1
|
Li B, Ma Z, Li Z. A novel regulator in Alzheimer's disease progression: The astrocyte-derived extracellular vesicles. Ageing Res Rev 2023; 86:101871. [PMID: 36736378 DOI: 10.1016/j.arr.2023.101871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is known as an age-related irreversible neurodegenerative disease. AD seriously endangers the health of the elderly, but there is still no effective treatment. In the past several decades, the significant role of astrocytes in the process of AD has been universally acknowledged. In addition, extracellular vesicles (EVs) have been recognized as an essential mediator in intercellular communication and participate in various pathophysiological processes by carrying and transporting diverse cargoes. Moreover, specific conditions and stimuli can modulate the amount and properties of astrocyte-derived EVs (ADEVs) to affect AD progression. Thus, recent studies focused on the involvement of ADEVs in the pathogenesis of AD and the potential application of ADEVs in the diagnosis and treatment of AD, which provides a new direction and possibility for revealing the mystery of AD. Interestingly, it can be concluded that ADEVs have both pathogenic and protective effects in the process of AD through a comprehensive generalization. In this review, we aim to summarize the multi-faces of ADEVs effects on AD development, which can provide a novel strategy to investigate the underlying mechanism in AD. We also summarize the current ADEVs clinically relevant studies to raise the potential use of ADEVs in the discovery of novel biomarkers for diagnosis and therapeutic targets for AD.
Collapse
Affiliation(s)
- Biao Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhixin Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China..
| |
Collapse
|
2
|
Wang H, Zhou WX, Huang JF, Zheng XQ, Tian HJ, Wang B, Fu WL, Wu AM. Endocrine Therapy for the Functional Recovery of Spinal Cord Injury. Front Neurosci 2020; 14:590570. [PMID: 33390881 PMCID: PMC7773784 DOI: 10.3389/fnins.2020.590570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of physical disability and leads to patient dissatisfaction with their quality of life. Patients with SCI usually exhibit severe clinical symptoms, including sensory and motor dysfunction below the injured levels, paraplegia, quadriplegia and urinary retention, which can exacerbate the substantial medical and social burdens. The major pathological change observed in SCI is inflammatory reaction, which induces demyelination, axonal degeneration, and the apoptosis and necrosis of neurons. Traditional medical treatments are mainly focused on the recovery of motor function and prevention of complications. To date, numerous studies have been conducted to explore the cellular and molecular mechanism of SCI and have proposed lots of effective treatments, but the clinical applications are still limited due to the complex pathogenesis and poor prognosis after SCI. Endocrine hormones are kinds of molecules that are synthesized by specialized endocrine organs and can participate in the regulation of multiple physiological activities, and their protective effects on several disorders have been widely discussed. In addition, many studies have identified that endocrine hormones can promote nerve regeneration and functional recovery in individuals with central nervous system diseases. Therefore, studies investigating the clinical applications of endocrine hormones as treatments for SCI are necessary. In this review, we described the neuroprotective roles of several endocrine hormones in SCI; endocrine hormone administration reduces cell death and promotes functional repair after SCI. We also proposed novel therapies for SCI.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wen-Xian Zhou
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jin-Feng Huang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuan-Qi Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hai-Jun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei-Li Fu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-Min Wu
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Upadhya R, Zingg W, Shetty S, Shetty AK. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release 2020; 323:225-239. [PMID: 32289328 DOI: 10.1016/j.jconrel.2020.04.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) released by neural cells play an essential role in brain homeostasis and the crosstalk between neural cells and the periphery. EVs are diverse, nano-sized vesicles, which transport proteins, nucleic acids, and lipids between cells over short and long expanses and hence are proficient for modulating the target cells. EVs released from neural cells are implicated in synaptic plasticity, neuron-glia interface, neuroprotection, neuroregeneration, and the dissemination of neuropathological molecules. This review confers the various properties of EVs secreted by astrocytes and their potential role in health and disease with a focus on evolving concepts. Naïve astrocytes shed EVs containing a host of neuroprotective compounds, which include fibroblast growth factor-2, vascular endothelial growth factor, and apolipoprotein-D. Stimulated astrocytes secrete EVs with neuroprotective molecules including heat shock proteins, synapsin 1, unique microRNAs, and glutamate transporters. Well-characterized astrocyte-derived EVs (ADEVs) generated in specific culture conditions and ADEVs that are engineered to carry the desired miRNAs or proteins are likely useful for treating brain injury and neurogenerative diseases. On the other hand, in conditions such as Alzheimer's disease (AD), stroke, Parkinson's disease, Amyotrophic lateral sclerosis (ALS), and other neuroinflammatory conditions, EVs released by activated astrocytes appear to mediate or exacerbate the pathological processes. The examples include ADEVs spreading the dysregulated complement system in AD, mediating motoneuron toxicity in ALS, and stimulating peripheral leukocyte migration into the brain in inflammatory conditions. Strategies restraining the release of EVs by activated astrocytes or modulating the composition of ADEVs are likely beneficial for treating neurodegenerative diseases. Also, periodic analyses of ADEVs in the blood is useful for detecting astrocyte-specific biomarkers in different neurological conditions and for monitoring disease progression and remission with distinct therapeutic approaches.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Winston Zingg
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Siddhant Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| |
Collapse
|
4
|
Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13:528. [PMID: 31827423 PMCID: PMC6890857 DOI: 10.3389/fncel.2019.00528] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality amongst civilians and military personnel globally. Despite advances in our knowledge of the complex pathophysiology of TBI, the underlying mechanisms are yet to be fully elucidated. While initial brain insult involves acute and irreversible primary damage to the parenchyma, the ensuing secondary brain injuries often progress slowly over months to years, hence providing a window for therapeutic interventions. To date, hallmark events during delayed secondary CNS damage include Wallerian degeneration of axons, mitochondrial dysfunction, excitotoxicity, oxidative stress and apoptotic cell death of neurons and glia. Extensive research has been directed to the identification of druggable targets associated with these processes. Furthermore, tremendous effort has been put forth to improve the bioavailability of therapeutics to CNS by devising strategies for efficient, specific and controlled delivery of bioactive agents to cellular targets. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by an update on novel therapeutic targets and agents. Recent development of various approaches of drug delivery to the CNS is also discussed.
Collapse
Affiliation(s)
- Si Yun Ng
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alan Yiu Wah Lee
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
5
|
Abstract
Basic fibroblast growth factor (bFGF) is a polypeptide with potent trophic effects on brain cells. In particular, bFGF promotes the survival and outgrowth of brain neurons, and protects neurons against toxic processes that are important contributors to cell death after cerebral ischemia (stroke). Recent studies in animal models have suggested two potential uses of exogenously administered bFGF for the treatment of stroke: 1) intra venous bFGF to reduce infarct size in acute stroke, and 2) intracisternal bFGF to enhance neurological recovery in chronic stroke. Human clinical trials of the first of these applications are currently in progress. NEUROSCIENTIST 3:247-250,1997
Collapse
Affiliation(s)
- David A. Lin
- CNS Growth Factor Research Laboratory Department of
Neurology Massachusetts General Hospital and Harvard Medical School Boston,
Massachusetts
| | - Seth P. Finklestein
- CNS Growth Factor Research Laboratory Department of
Neurology Massachusetts General Hospital and Harvard Medical School Boston,
Massachusetts
| |
Collapse
|
6
|
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142:45-67. [PMID: 27166858 DOI: 10.1016/j.pneurobio.2016.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
7
|
Addington CP, Roussas A, Dutta D, Stabenfeldt SE. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration. Biomark Insights 2015; 10:43-60. [PMID: 25983552 PMCID: PMC4429653 DOI: 10.4137/bmi.s20062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) affects 5.3 million Americans annually. Despite the many long-term deficits associated with TBI, there currently are no clinically available therapies that directly address the underlying pathologies contributing to these deficits. Preclinical studies have investigated various therapeutic approaches for TBI: two such approaches are stem cell transplantation and delivery of bioactive factors to mitigate the biochemical insult affiliated with TBI. However, success with either of these approaches has been limited largely due to the complexity of the injury microenvironment. As such, this review outlines the many factors of the injury microenvironment that mediate endogenous neural regeneration after TBI and the corresponding bioengineering approaches that harness these inherent signaling mechanisms to further amplify regenerative efforts.
Collapse
Affiliation(s)
- Caroline P Addington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Adam Roussas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Dipankar Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
8
|
Goldshmit Y, Frisca F, Pinto AR, Pébay A, Tang JKKY, Siegel AL, Kaslin J, Currie PD. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav 2014; 4:187-200. [PMID: 24683512 PMCID: PMC3967535 DOI: 10.1002/brb3.172] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/30/2013] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES A major impediment for recovery after mammalian spinal cord injury (SCI) is the glial scar formed by proliferating reactive astrocytes. Finding factors that may reduce glial scarring, increase neuronal survival, and promote neurite outgrowth are of major importance for improving the outcome after SCI. Exogenous fibroblast growth factor (Fgf) has been shown to decrease injury volume and improve functional outcome; however, the mechanisms by which this is mediated are still largely unknown. METHODS In this study, Fgf2 was administered for 2 weeks in mice subcutaneously, starting 30 min after spinal cord hemisection. RESULTS Fgf2 treatment decreased the expression of TNF-a at the lesion site, decreased monocyte/macrophage infiltration, and decreased gliosis. Fgf2 induced astrocytes to adopt a polarized morphology and increased expression of radial markers such as Pax6 and nestin. In addition, the levels of chondroitin sulfate proteoglycans (CSPGs), expressed by glia, were markedly decreased. Furthermore, Fgf2 treatment promotes the formation of parallel glial processes, "bridges," at the lesion site that enable regenerating axons through the injury site. Additionally, Fgf2 treatment increased Sox2-expressing cells in the gray matter and neurogenesis around and at the lesion site. Importantly, these effects were correlated with enhanced functional recovery of the left paretic hind limb. CONCLUSIONS Thus, early pharmacological intervention with Fgf2 following SCI is neuroprotective and creates a proregenerative environment by the modulation of the glia response.
