leber's congenital amaurosis (LCA) patients. While the concept of gene supplementation therapy can be applied to treat autosomal recessive and X-linked forms of IRD, it is not sufficient for autosomal dominant IRDs, where the pathogenic gene product needs to be removed. Therefore, for autosomal dominant IRDs, alternative approaches that utilize CRISPR/Cas9 or antisense oligonucleotides to edit or deplete the mutant allele or gene product are needed. In recent years, research retinal gene therapy has intensified and promising approaches for various forms of IRD are currently in preclinical and clinical development. This review article provides an overview of current clinical trials for the treatment of IRDs.
Collapse
Affiliation(s)
| | - Maximilian Gerhardt
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | - Günter Rudolph
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | | | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| |
Collapse
|
18
|
Beryozkin A, Matsevich C, Obolensky A, Kostic C, Arsenijevic Y, Wolfrum U, Banin E, Sharon D. A new mouse model for retinal degeneration due to Fam161a deficiency. Sci Rep 2021; 11:2030. [PMID: 33479377 PMCID: PMC7820261 DOI: 10.1038/s41598-021-81414-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
FAM161A mutations are the most common cause of inherited retinal degenerations in Israel. We generated a knockout (KO) mouse model, Fam161atm1b/tm1b, lacking the major exon #3 which was replaced by a construct that include LacZ under the expression of the Fam161a promoter. LacZ staining was evident in ganglion cells, inner and outer nuclear layers and inner and outer-segments of photoreceptors in KO mice. No immunofluorescence staining of Fam161a was evident in the KO retina. Visual acuity and electroretinographic (ERG) responses showed a gradual decrease between the ages of 1 and 8 months. Optical coherence tomography (OCT) showed thinning of the whole retina. Hypoautofluorescence and hyperautofluorescence pigments was observed in retinas of older mice. Histological analysis revealed a progressive degeneration of photoreceptors along time and high-resolution transmission electron microscopy (TEM) analysis showed that photoreceptor outer segment disks were disorganized in a perpendicular orientation and outer segment base was wider and shorter than in WT mice. Molecular degenerative markers, such as microglia and CALPAIN-2, appear already in a 1-month old KO retina. These results indicate that a homozygous Fam161a frameshift mutation affects retinal function and causes retinal degeneration. This model will be used for gene therapy treatment in the future.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Chen Matsevich
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Corinne Kostic
- Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, 1004, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, 1004, Lausanne, Switzerland
| | - Uwe Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
19
|
Tornabene P, Trapani I, Minopoli R, Centrulo M, Lupo M, de Simone S, Tiberi P, Dell'Aquila F, Marrocco E, Iodice C, Iuliano A, Gesualdo C, Rossi S, Giaquinto L, Albert S, Hoyng CB, Polishchuk E, Cremers FPM, Surace EM, Simonelli F, De Matteis MA, Polishchuk R, Auricchio A. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci Transl Med 2020; 11:11/492/eaav4523. [PMID: 31092694 DOI: 10.1126/scitranslmed.aav4523] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 04/04/2019] [Indexed: 12/26/2022]
Abstract
Retinal gene therapy with adeno-associated viral (AAV) vectors holds promises for treating inherited and noninherited diseases of the eye. Although clinical data suggest that retinal gene therapy is safe and effective, delivery of large genes is hindered by the limited AAV cargo capacity. Protein trans-splicing mediated by split inteins is used by single-cell organisms to reconstitute proteins. Here, we show that delivery of multiple AAV vectors each encoding one of the fragments of target proteins flanked by short split inteins results in protein trans-splicing and full-length protein reconstitution in the retina of mice and pigs and in human retinal organoids. The reconstitution of large therapeutic proteins using this approach improved the phenotype of two mouse models of inherited retinal diseases. Our data support the use of split intein-mediated protein trans-splicing in combination with AAV subretinal delivery for gene therapy of inherited blindness due to mutations in large genes.
