1
|
Verma M, Chopra M, Kumar H. Unraveling the Potential of EphA4: A Breakthrough Target and Beacon of Hope for Neurological Diseases. Cell Mol Neurobiol 2023; 43:3375-3391. [PMID: 37477786 PMCID: PMC11409998 DOI: 10.1007/s10571-023-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Erythropoietin-producing hepatocellular carcinoma A4 (EphA4) is a transmembrane receptor protein which is a part of the most prominent family of receptor tyrosine kinases (RTKs). It serves a crucial role in both physiological, biological, and functional states binding with their ligand like Ephrins. Its abundance in the majority of the body's systems has been reported. Moreover, it draws much attention in the CNS since it influences axonal and vascular guidance. Also, it has a widespread role at the pathological state of various CNS disorders. Reports suggest it obstructs axonal regeneration in various neurodegenerative diseases and neurological disorders. Although, neuro-regeneration is still an open challenge to the modern drug discovery community. Hence, in this review, we will provide information about the role of EphA4 in neurological diseases by which it may emerge as a therapeutic target for CNS disease. We will also provide a glance at numerous signaling pathways that activate or inhibit the EphA4-associated biological processes contributing to the course of neurodegenerative diseases. Thus, this work might serve as a basis for futuristic studies that are related to the target-based drug discovery in the field of neuro-regeneration. Pathological and physiological events associated with EphA4 and Ephrin upregulation and interaction.
Collapse
Affiliation(s)
- Meenal Verma
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Manjeet Chopra
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Hemant Kumar
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
2
|
Wang Y, Wen C, Xie G, Jiang L. Blockade of Spinal EphA4 Reduces Chronic Inflammatory Pain in Mice. Neurol Res 2021; 43:528-534. [PMID: 33541257 DOI: 10.1080/01616412.2021.1884798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Background: Erythropoietin-producing hepatocellular (Ephs) receptor and their ligands, ephrins, orchestrate the induction of cell proliferation and migration, axonal guidance, synaptic genesis and synaptic plasticity in the central nervous system. Previous studies demonstrated that EphBs/ephrinBs participate in the pathophysiology of neuropathic pain, inflammatory pain and bone cancer pain, but the role of EphA4 in the regulation of pain in the spinal cord is unknown. Therefore, we explored the role of EphA4 receptor in regulating chronic inflammatory pain.Methods: We established a mouse model of chronic inflammatory pain through plantar injection of complete freund's adjuvant (CFA) and assessed EphA4 expression in spinal cord by western blotting. EphA4 receptor was blocked by intrathecal injection of EphA4-Fc, an EphA4 antagonist, and pain behaviors were measured by assessing thermal hyperalgesia and mechanical allodynia. Finally, immunohistochemistry was performed to analyze the changes in the expression of Fos protein in spinal cord after blocking EphA4 receptor.Results: Plantar injection of CFA produced persistent thermal hyperalgesia and mechanical allodynia, which was accompanied by significant increases in spinal EphA4 and Fos expression. Blocking spinal EphA4 receptor suppressed CFA-induced pain behaviors and reduced the expression of Fos protein in spinal cord.Conclusions: Our study demonstrated that EphA4 receptor is involved in the generation and maintenance of CFA-induced chronic inflammatory pain and that blocking the spinal EphA4 receptor could relieve persistent pain behaviors in mice.
Collapse
Affiliation(s)
- Yin Wang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Chuanyun Wen
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Guozhu Xie
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Lin Jiang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| |
Collapse
|
3
|
Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol 2021; 343:113794. [PMID: 34166685 DOI: 10.1016/j.expneurol.2021.113794] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
Regeneration is bungled following CNS injuries, including spinal cord injury (SCI). Inherent decay of permissive conditions restricts the regrowth of the mature CNS after an injury. Hypertrophic scarring, insignificant intrinsic axon-growth activity, and axon-growth inhibitory molecules such as myelin inhibitors and scar inhibitors constitute a significant hindrance to spinal cord repair. Besides these molecules, a combined absence of various mechanisms responsible for axonal regeneration is the main reason behind the dereliction of the adult CNS to regenerate. The neutralization of specific inhibitors/proteins by stymieing antibodies or encouraging enzymatic degradation results in improved axon regeneration. Previous efforts to induce regeneration after SCI have stimulated axonal development in or near lesion sites, but not beyond them. Several pathways are responsible for the axonal growth obstruction after a CNS injury, including SCI. Herein, we summarize the axonal, glial, and intrinsic factor which impedes the regeneration. We have also discussed the methods to stabilize microtubules and through this to maintain the proper cytoskeletal dynamics of growth cone as disorganized microtubules lead to the failure of axonal regeneration. Moreover, we primarily focus on diverse inhibitors of axonal growth and molecular approaches to counteract them and their downstream intracellular signaling through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
4
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
5
|
Teng S, Palmieri A, Maita I, Zheng C, Das G, Park J, Zhou R, Alder J, Thakker-Varia S. Inhibition of EphA/Ephrin-A signaling using genetic and pharmacologic approaches improves recovery following traumatic brain injury in mice. Brain Inj 2019; 33:1385-1401. [DOI: 10.1080/02699052.2019.1641622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Isabella Maita
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gitanjali Das
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Juyeon Park
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Cheng Q, Graves MD, Pallas SL. Dynamic Alterations of Retinal EphA5 Expression in Retinocollicular Map Plasticity. Dev Neurobiol 2019; 79:252-267. [PMID: 30916472 PMCID: PMC6506164 DOI: 10.1002/dneu.22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
The topographically ordered retinocollicular projection is an excellent system for studying the mechanism of axon guidance. Gradients of EphA receptors in the retina and ephrin-As in the superior colliculus (SC) pattern the anteroposterior axis of the retinocollicular map, but whether they are involved in map plasticity after injury is unknown. Partial damage to the caudal SC at birth creates a compressed, complete retinotopic map in the remaining SC without affecting visual response properties. Previously, we found that the gradient of ephrin-A expression in compressed maps is steeper than normal, suggesting an instructive role in compression. Here we measured EphA5 mRNA and protein levels after caudal SC damage in order to test the hypothesis that changes in retinal EphA5 expression occur that are complementary to the changes in collicular ephrin-A expression. We find that the nasotemporal gradient of EphA5 receptor expression steepens in the retina and overall expression levels change dynamically, especially in temporal retina, supporting the hypothesis. This change in receptor expression occurs after the change in ephrin-A ligand expression. We propose that changes in the retinal EphA5 gradient guide recovery of the retinocollicular projection from early injury. This could occur directly through the change in EphA5 expression instructing retino-SC map compression, or through ephrin-A ligand signaling instructing a change in EphA5 receptor expression that in turn signals the retinocollicular map to compress. Understanding what molecular signals direct compensation for injury is essential to developing rehabilitative strategies and maximizing the potential for recovery.