Collapse
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia ; Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital East Melbourne, VIC, Australia
| | - Frisca Frisca
- Department of Ophthalmology, The University of Melbourne East Melbourne, VIC, Australia
| | - Alexander R Pinto
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Alice Pébay
- Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital East Melbourne, VIC, Australia ; Department of Ophthalmology, The University of Melbourne East Melbourne, VIC, Australia
| | | | - Ashley L Siegel
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| |
Collapse
|
9
|
Park Y, Luo T, Zhang F, Liu C, Bramlett HM, Dietrich WD, Hu B. Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury. J Cereb Blood Flow Metab 2013; 33:1642-9. [PMID: 23838828 PMCID: PMC3790935 DOI: 10.1038/jcbfm.2013.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/15/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
Abstract
Phosphorylation of N-methyl-D-aspartate (NMDA) receptors is a major regulatory mechanism underlying synaptic plasticity. However, changes in NMDA receptors and phosphorylation after traumatic brain injury (TBI) remain incompletely understood. Using an animal TBI model, we observed that the protein level of NMDA receptor subunit NR2B was downregulated in synaptosomal fractions obtained from the ipsilateral neocortical injury region, whereas the levels of NR2A, NR1, and PSD93 were not significantly altered at 4 and 24 hours after TBI. Further investigation showed that tyrosine phosphorylations of NR2B Y1472 and PSD93 Y340 in synaptosomal fractions were significantly decreased relative to their total protein level after TBI. Correspondingly, phosphorylation of the Src-kinase-inhibitory site Y527 was increased, whereas phosphorylation of the activation site Y416 was decreased, indicating that the activity of Src kinase is significantly inhibited after TBI. In comparison, other Src family kinase substrates of NMDA receptor, NR2A Y1246, NR2A Y1325, and NR2B Y1070 were not obviously affected after TBI. The results suggest that TBI downregulates the Src-kinase-mediated phosphorylation of NR2 and PSD93 to destabilize the synaptic localization of NMDA receptors. Therefore, post-TBI loss of NMDA receptors may contribute to the depression of synaptic activity after TBI.
Collapse
Affiliation(s)
- Yujung Park
- Neurochemistry Laboratory of Brain Injury, Department of Anesthesiology, and Shock Trauma & Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Smith GA, Snyder EY. Two cells are better than one: optimizing stem cell survival by co-grafting "helper" cells that offer regulated trophic support. Exp Neurol 2013; 247:751-4. [PMID: 23856435 DOI: 10.1016/j.expneurol.2013.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Gaynor A Smith
- Neuroregeneration Laboratories, Neuroregeneration Laboratories, Mailman Research Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | |
Collapse
|
11
|
Gurkoff GG, Gahan JD, Ghiasvand RT, Hunsaker MR, Van K, Feng JF, Shahlaie K, Berman RF, Lyeth BG, Folkerts MM. Evaluation of Metric, Topological, and Temporal Ordering Memory Tasks after Lateral Fluid Percussion Injury. J Neurotrauma 2013; 30:292-300. [DOI: 10.1089/neu.2012.2463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gene G. Gurkoff
- Department of Neurological Surgery, University of California at Davis, Davis, California
- National Science Foundation Center for Biophotonics Science and Technology, University of California at Davis, Sacramento, California
| | - Jennifer D. Gahan
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | - Rahil T. Ghiasvand
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | - Michael R. Hunsaker
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | - Ken Van
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | - Jun-feng Feng
- Department of Neurological Surgery, University of California at Davis, Davis, California
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | - Robert F. Berman
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | - Bruce G. Lyeth
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | | |
Collapse
|
12
|
Xiong Y, Mahmood A, Meng Y, Zhang Y, Zhang ZG, Morris DC, Chopp M. Neuroprotective and neurorestorative effects of thymosin β4 treatment following experimental traumatic brain injury. Ann N Y Acad Sci 2013; 1270:51-8. [PMID: 23050817 DOI: 10.1111/j.1749-6632.2012.06683.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity worldwide. No effective pharmacological treatments are available for TBI because all phase II/III TBI clinical trials have failed. This highlights a compelling need to develop effective treatments for TBI. Endogenous neurorestoration occurs in the brain after TBI, including angiogenesis, neurogenesis, synaptogenesis, oligodendrogenesis, and axonal remodeling, which may be associated with spontaneous functional recovery after TBI. However, the endogenous neurorestoration following TBI is limited. Treatments amplifying these neurorestorative processes may promote functional recovery after TBI. Thymosin beta 4 (Tβ4) is the major G-actin-sequestering molecule in eukaryotic cells. In addition, Tβ4 has other properties including antiapoptosis and anti-inflammation, promotion of angiogenesis, wound healing, stem/progenitor cell differentiation, and cell migration and survival, which provide the scientific foundation for the corneal, dermal, and cardiac wound repair multicenter clinical trials. Here, we describe Tβ4 as a neuroprotective and neurorestorative candidate for treatment of TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Departments of Neurosurgery, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hendrickson ML, Ling C, Kalil RE. Degeneration of axotomized projection neurons in the rat dLGN: temporal progression of events and their mitigation by a single administration of FGF2. PLoS One 2012; 7:e46918. [PMID: 23144793 PMCID: PMC3489851 DOI: 10.1371/journal.pone.0046918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022] Open
Abstract
Removal of visual cortex in the rat axotomizes projection neurons in the dorsal lateral geniculate nucleus (dLGN), leading to cytological and structural changes and apoptosis. Biotinylated dextran amine was injected into the visual cortex to label dLGN projection neurons retrogradely prior to removing the cortex in order to quantify the changes in the dendritic morphology of these neurons that precede cell death. At 12 hours after axotomy we observed a loss of appendages and the formation of varicosities in the dendrites of projection neurons. During the next 7 days, the total number of dendrites and the cross-sectional areas of the dendritic arbors of projection neurons declined to about 40% and 20% of normal, respectively. The response of dLGN projection neurons to axotomy was asynchronous, but the sequence of structural changes in individual neurons was similar; namely, disruption of dendrites began within hours followed by cell soma atrophy and nuclear condensation that commenced after the loss of secondary dendrites had occurred. However, a single administration of fibroblast growth factor-2 (FGF2), which mitigates injury-induced neuronal cell death in the dLGN when given at the time of axotomy, markedly reduced the dendritic degeneration of projection neurons. At 3 and 7 days after axotomy the number of surviving dendrites of dLGN projection neurons in FGF-2 treated rats was approximately 50% greater than in untreated rats, and the cross-sectional areas of dendritic arbors were approximately 60% and 50% larger. Caspase-3 activity in axotomized dLGN projection neurons was determined by immunostaining for fractin (fractin-IR), an actin cleavage product produced exclusively by activated caspase-3. Fractin-IR was seen in some dLGN projection neurons at 36 hours survival, and it increased slightly by 3 days. A marked increase in reactivity was seen by 7 days, with the entire dLGN filled with dense fractin-IR in neuronal cell somas and dendrites.
Collapse
Affiliation(s)
- Michael L. Hendrickson
- W.M. Keck Laboratory for Biological Imaging, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Changying Ling
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronald E. Kalil
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Quantitative immunohistochemical analysis of human brain basic fibroblast growth factor, glial fibrillary acidic protein and single-stranded DNA expressions following traumatic brain injury. Forensic Sci Int 2012; 221:142-51. [DOI: 10.1016/j.forsciint.2012.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/29/2012] [Accepted: 04/25/2012] [Indexed: 11/22/2022]
|
15
|
Tamas A, Reglodi D, Farkas O, Kovesdi E, Pal J, Povlishock JT, Schwarcz A, Czeiter E, Szanto Z, Doczi T, Buki A, Bukovics P. Effect of PACAP in central and peripheral nerve injuries. Int J Mol Sci 2012; 13:8430-8448. [PMID: 22942712 PMCID: PMC3430243 DOI: 10.3390/ijms13078430] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system.
Collapse
Affiliation(s)
- Andrea Tamas
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
| | - Dora Reglodi
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
| | - Orsolya Farkas
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Erzsebet Kovesdi
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Jozsef Pal
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street Richmond, Richmond, VA 23219, USA; E-Mail:
| | - Attila Schwarcz
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Endre Czeiter
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Zalan Szanto
- Department of Surgery, Medical School, University of Pecs, Ret u. 2., H-7623 Pecs, Hungary; E-Mail:
| | - Tamas Doczi
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Andras Buki
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Peter Bukovics
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| |
Collapse
|
16
|
McConeghy KW, Hatton J, Hughes L, Cook AM. A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 2012; 26:613-36. [PMID: 22668124 DOI: 10.2165/11634020-000000000-00000] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) affects 1.6 million Americans annually. The injury severity impacts the overall outcome and likelihood for survival. Current treatment of acute TBI includes surgical intervention and supportive care therapies. Treatment of elevated intracranial pressure and optimizing cerebral perfusion are cornerstones of current therapy. These approaches do not directly address the secondary neurological sequelae that lead to continued brain injury after TBI. Depending on injury severity, a complex cascade of processes are activated and generate continued endogenous changes affecting cellular systems and overall outcome from the initial insult to the brain. Homeostatic cellular processes governing calcium influx, mitochondrial function, membrane stability, redox balance, blood flow and cytoskeletal structure often become dysfunctional after TBI. Interruption of this cascade has been the target of numerous pharmacotherapeutic agents investigated over the last two decades. Many agents such as selfotel, pegorgotein (PEG-SOD), magnesium, deltibant and dexanabinol were ineffective in clinical trials. While progesterone and ciclosporin have shown promise in phase II studies, success in larger phase III, randomized, multicentre, clinical trials is pending. Consequently, no neuroprotective treatment options currently exist that improve neurological outcome after TBI. Investigations to date have extended understanding of the injury mechanisms and sites for intervention. Examination of novel strategies addressing both pathological and pharmacological factors affecting outcome, employing novel trial design methods and utilizing biomarkers validated to be reflective of the prognosis for TBI will facilitate progress in overcoming the obstacles identified from previous clinical trials.