Collapse
Affiliation(s)
- Patrizia Tornabene
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131 Naples, Italy
| | - Renato Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Miriam Centrulo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Mariangela Lupo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Sonia de Simone
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Paola Tiberi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Fabio Dell'Aquila
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Antonella Iuliano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Silvia Albert
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 Nijmegen, Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 Nijmegen, Netherlands
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Frans P M Cremers
- Department of Ophthalmology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 Nijmegen, Netherlands
| | - Enrico M Surace
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy
| | - Maria A De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy.,Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy. .,Department of Advanced Biomedicine, Federico II University, 80131 Naples, Italy
| |
Collapse
|
20
|
Liu X, Feng B, Vats A, Tang H, Seibel W, Swaroop M, Tawa G, Zheng W, Byrne L, Schurdak M, Chen Y. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa. FASEB J 2020; 34:10146-10167. [PMID: 32536017 DOI: 10.1096/fj.202000282r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Abstract
Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA.,Oncology Department, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Gregory Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Leah Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Mijanović O, Branković A, Borovjagin AV, Butnaru DV, Bezrukov EA, Sukhanov RB, Shpichka A, Timashev P, Ulasov I. Battling Neurodegenerative Diseases with Adeno-Associated Virus-Based Approaches. Viruses 2020; 12:E460. [PMID: 32325732 PMCID: PMC7232215 DOI: 10.3390/v12040460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are most commonly found in adults and remain essentially incurable. Gene therapy using AAV vectors is a rapidly-growing field of experimental medicine that holds promise for the treatment of NDDs. To date, the delivery of a therapeutic gene into target cells via AAV represents a major obstacle in the field. Ideally, transgenes should be delivered into the target cells specifically and efficiently, while promiscuous or off-target gene delivery should be minimized to avoid toxicity. In the pursuit of an ideal vehicle for NDD gene therapy, a broad variety of vector systems have been explored. Here we specifically outline the advantages of adeno-associated virus (AAV)-based vector systems for NDD therapy application. In contrast to many reviews on NDDs that can be found in the literature, this review is rather focused on AAV vector selection and their preclinical testing in experimental and preclinical NDD models. Preclinical and in vitro data reveal the strong potential of AAV for NDD-related diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Olja Mijanović
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Ana Branković
- Department of Forensics, University of Criminal Investigation and Police Studies, Belgrade 11000, Serbia;
| | - Anton V. Borovjagin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Denis V. Butnaru
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
| | - Evgeny A. Bezrukov
- Institute for Uronephrology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Institute for Uronephrology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (E.A.B.); (R.B.S.)
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
- Institute of Photonic Technologies, Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk, Moscow 142190, Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
22
|
Muraine L, Bensalah M, Dhiab J, Cordova G, Arandel L, Marhic A, Chapart M, Vasseur S, Benkhelifa-Ziyyat S, Bigot A, Butler-Browne G, Mouly V, Negroni E, Trollet C. Transduction Efficiency of Adeno-Associated Virus Serotypes After Local Injection in Mouse and Human Skeletal Muscle. Hum Gene Ther 2020; 31:233-240. [PMID: 31880951 DOI: 10.1089/hum.2019.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The adeno-associated virus (AAV) vector is an efficient tool for gene delivery in skeletal muscle. AAV-based therapies show promising results for treatment of various genetic disorders, including muscular dystrophy. These dystrophies represent a heterogeneous group of diseases affecting muscles and typically characterized by progressive skeletal muscle wasting and weakness and the development of fibrosis. The tropism of each AAV serotype has been extensively studied using systemic delivery routes, but very few studies have compared their transduction efficiency through direct intramuscular injection. Yet, in some muscular dystrophies, where only a few muscles are primarily affected, a local intramuscular injection to target these muscles would be the most appropriate route. A comprehensive comparison between different recombinant AAV (rAAV) serotypes is therefore needed. In this study, we investigated the transduction efficiency of rAAV serotypes 1-10 by local injection in skeletal muscle of control C57BL/6 mice. We used a CMV-nls-LacZ reporter cassette allowing nuclear expression of LacZ to easily localize targeted cells. Detection of β-galactosidase activity on muscle cryosections demonstrated that rAAV serotypes 1, 7, 8, 9, and 10 were more efficient than the others, with rAAV9 being the most efficient in mice. Furthermore, using a model of human muscle xenograft in immunodeficient mice, we observed that in human muscle, rAAV8 and rAAV9 had similar transduction efficiency. These findings demonstrate for the first time that the human muscle xenograft can be used to evaluate AAV-based therapeutical approaches in a human context.