Collapse
Affiliation(s)
- Qi Cheng
- Neuroscience Institute Georgia State University, Atlanta, GA, USA
| | - Mark D. Graves
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Sarah L. Pallas
- Neuroscience Institute Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
7
|
Ferluga S, Tomé CML, Herpai DM, D'Agostino R, Debinski W. Simultaneous targeting of Eph receptors in glioblastoma. Oncotarget 2016; 7:59860-59876. [PMID: 27494882 PMCID: PMC5312354 DOI: 10.18632/oncotarget.10978] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/16/2016] [Indexed: 12/20/2022] Open
Abstract
Eph tyrosine kinase receptors are frequently overexpressed and functional in many cancers, and they are attractive candidates for targeted therapy. Here, we analyzed the expression of Eph receptor A3, one of the most up-regulated factors in glioblastoma cells cultured under tumorsphere-forming conditions, together with EphA2 and EphB2 receptors. EphA3 was overexpressed in up to 60% of glioblastoma tumors tested, but not in normal brain. EphA3 was localized in scattered areas of the tumor, the invasive ring, and niches near tumor vessels. EphA3 co-localized with macrophage/leukocyte markers, suggesting EphA3 expression on tumor-infiltrating cells of bone marrow origin. We took advantage of the fact that ephrinA5 (eA5) is a ligand that binds EphA3, EphA2 and EphB2 receptors, and used it to construct a novel targeted anti-glioblastoma cytotoxin. The eA5-based cytotoxin potently and specifically killed glioblastoma cells with an IC50 of at least 10-11 M. This and similar cytotoxins will simultaneously target different compartments of glioblastoma tumors while mitigating tumor heterogeneity.
Collapse
Affiliation(s)
- Sara Ferluga
- Department of Cancer Biology, Radiation Oncology and Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Carla Maria Lema Tomé
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Denise Mazess Herpai
- Department of Cancer Biology, Radiation Oncology and Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Ralph D'Agostino
- Department of Biostatistical Sciences, Section on Biostatistics, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Radiation Oncology and Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
8
|
Tsenkina Y, Ricard J, Runko E, Quiala- Acosta MM, Mier J, Liebl DJ. EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury. Cell Death Dis 2015; 6:e1922. [PMID: 26469970 PMCID: PMC4632292 DOI: 10.1038/cddis.2015.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/29/2022]
Abstract
We demonstrate that EphB3 receptors mediate oligodendrocyte (OL) cell death in the injured spinal cord through dependence receptor mechanism. OLs in the adult spinal cord express EphB3 as well as other members of the Eph receptor family. Spinal cord injury (SCI) is associated with tissue damage, cellular loss and disturbances in EphB3-ephrinB3 protein balance acutely (days) after the initial impact creating an environment for a dependence receptor-mediated cell death to occur. Genetic ablation of EphB3 promotes OL survival associated with increased expression of myelin basic protein and improved locomotor function in mice after SCI. Moreover, administration of its ephrinB3 ligand to the spinal cord after injury also promotes OL survival. Our in vivo findings are supported by in vitro studies showing that ephrinB3 administration promotes the survival of both oligodendroglial progenitor cells and mature OLs cultured under pro-apoptotic conditions. In conclusion, the present study demonstrates a novel dependence receptor role of EphB3 in OL cell death after SCI, and supports further development of ephrinB3-based therapies to promote recovery.
Collapse
Affiliation(s)
- Y Tsenkina
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Ricard
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - E Runko
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - M M Quiala- Acosta
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Mier
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - D J Liebl
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| |
Collapse
|
9
|
Behavioral improvement and regulation of molecules related to neuroplasticity in ischemic rat spinal cord treated with PEDF. Neural Plast 2014; 2014:451639. [PMID: 25110592 PMCID: PMC4106224 DOI: 10.1155/2014/451639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
Abstract
Pigment epithelium derived factor (PEDF) exerts trophic actions to motoneurons and modulates nonneuronal restorative events, but its effects on neuroplasticity responses after spinal cord (SC) injury are unknown. Rats received a low thoracic SC photothrombotic ischemia and local injection of PEDF and were evaluated behaviorally six weeks later. PEDF actions were detailed in SC ventral horn (motor) in the levels of the lumbar central pattern generator (CPG), far from the injury site. Molecules related to neuroplasticity (MAP-2), those that are able to modulate such event, for instance, neurotrophic factors (NT-3, GDNF, BDNF, and FGF-2), chondroitin sulfate proteoglycans (CSPG), and those associated with angiogenesis and antiapoptosis (laminin and Bcl-2) and Eph (receptor)/ephrin system were evaluated at cellular or molecular levels. PEDF injection improved motor behavioral performance and increased MAP-2 levels and dendritic processes in the region of lumbar CPG. Treatment also elevated GDNF and decreased NT-3, laminin, and CSPG. Injury elevated EphA4 and ephrin-B1 levels, and PEDF treatment increased ephrin A2 and ephrins B1, B2, and B3. Eph receptors and ephrins were found in specific populations of neurons and astrocytes. PEDF treatment to SC injury triggered neuroplasticity in lumbar CPG and regulation of neurotrophic factors, extracellular matrix molecules, and ephrins.