Collapse
|
17
|
Schoch KM, Madathil SK, Saatman KE. Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury. Neurotherapeutics 2012; 9:323-37. [PMID: 22362424 PMCID: PMC3337028 DOI: 10.1007/s13311-012-0107-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) initiates a complex cascade of secondary neurodegenerative mechanisms contributing to cell dysfunction and necrotic and apoptotic cell death. The injured brain responds by activating endogenous reparative processes to counter the neurodegeneration or remodel the brain to enhance functional recovery. A vast array of genetically altered mice provide a unique opportunity to target single genes or proteins to better understand their role in cell death and endogenous repair after TBI. Among the earliest targets for transgenic and knockout studies in TBI have been programmed cell death mediators, such as the Bcl-2 family of proteins, caspases, and caspase-independent pathways. In addition, the role of cell cycle regulatory elements in the posttraumatic cell death pathway has been explored in mouse models. As interest grows in neuroplasticity in TBI, the use of transgenic and knockout mice in studies focused on gliogenesis, neurogenesis, and the balance of growth-promoting and growth-inhibiting molecules has increased in recent years. With proper consideration of potential effects of constitutive gene alteration, traditional transgenic and knockout models can provide valuable insights into TBI pathobiology. Through increasing sophistication of conditional and cell-type specific genetic manipulations, TBI studies in genetically altered mice will be increasingly useful for identification and validation of novel therapeutic targets.
Collapse
Affiliation(s)
- Kathleen M. Schoch
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, B473 Biomedical and Biological Sciences Research Building (BBSRB), 741 South Limestone Street, Lexington, KY 40536 USA
| | - Sindhu K. Madathil
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, B473 Biomedical and Biological Sciences Research Building (BBSRB), 741 South Limestone Street, Lexington, KY 40536 USA
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, B473 Biomedical and Biological Sciences Research Building (BBSRB), 741 South Limestone Street, Lexington, KY 40536 USA
| |
Collapse
|
18
|
Wang Q, Ishikawa T, Michiue T, Zhu BL, Maeda H. Evaluation of human brain damage in fire fatality by quantification of basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP) and single-stranded DNA (ssDNA) immunoreactivities. Forensic Sci Int 2011; 211:19-26. [DOI: 10.1016/j.forsciint.2011.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/24/2010] [Accepted: 03/27/2011] [Indexed: 01/11/2023]
|
19
|
Wang H, Yu X, Xu G, Xu G, Gao G, Xu X. Alcoholism and traumatic subarachnoid hemorrhage: an experimental study on vascular morphology and biomechanics. THE JOURNAL OF TRAUMA 2011; 70:E6-12. [PMID: 21217473 DOI: 10.1097/ta.0b013e3181cda3b9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Traumatic subarachnoid hemorrhage (TSAH) related to alcohol abuse is a notable risk factor. Here, we investigated the vascular morphology and biomechanics of TSAH in rat models of acute alcoholic intoxication and chronic alcoholism rats to explore the possible mechanisms of TSAH. METHODS Sixty male Sprague-Dawley rats were divided into acute alcoholic intoxication and chronic alcoholism groups. Edible spirituous liquor (56% vol/vol) was intragastrically given (15 mL/kg) once to the rats in the acute group, and given twice daily (8 mL/kg for 2 weeks and 12 mL/kg for another 2 weeks) to rats in the chronic group. A self-made instrument was used to inflict head injury. Whole brain, arterial blood, and thoracic aorta of rats were sampled for morphologic and biomechanical examination. RESULTS Compared with the acute alcoholic rats, the chronic alcoholic rats showed significant morphologic and biomechanical changes: (1) decreased body weight (p<0.05), (2) higher morbidity and mortality from TSAH (p<0.01), (3) greater mean thickness of vascular wall of subarachnoid small arteries and each layer thickness of thoracic aorta (p<0.05), (4) decreased failure load and corresponding extensibility (60 kPa and limit load) of thoracic aorta, and (5) increased elastic modulus (30 kPa, range in physiologic stress) (p<0.05). CONCLUSIONS Chronic alcoholism can induce the morphologic and biomechanical changes in cerebral vessels and thoracic aorta. The synergistic effect of alcohol abuse and minor blow may be one of the mechanisms of TSAH. High blood pressure from long-term alcohol abuse is also a notable factor.
Collapse
Affiliation(s)
- Haipeng Wang
- Department of Forensic Medicine, Shantou University Medical College, Shantou City, Guangdong Prov., China
| | | | | | | | | | | |
Collapse
|
20
|
Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 2008; 216:56-65. [PMID: 19100261 DOI: 10.1016/j.expneurol.2008.11.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/27/2008] [Accepted: 11/11/2008] [Indexed: 11/21/2022]
Abstract
Stem/progenitor cells reside throughout the adult CNS and are actively dividing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. This neurogenic capacity of the SVZ and DG is enhanced following traumatic brain injury (TBI) suggesting that the adult brain has the inherent potential to restore populations lost to injury. This raises the possibility of developing strategies aimed at harnessing the neurogenic capacity of these regions to repair the damaged brain. One strategy is to enhance neurogenesis with mitogenic factors. As basic fibroblast growth factor (bFGF) is a potent stem cell mitogen, we set out to determine if an intraventricular administration of bFGF following TBI could affect the levels of injury-induced neurogenesis in the SVZ and DG, and the degree to which this is associated with cognitive recovery. Specifically, adult rats received a bFGF intraventricular infusion for 7 days immediately following TBI. BrdU was administered to animals daily at 2-7 days post-injury to label cell proliferation. At 1 or 4 weeks post-injury, brain sections were immunostained for BrdU and neuronal or astrocytic markers. We found that injured animals infused with bFGF exhibited significantly enhanced cell proliferation in the SVZ and the DG at 1 week post-TBI as compared to vehicle-infused animals. Moreover, following bFGF infusion, a greater number of the newly generated cells survived to 4 weeks post-injury, with the majority being neurons. Additionally, animals infused with bFGF showed significant cognitive improvement. Collectively, the current findings suggest that bFGF-enhanced neurogenesis contributes to cognitive recovery following TBI.
Collapse
|
21
|
O'Driscoll C, Wallace D, Cotter TG. bFGF promotes photoreceptor cell survival in vitro by PKA-mediated inactivation of glycogen synthase kinase 3beta and CREB-dependent Bcl-2 up-regulation. J Neurochem 2007; 103:860-70. [PMID: 17714451 DOI: 10.1111/j.1471-4159.2007.04827.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although there is substantial evidence supporting the neuroprotective efficacy of basic fibroblast growth factor (bFGF) in the rodent retina there is no consensus to date as to the protective mechanism involved. We hypothesise that bFGF can assert its neuroprotective effects directly on mouse photoreceptors transduced via the activation of specific intracellular signalling pathways. In mouse photoreceptor-derived 661W cells, bFGF promoted a rapid inactivation of glycogen synthase kinase 3beta (GSK3beta) by phosphorylation at Ser9. The effects of bFGF on GSK3beta were dependent on protein kinase A (PKA) activation, as inhibition of this pathway blocked inactivation. Furthermore, bFGF protection against oxidative stress was dependent on PKA inactivation of GSK3beta as PKA inhibition attenuated bFGF-induced protection. Furthermore, transfection of cells with mutant dominant negative GSK3betaS9A that cannot be phosphorylated on Ser9 also abrogated neuroprotection. Activation of the transcription factor cAMP-response element binding protein (CREB) and subsequent up-regulation of Bcl-2 in response to bFGF was also dependent on PKA as inhibition with H-89 attenuated increased pCREB levels and Bcl-2 expression. These results indicate that the protective efficacy of bFGF in mouse photoreceptors involves PKA-dependent inactivation of GSK3beta and subsequent up-regulation of Bcl-2 via CREB activation.
Collapse
Affiliation(s)
- Carolyn O'Driscoll
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
22
|
Abstract
Activin A is a growth factor composed of two betaA subunits belonging to the transforming growth factor beta (TGF-beta) superfamily of dimeric proteins. The biological activity of activin A is mediated by two different types of receptors, the type I (ARI and ARIB) and the type II receptors (ARII and ARIIB), and by two activin-binding proteins, follistatin and follistatin-related gene. These factors bind to activin A and thereby inhibit its biological effects. Activin A, its receptors, and binding proteins are widely distributed throughout the brain. Studies employing models of acute brain injury strongly implicate enhanced activin A expression as a common response to acute neuronal damage of various origins. Hypoxic/ischemic injury, mechanical irritation, and chemical damage of brain evoke a strong upregulation of activin A. Subsequent experimental studies have shown that activin A has a beneficial role to neuronal recovery and that, by activating different pathways, activin A has robust neuroprotective activities. Because activin A induction occurs early after brain injury, its measurement may provide a potential biochemical index of the presence, location, and extent of brain injury. This approach may also facilitate the diagnosis of subclinical lesions at stages when monitoring procedures are unable to detect brain lesion and furthermore establish a prognosis.
