1
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
3
|
Abstract
The establishment of a functioning neuronal network is a crucial step in neural development. During this process, neurons extend neurites-axons and dendrites-to meet other neurons and interconnect. Therefore, these neurites need to migrate, grow, branch and find the correct path to their target by processing sensory cues from their environment. These processes rely on many coupled biophysical effects including elasticity, viscosity, growth, active forces, chemical signaling, adhesion and cellular transport. Mathematical models offer a direct way to test hypotheses and understand the underlying mechanisms responsible for neuron development. Here, we critically review the main models of neurite growth and morphogenesis from a mathematical viewpoint. We present different models for growth, guidance and morphogenesis, with a particular emphasis on mechanics and mechanisms, and on simple mathematical models that can be partially treated analytically.
Collapse
Affiliation(s)
- Hadrien Oliveri
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
4
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
5
|
Slay EE, Meldrum FC, Pensabene V, Amer MH. Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:722501. [PMID: 35047952 PMCID: PMC8757701 DOI: 10.3389/fmedt.2021.722501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis in breast cancer is associated with high mortality. Biomechanical cues presented by the extracellular matrix play a vital role in driving cancer metastasis. The lack of in vitro models that recapitulate the mechanical aspects of the in vivo microenvironment hinders the development of novel targeted therapies. Organ-on-a-chip (OOAC) platforms have recently emerged as a new generation of in vitro models that can mimic cell-cell interactions, enable control over fluid flow and allow the introduction of mechanical cues. Biomaterials used within OOAC platforms can determine the physical microenvironment that cells reside in and affect their behavior, adhesion, and localization. Refining the design of OOAC platforms to recreate microenvironmental regulation of metastasis and probe cell-matrix interactions will advance our understanding of breast cancer metastasis and support the development of next-generation metastasis-on-a-chip platforms. In this mini-review, we discuss the role of mechanobiology on the behavior of breast cancer and bone-residing cells, summarize the current capabilities of OOAC platforms for modeling breast cancer metastasis to bone, and highlight design opportunities offered by the incorporation of mechanobiological cues in these platforms.
Collapse
Affiliation(s)
- Ellen E. Slay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Virginia Pensabene
- School of School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
- School of Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Li A, Pereira C, Hill EE, Vukcevich O, Wang A. In vitro, In vivo and Ex vivo Models for Peripheral Nerve Injury and Regeneration. Curr Neuropharmacol 2021; 20:344-361. [PMID: 33827409 PMCID: PMC9413794 DOI: 10.2174/1570159x19666210407155543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Peripheral Nerve Injuries (PNI) frequently occur secondary to traumatic injuries. Recovery from these injuries can be expectedly poor, especially in proximal injuries. In order to study and improve peripheral nerve regeneration, scientists rely on peripheral nerve models to identify and test therapeutic interventions. In this review, we discuss the best described and most commonly used peripheral nerve models that scientists have and continue to use to study peripheral nerve physiology and function.
Collapse
Affiliation(s)
- Andrew Li
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Clifford Pereira
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Elise Eleanor Hill
- University of California Davis Ringgold standard institution - Department of Surgery Sacramento, California. United States
| | - Olivia Vukcevich
- University of California Davis Ringgold standard institution - Surgery & Biomedical Engineering Sacramento, California. United States
| | - Aijun Wang
- University of California Davis - Surgery & Biomedical Engineering 4625 2nd Ave., Suite 3005 Sacramento Sacramento California 95817. United States
| |
Collapse
|
7
|
Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909089. [PMID: 33456431 PMCID: PMC7810245 DOI: 10.1002/adfm.201909089] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 05/03/2023]
Abstract
