1
|
Sheikhi M, Jahangiri P, Ghodsi S, Rafiemanzelat F, Vakili S, Jahromi M, Tehrani FK, Siavash M, Esmaeili F, Solgi H. Activation of muscle amine functional groups using eutectic mixture to enhance tissue adhesiveness of injectable, conductive and therapeutic granular hydrogel for diabetic ulcer regeneration. BIOMATERIALS ADVANCES 2025; 166:214073. [PMID: 39447237 DOI: 10.1016/j.bioadv.2024.214073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Herein, Polydopamine-modified microgels and microgels incorporated with superficial epoxy groups were synthesized and applied as precursors for the fabrication of four granular hydrogels. To enhance the tissue adhesiveness, a ternary deep eutectic solvent was synthesized to activate the muscle amine functional groups facilitating the formation of robust NC bonds at ambient conditions. At a certain shear rate of 10 s-1, hydrogel DMG displayed a viscosity of 9×103 Pa/s, representing the highest complex viscosity among the tested hydrogels primarily driven by quinone groups in PDA which enhanced reversible interactions, thereby increasing particle cohesion. Moreover, the intersection point escalating from about 4×103 to approximately 9×104 as the concentration of DMG increased from 0 % (for MG) to 70% (7D3MG) by weight. There was a decrease in adhesion strength from 0.45 ± 0.08 N in MG to 0.39 ± 0.16 N, 0.35± 0.18 N, and 0.33 ± 0.15 N for 3D7MG, 7D3MG, and DMG respectively, suggesting that MG was capable of forming numerous covalent bonds, thereby enhancing its adhesion to the substrate. The type of eutectic mixture affected the electrical conductivity and a very important point was the changes in resistance value with time. For MG catalyzed by [DES]AZG, the resistance increased only by 1.3 % (from 3.37 to 3.81 kΩ) at day 3 and 37.09 % (from 3.37 to 4.62 kΩ) at day 5. The 3D7MG hydrogel exhibited superior therapeutic efficacy toward diabetic wound regeneration. The proliferation index value for 3D7MG-[DES]AZG and 3D7MG-[DES]AG were calculated 42.3 % and 58.6 %, respectively, while the control group exhibited a lower value of 37.8 %.
Collapse
Affiliation(s)
- Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Parisa Jahangiri
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, United States
| | - Saman Ghodsi
- Biocenter, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Fatemeh Rafiemanzelat
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Shaghayegh Vakili
- Department of Chemistry, University of Zanjan, PO Box 45195-313, Zanjan, Iran
| | - Maliheh Jahromi
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Firoozeh Kavosh Tehrani
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mansour Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariba Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Mohajer M, Asefnejad A, Jameie SB, Khanmohammadi M, Hassanzadeh S. Effectiveness of Insolubilized Poly(vinyl alcohol)-Based Electrospun Fiber-Loaded Methylprednisolone by Enzyme-Catalyzed Cross-Linking in a Rat Spinal Cord Injury Model. ACS APPLIED BIO MATERIALS 2024. [PMID: 39436827 DOI: 10.1021/acsabm.4c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Spinal cord injury (SCI) has been implicated in neural loss and, consequently, motor/sensory impairment. Here, we propose an improved formation for fibrous mat fabrication from the derivatives of poly(vinyl alcohol) (PVA) and gelatin (Gela) through horseradish peroxidase-mediated cross-linking, providing a sustained release of methylprednisolone (MP) for SCI repair. After 28 days, the animals were evaluated in terms of remyelination and apoptosis and underwent behavioral tests. The mechanical properties, hydrophobicity, and degradation rate of PVAPh/GelaPh fibrous mats were significantly improved as compared with those of PVAPh samples. This could provide the desired structure for a sustained MP release. The seeded cells could adhere and proliferate to the composite fibers, which indicates the cytocompatibility of the resultant PVAPh/GelaPh fibrous mat. The results showed significant reductions in the number of apoptotic neurons and a substantial improvement in remyelination in the SCI+ PVAPh/GelaPh + MP group. The behavioral tests confirmed improvement in locomotor hindlimb function following treatment. The MP-loaded PVAPh/GelaPh mat developed through the long-term release of MP and the biocompatible fabricated mat could inhibit axonal demyelination, attenuate apoptosis, and improve the functional outcome, which verified the potential of PVAPh/GelaPh + MP nanocomposites as a bioactive scaffold for SCI regeneration.
Collapse
Affiliation(s)
- Maryam Mohajer
- Faculty of Tissue Engineering, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Seyed Behnamedin Jameie
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mehdi Khanmohammadi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Sajad Hassanzadeh
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran 1449614535, Iran
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
3
|
Ralph PC, Choi SW, Baek MJ, Lee SJ. Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges. Acta Biomater 2024:S1742-7061(24)00613-5. [PMID: 39424019 DOI: 10.1016/j.actbio.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Spinal cord injury (SCI) is a profound medical condition that significantly hampers motor function, imposing substantial limitations on daily activities and exerting a considerable financial burden on patients and their families. The constrained regenerative capacity of endogenous spinal cord tissue, exacerbated by the inflammatory response following the initial trauma, poses a formidable obstacle to effective therapy. Recent advancements in the field, stem cells, biomaterials, and molecular therapy, show promising outcomes. This review provides a comprehensive analysis of tissue engineering and regenerative medicine approaches for SCI treatment, including cell transplantation, tissue-engineered construct implantation, and other potential therapeutic strategies. Additionally, it sheds light on preclinical animal studies and recent clinical trials incorporating these modalities, providing a glimpse into the evolving landscape of SCI management. STATEMENT OF SIGNIFICANCE: The investigation into spinal cord injury (SCI) treatments focuses on reducing long-term impacts by targeting scar inhibition and enhancing regeneration through stem cells, with or without growth factors. Induced pluripotent stem cells (iPSCs) show promise for autologous use, with clinical trials confirming their safety. Challenges include low cell viability and difficulty in targeted differentiation. Biomaterial scaffolds hold potential for improving cell viability and integration, and extracellular vesicles (EVs) are emerging as a novel therapy. While EV research is in its early stages, stem cell trials demonstrate safety and potential recovery. Advancing tissue engineering approaches with biomaterial scaffolds is crucial for human trials.
Collapse
Affiliation(s)
- Patrick C Ralph
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Sung-Woo Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States; Department of Orthopedic Surgery, Soonchunhyang University Hospital Seoul, Seoul 04401, Republic of Korea
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, CHA University Bundang Medical Center, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
4
|
Fan C, Cai H, Zhang L, Wu X, Yan J, Jin L, Hu B, He J, Chen Y, Zhao Y, Dai J. Constructing Linear-Oriented Pre-Vascularized Human Spinal Cord Tissues for Spinal Cord Injury Repair. Adv Healthc Mater 2024; 13:e2303388. [PMID: 38537119 DOI: 10.1002/adhm.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Repairing spinal cord injury (SCI) is a global medical challenge lacking effective clinical treatment. Developing human-engineered spinal cord tissues that can replenish lost cells and restore a regenerative microenvironment offers promising potential for SCI therapy. However, creating vascularized human spinal cord-like tissues (VSCT) that mimic the diverse cell types and longitudinal parallel structural features of spinal cord tissues remains a significant hurdle. In the present study, VSCTs are engineered using embryonic human spinal cord-derived neural and endothelial cells on linear-ordered collagen scaffolds (LOCS). Studies have shown that astrocytes and endothelial cells align along the scaffolds in VSCT, supporting axon extension from various human neurons myelinated by oligodendrocytes. After transplantation into SCI rats, VSCT survives at the injury sites and promotes endogenous neural regeneration and vascularization, ultimately reducing scarring and enhancing behavioral functional recovery. It suggests that pre-vascularization of engineered spinal cord tissues is beneficial for SCI treatment and highlights the important role of exogenous endothelial cells in tissue engineering.
Collapse
Affiliation(s)
- Caixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Hui Cai
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lulu Zhang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Baowei Hu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Jiaxiong He
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Yanyan Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jianwu Dai
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
5
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
6
|
Ghaffari N, Mokhtari T, Adabi M, Ebrahimi B, Kamali M, Gholaminejhad M, Hassanzadeh G. Neurological recovery and neurogenesis by curcumin sustained-release system cross-linked with an acellular spinal cord scaffold in rat spinal cord injury: Targeting NLRP3 inflammasome pathway. Phytother Res 2024; 38:2669-2686. [PMID: 38500263 DOI: 10.1002/ptr.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
In the context of treating spinal cord injury (SCI), the modulation of inflammatory responses, and the creation of a suitable region for tissue regeneration may present a promising approach. This study aimed to evaluate the effects of curcumin (Cur)-loaded bovine serum albumin nanoparticles (Cur-BSA NPs) cross-linked with an acellular spinal cord scaffold (ASCS) on the functional recovery in a rat model of SCI. We developed an ASCS using chemical and physical methods. Cur-BSA, and blank (B-BSA) NPs were fabricated and cross-linked with ASCS via EDC-NHS, resulting in the production of Cur-ASCS and B-ASCS. We assessed the properties of scaffolds and NPs as well as their cross-links. Finally, using a male rat hemisection model of SCI, we investigated the consequences of the resulting scaffolds. The inflammatory markers, neuroregeneration, and functional recovery were evaluated. Our results showed that Cur was efficiently entrapped at the rate of 42% ± 1.3 in the NPs. Compared to B-ASCS, Cur-ASCS showed greater effectiveness in the promotion of motor recovery. The implantation of both scaffolds could increase the migration of neural stem cells (Nestin- and GFAP-positive cells) following SCI with the superiority of Cur-ASCS. Cur-ASCS was successful to regulate the gene expression and protein levels of NLRP3, ASC, and Casp1in the spinal cord lesion. Our results indicate that using ASCS can lead to the entrance of cells into the scaffold and promote neurogenesis. However, Cur-ASCS had greater effects in terms of inflammation relief and enhanced neurogenesis.