Collapse
Affiliation(s)
- Laura Muraine
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Mona Bensalah
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Jamila Dhiab
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Gonzalo Cordova
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Ludovic Arandel
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Alix Marhic
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | | | | | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
23
|
Rieser R, Penaud-Budloo M, Bouzelha M, Rossi A, Menzen T, Biel M, Büning H, Ayuso E, Winter G, Michalakis S. Intrinsic Differential Scanning Fluorimetry for Fast and Easy Identification of Adeno-Associated Virus Serotypes. J Pharm Sci 2020; 109:854-862. [DOI: 10.1016/j.xphs.2019.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022]
|
24
|
Vagni P, Perlini LE, Chenais NAL, Marchetti T, Parrini M, Contestabile A, Cancedda L, Ghezzi D. Gene Editing Preserves Visual Functions in a Mouse Model of Retinal Degeneration. Front Neurosci 2019; 13:945. [PMID: 31551698 PMCID: PMC6748340 DOI: 10.3389/fnins.2019.00945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large and heterogeneous group of degenerative diseases caused by mutations in various genes. Given the favorable anatomical and immunological characteristics of the eye, gene therapy holds great potential for their treatment. Our goal is to validate the preservation of visual functions by viral-free homology directed repair (HDR) in an autosomal recessive loss of function mutation. We used a tailored gene editing system based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to prevent retinal photoreceptor death in the retinal degeneration 10 (Rd10) mouse model of retinitis pigmentosa. We tested the gene editing tool in vitro and then used in vivo subretinal electroporation to deliver it to one of the retinas of mouse pups at different stages of photoreceptor differentiation. Three months after gene editing, the treated eye exhibited a higher visual acuity compared to the untreated eye. Moreover, we observed preservation of light-evoked responses both in explanted retinas and in the visual cortex of treated animals. Our study validates a CRISPR/Cas9-based therapy as a valuable new approach for the treatment of retinitis pigmentosa caused by autosomal recessive loss-of-function point mutations.
Collapse
Affiliation(s)
- Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura E Perlini
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Naïg A L Chenais
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tommaso Marchetti
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martina Parrini
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Contestabile
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Cancedda
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Dulbecco Telethon Institute, Roma, Italy
| | - Diego Ghezzi
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
25
|
Storchi R, Rodgers J, Gracey M, Martial FP, Wynne J, Ryan S, Twining CJ, Cootes TF, Killick R, Lucas RJ. Measuring vision using innate behaviours in mice with intact and impaired retina function. Sci Rep 2019; 9:10396. [PMID: 31316114 PMCID: PMC6637134 DOI: 10.1038/s41598-019-46836-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 01/23/2023] Open
Abstract
Measuring vision in rodents is a critical step for understanding vision, improving models of human disease, and developing therapies. Established behavioural tests for perceptual vision, such as the visual water task, rely on learning. The learning process, while effective for sighted animals, can be laborious and stressful in animals with impaired vision, requiring long periods of training. Current tests that that do not require training are based on sub-conscious, reflex responses (e.g. optokinetic nystagmus) that don't require involvement of visual cortex and higher order thalamic nuclei. A potential alternative for measuring vision relies on using visually guided innate defensive responses, such as escape or freeze, that involve cortical and thalamic circuits. In this study we address this possibility in mice with intact and degenerate retinas. We first develop automatic methods to detect behavioural responses based on high dimensional tracking and changepoint detection of behavioural time series. Using those methods, we show that visually guided innate responses can be elicited using parametisable stimuli, and applied to describing the limits of visual acuity in healthy animals and discriminating degrees of visual dysfunction in mouse models of retinal degeneration.