The heterogeneity of native tissues requires complex materials to provide suitable substitutes for model systems and replacement tissues. Functionally graded materials have the potential to address this challenge by mimicking the gradients in heterogeneous tissues such as porosity, mineralization, and fiber alignment to influence strength, ductility, and cell signaling. Advancements in microfluidics, electrospinning, and 3D printing enable the creation of increasingly complex gradient materials that further our understanding of physiological gradients. The combination of these methods enables rapid prototyping of constructs with high spatial resolution. However, successful translation of these gradients requires both spatial and temporal presentation of cues to model the complexity of native tissues that few materials have demonstrated. This review highlights recent strategies to engineer functionally graded materials for the modeling and repair of heterogeneous tissues, together with a description of how cells interact with various gradients.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
8
|
Godesky MD, Shreiber DI. Hyaluronic acid-based hydrogels with independently tunable mechanical and bioactive signaling features. Biointerphases 2020; 14:061005. [PMID: 31896261 PMCID: PMC7008889 DOI: 10.1063/1.5126493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/14/2022] Open
Abstract
Extracellular matrix provides critical signaling context to resident cells through mechanical and bioactive properties. To realize the potential of tissue engineering and regenerative medicine, biomaterials should allow for the independent control of these features. This study investigates a hydrogel system based on thiol-modified hyaluronic acid (HA-S) and polyethylene glycol diacrylate (PEGDA). The mechanical properties of HAS-PEGDA are dictated by two cytocompatible crosslinking reactions that occur at distinct time points: a rapid, Michael-type nucleophilic addition reaction between HA-thiols and PEG-acrylates and a prolonged maturation of disulfide crosslinks from remaining thiols. It is hypothesized that these reactions would enable the independent tuning of the mechanical and bioactive features of HAS-PEGDA. Rheological studies confirmed that initial gelation reached completion by 1 day, at which point the shear modulus was proportional to the concentration of PEGDA. Over time, the shear modulus evolved dramatically, and final stiffness depended on the availability of HA-thiols. The addition of PEG-monoacrylate (PEGMA) after the initial gelation occupied a percentage of remaining thiols to prevent disulfide crosslinking, decreasing the steady-state stiffness in a dose-dependent manner. A fraction of the PEGMA was then replaced with acrylated peptide ligands to introduce specific bioactivity to the otherwise non-cell-adhesive network. The degree of latent stiffening was controlled by the total amount of peptide-PEGMA, while adhesivity was tuned with the balance of bioactive and inactive peptides. The functional effects of the tunable mechanical and bioadhesive ligand properties were confirmed with assays of cell adhesion and morphology.
Collapse
Affiliation(s)
- Madison D Godesky
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854
| |
Collapse
|
9
|
Kalotra S, Saini V, Singh H, Sharma A, Kaur G. 5-Nonyloxytryptamine oxalate-embedded collagen-laminin scaffolds augment functional recovery after spinal cord injury in mice. Ann N Y Acad Sci 2019; 1465:99-116. [PMID: 31800108 DOI: 10.1111/nyas.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Polysialic acid (PSA) is crucial for the induction and maintenance of nervous system plasticity and repair after injury. In order to exploit the immense therapeutic potential of PSA, previous studies have focused on the identification and development of peptide-based or synthetic PSA mimetics. 5-Nonyloxytryptamine (5-NOT) has been previously reported as a PSA-mimicking compound for promoting functional recovery after spinal cord injury in mice. In order to explore the neuroregeneration potential of 5-NOT, the current study was based on a biomaterial approach using collagen-laminin (C/L) scaffolds. In in vitro studies, 5-NOT was observed to promote neurite outgrowth, migration, and fasciculation in cerebellar neuronal cells, whereas in 3D cell cultures it showed more ramification and complex Sholl profiles. 5-NOT promoted the survival and neurite length of cortical neurons when cocultured with glutamate-challenged astrocytes. In in vivo studies, spinal cord compression injury mice were used with immediate application of C/L hydrogels impregnated with 5-NOT. C/L + 5-NOT-treated mice demonstrated ∼75% of motor recovery 14 days after injury. Furthermore, this effect was shown to be dependent on the ERK-MAPK pathway and augmentation of cell survival. Thus, based on a biomaterial approach, our current study provides new insight for 5-NOT-containing hydrogels as a promising candidate to speed up recovery after central nervous system injuries.
Collapse
Affiliation(s)
- Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vedangana Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harpal Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anuradha Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
10
|
Antill-O'Brien N, Bourke J, O'Connell CD. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3218. [PMID: 31581436 PMCID: PMC6804258 DOI: 10.3390/ma12193218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.