Collapse
Affiliation(s)
- Neda Ghaffari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Kamali
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Yao L, Sai HV, Shippy T, Li B. Cellular and Transcriptional Response of Human Astrocytes to Hybrid Protein Materials. ACS APPLIED BIO MATERIALS 2024; 7:2887-2898. [PMID: 38632900 DOI: 10.1021/acsabm.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Collagen is a major component of the tissue matrix, and soybean can regulate the tissue immune response. Both materials have been used to fabricate biomaterials for tissue repair. In this study, adult and fetal human astrocytes were grown in a soy protein isolate (SPI)-collagen hybrid gel or on the surface of a cross-linked SPI-collagen membrane. Hybrid materials reduced the cell proliferation rate compared to materials generated by collagen alone. However, the hybrid materials did not significantly change the cell motility compared to the control collagen material. RNA-sequencing (RNA-Seq) analysis showed downregulated genes in the cell cycle pathway, including CCNA2, CCNB1, CCNB2, CCND1, CCND2, and CDK1, which may explain lower cell proliferation in the hybrid material. This study also revealed the downregulation of genes encoding extracellular matrix (ECM) components, including HSPG2, LUM, SDC2, COL4A1, COL4A5, COL4A6, and FN1, as well as genes encoding chemokines, including CCL2, CXCL1, CXCL2, CX3CL1, CXCL3, and LIF, for adult human astrocytes grown on the hybrid membrane compared with those grown on the control collagen membrane. The study explored the cellular and transcriptional responses of human astrocytes to the hybrid material and indicated a potential beneficial function of the material in the application of neural repair.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260, United States
| | - Haneesha Vishwa Sai
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260, United States
| | - Teresa Shippy
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Bin Li
- Department of Mechanical Engineering, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260, United States
| |
Collapse
|
8
|
Wu Z, Zhou Y, Hou X, Liu W, Yin W, Wang L, Cao Y, Jiang Z, Guo Y, Chen Q, Xie W, Wang Z, Shi N, Liu Y, Gao X, Luo L, Dai J, Ren C, Jiang X. Construction of functional neural network tissue combining CBD-NT3-modified linear-ordered collagen scaffold and TrkC-modified iPSC-derived neural stem cells for spinal cord injury repair. Bioact Mater 2024; 35:242-258. [PMID: 38333615 PMCID: PMC10850738 DOI: 10.1016/j.bioactmat.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be personalized and differentiated into neural stem cells (NSCs), thereby effectively providing a source of transplanted cells for spinal cord injury (SCI). To further improve the repair efficiency of SCI, we designed a functional neural network tissue based on TrkC-modified iPSC-derived NSCs and a CBD-NT3-modified linear-ordered collagen scaffold (LOCS). We confirmed that transplantation of this tissue regenerated neurons and synapses, improved the microenvironment of the injured area, enhanced remodeling of the extracellular matrix, and promoted functional recovery of the hind limbs in a rat SCI model with complete transection. RNA sequencing and metabolomic analyses also confirmed the repair effect of this tissue from multiple perspectives and revealed its potential mechanism for treating SCI. Together, we constructed a functional neural network tissue using human iPSCs-derived NSCs as seed cells based on the interaction of receptors and ligands for the first time. This tissue can effectively improve the therapeutic effect of SCI, thus confirming the feasibility of human iPSCs-derived NSCs and LOCS for SCI repair and providing a valuable direction for SCI research.
Collapse
Affiliation(s)
- Zhaoping Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Yi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Weidong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Lei Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Yudong Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Zhipeng Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Quan Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Wen Xie
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Ziqiang Wang
- College of Biology, Hunan University, Changsha, 410000, China
| | - Ning Shi
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
9
|
Kim WK, Kang BJ. Transplantation of Heat-Shock Preconditioned Neural Stem/Progenitor Cells Combined with RGD-Functionalised Hydrogel Promotes Spinal Cord Functional Recovery in a Rat Hemi-Transection Model. Stem Cell Rev Rep 2024; 20:283-300. [PMID: 37821771 DOI: 10.1007/s12015-023-10637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Neural stem/progenitor cell (NSPC) transplantation in spinal cord injury (SCI) is a potential treatment that supports regeneration by promoting neuroprotection, remyelination, and neurite outgrowth. However, glial scarring hinders neuroregeneration and reduces the efficiency of cell transplantation. The present study aimed to enhance this neuroregeneration by surgically removing the glial scar and transplanting heat-shock (HS) preconditioned NSPCs in combination with Arg-Gly-Asp (RGD)-functionalised hydrogel in a rat spinal cord hemi-transection model. METHODS Twelve Sprague-Dawley rats underwent spinal cord hemi-transection and were randomly divided into three treatment groups: hydrogel implantation (control group), NSPC-encapsulated hydrogel implantation, and HS-NSPC-encapsulated hydrogel implantation. HS preconditioning was applied to the NSPCs to reinforce cell retention and an RGD-functionalised hydrogel was used as a biomatrix. RESULTS In vitro culture showed that preconditioned NSPCs highly differentiated into neurons and oligodendrocytes and exhibited higher proliferation and neurite outgrowth in hydrogels. Rats in the HS-NSPC-encapsulated hydrogel implantation group showed significantly improved functional recovery, neuronal and oligodendrocyte differentiation of transplanted cells, remyelination, and low fibrotic scar formation. CONCLUSIONS The surgical removal of the glial scar in combination with HS-preconditioning and RGD-functionalised hydrogels should be considered as a new paradigm in NSPC transplantation for spinal cord regeneration treatment.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
10
|
Kheirollahi A, Sadeghi S, Orandi S, Moayedi K, Khajeh K, Khoobi M, Golestani A. Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme Microb Technol 2024; 172:110348. [PMID: 37898093 DOI: 10.1016/j.enzmictec.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The chondroitinases (Chase) are bacterial lyases that specifically digest chondroitin sulfate and/or dermatan sulfate glycosaminoglycans via a β-elimination reaction and generate unsaturated disaccharides. In recent decades, these enzymes have attracted the attention of many researchers due to their potential applications in various aspects of medicine from the treatment of spinal cord injury to use as an analytical tool. In spite of this diverse spectrum, the application of Chase is faced with several limitations and challenges such as thermal instability and lack of a suitable delivery system. In the current review, we address potential therapeutic applications of Chase with emphasis on the challenges ahead. Then, we summarize the latest achievements to overcome the problems by considering the studies carried out in the field of enzyme engineering, drug delivery, and combination-based therapy.