Collapse
Affiliation(s)
- R Storchi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - J Rodgers
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - M Gracey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - F P Martial
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J Wynne
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - S Ryan
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - C J Twining
- School of Computer Science, University of Manchester, Manchester, UK
| | - T F Cootes
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R Killick
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - R J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Attenuation of Inherited and Acquired Retinal Degeneration Progression with Gene-based Techniques. Mol Diagn Ther 2019; 23:113-120. [PMID: 30569401 DOI: 10.1007/s40291-018-0377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inherited retinal dystrophies cause progressive vision loss and are major contributors to blindness worldwide. Advances in gene therapy have brought molecular approaches into the realm of clinical trials for these incurable illnesses. Select phase I, II and III trials are complete and provide some promise in terms of functional outcomes and safety, although questions do remain over the durability of their effects and the prevalence of inflammatory reactions. This article reviews gene therapy as it can be applied to inherited retinal dystrophies, provides an update of results from recent clinical trials, and discusses the future prospects of gene therapy and genome surgery.
Collapse
|
27
|
Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. Int J Mol Sci 2019; 20:ijms20102542. [PMID: 31126147 PMCID: PMC6567127 DOI: 10.3390/ijms20102542] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
: Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of diseases with more than 250 causative genes. The most common form is retinitis pigmentosa. IRDs lead to vision impairment for which there is no universal cure. Encouragingly, a first gene supplementation therapy has been approved for an autosomal recessive IRD. However, for autosomal dominant IRDs, gene supplementation therapy is not always pertinent because haploinsufficiency is not the only cause. Disease-causing mechanisms are often gain-of-function or dominant-negative, which usually require alternative therapeutic approaches. In such cases, genome-editing technology has raised hopes for treatment. Genome editing could be used to i) invalidate both alleles, followed by supplementation of the wild type gene, ii) specifically invalidate the mutant allele, with or without gene supplementation, or iii) to correct the mutant allele. We review here the most prevalent genes causing autosomal dominant retinitis pigmentosa and the most appropriate genome-editing strategy that could be used to target their different causative mutations.
Collapse
|
28
|
Regulation of Neuronal Survival and Axon Growth by a Perinuclear cAMP Compartment. J Neurosci 2019; 39:5466-5480. [PMID: 31097623 DOI: 10.1523/jneurosci.2752-18.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
cAMP signaling is known to be critical in neuronal survival and axon growth. Increasingly the subcellular compartmentation of cAMP signaling has been appreciated, but outside of dendritic synaptic regulation, few cAMP compartments have been defined in terms of molecular composition or function in neurons. Specificity in cAMP signaling is conferred in large part by A-kinase anchoring proteins (AKAPs) that localize protein kinase A and other signaling enzymes to discrete intracellular compartments. We now reveal that cAMP signaling within a perinuclear neuronal compartment organized by the large multivalent scaffold protein mAKAPα promotes neuronal survival and axon growth. mAKAPα signalosome function is explored using new molecular tools designed to specifically alter local cAMP levels as studied by live-cell FRET imaging. In addition, enhancement of mAKAPα-associated cAMP signaling by isoform-specific displacement of bound phosphodiesterase is demonstrated to increase retinal ganglion cell survival in vivo in mice of both sexes following optic nerve crush injury. These findings define a novel neuronal compartment that confers cAMP regulation of neuroprotection and axon growth and that may be therapeutically targeted in disease.SIGNIFICANCE STATEMENT cAMP is a second messenger responsible for the regulation of diverse cellular processes including neuronal neurite extension and survival following injury. Signal transduction by cAMP is highly compartmentalized in large part because of the formation of discrete, localized multimolecular signaling complexes by A-kinase anchoring proteins. Although the concept of cAMP compartmentation is well established, the function and identity of these compartments remain poorly understood in neurons. In this study, we provide evidence for a neuronal perinuclear cAMP compartment organized by the scaffold protein mAKAPα that is necessary and sufficient for the induction of neurite outgrowth in vitro and for the survival of retinal ganglion cells in vivo following optic nerve injury.