Collapse
Affiliation(s)
- Natasha Antill-O'Brien
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
| | - Justin Bourke
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
11
|
Natarajan A, Sethumadhavan A, Krishnan UM. Toward Building the Neuromuscular Junction: In Vitro Models To Study Synaptogenesis and Neurodegeneration. ACS OMEGA 2019; 4:12969-12977. [PMID: 31460423 PMCID: PMC6682064 DOI: 10.1021/acsomega.9b00973] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The neuromuscular junction (NMJ) is a unique, specialized chemical synapse that plays a crucial role in transmitting and amplifying information from spinal motor neurons to skeletal muscles. NMJ complexity ensures closely intertwined interactions between numerous synaptic vesicles, signaling molecules, ion channels, motor neurons, glia, and muscle fibers, making it difficult to dissect the underlying mechanisms and factors affecting neurodegeneration and muscle loss. Muscle fiber or motor neuron cell death followed by rapid axonal degeneration due to injury or disease has a debilitating effect on movement and behavior, which adversely affects the quality of life. It thus becomes imperative to study the synapse and intercellular signaling processes that regulate plasticity at the NMJ and elucidate mechanisms and pathways at the cellular level. Studies using in vitro 2D cell cultures have allowed us to gain a fundamental understanding of how the NMJ functions. However, they do not provide information on the intricate signaling networks that exist between NMJs and the biological environment. The advent of 3D cell cultures and microfluidic lab-on-a-chip technologies has opened whole new avenues to explore the NMJ. In this perspective, we look at the challenges involved in building a functional NMJ and the progress made in generating models for studying the NMJ, highlighting the current and future applications of these models.
Collapse
Affiliation(s)
- Anupama Natarajan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| | - Anjali Sethumadhavan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| | - Uma Maheswari Krishnan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
12
|
Mobini S, Song YH, McCrary MW, Schmidt CE. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019; 198:146-166. [PMID: 29880219 PMCID: PMC6957334 DOI: 10.1016/j.biomaterials.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The technologies related to ex vivo models and lab-on-a-chip devices for studying the regeneration of brain, spinal cord, and peripheral nerve tissues are essential tools for neural tissue engineering and regenerative medicine research. The need for ex vivo systems, lab-on-a-chip technologies and disease models for neural tissue engineering applications are emerging to overcome the shortages and drawbacks of traditional in vitro systems and animal models. Ex vivo models have evolved from traditional 2D cell culture models to 3D tissue-engineered scaffold systems, bioreactors, and recently organoid test beds. In addition to ex vivo model systems, we discuss lab-on-a-chip devices and technologies specifically for neural tissue engineering applications. Finally, we review current commercial products that mimic diseased and normal neural tissues, and discuss the future directions in this field.
Collapse
Affiliation(s)
- Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Duru LN, Quan Z, Qazi TJ, Qing H. Stem cells technology: a powerful tool behind new brain treatments. Drug Deliv Transl Res 2018; 8:1564-1591. [PMID: 29916013 DOI: 10.1007/s13346-018-0548-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Lucienne N Duru
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Talal Jamil Qazi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China. .,Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
14
|
Abstract
Microfluidics has played a vital role in developing novel methods to investigate biological phenomena at the molecular and cellular level during the last two decades. Microscale engineering of cellular systems is nevertheless a nascent field marked inherently by frequent disruptive advancements in technology such as PDMS-based soft lithography. Viable culture and manipulation of cells in microfluidic devices requires knowledge across multiple disciplines including molecular and cellular biology, chemistry, physics, and engineering. There has been numerous excellent reviews in the past 15 years on applications of microfluidics for molecular and cellular biology including microfluidic cell culture (Berthier et al., 2012; El-Ali, Sorger, & Jensen, 2006; Halldorsson et al., 2015; Kim et al., 2007; Mehling & Tay, 2014; Sackmann et al., 2014; Whitesides, 