Collapse
|
10
|
Li Z, DU J, Sun H, Mang J, He J, Wang J, Liu H, Xu Z. Effects of the combination of methylprednisolone with aminoguanidine on functional recovery in rats following spinal cord injury. Exp Ther Med 2014; 7:1605-1610. [PMID: 24926352 PMCID: PMC4043599 DOI: 10.3892/etm.2014.1613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
Methylprednisolone (MP), a synthetic glucocorticoid, has been widely used as a standard therapeutic agent for the treatment of spinal cord injury (SCI). The combination of MP and other pharmacological agents aimed at enhancing functional recovery is desirable as the beneficial effects of MP are controversial, due to a variety of side-effects. Aminoguanidine (AG), a small water-soluble compound, is potentially useful in the treatment of acute SCI. The aim of the present study was to determine the effects of MP and AG, administered in combination, following SCI in adult rats. In rats with SCI, the combination therapy group treated with AG (75 mg/kg) and MP (0.75 mg/kg) exhibited significantly reduced levels of cytokine expression and cell apoptosis compared with those in the control group. In addition, the data demonstrated that the combination therapy significantly enhanced the recovery of limb function. These data clearly suggest that treatment with a combination of MP and AG represents a promising strategy of clinically applicable pharmacological therapy for the rapid initiation of neuroprotection following SCI.
Collapse
Affiliation(s)
- Zongshu Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China ; Department of Neurology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Juan DU
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hongxia Sun
- Department of Neurology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
11
|
QU YANG, ZHAO JIANWU, WANG YANG, GAO ZHONGLI. Silencing ephrinB3 improves functional recovery following spinal cord injury. Mol Med Rep 2014; 9:1761-6. [PMID: 24604122 DOI: 10.3892/mmr.2014.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/25/2014] [Indexed: 11/06/2022] Open
|
12
|
|
13
|
Nakamura PA, Cramer KS. EphB2 signaling regulates lesion-induced axon sprouting but not critical period length in the postnatal auditory brainstem. Neural Dev 2013; 8:2. [PMID: 23379484 PMCID: PMC3575227 DOI: 10.1186/1749-8104-8-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022] Open
Abstract
Background Studies of developmental plasticity may provide insight into plasticity during adulthood, when neural circuitry is less responsive to losses or changes in input. In the mammalian auditory brainstem, globular bushy cell axons of the ventral cochlear nucleus (VCN) innervate the contralateral medial nucleus of the trapezoid body (MNTB) principal neurons. VCN axonal terminations in MNTB, known as calyces of Held, are very large and specialized for high-fidelity transmission of auditory information. Following unilateral deafferentation during postnatal development, VCN axons from the intact side form connections with novel targets, including the ipsilateral MNTB. EphB signaling has been shown to play a role in this process during the first postnatal week, but mechanisms involved in this reorganization during later developmental periods remain unknown. Results We found that EphB2 signaling reduces the number of induced ipsilateral projections to the MNTB after unilateral VCN removal at postnatal day seven (P7), but not after removal of the VCN on one side at P10, after the closure of the critical period for lesion-induced innervation of the ipsilateral MNTB. Conclusions Results from this study indicate that molecular mechanisms involved in the development of circuitry may also play a part in rewiring after deafferentation during development, but do not appear to regulate the length of critical periods for plasticity.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
14
|
Hånell A, Clausen F, Djupsjö A, Vallstedt A, Patra K, Israelsson C, Larhammar M, Björk M, Paixão S, Kullander K, Marklund N. Functional and Histological Outcome after Focal Traumatic Brain Injury Is Not Improved in Conditional EphA4 Knockout Mice. J Neurotrauma 2012; 29:2660-71. [DOI: 10.1089/neu.2012.2376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anders Hånell
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Fredrik Clausen
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anders Djupsjö
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anna Vallstedt
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kalicharan Patra
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Charlotte Israelsson
- Section for Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Martin Larhammar
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maria Björk
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sónia Paixão
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | - Klas Kullander
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. Eph/Ephrin signaling in injury and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1493-503. [PMID: 23021982 DOI: 10.1016/j.ajpath.2012.06.043] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022]
Abstract
The Eph/ephrin receptor-ligand system plays an important role in embryogenesis and adult life, principally by influencing cell behavior through signaling pathways, resulting in modification of the cell cytoskeleton and cell adhesion. There are 10 EphA receptors, and six EphB receptors, distinguished on sequence difference and binding preferences, that interact with the six glycosylphosphatidylinositol-linked ephrin-A ligands and the three transmembrane ephrin-B ligands, respectively. The Eph/ephrin proteins, originally described as developmental regulators that are expressed at low levels postembryonically, are re-expressed after injury to the optic nerve, spinal cord, and brain in fish, amphibians, rodents, and humans. In rodent spinal cord injury, the up-regulation of EphA4 prevents recovery by inhibiting axons from crossing the injury site. Eph/ephrin proteins may be partly responsible for the phenotypic changes to the vascular endothelium in inflammation, which allows fluid and inflammatory cells to pass from the vascular space into the interstitial tissues. Specifically, EphA2/ephrin-A1 signaling in the lung may be responsible for pulmonary inflammation in acute lung injury. A role in T-cell maturation and chronic inflammation (heart failure, inflammatory bowel disease, and rheumatoid arthritis) is also reported. Although there remains much to learn about Eph/ephrin signaling in human disease, and specifically in injury and inflammation, this area of research raises the exciting prospect that novel therapies will be developed that precisely target these pathways.