Collapse
|
29
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
30
|
Patel S, Ryals RC, Weller KK, Pennesi ME, Sahay G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J Control Release 2019; 303:91-100. [PMID: 30986436 DOI: 10.1016/j.jconrel.2019.04.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Retinal gene therapy has had unprecedented success in generating treatments that can halt vision loss. However, immunogenic response and long-term toxicity with the use of viral vectors remain a concern. Non-viral vectors are relatively non-immunogenic, scalable platforms that have had limited success with DNA delivery to the eye. Messenger RNA (mRNA) therapeutics has expanded the ability to achieve high gene expression while eliminating unintended genomic integration or the need to cross the restrictive nuclear barrier. Lipid-based nanoparticles (LNPs) remain at the forefront of potent delivery vectors for nucleic acids. Herein, we tested eleven different LNP variants for their ability to deliver mRNA to the back of the eye. LNPs that contained ionizable lipids with low pKa and unsaturated hydrocarbon chains showed the highest amount of reporter gene transfection in the retina. The kinetics of gene expression showed a rapid onset (within 4 h) that persisted for 96 h. The gene delivery was cell-type specific with majority of the expression in the retinal pigmented epithelium (RPE) and limited expression in the Müller glia. LNP-delivered mRNA can be used to treat monogenic retinal degenerative disorders of the RPE. The transient nature of mRNA-based therapeutics makes it desirable for applications that are directed towards retinal reprogramming or genome editing. Overall, non-viral delivery of RNA therapeutics to diverse cell types within the retina can provide transformative new approaches to prevent blindness.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA
| | - Renee C Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kyle K Weller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
31
|
Trapani I. Adeno-Associated Viral Vectors as a Tool for Large Gene Delivery to the Retina. Genes (Basel) 2019; 10:genes10040287. [PMID: 30970639 PMCID: PMC6523333 DOI: 10.3390/genes10040287] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
Gene therapy using adeno-associated viral (AAV) vectors currently represents the most promising approach for the treatment of many inherited retinal diseases (IRDs), given AAV's ability to efficiently deliver therapeutic genes to both photoreceptors and retinal pigment epithelium, and their excellent safety and efficacy profiles in humans. However, one of the main obstacles to widespread AAV application is their limited packaging capacity, which precludes their use from the treatment of IRDs which are caused by mutations in genes whose coding sequence exceeds 5 kb. Therefore, in recent years, considerable effort has been made to identify strategies to increase the transfer capacity of AAV vectors. This review will discuss these new developed strategies, highlighting the advancements as well as the limitations that the field has still to overcome to finally expand the applicability of AAV vectors to IRDs due to mutations in large genes.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy.
- Medical Genetics, Department of Translational Medicine, Federico II University, 80131 Naples, Italy.
| |
Collapse
|
32
|
Shahi PK, Hermans D, Sinha D, Brar S, Moulton H, Stulo S, Borys KD, Capowski E, Pillers DAM, Gamm DM, Pattnaik BR. Gene Augmentation and Readthrough Rescue Channelopathy in an iPSC-RPE Model of Congenital Blindness. Am J Hum Genet 2019; 104:310-318. [PMID: 30686507 DOI: 10.1016/j.ajhg.2018.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogenic variants of the KCNJ13 gene are known to cause Leber congenital amaurosis (LCA16), an inherited pediatric blindness. KCNJ13 encodes the Kir7.1 subunit that acts as a tetrameric, inwardly rectifying potassium ion channel in the retinal pigment epithelium (RPE) to maintain ionic homeostasis and allow photoreceptors to encode visual information. We sought to determine whether genetic approaches might be effective in treating blindness arising from pathogenic variants in KCNJ13. We derived human induced pluripotent stem cell (hiPSC)-RPE cells from an individual carrying a homozygous c.158G>A (p.Trp53∗) pathogenic variant of KCNJ13. We performed biochemical and electrophysiology assays to confirm Kir7.1 function. We tested both small-molecule readthrough drug and gene-therapy approaches for this "disease-in-a-dish" approach. We found that the LCA16 hiPSC-RPE cells had normal morphology but did not express a functional Kir7.1 channel and were unable to demonstrate normal physiology. After readthrough drug treatment, the LCA16 hiPSC cells were hyperpolarized by 30 mV, and the Kir7.1 current was restored. Similarly, we rescued Kir7.1 channel function after lentiviral gene delivery to the hiPSC-RPE cells. In both approaches, Kir7.1 was expressed normally, and there was restoration of membrane potential and the Kir7.1 current. Loss-of-function variants of Kir7.1 are one cause of LCA. Using either readthrough therapy or gene augmentation, we rescued Kir7.1 channel function in iPSC-RPE cells derived from an affected individual. This supports the development of precision-medicine approaches for the treatment of clinical LCA16.