2006; Young & Beebe, 2010), cell culture models (Gupta et al., 2016; Inamdar & Borenstein, 2011; Meyvantsson & Beebe, 2008), cell secretion (Schrell et al., 2016), chemotaxis (Kim & Wu, 2012; Wu et al., 2013), neuron culture (Millet & Gillette, 2012a, 2012b), drug screening (Dittrich & Manz, 2006; Eribol, Uguz, & Ulgen, 2016; Wu, Huang, & Lee, 2010), cell sorting (Autebert et al., 2012; Bhagat et al., 2010; Gossett et al., 2010; Wyatt Shields Iv, Reyes, & López, 2015), single cell studies (Lecault et al., 2012; Reece et al., 2016; Yin & Marshall, 2012), stem cell biology (Burdick & Vunjak-Novakovic, 2009; Wu et al., 2011; Zhang & Austin, 2012), cell differentiation (Zhang et al., 2017a), systems biology (Breslauer, Lee, & Lee, 2006), 3D cell culture (Huh et al., 2011; Li et al., 2012; van Duinen et al., 2015), spheroids and organoids (Lee et al., 2016; Montanez-Sauri, Beebe, & Sung, 2015; Morimoto & Takeuchi, 2013; Skardal et al., 2016; Young, 2013), organ-on-chip (Bhatia & Ingber, 2014; Esch, Bahinski, & Huh, 2015; Huh et al., 2011; van der Meer & van den Berg, 2012), and tissue engineering (Andersson & Van Den Berg, 2004; Choi et al., 2007; Hasan et al., 2014). In this chapter, we provide an overview of PDMS-based microdevices for microfluidic cell culture. We discuss the advantages and challenges of using PDMS-based soft lithography for microfluidic cell culture and highlight recent progress and future directions in this area.
Collapse
Affiliation(s)
- Melikhan Tanyeri
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA, United States
| | - Savaş Tay
- Institute of Molecular Engineering, University of Chicago, Chicago, IL, United States; Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
15
|
Lim HJ, Khan Z, Lu X, Perera TH, Wilems TS, Ravivarapu KT, Smith Callahan LA. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction. Acta Biomater 2018. [PMID: 29526829 DOI: 10.1016/j.actbio.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Balancing enhancement of neurite extension against loss of matrix support in synthetic hydrogels containing proteolytically degradable and bioactive signaling peptides to optimize tissue formation is difficult. Using a systematic approach, polyethylene glycol hydrogels containing concurrent continuous concentration gradients of the laminin derived bioactive signaling peptide, Ile-Lys-Val-Ala-Val (IKVAV), and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ, were fabricated and characterized. During proteolytic degradation of the concentration gradient hydrogels, the IKVAV and IWGQ cleavage fragment from GPQGIWGQ were found to interact and stabilize the bulk Young's Modulus of the hydrogel. Further testing of discrete samples containing GPQGIWGQ or its cleavage fragments, GPQG and IWGQ, indicates hydrophobic interactions between the peptides are not necessary for mechanical stabilization of the hydrogel, but changes in the concentration ratio between the peptides tethered in the hydrogel and salts and ions in the swelling solution can affect the stabilization. Encapsulation of human induced pluripotent stem cell derived neural stem cells did not reduce the mechanical properties of the hydrogel over a 14 day neural differentiation culture period, and IKVAV was found to maintain concentration dependent effects on neurite extension and mRNA gene expression of neural cytoskeletal markers, similar to previous studies. As a result, this work has significant implications for the analysis of biological studies in matrices, as the material and mechanical properties of the hydrogel may be unexpectedly temporally changing during culture due to interactions between peptide signaling elements, underscoring the need for greater matrix characterization during the degradation and cell culture. STATEMENT OF SIGNIFICANCE Greater emulation of the native extracellular matrix is necessary for tissue formation. To achieve this, matrices are becoming more complex, often including multiple bioactive signaling elements. However, peptide signaling in polyethylene glycol matrices and amino acids interactions between peptides can affect hydrogel material and mechanical properties, but are rarely studied. The current study identifies such an interaction between laminin derived peptide, IKVAV, and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ. Previous studies using these peptides did not identify their interactions' ability to mechanically stabilize the hydrogel during degradation. This work underscores the need for greater matrix characterization and consideration of bioactive signaling element effects temporally on the matrix's material and mechanical properties, as they can contribute to cellular response.