Collapse
Affiliation(s)
- Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Mi CH, Qi XY, Ding YW, Zhou J, Dao JW, Wei DX. Recent advances of medical polyhydroxyalkanoates in musculoskeletal system. BIOMATERIALS TRANSLATIONAL 2023; 4:234-247. [PMID: 38282701 PMCID: PMC10817797 DOI: 10.12336/biomatertransl.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Infection and rejection in musculoskeletal trauma often pose challenges for natural healing, prompting the exploration of biomimetic organ and tissue transplantation as a common alternative solution. Polyhydroxyalkanoates (PHAs) are a large family of biopolyesters synthesised in microorganism, demonstrating excellent biocompatibility and controllable biodegradability for tissue remodelling and drug delivery. With different monomer-combination and polymer-types, multi-mechanical properties of PHAs making them have great application prospects in medical devices with stretching, compression, twist in long time, especially in musculoskeletal tissue engineering. This review systematically summarises the applications of PHAs in multiple tissues repair and drug release, encompassing areas such as bone, cartilage, joint, skin, tendons, ligament, cardiovascular tissue, and nervous tissue. It also discusses challenges encountered in their application, including high production costs, potential cytotoxicity, and uncontrollable particle size distribution. In conclusion, PHAs offer a compelling avenue for musculoskeletal system applications, striking a balance between biocompatibility and mechanical performance. However, addressing challenges in their production and application requires further research to unleash their full potential in tackling the complexities of musculoskeletal regeneration.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Jing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
- Dehong Biomedical Engineering Research Center, Dehong Teachers’ College, Dehong, Yunnan Province , China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an, Shaanxi Province, China
| |
Collapse
|
12
|
Ghosh M, Pearse DD. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int J Mol Sci 2023; 24:17317. [PMID: 38139147 PMCID: PMC10743801 DOI: 10.3390/ijms242417317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles released by cells into their extracellular milieu. Within these nanovesicles reside a multitude of bioactive molecules, which orchestrate essential biological processes, including cell differentiation, proliferation, and survival, in the recipient cells. These bioactive properties of exosomes render them a promising choice for therapeutic use in the realm of tissue regeneration and repair. Exosomes possess notable positive attributes, including a high bioavailability, inherent safety, and stability, as well as the capacity to be functionalized so that drugs or biological agents can be encapsulated within them or to have their surface modified with ligands and receptors to imbue them with selective cell or tissue targeting. Remarkably, their small size and capacity for receptor-mediated transcytosis enable exosomes to cross the blood-brain barrier (BBB) and access the central nervous system (CNS). Unlike cell-based therapies, exosomes present fewer ethical constraints in their collection and direct use as a therapeutic approach in the human body. These advantageous qualities underscore the vast potential of exosomes as a treatment option for neurological injuries and diseases, setting them apart from other cell-based biological agents. Considering the therapeutic potential of exosomes, the current review seeks to specifically examine an area of investigation that encompasses the development of Schwann cell (SC)-derived exosomal vesicles (SCEVs) as an approach to spinal cord injury (SCI) protection and repair. SCs, the myelinating glia of the peripheral nervous system, have a long history of demonstrated benefit in repair of the injured spinal cord and peripheral nerves when transplanted, including their recent advancement to clinical investigations for feasibility and safety in humans. This review delves into the potential of utilizing SCEVs as a therapy for SCI, explores promising engineering strategies to customize SCEVs for specific actions, and examines how SCEVs may offer unique clinical advantages over SC transplantation for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Duti IJ, Florian JR, Kittel AR, Amelung CD, Gray VP, Lampe KJ, Letteri RA. Peptide Stereocomplexation Orchestrates Supramolecular Assembly of Hydrogel Biomaterials. J Am Chem Soc 2023; 145:18468-18476. [PMID: 37566784 DOI: 10.1021/jacs.3c04872] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Stereocomplexation, or specific interactions among complementary stereoregular macromolecules, is burgeoning as an increasingly impactful design tool, exerting exquisite control of material structure and properties. Since stereocomplexation of polymers produces remarkable transformations in mechanics, morphology, and degradation, we sought to leverage stereocomplexation to tune these properties in peptide-based biomaterials. We found that blending the pentapeptides l- and d-KYFIL triggers dual mechanical and morphological transformations from stiff fibrous hydrogels into less stiff networks of plates, starkly contrasting prior reports that blending l- and d-peptides produces stiffer fibrous hydrogels than the individual constituents. The morphological transformation of KYFIL in phosphate-buffered saline from fibers that entangle into hydrogels to plates that cannot entangle explains the accompanying mechanical transformation. Moreover, the blends shield l-KYFIL from proteolytic degradation, producing materials with comparable proteolytic stability to d-KYFIL but with distinct 2D plate morphologies that in biomaterials may promote unique therapeutic release profiles and cell behavior. To confirm that these morphological, mechanical, and stability changes arise from differences in molecular packing as in polymer stereocomplexation, we acquired X-ray diffraction patterns, which showed l- and d-KYFIL to be amorphous and their blends to be crystalline. Stereocomplexation is particularly apparent in pure water, where l- and d-KYFIL are soluble random coils, and their blends form β-sheets and gel within minutes. Our results highlight the role of molecular details, such as peptide sequence, in determining the material properties resulting from stereocomplexation. Looking forward, the ability of stereocomplexation to orchestrate supramolecular assembly and tune application-critical properties champions stereochemistry as a compelling design consideration.
Collapse
Affiliation(s)
- Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Jonathan R Florian
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Anna R Kittel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
14
|
Zeng X, Wei QS, Ye JC, Rao JH, Zheng MG, Ma YH, Peng LZ, Ding Y, Lai BQ, Li G, Cheng SX, Ling EA, Han I, Zeng YS. A biocompatible gelatin sponge scaffold confers robust tissue remodeling after spinal cord injury in a non-human primate model. Biomaterials 2023; 299:122161. [PMID: 37236138 DOI: 10.1016/j.biomaterials.2023.122161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
We previously constructed a three-dimensional gelatin sponge (3D-GS) scaffold as a delivery vehicle for therapeutic cells and trophic factors in the treatment of spinal cord injury (SCI), and this study aimed to assess the biosafety and efficacy of the scaffold in a non-human primate SCI model. However, because it has only been tested in rodent and canine models, the biosafety and efficacy of the scaffold should ideally be assessed in a non-human primate SCI model before its use in the clinic. No adverse reactions were observed over 8 weeks following 3D-GS scaffold implantation into in a Macaca fascicularis with hemisected SCI. Scaffold implantation also did not add to neuroinflammatory or astroglial responses already present at the injured site, suggesting good biocompatibility. Notably, there was a significant reduction in α-smooth muscle actin (αSMA)-positive cells at the injury/implantation interface, leading to alleviation of fibrotic compression of the residual spinal cord tissue. The regenerating tissue in the scaffold showed numerous cells migrating into the implant secreting abundant extracellular matrix, resulting in a pro-regenerative microenvironment. Consequently, nerve fiber regeneration, myelination, vascularization, neurogenesis, and electrophysiological improvements were achieved. These results indicated that the 3D-GS scaffold had good histocompatibility and effectiveness in the structural repair of injured spinal cord tissue in a non-human primate and is suitable for use in the treatment of patients with SCI.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Lab of Stem Cell Biology and Innovative Research of Chinese Medicine; National Institute for Stem Cell Clinical Research, Guangdong Provincial Hospital of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Shuai Wei
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ji-Chao Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Mei-Guang Zheng
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zhi Peng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shi-Xiang Cheng
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area (HAB-TEDA) and XinCheng Hospital of Tianjin University, Tianjin, 301999, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, Nekounam H, Mahmoodi N. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater Today Bio 2023; 20:100614. [PMID: 37008830 PMCID: PMC10050787 DOI: 10.1016/j.mtbio.2023.100614] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, 2 Royal College Street, London, UK
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Pourkhodadad S, Hosseinkazemi H, Bonakdar S, Nekounam H. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. J Biomed Mater Res B Appl Biomater 2023; 111:701-716. [PMID: 36214332 DOI: 10.1002/jbm.b.35171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 01/21/2023]
Abstract
The healing process for spinal cord injuries is complex and presents many challenges. Current advances in nerve regeneration are based on promising tissue engineering techniques, However, the chances of success depend on better mimicking the extracellular matrix (ECM) of neural tissue and better supporting neurons in a three-dimensional environment. The ECM provides excellent biological conditions, including desirable morphological features, electrical conductivity, and chemical compositions for neuron attachment, proliferation and function. This review outlines the rationale for developing a construct for neuron regrowth in spinal cord injury using appropriate biomaterials and scaffolding techniques.
Collapse
Affiliation(s)
| | - Hessam Hosseinkazemi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032528. [PMID: 36768846 PMCID: PMC9917245 DOI: 10.3390/ijms24032528] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.
Collapse
|
18
|
González P, González-Fernández C, Maqueda A, Pérez V, Escalera-Anzola S, Rodríguez de Lope Á, Arias FJ, Girotti A, Rodríguez FJ. Silk-Elastin-like Polymers for Acute Intraparenchymal Treatment of the Traumatically Injured Spinal Cord: A First Systematic Experimental Approach. Pharmaceutics 2022; 14:pharmaceutics14122713. [PMID: 36559207 PMCID: PMC9784492 DOI: 10.3390/pharmaceutics14122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the promising potential of hydrogel-based therapeutic approaches for spinal cord injury (SCI), the need for new biomaterials to design effective strategies for SCI treatment and the outstanding properties of silk-elastin-like polymers (SELP), the potential use of SELPs in SCI is currently unknown. In this context, we assessed the effects elicited by the in vivo acute intraparenchymal injection of an SELP named (EIS)2-RGD6 in a clinically relevant model of SCI. After optimization of the injection system, the distribution, structure, biodegradability, and cell infiltration capacity of (EIS)2-RGD6 were assessed. Finally, the effects exerted by the (EIS)2-RGD6 injection-in terms of motor function, myelin preservation, astroglial and microglia/macrophage reactivity, and fibrosis-were evaluated. We found that (EIS)2-RGD6 can be acutely injected in the lesioned spinal cord without inducing further damage, showing a widespread distribution covering all lesioned areas with a single injection and facilitating the formation of a slow-degrading porous scaffold at the lesion site that allows for the infiltration and/or proliferation of endogenous cells with no signs of collapse and without inducing further microglial and astroglial reactivity, as well as even reducing SCI-associated fibrosis. Altogether, these observations suggest that (EIS)2-RGD6-and, by extension, SELPs-could be promising polymers for the design of therapeutic strategies for SCI treatment.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | | | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Sara Escalera-Anzola
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | | | - Francisco Javier Arias
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Alessandra Girotti
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Correspondence: (A.G.); (F.J.R.)