Collapse
Affiliation(s)
- Pasquale Florio
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | | |
Collapse
|
23
|
Tamás A, Zsombok A, Farkas O, Reglödi D, Pál J, Büki A, Lengvári I, Povlishock JT, Dóczi T. Postinjury administration of pituitary adenylate cyclase activating polypeptide (PACAP) attenuates traumatically induced axonal injury in rats. J Neurotrauma 2006; 23:686-95. [PMID: 16689670 DOI: 10.1089/neu.2006.23.686] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) has several different actions in the nervous system. Numerous studies have shown its neuroprotective effects both in vitro and in vivo. Previously, it has been demonstrated that PACAP reduces brain damage in rat models of global and focal cerebral ischemia. Based on the protective effects of PACAP in cerebral ischemia and the presence of common pathogenic mechanisms in cerebral ischemia and traumatic brain injury (TBI), the aim of the present study was to investigate the possible protective effect of PACAP administered 30 min or 1 h postinjury in a rat model of diffuse axonal injury. Adult Wistar male rats were subjected to impact acceleration, and PACAP was administered intracerebroventricularly 30 min (n = 4), and 1 h after the injury (n = 5). Control animals received the same volume of vehicle at both time-points (n = 5). Two hours after the injury, brains were processed for immunohistochemical localization of damaged axonal profiles displaying either beta-amyloid precursor protein (beta-APP) or RMO-14 immunoreactivity, both considered markers of specific features of traumatic axonal injury. Our results show that treatment with PACAP (100 microg) 30 min or 1 h after the induction of TBI resulted in a significant reduction of the density of beta-APP-immunopositive axon profiles in the corticospinal tract (CSpT). There was no significant difference between the density of beta-APP-immunopositive axons in the medial longitudinal fascicle (MLF). PACAP treatment did not result in significantly different number of RMO-14-immunopositive axonal profiles in either brain areas 2 hours post-injury compared to normal animals. While the results of this study highlighted the complexity of the pathogenesis and manifestation of diffuse axonal injury, they also indicate that PACAP should be considered a potential therapeutic agent in TBI.
Collapse
Affiliation(s)
- Andrea Tamás
- Department of Anatomy (Neurohumoral Regulations Research Group of the Hungarian Academy of Sciences), University of Pécs, Medical Faculty, Pécs, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Briones TL, Woods J, Wadowska M, Rogozinska M, Nguyen M. Astrocytic changes in the hippocampus and functional recovery after cerebral ischemia are facilitated by rehabilitation training. Behav Brain Res 2006; 171:17-25. [PMID: 16621046 DOI: 10.1016/j.bbr.2006.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 03/05/2006] [Accepted: 03/09/2006] [Indexed: 12/26/2022]
Abstract
In this study we examined whether astrocytic and basic fibroblast growth factor changes after cerebral ischemia can be influenced by rehabilitation training and if these changes are associated with functional improvement. After receiving either ischemia or sham surgery, male adult Wistar rats were assigned to one of two rehabilitation training group: complex environment housing (EC) or paired housing as controls (CON). Rats were tested in the water maze after 14 days of rehabilitation training. Results showed increased expression of reactive astrocytes (GFAP) in all ischemic animals and in the sham EC rats with a significant overall increased seen in the ischemia EC housed animals. The pattern of basic fibroblast growth factor (FGF-2) expression seen was somewhat similar to that of GFAP. Behavioral data showed that even though all animals learned to perform the water maze task over time, the ischemia CON rats took longer to learn the task while all the ischemia EC animals performed as well as the sham groups. Regression analysis showed that increased GFAP was able to explain some of the variances in the behavioral parameters in the water maze of the ischemia EC rats suggesting that the activation of astrocytes in this group probably mediated enhanced functional recovery. Lastly, it is possible that the favorable effect of astrocyte activation after cerebral ischemia was mediated by FGF-2.
Collapse
Affiliation(s)
- Teresita L Briones
- Department of Medical-Surgical Nursing, University of Illinois, Chicago, 60612, USA.
| | | | | | | | | |
Collapse
|
25
|
Pitkänen A, Longhi L, Marklund N, Morales DM, McIntosh TK. Neurodegeneration and neuroprotective strategies after traumatic brain injury. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmec.2005.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Zhang M, Ma YF, Gan JX, Jiang GY, Xu SX, Tao XL, Hong A, Li JK. Basic fibroblast growth factor alleviates brain injury following global ischemia reperfusion in rabbits. J Zhejiang Univ Sci B 2005; 6:637-43. [PMID: 15973765 PMCID: PMC1389797 DOI: 10.1631/jzus.2005.b0637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to explore the protective effect of basic fibroblast growth factor (bFGF) on brain injury following global ischemia reperfusion and its mechanisms. Brain injury following global ischemia was induced by four vessels occlusion and systemic hypotension. Twenty-four rabbits were randomized into three groups: group A, only dissection of vessels; group B, intravenous infusion of normal saline after reperfusion for 6 h; group C, 30 microg/kg bFGF injected intravenously at the onset of reperfusion, then infused with 10 microg/(kg.h) for 6 h. Serum neuron specific enolase (NSE), S-100B, tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), interleukin-8 (IL-8) were measured before ischemia, 30 min after ischemia, 0.5, 1, 3, 6 h after reperfusion. Brain water content was determined and cerebral histopathological damages were compared. NSE and S-100B were increased 1 h after reperfusion and reached their peaks 6 h after reperfusion, but were much higher in group B than those in group C 3, 6 h after reperfusion. In groups B and C, TNF-alpha was increased after ischemia and IL-1 and IL-8 were increased significantly 0.5 h after reperfusion, then reached their peaks 6 h, 3 h, 6 h after reperfusion respectively. TNF-alpha and IL-8 at the time points of 1 h and 3 h and IL-1 at 3 h and 6 h in group C were correspondingly lower than those in group B. These indices in group A were nearly unchanged. There were less severe cerebral histopathological damages in group C compared with group B, but no difference in brain water content. It could be concluded that bFGF alleviates brain injury following global ischemia and reperfusion by down-regulating expression of inflammatory factors and inhibiting their activities.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310009, China
- †E-mail:;
| | - Yue-feng Ma
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310009, China
- †E-mail:;
| | - Jian-xin Gan
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Guan-yu Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Shan-xiang Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Xiang-luo Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - An Hong
- Institute of Biological Engineering, Jinan University, Guangzhou 510632, China
| | - Jiao-kun Li
- Institute of Biological Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
27
|
Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005; 22:42-75. [PMID: 15665602 DOI: 10.1089/neu.2005.22.42] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article comprehensively reviews the lateral fluid percussion (LFP) model of traumatic brain injury (TBI) in small animal species with particular emphasis on its validity, clinical relevance and reliability. The LFP model, initially described in 1989, has become the most extensively utilized animal model of TBI (to date, 232 PubMed citations), producing both focal and diffuse (mixed) brain injury. Despite subtle variations in injury parameters between laboratories, universal findings are evident across studies, including histological, physiological, metabolic, and behavioral changes that serve to increase the reliability of the model. Moreover, demonstrable histological damage and severity-dependent behavioral deficits, which partially recover over time, validate LFP as a clinically-relevant model of human TBI. The LFP model, also has been used extensively to evaluate potential therapeutic interventions, including resuscitation, pharmacologic therapies, transplantation, and other neuroprotective and neuroregenerative strategies. Although a number of positive studies have identified promising therapies for moderate TBI, the predictive validity of the model may be compromised when findings are translated to severely injured patients. Recently, the clinical relevance of LFP has been enhanced by combining the injury with secondary insults, as well as broadening studies to incorporate issues of gender and age to better approximate the range of human TBI within study design. We conclude that the LFP brain injury model is an appropriate tool to study the cellular and mechanistic aspects of human TBI that cannot be addressed in the clinical setting, as well as for the development and characterization of novel therapeutic interventions. Continued translation of pre-clinical findings to human TBI will enhance the predictive validity of the LFP model, and allow novel neuroprotective and neuroregenerative treatment strategies developed in the laboratory to reach the appropriate TBI patients.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Traumatic brain injury remains a worldwide problem. Newer modalities in the management of such injuries include both drugs and therapeutic strategies. Continuing research in animal models has provided a better understanding of the pathophysiological processes that follow head injury, and this in turn has enabled workers to work on improved treatment targets. Although there are exciting and novel approaches emerging, there is no substitute for meticulous initial resuscitation. Additionally, some of the more well known management options are now better understood. These concepts are discussed in the article.