Collapse
Affiliation(s)
- Hyun Ju Lim
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Zara Khan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Xi Lu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - T Hiran Perera
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Thomas S Wilems
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Krishna T Ravivarapu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Laura A Smith Callahan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; The Department of Nanomedicine and Biomedical Engineering, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
16
|
Geraili A, Jafari P, Hassani MS, Araghi BH, Mohammadi MH, Ghafari AM, Tamrin SH, Modarres HP, Kolahchi AR, Ahadian S, Sanati-Nezhad A. Controlling Differentiation of Stem Cells for Developing Personalized Organ-on-Chip Platforms. Adv Healthc Mater 2018; 7. [PMID: 28910516 DOI: 10.1002/adhm.201700426] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/01/2017] [Indexed: 01/09/2023]
Abstract
Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood-brain barrier, bone marrow, heart, liver, lung, tumor, and vascular), with an emphasis on the critical role of stem cells in the synthesis of complex tissues. This study further recaps the design, fabrication, high-throughput performance, and improved functionality of stem-cell-based OOCs, technical challenges, obstacles against implementing their potential applications, and future perspectives related to different experimental platforms.
Collapse
Affiliation(s)
- Armin Geraili
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
- Graduate Program in Biomedical Engineering; Western University; London N6A 5B9 ON Canada
| | - Parya Jafari
- Graduate Program in Biomedical Engineering; Western University; London N6A 5B9 ON Canada
- Department of Electrical Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
| | - Mohsen Sheikh Hassani
- Department of Systems and Computer Engineering; Carleton University; 1125 Colonel By Drive Ottawa K1S 5B6 ON Canada
| | - Behnaz Heidary Araghi
- Department of Materials Science and Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto Ontario M5S 3E5 Canada
| | - Amir Mohammad Ghafari
- Department of Stem Cells and Developmental Biology; Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; Tehran 16635-148 Iran
| | - Sara Hasanpour Tamrin
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto Ontario M5S 3E5 Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
- Center for Bioengineering Research and Education; Biomedical Engineering Program; University of Calgary; Calgary T2N 1N4 AB Canada
| |
Collapse
|
17
|
Bioprinting for Neural Tissue Engineering. Trends Neurosci 2018; 41:31-46. [DOI: 10.1016/j.tins.2017.11.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/10/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
|
18
|
Nawrotek K, Tylman M, Rudnicka K, Gatkowska J, Wieczorek M. Epineurium-mimicking chitosan conduits for peripheral nervous tissue engineering. Carbohydr Polym 2016; 152:119-128. [DOI: 10.1016/j.carbpol.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/25/2016] [Accepted: 07/01/2016] [Indexed: 11/30/2022]
|
19
|
Carey SP, Goldblatt ZE, Martin KE, Romero B, Williams RM, Reinhart-King CA. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integr Biol (Camb) 2016; 8:821-35. [PMID: 27384462 PMCID: PMC4980151 DOI: 10.1039/c6ib00030d] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell migration within 3D interstitial microenvironments is sensitive to extracellular matrix (ECM) properties, but the mechanisms that regulate migration guidance by 3D matrix features remain unclear. To examine the mechanisms underlying the cell migration response to aligned ECM, which is prevalent at the tumor-stroma interface, we utilized time-lapse microscopy to compare the behavior of MDA-MB-231 breast adenocarcinoma cells within randomly organized and well-aligned 3D collagen ECM. We developed a novel experimental system in which cellular morphodynamics during initial 3D cell spreading served as a reductionist model for the complex process of matrix-directed 3D cell migration. Using this approach, we found that ECM alignment induced spatial anisotropy of cells' matrix probing by promoting protrusion frequency, persistence, and lengthening along the alignment axis and suppressing protrusion dynamics orthogonal to alignment. Preference for on-axis behaviors was dependent upon FAK and Rac1 signaling and translated across length and time scales such that cells within aligned ECM exhibited accelerated elongation, front-rear polarization, and migration relative to cells in random ECM. Together, these findings indicate that adhesive and protrusive signaling allow cells to respond to coordinated physical cues in the ECM, promoting migration efficiency and cell migration guidance by 3D matrix structure.
Collapse
Affiliation(s)
- Shawn P Carey
- Department of Biomedical Engineering, Cornell University, 302 Weill Hall, 526 Campus Rd, Ithaca, New York 14853, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Ricoult SG, Kennedy TE, Juncker D. Substrate-bound protein gradients to study haptotaxis. Front Bioeng Biotechnol 2015; 3:40. [PMID: 25870855 PMCID: PMC4378366 DOI: 10.3389/fbioe.2015.00040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however, it is increasingly clear that in vivo many physiologically relevant guidance proteins - including many secreted cues - are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact printing, light patterning, and 3D fabrication to pattern substrate-bound protein gradients in vitro. The range of methods to create substrate-bound gradients discussed herein makes possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function.