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
- Correspondence: (A.G.); (F.J.R.)
| |
Collapse
|
19
|
Fehlings MG, Pedro K, Hejrati N. Management of Acute Spinal Cord Injury: Where Have We Been? Where Are We Now? Where Are We Going? J Neurotrauma 2022; 39:1591-1602. [PMID: 35686453 DOI: 10.1089/neu.2022.0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nader Hejrati
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Davoodi E, Montazerian H, Mirhakimi AS, Zhianmanesh M, Ibhadode O, Shahabad SI, Esmaeilizadeh R, Sarikhani E, Toorandaz S, Sarabi SA, Nasiri R, Zhu Y, Kadkhodapour J, Li B, Khademhosseini A, Toyserkani E. Additively manufactured metallic biomaterials. Bioact Mater 2022; 15:214-249. [PMID: 35386359 PMCID: PMC8941217 DOI: 10.1016/j.bioactmat.2021.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Metal additive manufacturing (AM) has led to an evolution in the design and fabrication of hard tissue substitutes, enabling personalized implants to address each patient's specific needs. In addition, internal pore architectures integrated within additively manufactured scaffolds, have provided an opportunity to further develop and engineer functional implants for better tissue integration, and long-term durability. In this review, the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted. After introducing metal AM processes, biocompatible metals adapted for integration with AM machines are presented. Then, we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including, topology optimization techniques, as well as unit cell patterns based on lattice networks, and triply periodic minimal surface. Here, the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed. Subsequently, the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters. We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation. Finally, we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.
Collapse
Affiliation(s)
- Elham Davoodi
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Anooshe Sadat Mirhakimi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Isfahan 84156-83111, Iran
| | - Masoud Zhianmanesh
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Osezua Ibhadode
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shahriar Imani Shahabad
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Reza Esmaeilizadeh
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Einollah Sarikhani
- Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, California 92093, United States
| | - Sahar Toorandaz
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shima A. Sarabi
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, California 90095, United States
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Javad Kadkhodapour
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Tehran 16785-163, Iran
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Stuttgart 70569, Germany
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Manufacturing Systems Engineering and Management, California State University, Northridge, California 91330, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
21
|
Agarwal G, Roy A, Kumar H, Srivastava A. Graphene-collagen cryogel controls neuroinflammation and fosters accelerated axonal regeneration in spinal cord injury. BIOMATERIALS ADVANCES 2022; 139:212971. [PMID: 35882128 DOI: 10.1016/j.bioadv.2022.212971] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition resulting in loss of motor function. The pathology of SCI is multifaceted and involves a cascade of events, including neuroinflammation and neuronal degeneration at the epicenter, limiting repair process. We developed a supermacroporous, mechanically elastic, electro-conductive, graphene crosslinked collagen (Gr-Col) cryogels for the regeneration of the spinal cord post-injury. The effects of graphene in controlling astrocytes reactivity and microglia polarization are evaluated in spinal cord slice organotypic culture and rat spinal cord lateral hemisection model of SCI. In our work, the application of external electric stimulus results in the enhanced expression of neuronal markers in an organotypic culture. The implantation of Gr-Col cryogels in rat thoracic T9-T11 hemisection model demonstrates an improved functional recovery within 14 days post-injury (DPI), promoted myelination, and decreases the lesion volume at the injury site. Decrease in the expression of STAT3 in the implanted Gr-Col cryogels may be responsible for the decrease in astrocytes reactivity. Microglia cells within the implanted cryogels shows higher anti-inflammatory phenotype (M2) than inflammatory (M1) phenotype. The higher expression of mature axonal markers like β-tubulin III, GAP43, doublecortin, and neurofilament 200 in the implanted Gr-Col cryogel confirms the axonal regeneration after 28 DPI. Gr-Col cryogels also modulate the production of ECM matrix, favouring the axonal regeneration. This study shows that Gr-Col cryogels decreases neuroinflammation and accelerate axonal regeneration.
Collapse
Affiliation(s)
- Gopal Agarwal
- Department of Biotechnology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India.
| | - Akshay Srivastava
- Department of Medical Device, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India.
| |
Collapse
|
22
|
Jarrah R, Sammak SE, Onyedimma C, Ghaith AK, Moinuddin F, Bhandarkar AR, Siddiqui A, Madigan N, Bydon M. The Role of Alginate Hydrogels as a Potential Treatment Modality for Spinal Cord Injury: A Comprehensive Review of the Literature. Neurospine 2022; 19:272-280. [PMID: 35793929 PMCID: PMC9260541 DOI: 10.14245/ns.2244186.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022] Open
Abstract
Objective To comprehensively characterize the utilization of alginate hydrogels as an alternative treatment modality for spinal cord injury (SCI).
Methods An extensive review of the published literature on studies using alginate hydrogels to treat SCI was performed. The review of the literature was performed using electronic databases such as PubMed, EMBASE, and OVID MEDLINE electronic databases. The keywords used were “alginate,” “spinal cord injury,” “biomaterial,” and “hydrogel.”
Results In the literature, we identified a total of 555 rat models that were treated with alginate scaffolds for regenerative biomarkers. Alginate hydrogels were found to be efficient and promising substrates for tissue engineering, drug delivery, neural regeneration, and cellbased therapies for SCI repair. With its ability to act as a pro-regenerative and antidegenerative agent, the alginate hydrogel has the potential to improve clinical outcomes.
Conclusion The emerging developments of alginate hydrogels as treatment modalities may support current and future tissue regenerative strategies for SCI.
Collapse
Affiliation(s)
- Ryan Jarrah
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Sally El Sammak
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Chiduziem Onyedimma
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Abdul Karim Ghaith
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - F.M. Moinuddin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Archis R. Bhandarkar
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Ahad Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Mohamad Bydon
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
- Corresponding Author Mohamad Bydon Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Prager J, Fenn J, Plested M, Escauriaza L, Merwe TVD, King B, Chari D, Wong LF, Granger N. Transplantation of encapsulated autologous olfactory ensheathing cell populations expressing chondroitinase for spinal cord injury: A safety and feasibility study in companion dogs. J Tissue Eng Regen Med 2022; 16:788-798. [PMID: 35686704 PMCID: PMC9542194 DOI: 10.1002/term.3328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) can cause irreversible paralysis, with no regenerative treatment clinically available. Dogs with natural SCI present an established model and can facilitate translation of experimental findings in rodents to people. We conducted a prospective, single arm clinical safety study in companion dogs with chronic SCI to characterize the feasibility of intraspinal transplantation of hydrogel-encapsulated autologous mucosal olfactory ensheathing cell (mOEC) populations expressing chondroitinase ABC (chABC). mOECs and chABC are both promising therapies for SCI, and mOECs expressing chABC drive greater voluntary motor recovery than mOECs alone after SCI in rats. Canine mOECs encapsulated in collagen hydrogel can be matched in stiffness to canine SCI. Four dogs with complete and chronic loss of function caudal to a thoraco-lumbar lesion were recruited. After baseline measures, olfactory mucosal biopsy was performed and autologous mOECs cultured and transduced to express chABC, then hydrogel-encapsulated and percutaneously injected into the spinal cord. Dogs were monitored for 6 months with repeat clinical examinations, spinal MRI, kinematic gait and von Frey assessment. No adverse effects or significant changes on neurological examination were detected. MRI revealed large and variable lesions, with no spinal cord compression or ischemia visible after hydrogel transplantation. Owners reported increased pelvic-limb reflexes with one dog able to take 2-3 unsupported steps, but gait-scoring and kinematic analysis showed no significant improvements. This novel combination approach to regeneration after SCI is therefore feasible and safe in paraplegic dogs in a clinical setting. A randomised-controlled trial in this translational model is proposed to test efficacy.
Collapse
Affiliation(s)
- Jon Prager
- Clinical Science and Services, The Royal Veterinary College, London, UK.,Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Joe Fenn
- Clinical Science and Services, The Royal Veterinary College, London, UK
| | - Mark Plested
- Clinical Science and Services, The Royal Veterinary College, London, UK
| | | | | | - Barbora King
- Clinical Investigation Centre, The Royal Veterinary College, London, UK
| | - Divya Chari
- Neural Tissue Engineering Group, Keele School of Medicine, Keele University, Keele, UK
| | | | - Nicolas Granger
- Clinical Science and Services, The Royal Veterinary College, London, UK.,Highcroft Veterinary Referrals, CVS, Bristol, UK
| |
Collapse
|
24
|
Dhania S, Bernela M, Rani R, Parsad M, Grewal S, Kumari S, Thakur R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol 2022; 208:243-259. [PMID: 35278518 DOI: 10.1016/j.ijbiomac.2022.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Our body is built to heal from inside out naturally but wide-ranging medical conditions necessitate the need for artificial assistance, and therefore, something that can assist the body to heal wounds and damaged tissues quickly and efficiently is of utmost importance. Tissue engineering technology helps to regenerate new tissue to replace the diseased or injured one. The technology uses biodegradable porous three-dimensional scaffolds for mimicking the structure and functions of the natural extracellular matrix. The material and design of scaffolds are critical areas of biomaterial research. Biomaterial-based three-dimensional structures have been the most promising material to serve as scaffolds for seeding cells, both in vivo and in vitro. One such material is polyhydroxyalkanoates (PHAs) which are thermoplastic biopolyesters that are highly suitable for this purpose due to their enhanced biocompatibility, biodegradability, thermo-processability, diverse mechanical properties, non-toxicity and natural origin. Moreover, they have tremendous possibilities of customization through biological physical and chemical modification as well as blending with other materials. They are being used for several tissue engineering applications such as bone graft substitute, cardiovascular patches, stents, for nerve repair and in implantology as valves and sutures. The present review overviews usage of a multitude of PHA-based biomaterials for a wide range of tissue engineering applications, based on their properties suitable for the specific applications.