Collapse
Affiliation(s)
- A Guha
- Walton Centre for Neurology and Neurosurgery and University Hospital Aintree, Longmoor Lane, Liverpool L9 7AL, UK.
| |
Collapse
|
29
|
Meijs MFL, Timmers L, Pearse DD, Tresco PA, Bates ML, Joosten EAJ, Bunge MB, Oudega M. Basic Fibroblast Growth Factor Promotes Neuronal Survival but Not Behavioral Recovery in the Transected and Schwann Cell Implanted Rat Thoracic Spinal Cord. J Neurotrauma 2004; 21:1415-30. [PMID: 15672632 DOI: 10.1089/neu.2004.21.1415] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It was investigated whether the addition of basic fibroblast growth factor (FGF-2) enhances the efficacy of a Schwann cell (SC) bridge to repair the transected spinal cord by assessing tissue sparing and neuronal survival near the graft-cord interfaces, axonal regeneration and myelination in the graft, and behavioral recovery up to 12 weeks post-grafting. Experimental animals received a bridge of SCs within fibrin containing 1 microg of FGF-2; control animals received a SC implant without FGF-2. Sparing of tissue in a 2.5-mm-long segment near the graft-cord borders was 69% in the rostral and 52% in the caudal cord at 6 weeks post-grafting, not significantly different from the control group. With FGF-2, survival of NeuN-positive cells was increased in the rostral cord: 24.4%, 20.4%, and 17.2% of the number of positive cells in the uninjured cord compared to 13.5%, 9.1%, and 8.9% in controls at 3, 6, and 12 weeks post-grafting, respectively. Similarly, in the caudal cord, survival of NeuN-positive cells was increased with FGF-2: 19.3%, 16.8%, and 14.5% compared to 10.8%, 5.6%, and 6.1% in controls. The staining intensity of glial fibrillary acidic protein was significantly higher at the interfaces of both cord stumps at 3 weeks with SC/FGF-2 grafts; chondroitin sulfate proteoglycan (CS-56) staining was more intense in the rostral cord but only at 6 weeks. Blood vessels in the FGF-2 grafts were larger and less regular in shape than those in control grafts. Axonal growth into the bridge was not improved by the addition of FGF-2. Retrogradely traced neurons were not found rostral to the implant, indicating that axons had not grown a few mm into the caudal spinal tissue. Recovery of hind limb function was similar in both groups. Despite the neuroprotective effects of FGF-2, improved effects on axonal regeneration and functional recovery were not observed.
Collapse
Affiliation(s)
- Matthijs F L Meijs
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mahmood A, Lu D, Chopp M. Intravenous Administration of Marrow Stromal Cells (MSCs) Increases the Expression of Growth Factors in Rat Brain after Traumatic Brain Injury. J Neurotrauma 2004; 21:33-9. [PMID: 14987463 DOI: 10.1089/089771504772695922] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to investigate the effects of intravenous administration of marrow stromal cells (MSCs) on the expression of growth factors in rat brain after traumatic brain injury (TBI). The fate of transplanted MSCs and expression of growth factors was examined by immunohistochemistry. In addition, the level of growth factors was measured quantitatively using enzyme linked immunosorbent assay (ELISA). Growth factors that were studied included nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF). For immunohistochemical studies, 12 male Wistar rats were subjected to TBI and then divided into three groups with the first group receiving no treatment, the second group receiving saline (placebo) and the third group receiving MSCs intravenously 1 day after TBI. The neurological function of rats was studied by using Rotarod motor test and modified neurological severity scores. The animals were sacrificed 15 days after TBI and brain sections stained by immunohistochemistry to study the distribution of MSCs as well as expression of growth factors NGF, BDNF, and bFGF. For quantitative analysis, a second set of male Wistar rats (n = 18) was subjected to TBI and then injected with either saline (n = 9) or MSCs (n = 9) 1 day after injury. These rats were sacrificed on days 2, 5, and 8 after TBI and brain extracts used to measure NGF, BDNF, and bFGF. We found that after transplantation, MSCs preferentially migrated into the injured hemisphere and there was a statistically significant improvement in the functional outcome of MSC-treated rats compared to control rats. NGF, BDNF, and bFGF were expressed in the injured brain of both treated as well as control rats; however, quantitative ELISA studies showed that expression of NGF and BDNF was significantly increased (p < 0.05) in the treated group. This study shows that intravenous administration of MSCs after TBI increases the expression of growth factors (NGF, BDNF), which possibly contributes to the improvement in functional outcome seen in these rats.
Collapse
Affiliation(s)
- Asim Mahmood
- Department of Neurosurgery and Neurology, Henry Ford Hospital, Detroit, Michigan 48020, USA.
| | | | | |
Collapse
|
31
|
Yoshimura S, Teramoto T, Whalen MJ, Irizarry MC, Takagi Y, Qiu J, Harada J, Waeber C, Breakefield XO, Moskowitz MA. FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J Clin Invest 2003; 112:1202-10. [PMID: 14561705 PMCID: PMC213483 DOI: 10.1172/jci16618] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the role of FGF-2 on regulation of neurogenesis and cell loss in the granule cell layer (GCL) of the hippocampal dentate gyrus after experimental traumatic brain injury (TBI). In both FGF-2(-/-) and FGF-2(+/+) mice subjected to controlled cortical impact, the number of dividing cells labeled with BrdU, injected on posttrauma days 6 through 8, increased at 9 days after TBI, and the number of BrdU-positive cells colabeled with neuron-specific nuclear antigen significantly increased at 35 days. However, in injured FGF-2-/- mice, BrdU-positive cells and BrdU-positive neurons (days 9, 35) were fewer compared with FGF-2(+/+) mice. There was also a decrease in the volume of the GCL and the number of GCL neurons after TBI in both FGF-2(-/-) and FGF-2(+/+) mice, but the decrease in both was greater in FGF-2-/- mice at 35 days. Overexpression of FGF-2 by intracerebral injection of herpes simplex virus-1 amplicon vectors encoding this factor increased numbers of dividing cells (day 9) and BrdU-positive neurons (day 35) significantly in C57BL/6 mice. Furthermore, the decrease in GCL volume was also attenuated. These results suggest that FGF-2 upregulates neurogenesis and protects neurons against degeneration in the adult hippocampus after TBI, and that FGF-2 supplementation via gene transfer can reduce GCL degeneration after TBI.
Collapse
Affiliation(s)
- Shinichi Yoshimura
- Neuroscience Center, Radiology Department, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kawamata T, Yamaguchi T, Shin-ya K, Hori T. Divergence in signaling pathways involved in promotion of cell viability mediated by bFGF, NGF, and EGF in PC12 cells. Neurochem Res 2003; 28:1221-5. [PMID: 12834262 DOI: 10.1023/a:1024284529945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We employed a series of inhibitors of intracellular cascade to disclose the precise molecular mechanisms by which basic fibroblast growth factor (bFGF) promotes viability of PC12 cells and compared with nerve growth factor (NGF) and epidermal growth factor (EGF). The MEK 1 and 2 inhibitors, U0126 and PD98059, significantly suppressed cell viability mediated by bFGF in a dose-dependent manner, and to a greater extent compared with EGF and NGF. The degree of MEK dependency for growth factor-mediated cell viability was estimated to be in the order of bFGF, EGF, and NGF. Rapamycin strongly inhibited the effect of NGF on cell viability, compared with bFGF and EGF. The mechanisms of action of NGF-mediated cell viability may depend largely on p70 S6 kinase-related signal transduction pathways comparing to bFGF and EGF. The present findings suggest that different signal transduction systems may be involved in the molecular mechanisms by which bFGF, NGF, and EGF mediate cell viability.
Collapse
Affiliation(s)
- Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | |
Collapse
|
33
|
Alzheimer C, Werner S. Fibroblast growth factors and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:335-51. [PMID: 12575827 DOI: 10.1007/978-1-4615-0123-7_12] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several members of the FGF family, in particular FGF2, are intimately involved in neuronal protection and repair after ischemic, metabolic or traumatic brain injury. Expression of Fgf2 mRNA and protein is strongly upregulated after neuronal damage, with glial cells as the predominant source. Given its survival-promoting effects on cultured neurons, exogenous FGF2 was tested in several animal models of stroke and excitotoxic damage, in which it consistently proved protective against neuronal loss. FGF2 affords neuroprotection by interfering with a number of signaling pathways, including expression and gating of NMDA receptors, maintenance of Ca2+ homeostasis and regulation of ROS detoxifying enzymes. FGF2 prevents apoptosis by strengthening anti-apoptotic pathways and promotes neurogenesis in adult hippocampus after injury. The protective action of FGF2 has been linked to its augmenting effect on the lesion-induced upregulation of activin A, a member of the TGF-beta superfamily. Despite the well-documented benefits of FGF2 in animal models of stroke, there is currently no clinical development in stroke, after a phase II/III trial with FGF2 in acute stroke patients was discontinued because of an unfavorable risk-to-benefit ratio. As the molecular targets of FGF2 are going to be unraveled over the next years, new therapeutic strategies will hopefully emerge that enable us to influence the various protective mechanisms of FGF2 in a more specific fashion.
Collapse
Affiliation(s)
- Christian Alzheimer
- Institute of Physiology, University of Munich, Pettenkoferstr. 12, D-80336 Munich, Germany
| | | |
Collapse
|
34
|
Lu D, Mahmood A, Chopp M. Biologic Transplantation and Neurotrophin-Induced Neuroplasticity After Traumatic Brain Injury. J Head Trauma Rehabil 2003; 18:357-76. [PMID: 16222130 DOI: 10.1097/00001199-200307000-00006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE In this review, we analyze progress in the treatment of traumatic brain injury with neurotrophins, growth factors and cell and tissue neurotransplantation. The primary objective of these therapies is to reduce neurologic deficits associated with the trauma by inducing neuroplasticity. These therapies are restorative and not necessarily neuroprotective. MAIN OUTCOME MEASURES An extensive literature on administration of neurotrophics factors and cell and tissue cerebral transplantation is reviewed. The effects of these therapeutic approaches on brain biochemical, molecular, cellular, and tissue responses are summarized. CONCLUSION The cumulative data indicate that cell therapy shows substantial promise in the treatment of neural injury.