Collapse
Affiliation(s)
- Sébastien G. Ricoult
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Timothy E. Kennedy
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - David Juncker
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
- McGill Program in Neuroengineering, Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Drzewiecki K, Parmar AS, Gaudet ID, Branch JR, Pike DH, Nanda V, Shreiber DI. Methacrylation induces rapid, temperature-dependent, reversible self-assembly of type-I collagen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11204-11. [PMID: 25208340 PMCID: PMC4172302 DOI: 10.1021/la502418s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Type-I collagen self-assembles into a fibrillar gel at physiological temperature and pH to provide a cell-adhesive, supportive, structural network. As such, it is an attractive, popular scaffold for in vitro evaluations of cellular behavior and for tissue engineering applications. In this study, type-I collagen is modified to introduce methacrylate groups on the free amines of the lysine residues to create collagen methacrylamide (CMA). CMA retains the properties of collagen such as self-assembly, biodegradability, and natural bioactivity but is also photoactive and can be rapidly cross-linked or functionalized with acrylated molecules when irradiated with ultraviolet light in the presence of a photoinitiator. CMA also demonstrates unique temperature-dependent behavior. For natural type-I collagen, the overall structure of the fiber network remains largely static over time scales of a few hours upon heating and cooling at temperatures below its denaturation point. CMA, however, is rapidly thermoreversible and will oscillate between a liquid macromer suspension and a semisolid fibrillar hydrogel when the temperature is modulated between 10 and 37 °C. Using a series of mechanical, scattering, and spectroscopic methods, we demonstrate that structural reversibility is manifest across multiple scales from the protein topology of the triple helix up through the rheological properties of the CMA hydrogel. Electron microscopy imaging of CMA after various stages of heating and cooling shows that the canonical collagen-like D-periodic banding ultrastructure of the fibers is preserved. A rapidly thermoreversible collagen-based hydrogel is expected to have wide utility in tissue engineering and drug delivery applications as a biofunctional, biocompatible material. Thermal reversibility also makes CMA a powerful model for studying the complex process of hierarchical collagen self-assembly.
Collapse
Affiliation(s)
- Kathryn
E. Drzewiecki
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Avanish S. Parmar
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ian D. Gaudet
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jonathan R. Branch
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Douglas H. Pike
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Vikas Nanda
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - David I. Shreiber
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- E-mail:
| |
Collapse
|
22
|
Whitehead TJ, Sundararaghavan HG. Electrospinning growth factor releasing microspheres into fibrous scaffolds. J Vis Exp 2014. [PMID: 25178038 DOI: 10.3791/51517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This procedure describes a method to fabricate a multifaceted substrate to direct nerve cell growth. This system incorporates mechanical, topographical, adhesive and chemical signals. Mechanical properties are controlled by the type of material used to fabricate the electrospun fibers. In this protocol we use 30% methacrylated Hyaluronic Acid (HA), which has a tensile modulus of ~500 Pa, to produce a soft fibrous scaffold. Electrospinning on to a rotating mandrel produces aligned fibers to create a topographical cue. Adhesion is achieved by coating the scaffold with fibronectin. The primary challenge addressed herein is providing a chemical signal throughout the depth of the scaffold for extended periods. This procedure describes fabricating poly(lactic-co-glycolic acid) (PLGA) microspheres that contain Nerve Growth Factor (NGF) and directly impregnating the scaffold with these microspheres during the electrospinning process. Due to the harsh production environment, including high sheer forces and electrical charges, protein viability is measured after production. The system provides protein release for over 60 days and has been shown to promote primary nerve cell growth.