Collapse
Affiliation(s)
- Sunena Dhania
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Minakshi Parsad
- Department of Animal Biotechnology, LUVAS, Hisar 125001, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Santosh Kumari
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Rajesh Thakur
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
25
|
Bousalis D, McCrary MW, Vaughn N, Hlavac N, Evering A, Kolli S, Song YH, Morley C, Angelini T, Schmidt CE. Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. J Biomed Mater Res A 2022; 110:595-611. [PMID: 34590403 PMCID: PMC8742792 DOI: 10.1002/jbm.a.37312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Damage to the nervous system can result in loss of sensory and motor function, paralysis, or even death. To facilitate neural regeneration and functional recovery, researchers have employed biomaterials strategies to address both peripheral and central nervous system injuries. Injectable hydrogels that recapitulate native nerve extracellular matrix are especially promising for neural tissue engineering because they offer more flexibility for minimally invasive applications and provide a growth-permissive substrate for neural cell types. Here, we explore the development of injectable hydrogels derived from decellularized rat peripheral nerves (referred to as "injectable peripheral nerve [iPN] hydrogels"), which are processed using a newly developed sodium deoxycholate and DNase (SDD) decellularization method. We assess the gelation kinetics, mechanical properties, cell bioactivity, and drug release kinetics of the iPN hydrogels. The iPN hydrogels thermally gel when exposed to 37°C in under 20 min and have mechanical properties similar to neural tissue. The hydrogels demonstrate in vitro biocompatibility through support of Schwann cell viability and metabolic activity. Additionally, iPN hydrogels promote greater astrocyte spreading compared to collagen I hydrogels. Finally, the iPN is a promising delivery vehicle of drug-loaded microparticles for a combinatorial approach to neural injury therapies.
Collapse
Affiliation(s)
- Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Michaela W. McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Natalie Vaughn
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Ashley Evering
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Shruti Kolli
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL,Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR
| | - Cameron Morley
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
26
|
Zhao X, Wang H, Zou Y, Xue W, Zhuang Y, Gu R, Shen H, Dai J. Optimized, visible light-induced crosslinkable hybrid gelatin/hyaluronic acid scaffold promotes complete spinal cord injury repair. Biomed Mater 2021; 17. [PMID: 34937000 DOI: 10.1088/1748-605x/ac45ec] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
Severe microenvironmental changes after spinal cord injury (SCI) present serious challenges in neural regeneration and tissue repair. Gelatin (GL)- and hyaluronic acid (HA)-based hydrogels are attractive scaffolds because they are major components of the extracellular matrix and can provide a favorable adjustable microenvironment for neurogenesis and motor function recovery. In this study, three-dimensional hybrid GL/HA hydrogel scaffolds were prepared and optimized. The hybrid hydrogels could undergo in-situ gelation and fit the defects perfectly via visible light- induced crosslinking in the complete SCI rats. We found that the transplantation of the hybrid hydrogel scaffold significantly reduced the inflammatory responses and suppressed glial scar formation in an HA concentration-dependent manner. Moreover, the hybrid hydrogel with GL/HA ratios less than 8/2 effectively promoted endogenous neural stem cell migration and neurogenesis, as well as improved neuron maturation and axonal regeneration. The results showed locomotor function improved 60 days after transplantation, thus suggesting that GL/HA hydrogels can be considered as a promising scaffold for complete SCI repair.
Collapse
Affiliation(s)
- Xinhao Zhao
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - Huiru Wang
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - Weiwei Xue
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Yang Zhuang
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Rui Gu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - He Shen
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| |
Collapse
|
27
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
28
|
Wang XH, Tang XC, Li X, Qin JZ, Zhong WT, Wu P, Zhang F, Shen YX, Dai TT. Implantation of nanofibrous silk scaffolds seeded with bone marrow stromal cells promotes spinal cord regeneration (6686 words). ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:699-708. [PMID: 34882059 DOI: 10.1080/21691401.2021.2013250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spinal cord injury (SCI) is a common pathology often resulting in permanent loss of sensory, motor, and autonomic function. Numerous studies in which stem cells have been transplanted in biomaterial scaffolds into animals have demonstrated their considerable potential for recovery from SCI. In the present study, a three-dimensional porous silk fibroin (SF) scaffold with a mean pore size of approximately 383 μm and nanofibrous structure was fabricated, the silk scaffold enabling the enhanced attachment and proliferation of bone marrow stromal cells (BMSCs). Investigation of its therapeutic potential was conducted by implantation of the nanofibrous SF scaffold seeded with BMSCs into a transected spinal cord model. Recovery of the damaged spinal cord was significantly improved after 2 months, compared with a non-nanofibrous scaffold, in combination with decreased glial fibrillary acidic protein (GFAP) expression and improved axonal regeneration at the site of injury. Furthermore, elevated Basso-Beattie-Bresnahan (BBB) scores indicated greatly improved hindlimb movement. Together, these results demonstrate that transplantation of neural scaffolds consisting of nanofibrous SF and BMSCs is an attractive strategy for the promotion of functional recovery following SCI.
Collapse
Affiliation(s)
- Xin-Hong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Xiao-Chen Tang
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xia Li
- Department of Orthopedics, Huai'an Fourth People's Hospital, Jiangsu, China
| | - Jian-Zhong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Tao Zhong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Wu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Xin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting-Ting Dai
- Department of Radiation Oncology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
29
|
Sakti YM, Malueka RG, Dwianingsih EK, Kusumaatmaja A, Mafaza A, Emiri DM. Diamond Concept as Principle for the Development of Spinal Cord Scaffold: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION: Spinal cord injury (SCI) has been bringing detrimental impacts on the affected individuals. However, not only that, it also brings a tremendous effect on the socioeconomic and health-care system. Treatment regimen and strategy for SCI patient have been under further research.
DISCUSSION: The main obstacles of regeneration on neuronal structure are the neuroinflammatory process and poor debris clearance, causing a longer healing process and an extensive inflammation process due to this particular inflammatory process. To resolve all of the mentioned significant issues in SCIs neuronal regeneration, a comprehensive model is necessary to analyze each step of progressive condition in SCI. In this review, we would like to redefine a comprehensive concept of the “Diamond Concept” from previously used in fracture management to SCI management, which consists of cellular platform, cellular inductivity, cellular conductivity, and material integrity. The scaffolding treatment strategy for SCI has been widely proposed due to its flexibility. It enables the physician to combine another treatment method such as neuroprotective or neuroregenerative or both in one intervention.
CONCLUSION: Diamond concept perspective in the implementation of scaffolding could be advantageous to increase the outcome of SCI treatment.
Collapse
|
30
|
Exploiting the fundamentals of biological organization for the advancement of biofabrication. Curr Opin Biotechnol 2021; 74:42-54. [PMID: 34798447 DOI: 10.1016/j.copbio.2021.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
The field of biofabrication continues to progress, offering higher levels of spatial control, reproducibility, and functionality. However, we remain far from recapitulating what nature has achieved. Biological systems such as tissues and organs are assembled from the bottom-up through coordinated supramolecular and cellular processes that result in their remarkable structures and functionalities. In this perspective, we propose that incorporating such biological assembling mechanisms within fabrication techniques, offers an opportunity to push the boundaries of biofabrication. We dissect these mechanisms into distinct biological organization principles (BOPs) including self-assembly, compartmentalization, diffusion-reaction, disorder-to-order transitions, and out-of-equilibrium processes. We highlight recent work demonstrating the viability and potential of these approaches to enhance scalability, reproducibility, vascularization, and biomimicry; as well as current challenges to overcome.
Collapse
|
31
|
Gradišnik L, Bošnjak R, Bunc G, Ravnik J, Maver T, Velnar T. Neurosurgical Approaches to Brain Tissue Harvesting for the Establishment of Cell Cultures in Neural Experimental Cell Models. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6857. [PMID: 34832259 PMCID: PMC8624371 DOI: 10.3390/ma14226857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022]
Abstract
In recent decades, cell biology has made rapid progress. Cell isolation and cultivation techniques, supported by modern laboratory procedures and experimental capabilities, provide a wide range of opportunities for in vitro research to study physiological and pathophysiological processes in health and disease. They can also be used very efficiently for the analysis of biomaterials. Before a new biomaterial is ready for implantation into tissues and widespread use in clinical practice, it must be extensively tested. Experimental cell models, which are a suitable testing ground and the first line of empirical exploration of new biomaterials, must contain suitable cells that form the basis of biomaterial testing. To isolate a stable and suitable cell culture, many steps are required. The first and one of the most important steps is the collection of donor tissue, usually during a surgical procedure. Thus, the collection is the foundation for the success of cell isolation. This article explains the sources and neurosurgical procedures for obtaining brain tissue samples for cell isolation techniques, which are essential for biomaterial testing procedures.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Alma Mater Europaea ECM, Slovenska 17, 2000 Maribor, Slovenia
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| | - Gorazd Bunc
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (G.B.); (J.R.)
| | - Janez Ravnik
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (G.B.); (J.R.)
| | - Tina Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Velnar
- Alma Mater Europaea ECM, Slovenska 17, 2000 Maribor, Slovenia
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
32
|
A review of emerging neuroprotective and neuroregenerative therapies in traumatic spinal cord injury. Curr Opin Pharmacol 2021; 60:331-340. [PMID: 34520943 DOI: 10.1016/j.coph.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Traumatic spinal cord injuries (SCIs) have far-reaching physical, social, and financial consequences. While medical advancements have improved supportive therapeutic measures for SCI patients, no effective neuroregenerative therapeutic options exist to date. Instead, the paradigm of SCI therapy is inevitably directed towards damage control rather than the restoration of a state of functional independence. Facing a continuous increase in the prevalence of spinal cord injured patients, neuroprotective and neuroregenerative strategies have earned tremendous scientific interest. This review intends to provide a robust summary of the most promising neuroprotective and neuroregenerative therapies currently under investigation. While we highlight encouraging neuroprotective strategies as well, the focus of this review lies on neuroregenerative therapies, including neuropharmacological and cell-based approaches. We finally point to the exciting investigational areas of biomaterial scaffolds and neuromodulation therapies.