Collapse
Affiliation(s)
- Mark G Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Herston, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Expression and Activation of EphA4 in the Human Brain After Traumatic Injury. J Neuropathol Exp Neurol 2012; 71:242-50. [DOI: 10.1097/nen.0b013e3182496149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
17
|
Kao TJ, Law C, Kania A. Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 2011; 23:83-91. [PMID: 22040916 DOI: 10.1016/j.semcdb.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 12/23/2022]
Abstract
In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | | |
Collapse
|
18
|
Rosas OR, Figueroa JD, Torrado AI, Rivera M, Santiago JM, Konig-Toro F, Miranda JD. Expression and activation of ephexin is altered after spinal cord injury. Dev Neurobiol 2011; 71:595-607. [PMID: 20949525 DOI: 10.1002/dneu.20848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Failure of axon regeneration after traumatic spinal cord injury (SCI) is attributable in part to the presence of inhibitory molecular interactions. Recent evidence demonstrates that activation of Eph signaling pathways leads to modulation of growth cone dynamics and repulsion through the activation of ephexin, a novel guanine nucleotide exchange factor (GEF). However, little is known about the expression and modulation of Eph molecular targets in the injured spinal cord. In this study, we determined the expression profile of ephexin after a moderate spinal cord contusion at thoracic level (T10) in young adult rats. Western-blot studies showed increased protein expression in injured rats at 4 and 7 days postinjury (DPI) when compared with control animals. The protein levels returned to normal at 14 DPI and remained steady until 28 DPI. However, immunoprecipitation studies of the phosphorylated ephexin demonstrated that this protein is activated by day 2 until 14 DPI. Expression of ephexin was noticeable in neurons, axons, microglia/macrophages, and reactive astrocytes, and co-localized with EphA3, A4, and A7. These results demonstrate the presence of ephexin in the adult spinal cord and its activation after SCI. Therefore, we show, for the first time, the spatiotemporal pattern of ephexin expression and activation after contusive SCI. Collectively, our data support our previous findings on the putative nonpermissive roles of Eph receptors after SCI and the possible involvement of ephexin in the intracellular cascade of events.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00936
| | | | | | | | | | | | | |
Collapse
|
19
|
Arocho LC, Figueroa JD, Torrado AI, Santiago JM, Vera AE, Miranda JD. Expression profile and role of EphrinA1 ligand after spinal cord injury. Cell Mol Neurobiol 2011; 31:1057-69. [PMID: 21603973 PMCID: PMC3216482 DOI: 10.1007/s10571-011-9705-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/30/2011] [Indexed: 10/18/2022]
Abstract
Spinal cord injury (SCI) triggers the re-expression of inhibitory molecules present in early stages of development, contributing to prevention of axonal regeneration. Upregulation of EphA receptor tyrosine kinases after injury suggest their involvement in the nervous system's response to damage. However, the expression profile of their ephrinA ligands after SCI is unclear. In this study, we determined the expression of ephrinA ligands after contusive SCI. Adult Sprague-Dawley female rats were injured using the MASCIS impactor device at the T10 vertebrae, and levels of ephrinA mRNA and protein determined at different time points. Identification of the cell phenotype expressing the ephrin ligand and colocalization with Eph receptors was performed with immunohistochemistry and confocal microscopy. Behavioral studies were made, after blocking ephrinA1 expression with antisense (AS) oligonucleotides, to assess hindlimb locomotor activity. Real-time PCR demonstrated basal mRNA levels of ephrin (A1, A2, A3, and A5) in the adult spinal cord. Interestingly, ephrinA1 was the only ligand whose mRNA levels were significantly altered after SCI. Although ephrinA1 mRNA levels increased after 2 weeks and remain elevated, we did not observe this pattern at the protein level as revealed by western blot analysis. Immunohistochemical studies showed ephrinA1 expression in reactive astrocytes, axons, and neurons and also their colocalization with EphA4 and A7 receptors. Behavioral studies revealed worsening of locomotor activity when ephrinA1 expression was reduced. This study suggests that ephrinA1 ligands play a role in the pathophysiology of SCI.
Collapse
Affiliation(s)
- Luz C. Arocho
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Aranza I. Torrado
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| | - José M. Santiago
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| | - Ariel E. Vera
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| | - Jorge D. Miranda
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067 USA
| |
Collapse
|
20
|
Blockade of P2 nucleotide receptors after spinal cord injury reduced the gliotic response and spared tissue. J Mol Neurosci 2011; 46:167-76. [PMID: 21647706 DOI: 10.1007/s12031-011-9567-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/23/2011] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) triggers a sequel of events commonly associated with cell death and dysfunction of glias and neurons surrounding the lesion. Although astrogliosis and glial scar formation have been involved in both damage and repair processes after SCI, their role remains controversial. Our goal was to investigate the effects of the P2 receptors antagonists, PPADS and suramin, in the establishment of the reactive gliosis and the formation of the glial scar. Molecular biology, immunohistochemistry, spared tissue, and locomotor behavioral studies were used to evaluate astrogliosis, in adult female Sprague-Dawley rats treated with P2 antagonists after moderate injury with the NYU impactor device. Semi-quantitative RT-PCR confirmed the presence of P2Y(1,) P2Y(2,) P2Y(4,) P2Y(6,) P2Y(12), and P2X(2) receptors in the adult spinal cord. Immunohistochemistry studies confirmed a significant decrease in GFAP-labeled cells at the injury epicenter as well as a decrease in spared tissue after treatment with the antagonists. Functional open field testing revealed no significant locomotor score differences between treated and control animals. Our work is consistent with studies suggesting that astrogliosis is an important event after SCI that limits tissue damage and lesion spreading.