Collapse
|
23
|
Zhu W, O'Brien C, O'Brien JR, Zhang LG. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine (Lond) 2014; 9:859-75. [DOI: 10.2217/nnm.14.36] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Injuries of the nervous system occur commonly among people of many different ages and backgrounds. Currently, there are no effective strategies to improve neural regeneration; however, tissue engineering provides a promising avenue for regeneration of many tissue types, including the neural context. Functional nerve conduits derived from tissue engineering techniques present bioengineered 3D artificial substitutes for implantation and rehabilitation of injured nerves. In particular, nanotechnology as a versatile vehicle to create biomimetic nanostructured tissue-engineered neural scaffolds provides great potential for the development of innovative and successful nerve grafts. Nanostructured conduits derived from traditional and novel tissue engineering techniques have been shown to be superior for successful neural function construction due to a high degree of biomimetic character. In this paper, we will focus on current progress in developing 3D nano/microstructured neural scaffolds via electrospinning, emerging 3D printing and self-assembly techniques, nanobiomaterials and bioactive cues for enhanced neural tissue regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Christopher O'Brien
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Joseph R O'Brien
- Departments of Orthopedic Surgery & Neurological Surgery, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
24
|
Lara Rodriguez L, Schneider IC. Directed cell migration in multi-cue environments. Integr Biol (Camb) 2013; 5:1306-23. [DOI: 10.1039/c3ib40137e] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ian C. Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, USA
| |
Collapse
|
25
|
Harink B, Le Gac S, Truckenmüller R, van Blitterswijk C, Habibovic P. Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. LAB ON A CHIP 2013; 13:3512-28. [PMID: 23877890 DOI: 10.1039/c3lc50293g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of regenerative medicine is to restore or establish normal function of damaged tissues or organs. Tremendous efforts are placed into development of novel regenerative strategies, involving (stem) cells, soluble factors, biomaterials or combinations thereof, as a result of the growing need caused by continuous population aging. To satisfy this need, fast and reliable assessment of (biological) performance is sought, not only to select the potentially interesting candidates, but also to rule out poor ones at an early stage of development. Microfluidics may provide a new avenue to accelerate research and development in the field of regenerative medicine as it has proven its maturity for the realization of high-throughput screening platforms. In addition, microfluidic systems offer other advantages such as the possibility to create in vivo-like microenvironments. Besides the complexity of organs or tissues that need to be regenerated, regenerative medicine brings additional challenges of complex regeneration processes and strategies. The question therefore arises whether so much complexity can be integrated into microfluidic systems without compromising reliability and throughput of assays. With this review, we aim to investigate whether microfluidics can become widely applied in regenerative medicine research and/or strategies.
Collapse
Affiliation(s)
- Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Engineering and Technical Medicine, PO Box 217, 7500AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Wrobel MR, Sundararaghavan HG. Directed migration in neural tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:93-105. [PMID: 23815309 DOI: 10.1089/ten.teb.2013.0233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Directed cell migration is particularly important in neural tissue engineering, where the goal is to direct neurons and support cells across injured nerve gaps. Investigation of the gradients present in the body during development provides an approach to guiding cells in peripheral and central nervous system tissue, but many different types of gradients and patterns can accomplish directed migration. The focus of this review is to describe current research paradigms in neural tissue gradients and review their effectiveness for directed migration. The review explores directed migration achieved through the use of chemical, adhesive, mechanical, topographical, and electrical types of gradients. Few studies investigate combined gradients, though it is known that a combination of therapies is necessary for reconnection of neuronal circuitry. To date, there has been no systematic review of gradient approaches to neural tissue engineering. By looking at effectiveness of various scaffold cue presentation and methods to combine these strategies, the potential for nerve repair is increased.
Collapse
Affiliation(s)
- Melissa R Wrobel
- Department of Biomedical Engineering, Wayne State University , Detroit, Michigan
| | | |
Collapse
|
27
|
Lau TT, Wang DA. Bioresponsive hydrogel scaffolding systems for 3D constructions in tissue engineering and regenerative medicine. Nanomedicine (Lond) 2013; 8:655-68. [DOI: 10.2217/nnm.13.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the diversity of scaffolding systems available, hydrogel remains a popular choice for tissue engineering applications. The current state-of-the-art bioresponsive hydrogels demand intricate designs in pursuit of acquiring desired timely responses, such as controlled release of biological factors, changes in mechanical properties and scaffold degradation, at the same rate as the natural extracellular matrix. In this review, a variety of bioresponsive hydrogels are discussed; in particular, bioactive and biodegradable hydrogels that facilitate cellular development and tissue morphogenesis are highlighted. Bioactive hydrogels are designed to deliver biomolecules such as cell-adhesive moieties and instructive ligands at close proximity to the cell for better uptake or exposure. Biodegradable hydrogels provide transient scaffolding support for therapeutic cell settlement while gradually degrading in response to physical or enzymatic stimuli. In addition, biomechanical stimuli from hydrogels can induce mutual constructive responses on cells and, hence, will also be covered in this review.