Collapse
Affiliation(s)
- Pawan K Shahi
- Division of Neonatology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalton Hermans
- Division of Neonatology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Divya Sinha
- McPherson Eye Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Simran Brar
- Division of Neonatology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah Moulton
- Division of Neonatology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabrina Stulo
- Division of Neonatology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katarzyna D Borys
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elizabeth Capowski
- McPherson Eye Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - De-Ann M Pillers
- Division of Neonatology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M Gamm
- McPherson Eye Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bikash R Pattnaik
- Division of Neonatology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
33
|
Ong T, Pennesi ME, Birch DG, Lam BL, Tsang SH. Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease. Pharm Res 2019; 36:34. [PMID: 30617669 PMCID: PMC6534121 DOI: 10.1007/s11095-018-2564-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 01/17/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of rare, heterogenous eye disorders caused by gene mutations that result in degeneration of the retina. There are currently limited treatment options for IRDs; however, retinal gene therapy holds great promise for the treatment of different forms of inherited blindness. One such IRD for which gene therapy has shown positive initial results is choroideremia, a rare, X-linked degenerative disorder of the retina and choroid. Mutation of the CHM gene leads to an absence of functional Rab escort protein 1 (REP1), which causes retinal pigment epithelium cell death and photoreceptor degeneration. The condition presents in childhood as night blindness, followed by progressive constriction of visual fields, generally leading to vision loss in early adulthood and total blindness thereafter. A recently developed adeno-associated virus-2 (AAV2) vector construct encoding REP1 (AAV2-REP1) has been shown to deliver a functional version of the CHM gene into the retinal pigment epithelium and photoreceptor cells. Phase 1 and 2 studies of AAV2-REP1 in patients with choroideremia have produced encouraging results, suggesting that it is possible not only to slow or stop the decline in vision following treatment with AAV2-REP1, but also to improve visual acuity in some patients.
Collapse
Affiliation(s)
- Tuyen Ong
- Nightstar Therapeutics, 203 Crescent Street, Suite 303, Waltham, Massachusetts, 02453, USA.
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen H Tsang
- Department of Ophthalmology and of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
34
|
Perdigao PRL, van der Spuy J. Gene and Cell Therapy for AIPL1-Associated Leber Congenital Amaurosis: Challenges and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:97-101. [PMID: 31884595 DOI: 10.1007/978-3-030-27378-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leber congenital amaurosis (LCA) caused by AIPL1 mutations is one of the most severe forms of inherited retinal degeneration (IRD). The rapid and extensive photoreceptor degeneration challenges the development of potential treatments. Nevertheless, preclinical studies show that both gene augmentation and photoreceptor transplantation can regenerate and restore retinal function in animal models of AIPL1-associated LCA. However, questions regarding long-term benefit and safety still remain as these therapies advance towards clinical application. Ground-breaking advances in stem cell technology and genome editing are examples of alternative therapeutic approaches and address some of the limitations associated with previous methods. The continuous development of these cutting-edge biotechnologies paves the way towards a bright future not only for AIPL1-associated LCA patients but also other forms of IRD.