Collapse
|
21
|
Rodríguez-Zayas AE, Torrado AI, Miranda JD. P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci 2010; 28:413-21. [PMID: 20619335 PMCID: PMC3225399 DOI: 10.1016/j.ijdevneu.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury increases inhibitory factors that may restrict neurite outgrowth after trauma. The expression of repulsive molecules in reactive astrocytes and the formation of the glial scar at the injury site produce the non-permissive environment for axonal regeneration. However, the mechanism that triggers this astrogliotic response is unknown. The release of nucleotides has been linked to this hypertrophic state. Our goal is to investigate the temporal profile of P2Y(2) nucleotide receptor after spinal cord injury in adult female Sprague-Dawley rats. Molecular biology, immunofluorescence studies, and Western Blots were used to evaluate the temporal profile (2, 4, 7, 14, and 28 days post-injury) of this receptor in rats injured at the T-10 level using the NYU impactor device. Real time RT-PCR showed a significant increase of P2Y(2) mRNA after 2 days post-injury that continues throughout 28 days post-injury. Double labeling studies localized P2Y(2) immunoreactivity in neuronal cell bodies, axons, macrophages, oligodendrocytes and reactive astrocytes. Immunofluorescence studies also demonstrated a low level of P2Y(2) receptor in sham samples, which increased after injury in glial fibrillary acidic protein positive cells. Western Blot performed with contused spinal cord protein samples revealed an upregulation in the P2Y(2) 42 kDa protein band expression after 4 days post-injury that continues until 28 days post-injury. However, a downregulation of the 62 kDa receptor protein band after 2 days post-injury that continues up to 28 days post-injury was observed. Therefore, the spatio-temporal pattern of P2Y(2) gene expression after spinal cord injury suggests a role in the pathophysiology response generated after trauma.
Collapse
Affiliation(s)
- Ana E. Rodríguez-Zayas
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| | - Aranza I. Torrado
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| | - Jorge D. Miranda
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| |
Collapse
|
22
|
Abstract
The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located proximal or distal to the injury site remain largely intact, a major goal of spinal cord injury research is to develop strategies to reestablish innervation lost as a consequence of injury. The growth inhibitory nature of injured adult CNS tissue is a major barrier to regenerative axonal growth and sprouting. An increasing complexity of molecular players is being recognized. CNS inhibitors fall into three general classes: members of canonical axon guidance molecules (e.g., semaphorins, ephrins, netrins), prototypic myelin inhibitors (Nogo, MAG, and OMgp) and chondroitin sulfate proteoglycans (lecticans, NG2). On the other end of the spectrum are molecules that promote neuronal growth and sprouting. These include growth promoting extracellular matrix molecules, cell adhesion molecules, and neurotrophic factors. In addition to environmental (extrinsic) growth regulatory cues, cell intrinsic regulatory mechanisms exist that greatly influence injury-induced neuronal growth. Various degrees of growth and sprouting of injured CNS neurons have been achieved by lowering extrinsic inhibitory cues, increasing extrinsic growth promoting cues, or by activation of cell intrinsic growth programs. More recently, combination therapies that activate growth promoting programs and at the same time attenuate growth inhibitory pathways have met with some success. In experimental animal models of spinal cord injury (SCI), mono and combination therapies have been shown to promote neuronal growth and sprouting. Anatomical growth often correlates with improved behavioral outcomes. Challenges ahead include testing whether some of the most promising treatment strategies in animal models are also beneficial for human patients suffering from SCI.
Collapse
|
23
|
Herrmann JE, Shah RR, Chan AF, Zheng B. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury. Exp Neurol 2010; 223:582-98. [PMID: 20170651 PMCID: PMC2864333 DOI: 10.1016/j.expneurol.2010.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 11/21/2022]
Abstract
One important aspect of recovery and repair after spinal cord injury (SCI) lies in the complex cellular interactions at the injury site that leads to the formation of a lesion scar. EphA4, a promiscuous member of the EphA family of repulsive axon guidance receptors, is expressed by multiple cell types in the injured spinal cord, including astrocytes and neurons. We hypothesized that EphA4 contributes to aspects of cell-cell interactions at the injury site after SCI, thus modulating the formation of the astroglial-fibrotic scar. To test this hypothesis, we studied tissue responses to a thoracic dorsal hemisection SCI in an EphA4 mutant mouse line. We found that EphA4 expression, as assessed by beta-galactosidase reporter gene activity, is associated primarily with astrocytes in the spinal cord, neurons in the cerebral cortex and, to a lesser extent, spinal neurons, before and after SCI. However, we did not observe any overt reduction of glial fibrillary acidic protein (GFAP) expression in the injured area of EphA4 mutants in comparison with controls following SCI. Furthermore, there was no evident disruption of the fibrotic scar, and the boundary between reactive astrocytes and meningeal fibroblasts appeared unaltered in the mutants, as were lesion size, neuronal survival and inflammation marker expression. Thus, genetic deletion of EphA4 does not significantly alter the astroglial response or the formation of the astroglial-fibrotic scar following a dorsal hemisection SCI in mice. In contrast to what has been proposed, these data do not support a major role for EphA4 in reactive astrogliosis following SCI.