Collapse
Affiliation(s)
- Dunyue Lu
- Department of Neurosurgery, Henry Ford Health System, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | |
Collapse
|
35
|
Schallert T, Woodlee MT, Fleming SM. Experimental focal ischemic injury: behavior-brain interactions and issues of animal handling and housing. ILAR J 2003; 44:130-43. [PMID: 12652008 DOI: 10.1093/ilar.44.2.130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In experimental neurological models of brain injury, behavioral manipulations before and after the insult can have a major impact on molecular, anatomical, and functional outcome. Investigators using animals for preclinical research should keep in mind that people with brain injury have lived in, and will continue to live in, an environment that is far more complex than that of the typical laboratory rodent. To yield more reliable and relevant behavioral assessment, it may be appropriate in some cases to house animals in environments that allow for motor enrichment and to handle animals in ways that promote tameness. Experience can affect mechanisms of plasticity and degeneration beneficially or adversely. Behavioral interventions that have been found to modulate postinjury brain events are reviewed. The timing and interaction of biological and motor therapies and the potential contribution of experience-dependent and drug-induced trophic factor expression are discussed.
Collapse
Affiliation(s)
- Tim Schallert
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, USA
| | | | | |
Collapse
|
36
|
Sekiya T, Shimamura N, Yagihashi A, Suzuki S. Effect of topically applied basic fibroblast growth factor on injured cochlear nerve. Neurosurgery 2003; 52:900-7; discussion 907. [PMID: 12657187 DOI: 10.1227/01.neu.0000053509.98561.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Accepted: 11/11/2002] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Trauma-induced hearing loss after cerebellopontine angle manipulation has been regarded as having a hopeless natural course once it occurs. To challenge such a pessimistic view, we investigated whether pharmacological interventions with basic fibroblast growth factor (bFGF) could ameliorate trauma-induced cochlear nerve degeneration. METHODS The cerebellopontine angle portion of the cochlear nerve of rats was quantitatively compressed, and bFGF was topically administered for 2 weeks with a bFGF-soaked absorbable sponge and an osmotic minipump. The animals were killed 2 weeks after the compression procedure. The effect of bFGF in ameliorating cochlear neuronal death was evaluated from the residual number of spiral ganglion cells. RESULTS Cerebellopontine angle cisternal application of bFGF ameliorated cochlear nerve degeneration after the compression. Immunocytochemical studies of FGF receptors indicated that topically administered bFGF was internalized by a receptor-mediated mechanism through FGF receptor-1 and/or FGF receptor-2. CONCLUSION This report demonstrated that therapeutic application of bFGF was feasible to ameliorate trauma-induced cochlear nerve degeneration. Recent technological advances for deafened ears, such as cochlear implants and auditory brainstem implants, in combination with neurotrophic and/or growth factor therapeutic intervention, would be of great potential benefit for patients with hearing loss.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Neurosurgery, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | |
Collapse
|
37
|
Leker RR, Shohami E. Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:55-73. [PMID: 12086708 DOI: 10.1016/s0165-0173(02)00157-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cerebral ischemia leads to brain damage caused by pathogenetic mechanisms that are also activated by neurotrauma. These mechanisms include among others excitotoxicity, over production of free radicals, inflammation and apoptosis. Furthermore, cerebral ischemia and trauma both trigger similar auto-protective mechanisms including the production of heat shock proteins, anti-inflammatory cytokines and endogenous antioxidants. Neuroprotective therapy aims at minimizing the activation of toxic pathways and at enhancing the activity of endogenous neuroprotective mechanisms. The similarities in the damage-producing and endogenous auto-protective mechanisms may imply that neuroprotective compounds found to be active against one of these conditions may indeed be also protective in the other. This review summarizes the pathogenetic events of ischemic and traumatic brain injury and reviews the neuroprotective strategies employed thus far in each of these conditions with a special emphasize on their clinical relevance and on future directions in the field of neuronal protection.
Collapse
Affiliation(s)
- Ronen R Leker
- Department of Neurology and the Agnes Ginges Center for Human Neurogenetics, Hebrew University-Hadassah Medical School and Hadassah University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
38
|
Kline AE, Bolinger BD, Kochanek PM, Carlos TM, Yan HQ, Jenkins LW, Marion DW, Dixon CE. Acute systemic administration of interleukin-10 suppresses the beneficial effects of moderate hypothermia following traumatic brain injury in rats. Brain Res 2002; 937:22-31. [PMID: 12020858 DOI: 10.1016/s0006-8993(02)02458-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Traumatic injury to the central nervous system initiates inflammatory processes such as the synthesis of proinflammatory mediators that contribute to secondary tissue damage. Hence, administration of anti-inflammatory cytokines, such as interleukin-10 (IL-10) may be neuroprotective. Moderate hypothermia (30-32 degrees C) also decreases the pro-inflammatory response to traumatic brain injury (TBI). Thus, we hypothesized that the combination of IL-10 and hypothermia would provide synergistic neuroprotective effects after TBI. To test this hypothesis, fifty isoflurane-anesthetized rats underwent a controlled cortical impact (2.7 mm tissue deformation at 4 m/s) or sham injury and then were randomly assigned to one of five conditions (TBI/VEH Normothermia (37 degrees C), TBI/VEH Hypothermia (32 degrees C for 3 h), TBI/IL-10 Normothermia, TBI/IL-10 Hypothermia, and Sham/VEH Normothermia). Human IL-10 (5 microg) or VEH was administered (i.p.) 30 min after surgery. Function was assessed by established motor and cognitive tests on post-operative days 1-5 and 14-18, respectively. Cortical lesion volume and hippocampal CA(1)/CA(3) cell survival were quantified at 4 weeks. Brain sections from 15 additional rats were immunohistochemically assessed (MoAB RP-3) to determine neutrophil accumulation at 5 h after TBI. The administration of IL-10 after TBI produced an approximately 75% reduction in the number of RP-3-positive cells in both the normothermic and hypothermic groups vs. the normothermic vehicle-treated group (P<0.05), but did not improve functional outcome. In contrast, hypothermia alone enhanced both motor and cognitive function and increased CA(3) neuronal survival after TBI. Contrary to our hypothesis, systemic administration of IL-10 combined with hypothermia did not provide synergistic neuroprotective effects after TBI. Rather, IL-10 administration suppressed the beneficial effects produced by hypothermia alone after TBI. The mechanism(s) for the negative effects of IL-10 combined with hypothermia after TBI remain to be determined.
Collapse
Affiliation(s)
- Anthony E Kline
- Department of Neurological Surgery and Brain Trauma Research Center, University of Pittsburgh, 3434 Fifth Avenue, Suite 201, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Successful treatment strategies for patients with traumatic brain injury (TBI) remain elusive despite standardised clinical treatment guidelines, improved understanding of mechanisms of cellular response to trauma, and a decade of clinical trials aimed at identifying therapeutic agents targeted at mediators of secondary injury. The information explosion relative to mechanisms of secondary injury has identified several potential targets for intervention. Depending on the type of injury to the brain and the intensity and the success of resuscitation, necrosis, apoptosis, inflammatory and excitotoxic cellular damage can be seen. These same processes may continue postinjury, depending on the adequacy of clinical care. Each of these mechanisms of cellular damage can initiate a cascade of events mediated by endogenous signals that lead to secondary neurological injury. Several factors contributed to the failure of earlier clinical trials. Now that these have been recognised, a positive impact on future drug development in TBI has been realised. Both the US and Europe have organised brain injury consortiums where experts in the treatment of TBI provide insight into study design, implementation, conduct and oversight in conjunction with the pharmaceutical industry. Consequently, future clinical trials of new investigational treatments have greater potential for identifying therapies of merit in specific populations of patients with TBI. Pharmacological strategies under investigation are targeting sites involved in the secondary cascade that contribute to overall poor outcome following the primary injury. These treatments include ion channel antagonists including calcium channel antagonists, growth factors, antioxidants, stem cells, apoptosis inhibitors, and inhibitors of other signal modulators. In conclusion, the complexity of TBI pathology and the mechanisms contributing to secondary injury present unique therapeutic challenges. Appropriate research targets for intervention continue to be investigated, however, the likelihood of improving outcomes with a single approach is extremely small. There is a need for collaborative efforts to investigate the optimal time for drug administration and the logical sequence or combination of treatments that will ultimately lead to improved neurological outcomes in this population.
Collapse
Affiliation(s)
- J Hatton
- Division of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington 40536-0084, USA.
| |
Collapse
|
40
|
Hermann DM, Kilic E, Kügler S, Isenmann S, Bähr M. Adenovirus-mediated glial cell line-derived neurotrophic factor (GDNF) expression protects against subsequent cortical cold injury in rats. Neurobiol Dis 2001; 8:964-73. [PMID: 11741392 DOI: 10.1006/nbdi.2001.0448] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We examined whether brain damage after focal cortex trauma may be attenuated by adenoviral delivery of the glial cell line-derived neurotrophic factor (GDNF) gene. For this reason, injections of vehicle, of an adenoviral vector deleted in the E1 region (Ad-dE1) or a vector expressing the GDNF gene from a CMV promoter (Ad-GDNF) were stereotactically placed in the rat sensorimotor cortex, and one day later cold lesions of the cerebral cortex were induced. Lesions were associated with pronounced brain swelling one day after injury. The degree of brain swelling was significantly attenuated by Ad-GDNF delivery (Ad-GDNF: 7.4 +/- 2.2%, Ad-dE1: 21.1 +/- 4.9%, vehicle: 20.9 +/- 5.0% of contralateral; mean +/- SEM, P < 0.05). Furthermore, Ad-GDNF treatment resulted in a significant reduction of the lesion volume seven days after lesioning (Ad-GDNF: 21.8 +/- 2.8 mm3, Ad-dE1: 44.1 +/- 1.6 mm3, vehicle 40.9 +/- 8.6 mm3, P < 0.05). The decrease in the lesion size was associated with a reduction in the number of inducible nitric oxide (iNOS)(+), activated caspase-3(+) and DNA fragmented cells in the perilesion rim, as revealed by immunocytochemistry and terminal transferase biotinylated-dUTP nick end labeling (TUNEL). In Ad-GDNF-treated animals, the number of caspase-3(+) and TUNEL(+) cells was also reduced in the lesion-remote thalamus. The present study shows that adenoviral GDNF delivery is protective in focal cortex trauma.