Collapse
|
35
|
Dai LX, Yang J, Liu JM, Huang S, Wang BN, Li H, Yang J, Zhao ZY, Cao K, Li MY. Adenovirus-Mediated CRM197 Sensitizes Human Glioma Cells to Gemcitabine by the Mitochondrial Pathway. Cancer Biother Radiopharm 2018; 34:171-180. [PMID: 30585767 DOI: 10.1089/cbr.2017.2363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The cross-reacting material 197 (CRM197) is a mutation of the diphtheria toxin. The protein of CRM197 was used successfully for the therapy of various tumors in the recent studies. In this study, the recombinant adenoviruses containing the CRM197gene(AdCRM197) were used to enhance the cellar toxicity of gemcitabine in human glioma U87, U251, and H4 cells. PROCEDURES MTT assay and flow cytometric analysis were performed to test the apoptosis of the U87, U251 and H4 cells with the combined treatment of AdCRM197 plus gemcitabine. Western blotting analyses were carried out to detect the cell apoptosis of the mitochondrial pathway. And the xenograft nude mice were used to observe the enhanced antitumor effect of AdCRM197 in vivo. RESULTS AdCRM197 sensitizes human glioma cells to gemcitabine in vitro by the mitochondrial pathway. Tumor volume was inhibited and survival time was prolonged in the U251 or U87 xenografted nude mice with gemcitabine plus AdCRM197. The enhanced antitumor effect of AdCRM197 was also detected by the immunohistochemical analyses and TUNEL staining. CONCLUSION The authors found that AdCRM197 sensitized the human glioma to gemcitabine not only in vitro but also in vivo. They provide the first evidence that adenovirus-mediated CRM197 may be a potential chemosensitizing agent for the treatment of cancer. The diphtheria toxin is of great toxicity that even one molecule of diphtheria toxin is enough to kill one cell. However, because of the high toxicity, the diphtheria toxin would kill the packing cells when it is being packaged into the recombinant viruses. Therefore, the diphtheria toxin is hard to be used in the gene therapy for virus vectors. The cross-reacting material 197 (CRM197) is a mutation of the diphtheria toxin. Unlike DTA, CRM197 exhibit a weak toxicity. The week toxicity of CRM197 is a good feature for the virus packaging. In the present study, we used a recombinant adenovirus which carried a CRM197 gene (AdCRM197) to enhance the cellar toxicity of gemcitabine in human glioma cells.
Collapse
Affiliation(s)
- Lv-Xia Dai
- 1 Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China .,2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Jing Yang
- 3 Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine , Shiyan, China
| | - Jian-Min Liu
- 4 Department of Neurosurgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine , Guangzhou, China
| | - Sizhou Huang
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Bao-Ning Wang
- 1 Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China
| | - Hong Li
- 5 West China Second University Hospital, Sichuan University , Chengdu, China
| | - Jie Yang
- 6 Department of Neurology, The First Affiliated Hospital of Chengdu Medical College , Chengdu, China
| | - Zhong-Yi Zhao
- 1 Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China
| | - Kang Cao
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Ming-Yuan Li
- 1 Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China
| |
Collapse
|
36
|
Gonzalez-Cordero A, Goh D, Kruczek K, Naeem A, Fernando M, Kleine Holthaus SM, Takaaki M, Blackford SJI, Kloc M, Agundez L, Sampson RD, Borooah S, Ovando-Roche P, Mehat MS, West EL, Smith AJ, Pearson RA, Ali RR. Assessment of AAV Vector Tropisms for Mouse and Human Pluripotent Stem Cell-Derived RPE and Photoreceptor Cells. Hum Gene Ther 2018; 29:1124-1139. [PMID: 29580100 DOI: 10.1089/hum.2018.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adeno-associated viral vectors are showing great promise as gene therapy vectors for a wide range of retinal disorders. To date, evaluation of therapeutic approaches has depended almost exclusively on the use of animal models. With recent advances in human stem cell technology, stem cell-derived retina now offers the possibility to assess efficacy in human organoids in vitro. Here we test six adeno-associated virus (AAV) serotypes [AAV2/2, AAV2/9, AAV2/8, AAV2/8T(Y733F), AAV2/5, and ShH10] to determine their efficiency in transducing mouse and human pluripotent stem cell-derived retinal pigment epithelium (RPE) and photoreceptor cells in vitro. All the serotypes tested were capable of transducing RPE and photoreceptor cells in vitro. AAV ShH10 and AAV2/5 are the most efficient vectors at transducing both mouse and human RPE, while AAV2/8 and ShH10 achieved similarly robust transduction of human embryonic stem cell-derived cone photoreceptors. Furthermore, we show that human embryonic stem cell-derived photoreceptors can be used to establish promoter specificity in human cells in vitro. The results of this study will aid capsid selection and vector design for preclinical evaluation of gene therapy approaches, such as gene editing, that require the use of human cells and tissues.