Collapse
Affiliation(s)
- Julia E. Herrmann
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Ravi R. Shah
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Andrea F. Chan
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Binhai Zheng
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| |
Collapse
|
24
|
Usher LC, Johnstone A, Ertürk A, Hu Y, Strikis D, Wanner IB, Moorman S, Lee JW, Min J, Ha HH, Duan Y, Hoffman S, Goldberg JL, Bradke F, Chang YT, Lemmon VP, Bixby JL. A chemical screen identifies novel compounds that overcome glial-mediated inhibition of neuronal regeneration. J Neurosci 2010; 30:4693-706. [PMID: 20357120 PMCID: PMC2855497 DOI: 10.1523/jneurosci.0302-10.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/16/2010] [Indexed: 11/21/2022] Open
Abstract
A major barrier to regeneration of CNS axons is the presence of growth-inhibitory proteins associated with myelin and the glial scar. To identify chemical compounds with the ability to overcome the inhibition of regeneration, we screened a novel triazine library, based on the ability of compounds to increase neurite outgrowth from cerebellar neurons on inhibitory myelin substrates. The screen produced four "hit compounds," which act with nanomolar potency on several different neuronal types and on several distinct substrates relevant to glial inhibition. Moreover, the compounds selectively overcome inhibition rather than promote growth in general. The compounds do not affect neuronal cAMP levels, PKC activity, or EGFR (epidermal growth factor receptor) activation. Interestingly, one of the compounds alters microtubule dynamics and increases microtubule density in both fibroblasts and neurons. This same compound promotes regeneration of dorsal column axons after acute lesions and potentiates regeneration of optic nerve axons after nerve crush in vivo. These compounds should provide insight into the mechanisms through which glial-derived inhibitors of regeneration act, and could lead to the development of novel therapies for CNS injury.
Collapse
Affiliation(s)
| | - Andrea Johnstone
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ali Ertürk
- Laboratory of Axon Growth and Regeneration, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | | | | | - Ina B. Wanner
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Sanne Moorman
- Program in Neuroscience and Cognition, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jae-Wook Lee
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Jaeki Min
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Hyung-Ho Ha
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | | | - Stanley Hoffman
- Department of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey L. Goldberg
- Ophthalmology, and
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Vance P. Lemmon
- Neurological Surgery, and
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - John L. Bixby
- Departments of Pharmacology
- Neurological Surgery, and
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
25
|
Santiago JM, Rosas O, Torrado AI, González MM, Kalyan-Masih PO, Miranda JD. Molecular, anatomical, physiological, and behavioral studies of rats treated with buprenorphine after spinal cord injury. J Neurotrauma 2009; 26:1783-93. [PMID: 19653810 PMCID: PMC2864459 DOI: 10.1089/neu.2007.0502] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute pain is a common symptom experienced after spinal cord injury (SCI). The presence of this pain calls for treatment with analgesics, such as buprenorphine. However, there are concerns that the drug may exert other effects besides alleviation of pain. Among those reported are in vitro changes in gene expression, apoptosis, and necrosis. In this investigation, the effect of buprenorphine was assessed at the molecular, behavioral, electrophysiological, and histological levels after SCI. Rats were injured at the T10 thoracic level using the NYU impactor device. Half of the animals received buprenorphine (0.05 mg/kg) for 3 consecutive days immediately after SCI, and the other half were untreated. Microarray analysis (n = 5) was performed and analyzed using the Array Assist software. The genes under study were grouped in four categories according to function: regeneration, apoptosis, second messengers, and nociceptive related genes. Microarray analysis demonstrated no significant difference in gene expression between rats treated with buprenorphine and the control group at 2 and 4 days post-injury (DPI). Experiments performed to determine the effect of buprenorphine at the electrophysiological (tcMMEP), behavioral (BBB, grid walking and beam crossing), and histological (luxol staining) levels revealed no significant difference at 7 and 14 DPI in the return of nerve conduction, functional recovery, or white matter sparing between control and experimental groups (p > 0.05, n = 6). These results show that buprenorphine (0.05 mg/kg) can be used as part of the postoperative care to reduce pain after SCI without affecting behavioral, physiological, or anatomical parameters.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Buprenorphine/adverse effects
- Buprenorphine/pharmacology
- Disease Models, Animal
- Evoked Potentials, Motor/drug effects
- Evoked Potentials, Motor/physiology
- Female
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/physiopathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Locomotion/drug effects
- Locomotion/physiology
- Nerve Regeneration/drug effects
- Nerve Regeneration/genetics
- Nerve Tissue Proteins/genetics
- Neural Conduction/drug effects
- Neural Conduction/physiology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Oligonucleotide Array Sequence Analysis
- Pain, Intractable/drug therapy
- Pain, Intractable/etiology
- Pain, Intractable/metabolism
- Rats
- Rats, Sprague-Dawley
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Second Messenger Systems/drug effects
- Second Messenger Systems/genetics
- Spinal Cord Injuries/complications
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/physiopathology
- Treatment Outcome
Collapse
Affiliation(s)
- José M Santiago
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
26
|
Washburn CP, Cooper MA, Zhou R. Expression of the tyrosine kinase receptor EphA5 and its ligand ephrin-A5 during mouse spinal cord development. Neurosci Bull 2008; 23:249-55. [PMID: 17952132 DOI: 10.1007/s12264-007-0037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES To study the expression patterns of two Eph family molecules, the receptor EphA5, and the ligand ephrin-A5, during spinal cord development. METHODS The receptor expression was analyzed using beta-galactosidase knockin mice, and affinity ligand probe binding. The ligand expression was assessed using two different affinity probes, and knockout mouse tissues as controls. RESULTS EphA5 was expressed in the ventral spinal cord, while ephrin-A5 was located in the dorsolateral regions of the spinal cord throughout development. CONCLUSIONS These results show that EphA5 and ephrin-A5 are expressed over broad developmental stages and may play important roles in establishing the dorsoventral organization of the spinal cord.