Collapse
|
33
|
Matthews J, Surey S, Grover LM, Logan A, Ahmed Z. Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury. Sci Rep 2021; 11:18124. [PMID: 34518601 PMCID: PMC8438067 DOI: 10.1038/s41598-021-97604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
The treatment of spinal cord injury (SCI) is a complex challenge in regenerative medicine, complicated by the low intrinsic capacity of CNS neurons to regenerate their axons and the heterogeneity in size, shape and extent of human injuries. For example, some contusion injuries do not compromise the dura mater and in such cases implantation of preformed scaffolds or drug delivery systems may cause further damage. Injectable in situ thermosensitive scaffolds are therefore a less invasive alternative. In this study, we report the development of a novel, flowable, thermosensitive, injectable drug delivery system comprising bovine collagen (BC) and fibrinogen (FB) that forms a solid BC/FB gel (Gel) immediately upon exposure to physiological conditions and can be used to deliver reparative drugs, such as the naturally occurring anti-inflammatory, anti-scarring agent Decorin, into adult rat spinal cord lesion sites. In dorsal column lesions of adult rats treated with the Gel + Decorin, cavitation was completely suppressed and instead lesion sites became filled with injury-responsive cells and extracellular matrix materials, including collagen and laminin. Decorin increased the intrinsic potential of dorsal root ganglion neurons (DRGN) by increasing their expression of regeneration associated genes (RAGs), enhanced local axon regeneration/sprouting, as evidenced both histologically and by improved electrophysiological, locomotor and sensory function recovery. These results suggest that this drug formulated, injectable hydrogel has the potential to be further studied and translated into the clinic.
Collapse
Affiliation(s)
- Jacob Matthews
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarina Surey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
34
|
Jahandideh A, Noori H, Rahimi B, Hamblin MR, Behroozi Z, Ramezani M, Ramezani F. Alginate scaffolds improve functional recovery after spinal cord injury. Eur J Trauma Emerg Surg 2021; 48:1711-1721. [PMID: 34363487 DOI: 10.1007/s00068-021-01760-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE In this systematic review and meta-analysis, the use of alginate for the repair of the damaged spinal cord was investigated. METHODS After an extensive search of databases including MEDLINE, SCOPUS, EMBASE and Web of Science, an initial screening was performed based on inclusion and exclusion criteria. The full text of related articles was reviewed and data mining was performed. Data were analyzed by calculating the mean of ratios between treated and untreated groups using STATA software. Subgroup analysis was also performed due to heterogeneity. Articles were subjected to quality control and PRISMA guidelines were followed. RESULTS Twelve studies and 17 experiments were included in the study. After SCI, alginate hydrogel had a moderate effect on motor function recovery (SMD = 0.64; 95% CI 0.28-1.00; p < 0.0001) and alginate scaffolds loaded with drugs, growth factors, or cells on the SCI group compared with untreated SCI animals showed has a strong effect in the treatment of SCI (SMD = 2.82; 95% CI 1.49-4.145; p < 0.0001). Treatment with drug/cell in combination with alginate was more strongly significant compared to the groups treated with drug/cell alone (SMD = 4.55; 95% CI 1.42-7.69; p < 0.0001). Alginate alone or in combination therapy when used as an implant, had a more significant effect than injection. CONCLUSION These findings suggest that alginate is an efficient scaffold for functional recovery and even a much better scaffold for drug/cell delivery after SCI.
Collapse
Affiliation(s)
- Atefeh Jahandideh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Zahra Behroozi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Gradišnik L, Bošnjak R, Maver T, Velnar T. Advanced Bio-Based Polymers for Astrocyte Cell Models. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3664. [PMID: 34209194 PMCID: PMC8269866 DOI: 10.3390/ma14133664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
The development of in vitro neural tissue analogs is of great interest for many biomedical engineering applications, including the tissue engineering of neural interfaces, treatment of neurodegenerative diseases, and in vitro evaluation of cell-material interactions. Since astrocytes play a crucial role in the regenerative processes of the central nervous system, the development of biomaterials that interact favorably with astrocytes is of great research interest. The sources of human astrocytes, suitable natural biomaterials, guidance scaffolds, and ligand patterned surfaces are discussed in the article. New findings in this field are essential for the future treatment of spinal cord and brain injuries.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia;
- AMEU-ECM, Slovenska 17, 2000 Maribor, Slovenia
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia;
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Velnar
- AMEU-ECM, Slovenska 17, 2000 Maribor, Slovenia
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
36
|
Ciciriello AJ, Smith DR, Munsell MK, Boyd SJ, Shea LD, Dumont CM. IL-10 lentivirus-laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury. Biotechnol Bioeng 2021; 118:2609-2625. [PMID: 33835500 DOI: 10.1002/bit.27781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
A complex cellular cascade characterizes the pathophysiological response following spinal cord injury (SCI) limiting regeneration. Biomaterial and stem cell combination therapies together have shown synergistic effects, compared to the independent benefits of each intervention, and represent a promising approach towards regaining function after injury. In this study, we combine our polyethylene glycol (PEG) cell delivery platform with lentiviral-mediated overexpression of the anti-inflammatory cytokine interleukin (IL)-10 to improve mouse embryonic Day 14 (E14) spinal progenitor transplant survival. Immediately following injury in a mouse SCI hemisection model, five PEG tubes were implanted followed by direct injection into the tubes of lentivirus encoding for IL-10. Two weeks after tube implantation, mouse E14 spinal progenitors were injected directly into the integrated tubes, which served as a soft substrate for cell transplantation. Together, the tubes with the IL-10 encoding lentivirus improved E14 spinal progenitor survival, assessed at 2 weeks posttransplantation (4 weeks postinjury). On average, 8.1% of E14 spinal progenitors survived in mice receiving IL-10 lentivirus-laden tubes compared with 0.7% in mice receiving transplants without tubes, an 11.5-fold difference. Surviving E14 spinal progenitors gave rise to neurons when injected into tubes. Axon elongation and remyelination were observed, in addition to a significant increase in functional recovery in mice receiving IL-10 lentivirus-laden tubes with E14 spinal progenitor delivery compared to the injury only control by 4 weeks postinjury. All other conditions did not exhibit increased stepping until 8 or 12 weeks postinjury. This system affords increased control over the transplantation microenvironment, offering the potential to improve stem cell-mediated tissue regeneration.
Collapse
Affiliation(s)
- Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary K Munsell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Sydney J Boyd
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|
37
|
Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. Int J Pharm 2021; 601:120559. [PMID: 33831486 DOI: 10.1016/j.ijpharm.2021.120559] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a perplexing traumatic disease that habitually gives ride to permanent disability, motor, and sensory impairment. Despite the existence of several therapeutic approaches for the injured motor or sensory neurons, they can't promote axonal regeneration. Whether prepared by conventional or rapid prototyping techniques, scaffolds can be applied to refurbish the continuity of the injured site, by creating a suitable environment for tissue repair, axonal regeneration, and vascularization. Collagen is a multi-sourced protein, found in animals skin, tendons, cartilage, bones, and human placenta, in addition to marine biomass. Collagen is highly abundant in the extracellular matrix and is known for its biocompatibility, biodegradability, porous structure, good permeability, low immunogenicity and thus is extensively applied in the pharmaceutical, cosmetic, and food industries as well as the tissue engineering field. Collagen in scaffolds is usually functionalized with different ligands and factors such as, stem cells, embryonic or human cells to augment its binding specificity and activity. The review summarizes the significance of collagen-based scaffolds and their influence on regeneration, repair and recovery of spinal cord injuries.
Collapse
|
38
|
Castaño O, López-Mengual A, Reginensi D, Matamoros-Angles A, Engel E, Del Rio JA. Chemotactic TEG3 Cells' Guiding Platforms Based on PLA Fibers Functionalized With the SDF-1α/CXCL12 Chemokine for Neural Regeneration Therapy. Front Bioeng Biotechnol 2021; 9:627805. [PMID: 33829009 PMCID: PMC8019790 DOI: 10.3389/fbioe.2021.627805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
(Following spinal cord injury, olfactory ensheathing cell (OEC) transplantation is a promising therapeutic approach in promoting functional improvement. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical concentration differences. Here we compare the attachment, morphology, and directionality of an OEC-derived cell line, TEG3 cells, seeded on functionalized nanoscale meshes of Poly(l/dl-lactic acid; PLA) nanofibers. The size of the nanofibers has a strong effect on TEG3 cell adhesion and migration, with the PLA nanofibers having a 950 nm diameter being the ones that show the best results. TEG3 cells are capable of adopting a bipolar morphology on 950 nm fiber surfaces, as well as a highly dynamic behavior in migratory terms. Finally, we observe that functionalized nanofibers, with a chemical concentration increment of SDF-1α/CXCL12, strongly enhance the migratory characteristics of TEG3 cells over inhibitory substrates.