Collapse
Affiliation(s)
- D M Hermann
- Department of Neurology, University of Tübingen, Hoppe-Seyler-Strasse 3, Tübingen, D-72076, Germany
| | | | | | | | | |
Collapse
|
41
|
Munz B, Tretter YP, Hertel M, Engelhardt F, Alzheimer C, Werner S. The roles of activins in repair processes of the skin and the brain. Mol Cell Endocrinol 2001; 180:169-77. [PMID: 11451588 DOI: 10.1016/s0303-7207(01)00514-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A recent study from our laboratory demonstrated a strong upregulation of activin expression during cutaneous wound healing. To further analyze the role of activin A in skin morphogenesis and wound repair, we generated transgenic mice that overexpress activin A under the control of the keratin 14 promoter. The latter targets expression of transgenes to the basal, proliferating layer of the epidermis. Hetero- as well as homozygous transgenic animals were viable and fertile. However, they were smaller than non-transgenic littermates and they had smaller ears and shorter tails. Histological analysis of their skin revealed dermal hyperthickening, mainly due to the replacement of fatty tissue by connective tissue, and an increase in suprabasal, partially differentiated epidermal layers. After cutaneous injury, a strong enhancement of granulation tissue formation was observed. Furthermore, the extent of re-epithelialization was increased in some of the wounds. These data demonstrate that activin A is a potent stimulator of the wound healing process. Using an in vivo model of local brain injury, we found that activin A also plays a significant role in the early cellular response to neuronal damage. Expression of activin mRNA and protein is markedly upregulated within a few hours of injury. If applied exogenously, recombinant activin A is capable of rescuing neurons from acute cell death. Studying the interaction between bFGF, a well-established neuroprotective agent, which is currently being tested in stroke patients, and activin A, we arrived at the unexpected conclusion that it is the strong induction of activin A by bFGF which endows the latter with its beneficial actions in patients. These findings suggest that the development of substances directly targeting activin expression or receptor binding should offer new possibilities in the acute treatment of stroke and brain trauma.
Collapse
Affiliation(s)
- B Munz
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, D-82152, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Philips MF, Mattiasson G, Wieloch T, Björklund A, Johansson BB, Tomasevic G, Martínez-Serrano A, Lenzlinger PM, Sinson G, Grady MS, McIntosh TK. Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 2001; 94:765-74. [PMID: 11354408 DOI: 10.3171/jns.2001.94.5.0765] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Immortalized neural progenitor cells derived from embryonic rat hippocampus (HiB5), were transduced ex vivo with the gene for mouse nerve growth factor (NGF) to secrete NGF (NGF-HiB5) at 2 ng/hr/10(5) cells in culture. METHODS Fifty-nine male Wistar rats weighing 300 to 370 g each were anesthetized with 60 mg/kg sodium pentobarbital and subjected to lateral fluid-percussion brain injury of moderate severity (2.3-2.4 atm, 34 rats) or sham injury (25 rats). At 24 hours postinjury, 2 microl (150,000 cells/microl) of [3H]thymidine-labeled NGF-HiB5 cells were transplanted stereotactically into three individual sites in the cerebral cortex adjacent to the injury site (14 rats). Separate groups of brain-injured rats received nontransfected (naive [n])-HiB5 cells (12 animals) or cell suspension vehicle (eight animals). One week postinjury, animals underwent neurological evaluation for motor function and cognition (Morris water maze) and were killed for histological, autoradiographic, and immunocytochemical analysis. Viable HiB5 cell grafts were identified in all animals, together with reactive microglia and macrophages located throughout the periinjured parenchyma and grafts (OX-42 immunohistochemistry). Brain-injured animals transplanted with either NGF-HiB5 or n-HiB5 cells displayed significantly improved neuromotor function (p < 0.05) and spatial learning behavior (p < 0.005) compared with brain-injured animals receiving microinjections of vehicle alone. A significant reduction in hippocampal CA3 cell death was observed in brain-injured animals receiving transplants of NGF-HiB5 cells compared with those receiving n-HiB5 cells or vehicle (p < 0.025). CONCLUSIONS This study demonstrates that immortalized neural stem cells that have been retrovirally transduced to produce NGF can markedly improve cognitive and neuromotor function and rescue hippocampal CA3 neurons when transplanted into the injured brain during the acute posttraumatic period.
Collapse
Affiliation(s)
- M F Philips
- Department of Neurosurgery, University of Pennsylvania School of Medicine and Veterans Administration Medical Center, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Blaha GR, Raghupathi R, Saatman KE, McIntosh TK. Brain-derived neurotrophic factor administration after traumatic brain injury in the rat does not protect against behavioral or histological deficits. Neuroscience 2001; 99:483-93. [PMID: 11029540 DOI: 10.1016/s0306-4522(00)00214-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Brain-derived neurotrophic factor has been shown to be neuroprotective in models of excitotoxicity, axotomy and cerebral ischemia. The present study evaluated the therapeutic potential of brain-derived neurotrophic factor following traumatic brain injury in the rat. Male Sprague-Dawley rats (N=99) were anesthetized and subjected to lateral fluid percussion brain injury of moderate severity (2.4-2.8 atm) or sham injury. Four hours after injury, the animals were reanesthetized, an indwelling, intraparenchymal cannula was implanted, and infusion of brain-derived neurotrophic factor or phosphate-buffered saline vehicle was initiated from a mini-osmotic pump and continued for two weeks. In Study 1 (N=48), vehicle or 12 microg/day of brain-derived neurotrophic factor was infused into the dorsal hippocampus. In Study 2 (N=51), vehicle or brain-derived neurotrophic factor at a high (12 microg/day) or low dose (1.2 microg/day) was infused into the injured parietal cortex. All animals were evaluated for neurological motor function at two days, one week and two weeks post-injury. Cognitive function (learning and memory) was assessed at two weeks post-injury using a Morris Water Maze. At two weeks post-injury, neuronal loss in the hippocampal CA3 and dentate hilus and in the injured cortex was evaluated. In Study 2, neuronal loss was also quantified in the thalamic medial geniculate nucleus. All of the above outcome measures demonstrated significant deleterious effects of brain injury (P<0.05 compared to sham). However, post-traumatic brain-derived neurotrophic factor infusion did not significantly affect neuromotor function, learning, memory or neuronal loss in the hippocampus, cortex or thalamus when compared to vehicle infusion in brain-injured animals, regardless of the infusion site or infusion dose (P>0.05 for each). In contrast to previous studies of axotomy, ischemia and excitotoxicity, our data indicate that brain-derived neurotrophic factor is not protective against behavioral or histological deficits caused by experimental traumatic brain injury using the delayed, post-traumatic infusion protocol examined in these studies.
Collapse
Affiliation(s)
- G R Blaha
- Department of Neurosurgery, University of Pennsylvania, Hayden Hall, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
44
|
Kline AE, Jenkins LW, Yan HQ, Dixon CE. Neurotransmitter and Growth Factor Alterations in Functional Deficits and Recovery Following Traumatic Brain Injury. Brain Inj 2001. [DOI: 10.1007/978-1-4615-1721-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
|
45
|
Yan HQ, Yu J, Kline AE, Letart P, Jenkins LW, Marion DW, Dixon CE. Evaluation of combined fibroblast growth factor-2 and moderate hypothermia therapy in traumatically brain injured rats. Brain Res 2000; 887:134-43. [PMID: 11134598 DOI: 10.1016/s0006-8993(00)03002-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both the exogenous administration of fibroblast growth factor-2 (FGF-2) or the induction of moderate hypothermia have been shown to attenuate histopathology and improve functional outcome after traumatic brain injury (TBI). Since combined therapeutic strategies may be more beneficial than single therapies, we examined the potential synergistic effect of FGF-2 combined with moderate hypothermia treatment induced 10 min after TBI on functional and histological outcome following controlled cortical impact (CCI) injury. Fifty male Sprague-Dawley rats were randomized to one sham and four CCI treatment groups: Sham+vehicle (VEH); FGF-2 (45 microg/kg/h for 3 h i.v.)+Normothermia (37+/-0.5 degrees C); FGF-2+Hypothermia (32+/-0.5 degrees C for 3 h); VEH+Norm; VEH+Hypo. Vestibulomotor performance on the beam balance and beam-walk (BW) tasks on post-operative days 1-5 and spatial memory acquisition in the Morris water maze (MWM) on days 14-18 were assessed. After 4 weeks survival, histological evaluations (CA(1) and CA(3) cell counts and lesion volume) were performed. MWM performance improved in all treatment groups, but combined treatment was not more efficacious than either alone. The FGF-2+Hypo group performed significantly better than the other injured treatment groups in the BW task. Lastly, no significant group differences in beam balance or histological outcome were observed. These data suggest a suboptimal and incomplete synergy of combined FGF-2 and hypothermia treatment. These data may indicate that either our dose of FGF-2 or combination therapy was not optimized in our model.