Collapse
Affiliation(s)
- Anai Gonzalez-Cordero
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Debbie Goh
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Kamil Kruczek
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Arifa Naeem
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Milan Fernando
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Sophia-Martha Kleine Holthaus
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom .,2 MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom, United Kingdom
| | - Matsuki Takaaki
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Samuel J I Blackford
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Magdalena Kloc
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Leticia Agundez
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Robert D Sampson
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Shyamanga Borooah
- 3 Centre for Clinical Brain Sciences, University of Edinburgh , Edinburgh, United Kingdom
| | - Patrick Ovando-Roche
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Manjit S Mehat
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Emma L West
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Alexander J Smith
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Rachael A Pearson
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| | - Robin R Ali
- 1 Department of Genetics, Institute of Ophthalmology, University College London, London, United Kingdom, United Kingdom
| |
Collapse
|
37
|
Carvalho LS, Xiao R, Wassmer SJ, Langsdorf A, Zinn E, Pacouret S, Shah S, Comander JI, Kim LA, Lim L, Vandenberghe LH. Synthetic Adeno-Associated Viral Vector Efficiently Targets Mouse and Nonhuman Primate Retina In Vivo. Hum Gene Ther 2018; 29:771-784. [PMID: 29325457 DOI: 10.1089/hum.2017.154] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is a promising approach in the treatment of inherited and common complex disorders of the retina. Preclinical and clinical studies have validated the use of adeno-associated viral vectors (AAV) as a safe and efficient delivery vehicle for gene transfer. Retinal pigment epithelium and rods-and to a lesser extent, cone photoreceptors-can be efficiently targeted with AAV. Other retinal cell types however are more challenging targets. The aim of this study was to characterize the transduction profile and efficiency of in silico designed, synthetic Anc80 AAVs for retinal gene transfer. Three Anc80 variants were evaluated for retinal targeting in mice and primates following subretinal delivery. In the murine retina Anc80L65 demonstrated high level of retinal pigment epithelium and photoreceptor targeting with comparable cone photoreceptor affinity compared to other AAVs. Remarkably, Anc80L65 enhanced transduction kinetics with visible expression as early as day 1 and steady state mRNA levels at day 3. Inner retinal tropism of Anc80 variants demonstrated distinct transduction patterns of Müller glia, retinal ganglion cells and inner nuclear layer neurons. Finally, murine findings with Anc80L65 qualitatively translated to the Rhesus macaque in terms of cell targets, levels and onset of expression. Our findings support the use of Anc80L65 for therapeutic subretinal gene delivery.
Collapse
Affiliation(s)
- Livia S Carvalho
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Ru Xiao
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Sarah J Wassmer
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Aliete Langsdorf
- 2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Eric Zinn
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Simon Pacouret
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,6 INSERM UMR 1089, University of Nantes, Nantes University Hospital , Nantes, France
| | - Samiksha Shah
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Jason I Comander
- 2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Leo A Kim
- 3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Laurence Lim
- 4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Luk H Vandenberghe
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,5 Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
38
|
Botta S, de Prisco N, Marrocco E, Renda M, Sofia M, Curion F, Bacci ML, Ventrella D, Wilson C, Gesualdo C, Rossi S, Simonelli F, Surace EM. Targeting and silencing of rhodopsin by ectopic expression of the transcription factor KLF15. JCI Insight 2017; 2:96560. [PMID: 29263295 DOI: 10.1172/jci.insight.96560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
The genome-wide activity of transcription factors (TFs) on multiple regulatory elements precludes their use as gene-specific regulators. Here we show that ectopic expression of a TF in a cell-specific context can be used to silence the expression of a specific gene as a therapeutic approach to regulate gene expression in human disease. We selected the TF Krüppel-like factor 15 (KLF15) based on its putative ability to recognize a specific DNA sequence motif present in the rhodopsin (RHO) promoter and its lack of expression in terminally differentiated rod photoreceptors (the RHO-expressing cells). Adeno-associated virus (AAV) vector-mediated ectopic expression of KLF15 in rod photoreceptors of pigs enables Rho silencing with limited genome-wide transcriptional perturbations. Suppression of a RHO mutant allele by KLF15 corrects the phenotype of a mouse model of retinitis pigmentosa with no observed toxicity. Cell-specific-context conditioning of TF activity may prove a novel mode for somatic gene-targeted manipulation.
Collapse
Affiliation(s)
| | | | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | - Mario Renda
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | - Martina Sofia
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | - Fabiola Curion
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Second University of Naples, Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Second University of Naples, Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Second University of Naples, Naples, Italy
| | - Enrico Maria Surace
- Telethon Institute of Genetics and Medicine, Napoli, Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|