Collapse
Affiliation(s)
- Oscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain.,Biomaterials for Regenerative Therapies, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,Bioelectronics Unit and Nanobioeneering Laboratory, Institute for Nanoscience and Nanotechnology of the University of Barcelona, Barcelona, Spain
| | - Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Diego Reginensi
- School of Medicine, Universidad de Panamá, Panama City, Panama.,Biomedical Engineering Program, Universidad Latina de Panamá, Panama City, Panama
| | - Andreu Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,IMEM-BRT Group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Hsiao YS, Lin CL, Liao IH, Chen FJ, Liu CT, Tseng HS, Yu J. Facile Fabrication of Microwrinkled Poly(3,4-Ethylenedioxythiophene) Films that Promote Neural Differentiation under Electrical Stimulation. ACS APPLIED BIO MATERIALS 2021; 4:2354-2362. [PMID: 35014356 DOI: 10.1021/acsabm.0c01204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although conductive bioelectronic interfaces (BEIs) can allow neural cell culturing while providing electrical stimulation (ES) to the nervous system, there are few simple approaches for the preparation of conductive BEIs with topographical features designed for cell manipulation. In this study, we developed a facile method for fabricating microwrinkled poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) films through spin-coating onto pre-elongated polydimethylsiloxane substrates. The microwrinkles of our PEDOT:PSS films pre-elongated by 20 and 40% had average widths of 6.47 ± 1.49 and 5.39 ± 1.53 μm, respectively. These microwrinkled PEDOT:PSS films promoted the directional ordering of neurite outgrowth of PC12 cells and displayed favorable biocompatibility and outstanding electrochemical properties for long-term ES treatment. When using this BEI platform, the level of PC12 gene expression of Neun was enhanced significantly after 5 days of culturing in differentiation media and under ES, in line with the decreased expression of early phase markers. Therefore, such readily fabricated microwrinkled PEDOT:PSS films are promising candidates for use as BEIs for tissue regenerative medicine.
Collapse
Affiliation(s)
- Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Da'an Dist., Taipei City 10607, Taiwan
| | - Chih-Ling Lin
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - I-Hsiang Liao
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - Fang-Jung Chen
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - Chun-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - Hsueh-Sheng Tseng
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| |
Collapse
|
40
|
Ehsanipour A, Sathialingam M, Rad LM, de Rutte J, Bierman RD, Liang J, Xiao W, Di Carlo D, Seidlits SK. Injectable, macroporous scaffolds for delivery of therapeutic genes to the injured spinal cord. APL Bioeng 2021; 5:016104. [PMID: 33728392 PMCID: PMC7946441 DOI: 10.1063/5.0035291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Biomaterials are being developed as therapeutics for spinal cord injury (SCI) that can stabilize and bridge acute lesions and mediate the delivery of transgenes, providing a localized and sustained reservoir of regenerative factors. For clinical use, direct injection of biomaterial scaffolds is preferred to enable conformation to unique lesions and minimize tissue damage. While an interconnected network of cell-sized macropores is necessary for rapid host cell infiltration into-and thus integration of host tissue with-implanted scaffolds, injectable biomaterials have generally suffered from a lack of control over the macrostructure. As genetic vectors have short lifetimes in vivo, rapid host cell infiltration into scaffolds is a prerequisite for efficient biomaterial-mediated delivery of transgenes. We present scaffolds that can be injected and assembled in situ from hyaluronic acid (HA)-based, spherical microparticles to form scaffolds with a network of macropores (∼10 μm). The results demonstrate that addition of regularly sized macropores to traditional hydrogel scaffolds, which have nanopores (∼10 nm), significantly increases the expression of locally delivered transgene to the spinal cord after a thoracic injury. Maximal cell and axon infiltration into scaffolds was observed in scaffolds with more regularly sized macropores. The delivery of lentiviral vectors encoding the brain-derived neurotrophic factor (BDNF), but not neurotrophin-3, from these scaffolds further increased total numbers and myelination of infiltrating axons. Modest improvements to the hindlimb function were observed with BDNF delivery. The results demonstrate the utility of macroporous and injectable HA scaffolds as a platform for localized gene therapies after SCI.
Collapse
Affiliation(s)
- Arshia Ehsanipour
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Mayilone Sathialingam
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Laila M Rad
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Rebecca D Bierman
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Jesse Liang
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Weikun Xiao
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
41
|
Modified tamarind kernel polysaccharide-based matrix alters neuro-keratinocyte cross-talk and serves as a suitable scaffold for skin tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111779. [PMID: 33579440 DOI: 10.1016/j.msec.2020.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Advanced technologies like skin tissue engineering are requisite of various disorders where artificially synthesized materials need to be used as a scaffold in vivo, which in turn can allow the formation of functional skin and epidermal layer with all biological sensory functions. In this work, we present a set of hydrogels which have been synthesized by the method utilizing radical polymerization of a natural polymer extracted from kernel of Tamarindus indica, commonly known as Tamarind Kernel Powder (TKP) modified by utilizing the monomer acrylic acid (AA) in different mole ratios. These materials are termed as TKP: AA hydrogels and characterized by Atomic Force Microscopy (AFM), surface charge, and particle size distribution using Dynamic Light Scattering measurements. These materials are biocompatible with mouse dermal fibroblasts (NIH- 3T3) and human skin keratinocytes (HaCaT), as confirmed by MTT and biocompatibility assays. These TKP: AA hydrogels do not induce unwanted ROS signaling as confirmed by mitochondrial functionality determined by DCFDA staining, Mitosox imaging, and measuring the ATP levels. We demonstrate that in the co-culture system, TKP: AA allows the establishment of proper neuro-keratinocyte contact formation, suggesting that this hydrogel can be suitable for developing skin with sensory functions. Skin corrosion analysis on SD rats confirms that TKP: AA is appropriate for in vivo applications as well. This is further confirmed by in vivo compatibility and toxicity studies, including hemocompatibility and histopathology of liver and kidney upon direct introduction of hydrogel into the body. We propose that TKP: AA (1: 5) offers a suitable surface for skin tissue engineering with sensory functions applicable in vitro, in vivo, and ex vivo. These findings may have broad biomedical and clinical importance.
Collapse
|
42
|
He W, Wei D, Zhang J, Huang X, He D, Liu B, Wang Q, Liu M, Liu L, Liu Y, Tian W. Novel bone repairing scaffold consisting of bone morphogenetic Protein-2 and human Beta Defensin-3. J Biol Eng 2021; 15:5. [PMID: 33557881 PMCID: PMC7871609 DOI: 10.1186/s13036-021-00258-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/31/2021] [Indexed: 01/08/2023] Open
Abstract
Background Synthetic biomaterials assist in modulating the vascular response in an injured bone by serving as delivery vehicles of pro-angiogenic molecules to the site of injury or by serving as mimetic platforms which offer support to cell growth and proliferation. Methods This study applied natural phospholipid modified protein technologies together with low temperature three-dimensional printing technology to develop a new model of three-dimensional artificial bone scaffold for potential use in repairing body injuries. The focus was to create a porous structure (PS) scaffold of two components, Bone Morphogenetic Protein-2 and Human Beta Defensin-3 (BMP2 and hBD3), which can synchronously realize directional bone induction, angiogenesis and postoperative antibacterial effects. BMP2 induces osteogenesis, whereas hBD3 is antibacterial. Results Our data showed that in the BMP2-hBD3-PS or hBD3-PS scaffolds, BMP2 had a slow-release rate of about 40% in 30 days, ensuring that BMP2 could penetrate into stem cells for osteogenic differentiation for a long time. The scaffolds promoted cell growth when in combination with BMP2, thus showing its importance in promoting cell growth. Alkaline Phosphatase (ALP) staining showed that the ALP content of BMP2-hBD3-PS and BMP2-PS had a significant increase in samples that contained BMP2, thus showing that these scaffolds promoted osteogenic differentiation. In all the constructs that had hBD3, they displayed antibacterial properties with hBD3, having a slow release of about 35% in 30 days, thus ensuring they provided protection. Conclusion Based on this study, the 3D printed BMP2 scaffolds show a great potential for the development of biodegradable bone implants. Level of evidence Level II, experimental comparative design.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Beijing JiShuiTan Hospital, 4th Medical College of Peking University, No.31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Daixu Wei
- Department of Biomaterials and Microorganisms, Northwest University, Xi'an, China
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Xiaonan Huang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Da He
- Department of Spine Surgery, Beijing JiShuiTan Hospital, 4th Medical College of Peking University, No.31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Bo Liu
- Department of Spine Surgery, Beijing JiShuiTan Hospital, 4th Medical College of Peking University, No.31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Qilong Wang
- Department of Spine Surgery, Beijing JiShuiTan Hospital, 4th Medical College of Peking University, No.31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Mingming Liu
- Department of Spine Surgery, Beijing JiShuiTan Hospital, 4th Medical College of Peking University, No.31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Ling Liu
- Department of Gynaecology and Obstetrics, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yajun Liu
- Department of Spine Surgery, Beijing JiShuiTan Hospital, 4th Medical College of Peking University, No.31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China.