Collapse
Affiliation(s)
- H Q Yan
- Brain Trauma Research Center, Department of Neurosurgery, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Gotts JE, Press C, Leasure JL, Schallert T. Focal brain injury, FGF-2 and the adverse effects of excessive motor demand on cortical and nigral degeneration: marked protection by delayed intermittent exposure to halothane. J Neurotrauma 2000; 17:1067-77. [PMID: 11101209 DOI: 10.1089/neu.2000.17.1067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neuroprotective potential of halothane anesthesia was investigated following unilateral electrolytic lesions to the forelimb representation area of the sensorimotor cortex (FL-SMC). Previously, it was found that the FL-SMC lesion increases substantially in size when the intact forelimb is immobilized with a plaster of paris cast for the first 7 days postlesion, which forces extreme overuse of the impaired forelimb during a time when nonlethally damaged tissue is vulnerable to behavioral demand. Initially, the purpose of this study was to investigate whether intracisternal infusion of basic fibroblast growth factor (bFGF or FGF-2), a potent neurotrophic factor that has been shown to have neuroprotective and plasticity promoting properties in focal stroke and other injury models, could prevent this use-dependent exaggeration of injury. Although intracisternal bFGF (starting 24 h after surgery, twice per week) was not found to produce significant neuroprotective or behavioral effects, the brief exposure to halothane anesthesia (15-20 min) during bFGF or vehicle administration was found to prevent expansion of the lesion size, and to reduce delayed loss of neurons in the substantia nigra pars reticulata (SNr). The data have implications for investigations of the effects of neurotrophic factor in vivo, and other investigations requiring brief, intermittent halothane anesthesia.
Collapse
Affiliation(s)
- J E Gotts
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, USA
| | | | | | | |
Collapse
|
47
|
Kline AE, Montañez S, Bradley HA, Millar CJ, Hernandez TD. Distinctive amygdala kindled seizures differentially affect neurobehavioral recovery and lesion-induced basic fibroblast growth factor (bFGF) expression. Brain Res 2000; 880:38-50. [PMID: 11032988 DOI: 10.1016/s0006-8993(00)02762-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The differing effects of partial seizures on neurobehavioral recovery following anteromedial cortex (AMC) injury in rats have previously been reported. Specifically, convulsive Stage 1 seizures evoked ipsilateral to the lesion during the 6-day post-lesion critical period delayed recovery, while non-convulsive Stage 0 seizures were neutral. The present study was designed to elaborate on that research by examining several potential mechanisms for the seizure-associated difference observed in functional outcome. Anesthetized rats sustained unilateral AMC lesions followed by implantation of a stimulating electrode in the amygdala ipsilateral (Expt. 1) or contralateral (Expt. 2) to the lesion. Beginning 48 h after surgery, animals were kindled to evoke Stage 0 or Stage 1 seizure activity during the critical period. Kindling trials and afterdischarge (AD) were controlled to ascertain their role in functional outcome. Recovery from somatosensory deficits was assessed over a two-month period. The results revealed that (i) Stage 0 seizures did not impact recovery regardless of whether initiated ipsilateral or contralateral to the lesion, (ii) Stage 1 seizures prevented recovery only when initiated in the ipsilateral hemisphere during the post-lesion critical period, and (iii) the detrimental effect of Stage 1 seizures appears to be independent of the number of kindling trials provided and cumulative AD. Thus, to determine why Stage 1 seizures evoked in the hemisphere ipsilateral to the lesion impeded recovery, a separate group of animals (Expt. 3) were kindled accordingly and processed for c-Fos and basic fibroblast growth factor (bFGF) immunohistochemistry. It was hypothesized that Stage 1 seizures evoked in the injured hemisphere prevent recovery by blocking lesion-induced bFGF expression in structures shown to be important for recovery after cortex lesions (e.g., striatum). The results confirmed our hypothesis and suggest that the seizure-associated inhibition of lesion-induced bFGF may alter the growth factor-mediated plasticity necessary for functional recovery.
Collapse
Affiliation(s)
- A E Kline
- Behavioral Neuroscience Program, Department of Psychology, University of Colorado, Campus Box 345, Boulder, CO 80309-0345, USA
| | | | | | | | | |
Collapse
|
48
|
Rabchevsky AG, Fugaccia I, Turner AF, Blades DA, Mattson MP, Scheff SW. Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp Neurol 2000; 164:280-91. [PMID: 10915567 DOI: 10.1006/exnr.2000.7399] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have recently demonstrated that following a moderate contusion spinal cord injury (SCI) to rats, subsequent administration of basic fibroblast growth factor (bFGF) significantly enhances functional recovery and tissue sparing. To further characterize the effects of bFGF, we evaluated its efficacy after a more severe contusion injury at T(10) using the NYU impactor. Immediately after SCI, osmotic minipumps were implanted into the lateral ventricle and lumbar thecal sac to deliver bFGF at 3 or 6 microg per day versus control vehicle for 1 week. Animals were behaviorally tested for 6 weeks before histological assessment of tissue sparing through the injured segment and glial reactivity distal to the lesion. Compared to moderate SCI, all rats had more prolonged and sustained functional deficits 6 weeks after severe contusion. Subjects treated with bFGF had pronounced recovery of hindlimb movements from 2 to 6 weeks compared to controls, manifested in significantly higher behavioral scores. Only marginal tissue sparing was seen rostral to the injury in bFGF-treated spinal cords versus controls. Optical density measurements of astrocyte and microglial cell immunoreactivity in bFGF-treated spinal cords showed that after 6 weeks they approximated controls, although astrocyte immunoreactivity remained higher in controls rostrally. In summary, intrathecal infusion of bFGF following severe SCI significantly restores gross hindlimb motor function that is not correlated with significant tissue sparing. In light of previous evidence that pharmacological intervention with bFGF after moderate SCI enhances tissue preservation, the current findings indicate that yet undefined mechanisms contribute to the enhanced functional recovery following bFGF treatment.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Avian Proteins
- Basigin
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Blood Proteins
- Dose-Response Relationship, Drug
- Female
- Fibroblast Growth Factor 2/administration & dosage
- Glial Fibrillary Acidic Protein/metabolism
- Gliosis/metabolism
- Gliosis/pathology
- Hindlimb/innervation
- Infusion Pumps, Implantable
- Injections, Intraventricular
- Injections, Spinal
- Laminectomy
- Lumbosacral Region
- Membrane Glycoproteins/metabolism
- Movement/drug effects
- Rats
- Rats, Sprague-Dawley
- Recovery of Function/drug effects
- Spinal Cord Injuries/drug therapy
- Spinal Cord Injuries/pathology
- Spinal Cord Injuries/surgery
- Thoracic Vertebrae/surgery
- Wounds, Nonpenetrating
Collapse
Affiliation(s)
- A G Rabchevsky
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536-0230, USA
| | | | | | | | | | | |
Collapse
|
49
|
Bury SD, Eichhorn AC, Kotzer CM, Jones TA. Reactive astrocytic responses to denervation in the motor cortex of adult rats are sensitive to manipulations of behavioral experience. Neuropharmacology 2000; 39:743-55. [PMID: 10699441 DOI: 10.1016/s0028-3908(99)00272-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent research has suggested that mild denervation of the neocortex of adult rats may facilitate neuronal growth in response to behavioral changes. Astrocytes react to denervation, produce growth-promoting factors and are a potential mediator of this denervation-facilitated growth. The present study assessed whether astrocytic reactions to denervation vary dependent upon post-injury behavioral experience. Denervation of the transcallosal afferents to the motor cortex was induced via partial transections of the corpus callosum. Transected- or sham-operated rats were then either forced to use the opposite forelimb (via limb-restricting vests) or permitted to use both forelimbs normally for 8 days. In the motor cortex, the surface density of glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytic processes and the density of basic fibroblast growth factor (FGF-2)-IR glial cells was significantly increased as a result of transections alone and as a result of forced forelimb-use alone in comparison to controls. The combination of transections and forced-use significantly enhanced GFAP-IR in comparison to all other groups, but did not further enhance FGF-2-IR. These findings are consistent with behavior and denervation having interactive influences on astrocytic reactivity in the motor cortex. These results also raise the possibility that astrocyte-mediated support of neural restructuring after brain injury might be enhanced with appropriate post-injury behavioral manipulations.
Collapse
Affiliation(s)
- S D Bury
- Psychology Department, University of Washington, Guthrie Hall Box 351525, Seattle 98195, USA
| | | | | | | |
Collapse
|
50
|
Kawahara N, Ruetzler CA, Mies G, Klatzo I. Cortical spreading depression increases protein synthesis and upregulates basic fibroblast growth factor. Exp Neurol 1999; 158:27-36. [PMID: 10448415 DOI: 10.1006/exnr.1999.7091] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protective effects of cortical spreading depression (CSD) against ischemic damage have been demonstrated in cortex when elicited at either 24 h or 3 days prior to ischemia. The present study was carried out to investigate possible mechanisms of neuroprotection following CSD. In Sprague-Dawley rats, 5 M KCl, 5 M NaCl, or physiological saline was applied to the cortex for 1 h. Repetitive CSD waves were elicited only in the KCl group. Measurements of cerebral glucose utilization demonstrated a marked reduction in affected cortex and subcortical regions in both the NaCl and the KCl groups, whereas cortical and hippocampal protein synthesis was discretely increased only in the KCl group. Immunohistochemistry of GFAP demonstrated a rapid activation in reactive astrocytes at 3 days in the KCl group whereas only a discrete activation was observed in the NaCl group. Similar changes were observed for basic fibroblast growth factor. Our results suggest that CSD-induced ischemic tolerance is not due to a reduction in energy metabolism but rather is associated with an upregulation of trophic factors and glial cell activation which might provide a mechanism for a long-lasting neuroprotection.
Collapse
Affiliation(s)
- N Kawahara
- Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|