Collapse
Affiliation(s)
- Christopher P Washburn
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
27
|
Cruz-Orengo L, Figueroa JD, Torrado A, Puig A, Whittemore SR, Miranda JD. Reduction of EphA4 receptor expression after spinal cord injury does not induce axonal regeneration or return of tcMMEP response. Neurosci Lett 2007; 418:49-54. [PMID: 17418490 PMCID: PMC2570091 DOI: 10.1016/j.neulet.2007.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/03/2007] [Accepted: 03/05/2007] [Indexed: 01/24/2023]
Abstract
Spinal cord injury (SCI) causes an increase of inhibitory factors that may restrict axonal outgrowth after trauma. During the past decade, the Eph receptors and ephrin ligands have emerged as key repulsive cues known to be involved in neurite outgrowth, synapse formation, and axonal pathfinding during development. Given the non-permissive environment for axonal regeneration after SCI, we questioned whether enhanced-expression of the EphA4 receptor with repulsive activity for axonal outgrowth is potentially responsible for the regenerative failure. To address this possibility, we have examined the expression of EphA4 after SCI in adult rats following a contusion SCI. EphA4 expression studies demonstrated a time-dependent change for EphA4 protein without alterations in beta-actin. EphA4 was downregulated initially and upregulated 7 days after injury. Blockade of EphA4 upregulation with antisense oligonucleotides did not produce an anatomical or physiological response monitored with anterograde tracing studies or transcranial magnetic motor evoked potentials (tcMMEP), respectively. These results demonstrated that upregulation of EphA4 receptors after trauma is not related to axonal regeneration or return of nerve conduction across the injury site.
Collapse
Affiliation(s)
- Lillian Cruz-Orengo
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA
| | - Johnny D. Figueroa
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA
| | - Aranza Torrado
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA
| | - Anabel Puig
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA
| | - Scott R. Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY40202
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY40202
| | - Jorge D. Miranda
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA
| |
Collapse
|
28
|
Figueroa JD, Benton RL, Velazquez I, Torrado AI, Ortiz CM, Hernandez CM, Diaz JJ, Magnuson DS, Whittemore SR, Miranda JD. Inhibition of EphA7 up-regulation after spinal cord injury reduces apoptosis and promotes locomotor recovery. J Neurosci Res 2007; 84:1438-51. [PMID: 16983667 DOI: 10.1002/jnr.21048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Functional impairment after spinal cord injury (SCI) is partially attributed to neuronal cell death, with further degeneration caused by the accompanying apoptosis of myelin-forming oligodendrocytes. The Eph receptor protein tyrosine kinase family and its cognate ligands, the ephrins, have been identified to be involved in axonal outgrowth, synapse formation, and target recognition, mainly mediated by repulsive activity. Recent reports suggest that ephrin/Eph signaling might also play a role as a physiological trigger for apoptosis during embryonic development. Here, we investigated the expression profile of EphA7, after SCI, by using a combination of quantitative real-time PCR (QRT-PCR) and immunohistochemical techniques. QRT-PCR analysis showed an increase in the expression of full-length EphA7 at 7 days postinjury (DPI). Receptor immunoreactivity was shown mostly in astrocytes of the white matter at the injury epicenter. In control animals, EphA7 expression was observed predominantly in motor neurons of the ventral gray matter, although some immunoreactivity was seen in white matter. Furthermore, blocking the expression of EphA7 after SCI using antisense oligonucleotides resulted in significant acceleration of hindlimb locomotor recovery at 1 week. This was a transient effect; by 2 weeks postinjury, treated animals were not different from controls. Antisense treatment also produced a return of nerve conduction, with shorter latencies than in control treated animals after transcranial magnetic stimulation. We identified EphA7 receptors as putative regulators of apoptosis in the acute phase after SCI. These results suggest a functional role for EphA7 receptors in the early stages of SCI pathophysiology.
Collapse
Affiliation(s)
- Johnny D Figueroa
- Department of Physiology, University of Puerto Rico Medical Science Campus, San Juan, Puerto Rico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reber M, Hindges R, Lemke G. Eph receptors and ephrin ligands in axon guidance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 621:32-49. [PMID: 18269209 DOI: 10.1007/978-0-387-76715-4_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Michael Reber
- INSERM U.575, Centre de Neurochimie, 5, rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | |
Collapse
|
30
|
Willson CA, Foster RD, Onifer SM, Whittemore SR, Miranda JD. EphB3 receptor and ligand expression in the adult rat brain. J Mol Histol 2006; 37:369-80. [PMID: 17103029 DOI: 10.1007/s10735-006-9067-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
Eph receptors and ligands are two families of proteins that control axonal guidance during development. Their expression was originally thought to be developmentally regulated but recent work has shown that several EphA receptors are expressed postnatally. The EphB3 receptors are expressed during embryonic development in multiple regions of the central nervous system but their potential expression and functional role in the adult brain is unknown. We used in situ hybridization, immunohistochemistry, and receptor affinity probe in situ staining to investigate EphB3 receptors mRNA, protein, and ligand (ephrin-B) expression, respectively, in the adult rat brain. Our results indicate that EphB3 receptor mRNA and protein are constitutively expressed in discrete regions of the adult rat brain including the cerebellum, raphe pallidus, hippocampus, entorhinal cortex, and both motor and sensory cortices. The spatial profile of EphB3 receptors was co-localized to regions of the brain that had a high level of EphB3 receptor binding ligands. Its expression pattern suggests that EphB3 may play a role in the maintenance of mature neuronal connections or re-arrangement of synaptic connections during late stages of development.