| | - Wei Tian
- Department of Spine Surgery, Beijing JiShuiTan Hospital, 4th Medical College of Peking University, No.31 Xinjiekou East Street, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
43
|
Jarrin S, Cabré S, Dowd E. The potential of biomaterials for central nervous system cellular repair. Neurochem Int 2021; 144:104971. [PMID: 33515647 DOI: 10.1016/j.neuint.2021.104971] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) can be injured or damaged through a variety of insults including traumatic injury, stroke, and neurodegenerative or demyelinating diseases, including Alzheimer's disease, Parkinson's disease and multiple sclerosis. Existing pharmacological and other therapeutics strategies are limited in their ability to repair or regenerate damaged CNS tissue meaning there are significant unmet clinical needs facing patients suffering CNS damage and/or degeneration. Through a variety of mechanisms including neuronal replacement, secretion of therapeutic factors, and stimulation of host brain plasticity, cell-based repair offers a potential mechanism to repair and heal the damaged CNS. However, over the decades of its evolution as a therapeutic strategy, cell-based CNS repair has faced significant hurdles that have prevented its translation to widespread clinical practice. In recent years, advances in cell technologies combined with advances in biomaterial-based regenerative medicine and tissue engineering have meant there is very real potential for many of these hurdles to be overcome. This review will provide an overview of the main CNS conditions that lend themselves to cellular repair and will then outline the potential of biomaterial-based approaches for improving the outcome of cellular repair in these conditions.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Sílvia Cabré
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
44
|
Hamid OA, Eltaher HM, Sottile V, Yang J. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111707. [DOI: 10.1016/j.msec.2020.111707] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023]
|
45
|
Silva D, Sousa R, Salgado A. Hydrogels as delivery systems for spinal cord injury regeneration. Mater Today Bio 2021; 9:100093. [PMID: 33665602 PMCID: PMC7905359 DOI: 10.1016/j.mtbio.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extracellular matrix. Particularly, hydrogels have the ability to support axonal growth and endogenous regeneration. Moreover, they can also act as potential matrixes in which to load and deliver therapeutic agents at injury site. In this review, we highlight some important characteristics to be considered when designing hydrogels as delivery systems (DS), such as rheology, mesh size, swelling, degradation, gelation temperature and surface charge. Additionally, affinity-based release systems, incorporation of nanoparticles, or ion-mediated interactions are also pondered. Overall, hydrogel DS aim to promote a sustained, controlled and prolonged release at injury site, allowing a targeted oriented action of the therapeutic agent that will be used.
Collapse
Affiliation(s)
- D. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - R.A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - A.J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
| |
Collapse
|
46
|
Microstructure and Mechanical Properties of PU/PLDL Sponges Intended for Grafting Injured Spinal Cord. Polymers (Basel) 2020; 12:polym12112693. [PMID: 33207553 PMCID: PMC7697813 DOI: 10.3390/polym12112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
Highly porous, elastic, and degradable polyurethane and polyurethane/polylactide (PU/PLDL) sponges, in various shapes and sizes, with open interconnected pores, and porosity up to 90% have been manufactured. They have been intended for gap filling in the injured spinal cord. The porosity of the sponges depended on the content of polylactide, i.e., it decreased with the increase of polylactide content. The rise of polylactide content caused an increase of Young modulus and rigidity as well as a more complex morphology of the polyurethane/polylactide blends. The mechanical properties, in vitro toxicity, and degradation in artificial cerebrospinal fluid were tested. Sponges underwent continuous degradation with varying degradation rates depending on the polymer composition. In vitro cell studies with fibroblast cultures proved the biocompatibility of the polymers. Based on the obtained results, the designed PU/PLDL sponges appeared to be promising candidates for bridging gaps within injured spinal cord in further in vitro and in vivo studies.
Collapse
|
47
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
48
|
Meco E, Zheng WS, Sharma AH, Lampe KJ. Guiding Oligodendrocyte Precursor Cell Maturation With Urokinase Plasminogen Activator-Degradable Elastin-like Protein Hydrogels. Biomacromolecules 2020; 21:4724-4736. [PMID: 32816463 DOI: 10.1021/acs.biomac.0c00828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Demyelinating injuries and diseases, like multiple sclerosis, affect millions of people worldwide. Oligodendrocyte precursor cells (OPCs) have the potential to repair demyelinated tissues because they can both self-renew and differentiate into oligodendrocytes (OLs), the myelin producing cells of the central nervous system (CNS). Cell-matrix interactions impact OPC differentiation into OLs, but the process is not fully understood. Biomaterial hydrogel systems help to elucidate cell-matrix interactions because they can mimic specific properties of native CNS tissues in an in vitro setting. We investigated whether OPC maturation into OLs is influenced by interacting with a urokinase plasminogen activator (uPA) degradable extracellular matrix (ECM). uPA is a proteolytic enzyme that is transiently upregulated in the developing rat brain, with peak uPA expression correlating with an increase in myelin production in vivo. OPC-like cells isolated through the Mosaic Analysis with Double Marker technique (MADM OPCs) produced low-molecular-weight uPA in culture. MADM OPCs were encapsulated into two otherwise similar elastin-like protein (ELP) hydrogel systems: one that was uPA degradable and one that was nondegradable. Encapsulated MADM OPCs had similar viability, proliferation, and metabolic activity in uPA degradable and nondegradable ELP hydrogels. Expression of OPC maturation-associated genes, however, indicated that uPA degradable ELP hydrogels promoted MADM OPC maturation although not sufficiently for these cells to differentiate into OLs.
Collapse
Affiliation(s)
- Edi Meco
- Department of Chemical Engineering, Chemical Eng., Office 117, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, United States
| | - W Sharon Zheng
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, MR5 2010, Box 800759, Charlottesville, Virginia 22908, United States
| | - Anahita H Sharma
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, MR5 2010, Box 800759, Charlottesville, Virginia 22908, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, Chemical Eng., Office 117, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
49
|
Yeh JZ, Wang DH, Cherng JH, Wang YW, Fan GY, Liou NH, Liu JC, Chou CH. A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury. Polymers (Basel) 2020; 12:E2245. [PMID: 33003601 PMCID: PMC7600216 DOI: 10.3390/polym12102245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.
Collapse
Affiliation(s)
- Jue-Zong Yeh
- Department of Pharmacy, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Ding-Han Wang
- School of Dentistry, National Yang-Ming University, Taipei 112, Taiwan;
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-H.C.); (Y.-W.W.); (N.-H.L.); (J.-C.L.)
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Yi-Wen Wang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-H.C.); (Y.-W.W.); (N.-H.L.); (J.-C.L.)
| | - Gang-Yi Fan
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Nien-Hsien Liou
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-H.C.); (Y.-W.W.); (N.-H.L.); (J.-C.L.)
| | - Jiang-Chuan Liu
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-H.C.); (Y.-W.W.); (N.-H.L.); (J.-C.L.)
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
50
|
Liu ZH, Huang YC, Kuo CY, Kuo CY, Chin CY, Yip PK, Chen JP. Docosahexaenoic Acid-Loaded Polylactic Acid Core-Shell Nanofiber Membranes for Regenerative Medicine after Spinal Cord Injury: In Vitro and In Vivo Study. Int J Mol Sci 2020; 21:ijms21197031. [PMID: 32987768 PMCID: PMC7583922 DOI: 10.3390/ijms21197031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is associated with disability and a drastic decrease in quality of life for affected individuals. Previous studies support the idea that docosahexaenoic acid (DHA)-based pharmacological approach is a promising therapeutic strategy for the management of acute SCI. We postulated that a nanostructured material for controlled delivery of DHA at the lesion site may be well suited for this purpose. Toward this end, we prepare drug-loaded fibrous mats made of core-shell nanofibers by electrospinning, which contained a polylactic acid (PLA) shell for encapsulation of DHA within the core, for delivery of DHA in situ. In vitro study confirmed sustained DHA release from PLA/DHA core-shell nanofiber membrane (CSNM) for up to 36 days, which could significantly increase neurite outgrowth from primary cortical neurons in 3 days. This is supported by the upregulation of brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) neural marker genes from qRT-PCR analysis. Most importantly, the sustained release of DHA could significantly increase the neurite outgrowth length from cortical neuron cells in 7 days when co-cultured with PLA/DHA CSNM, compared with cells cultured with 3 μM DHA. From in vivo study with a SCI model created in rats, implantation of PLA/DHA CSNM could significantly improve neurological functions revealed by behavior assessment in comparison with the control (no treatment) and the PLA CSNM groups. According to histological analysis, PLA/DHA CSNM also effectively reduced neuron loss and increased serotonergic nerve sprouting. Taken together, the PLA/DHA CSNM may provide a nanostructured drug delivery system for DHA and contribute to neuroprotection and promoting neuroplasticity change following SCI.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-Y.K.); (C.-Y.C.)
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-Y.K.); (C.-Y.C.)
| | - Chang-Yi Kuo
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Chao-Ying Kuo
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-Y.K.); (C.-Y.C.)
| | - Chieh-Yu Chin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-Y.K.); (C.-Y.C.)
| | - Ping K. Yip
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, London E1 2AT, UK;
| | - Jyh-Ping Chen
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
- Correspondence: ; Tel.: +886-3211-8800 (ext. 5298)
| |
Collapse
|