Collapse
Affiliation(s)
- Christopher A Willson
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
31
|
Goldshmit Y, McLenachan S, Turnley A. Roles of Eph receptors and ephrins in the normal and damaged adult CNS. ACTA ACUST UNITED AC 2006; 52:327-45. [PMID: 16774788 DOI: 10.1016/j.brainresrev.2006.04.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 12/19/2022]
Abstract
Injury to the central nervous system (CNS) usually results in very limited regeneration of lesioned axons, which are inhibited by the environment of the injury site. Factors that have been implicated in inhibition of axonal regeneration include myelin proteins, astrocytic gliosis and cell surface molecules that are involved in axon guidance during development. This review examines the contribution of one such family of developmental guidance molecules, the Eph receptor tyrosine kinases and their ligands, the ephrins in normal adult CNS and following injury or disease. Eph/ephrin signaling regulates axon guidance through contact repulsion during development of the CNS, inducing collapse of neuronal growth cones. Eph receptors and ephrins continue to be expressed in the adult CNS, although usually at lower levels, but are upregulated following neural injury on different cell types, including reactive astrocytes, neurons and oligodendrocytes. This upregulated expression may directly inhibit regrowth of regenerating axons; however, in addition, Eph expression also regulates astrocytic gliosis and formation of the glial scar. Therefore, Eph/ephrin signaling may inhibit regeneration by more than one mechanism and modulation of Eph receptor expression or signaling could prove pivotal in determining the outcome of injury in the adult CNS.
Collapse
Affiliation(s)
- Yona Goldshmit
- Centre for Neuroscience, The University of Melbourne, Melbourne, Vic 3010, Australia
| | | | | |
Collapse
|
32
|
Harel NY, Strittmatter SM. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 2006; 7:603-16. [PMID: 16858389 PMCID: PMC2288666 DOI: 10.1038/nrn1957] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise wiring of the adult mammalian CNS originates during a period of stunning growth, guidance and plasticity that occurs during and shortly after development. When injured in adults, this intricate system fails to regenerate. Even when the obstacles to regeneration are cleared, growing adult CNS fibres usually remain misdirected and fail to reform functional connections. Here, we attempt to fill an important niche related to the topics of nervous system development and regeneration. We specifically contrast the difficulties faced by growing fibres within the adult context to the precise circuit-forming capabilities of developing fibres. In addition to focusing on methods to stimulate growth in the adult, we also expand on approaches to recapitulate development itself.
Collapse
Affiliation(s)
- Noam Y Harel
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
33
|
Fabes J, Anderson P, Yáñez-Muñoz RJ, Thrasher A, Brennan C, Bolsover S. Accumulation of the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion. Eur J Neurosci 2006; 23:1721-30. [PMID: 16623828 DOI: 10.1111/j.1460-9568.2006.04704.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract We have examined the expression of Eph receptors and their ephrin ligands in adult rat spinal cord before and after lesion. Neurons in adult motor cortex express EphA4 mRNA, but the protein is undetectable in uninjured corticospinal tract. In contrast, after dorsal column hemisection EphA4 protein accumulates in proximal axon stumps. One of the ligands for EphA4, ephrinB2, is normally present in the grey matter flanking the corticospinal tract but after injury is markedly up-regulated in astrocytes in the glial scar. The result is that, after a lesion, corticospinal tract axons bear high levels of EphA4 and are surrounded to front and sides by a continuous basket of cognate inhibitory ephrin ligand. We suggest that a combination of EphA4 accumulation in the injured axons and up-regulation of ephrinB2 in the surrounding astrocytes leads to retraction of corticospinal axons and inhibition of their regeneration in the weeks after a spinal lesion.
Collapse
Affiliation(s)
- Jez Fabes
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
34
|
Petros TJ, Williams SE, Mason CA. Temporal regulation of EphA4 in astroglia during murine retinal and optic nerve development. Mol Cell Neurosci 2006; 32:49-66. [PMID: 16574431 DOI: 10.1016/j.mcn.2006.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/06/2006] [Accepted: 02/16/2006] [Indexed: 01/03/2023] Open
Abstract
Eph receptors and their ephrin ligands play important roles in many aspects of visual system development. In this study, we characterized the spatial and temporal expression pattern of EphA4 in astrocyte precursor cell (APC) and astrocyte populations in the murine retina and optic nerve. EphA4 is expressed by immotile optic disc astrocyte precursor cells (ODAPS), but EphA4 is downregulated as these cells migrate into the retina. Surprisingly, mature astrocytes in the adult retina re-express EphA4. Within the optic nerve, EphA4 is expressed in specialized astrocytes that form a meshwork at the optic nerve head (ONH). Our in vitro and in vivo data indicate that EphA4 is dispensable for retinal ganglion cell (RGC) axon growth and projections through the chiasm. While optic stalk structure, APC proliferation and migration, retinal vascularization, and oligodendrocyte migration appear normal in EphA4 mutants, the expression of EphA4 in APCs and in the astrocyte meshwork at the ONH has implications for optic nerve pathologies.
Collapse
Affiliation(s)
- Timothy J Petros
- Center for Neurobiology and Behavior, Department of Pathology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
35
|
Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ. Experimental strategies to promote spinal cord regeneration--an integrative perspective. Prog Neurobiol 2006; 78:91-116. [PMID: 16487649 DOI: 10.1016/j.pneurobio.2005.12.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/17/2022]
Abstract
Detailed pathophysiological findings of secondary damage phenomena after spinal cord injury (SCI) as well as the identification of inhibitory and neurotrophic proteins have yielded a plethora of experimental therapeutic approaches. Main targets are (i) to minimize secondary damage progression (neuroprotection), (ii) to foster axon conduction (neurorestoration) and (iii) to supply a permissive environment to promote axonal sprouting (neuroregenerative therapies). Pre-clinical studies have raised hope in functional recovery through the antagonism of growth inhibitors, application of growth factors, cell transplantation, and vaccination strategies. To date, even though based on successful pre-clinical animal studies, results of clinical trials are characterized by dampened effects attributable to difficulties in the study design (patient heterogeneity) and species differences. A combination of complementary therapeutic strategies might be considered pre-requisite for future synergistic approaches. Here, we line out pre-clinical interventions resulting in improved functional neurological outcome after spinal cord injury and track them on their intended way to bedside.
Collapse
Affiliation(s)
- Jan M Schwab
- Institute of Brain Research, Calwer Str. 3, University of Tuebingen, Medical School, Calwerstr. 3, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|