Collapse
Affiliation(s)
- Ting Ting Lau
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, 637457, Singapore
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, 637457, Singapore
| |
Collapse
|
28
|
Sundararaghavan HG, Saunders RL, Hammer DA, Burdick JA. Fiber alignment directs cell motility over chemotactic gradients. Biotechnol Bioeng 2012; 110:1249-54. [DOI: 10.1002/bit.24788] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 01/01/2023]
|
29
|
|
30
|
Guo X, Elliott CG, Li Z, Xu Y, Hamilton DW, Guan J. Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis. Biomacromolecules 2012; 13:3262-71. [PMID: 22924876 DOI: 10.1021/bm301029a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fast angiogenesis in 3D fibrous constructs that mimic the morphology of the extracellular matrix remains challenging due to limited porosity in the densely packed constructs. We investigated whether mimicking the in vivo chemotaxis microenvironment for native blood vessel formation would stimulate angiogenesis in the fibrous constructs. The chemotaxis microenvironment was created by introducing 3D angiogenic growth factor gradients into the constructs. We have developed a technique that can quickly fabricate (∼40 min) such 3D gradients by simultaneously electrospinning polycaprolactone (PCL) fibers, encapsulating gradient amount of bFGF (stabilized by heparin) into poly(lactide-co-glycolide) (PLGA) microspheres, and electrospraying the microspheres into PCL fibers. Gradient formation was confirmed by fluorescence microscopy. Gradients with different steepnesses were obtained by modulating the initial concentration of the bFGF solution. All of the constructs were able to sustainedly release bioactive bFGF over a 28 day period. The release kinetics was dependent on the bFGF loading and steepness of the gradient. In vitro cell migration study demonstrated that bFGF gradients significantly increased the depth of cell migration. To assess the efficacy of bFGF gradients in inducing angiogenesis, we implanted constructs subcutaneously using mouse model. bFGF gradients significantly promoted cell penetration into the constructs. After 10 days of implantation, a high density of mature blood vessels (positive to both CD31 and α-SMA) were formed in the constructs. Vessel density was increased with the increase in steepness of the bFGF gradient. These gradient constructs may have potential to engineer vascularized tissues for various applications.
Collapse
Affiliation(s)
- Xiaolei Guo
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
31
|
Masand SN, Chen J, Perron IJ, Hammerling BC, Loers G, Schachner M, Shreiber DI. The effect of glycomimetic functionalized collagen on peripheral nerve repair. Biomaterials 2012; 33:8353-62. [PMID: 22917737 DOI: 10.1016/j.biomaterials.2012.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
Increasing evidence suggests that the improper synaptic reconnection of regenerating axons is a significant cause of incomplete functional recovery following peripheral nerve injury. In this study, we evaluate the use of collagen hydrogels functionalized with two peptide glycomimetics of naturally occurring carbohydrates-polysialic acid (PSA) and human natural killer cell epitope epitope (HNK-1)-that have been independently shown to encourage nerve regeneration and axonal targeting. Our novel biomaterial was used to bridge a critical gap size (5 mm) in a mouse femoral nerve injury model. Functional recovery was assessed using gait and hind limb extension, and was significantly better in all glycomimetic peptide-coupled collagen conditions versus non-functional scrambled peptide-coupled collagen, native collagen, and saline controls. Analysis of cross-sections of the regenerated nerve demonstrated that hydrogels coupled with the PSA glycomimetic, but not HNK, had significant increases in the number of myelinated axons over controls. Conversely, hydrogels coupled with HNK, but not PSA, showed improvement in myelination. Additionally, significantly more correctly projecting motoneurons were observed in groups containing coupled HNK-1 mimicking peptide, but not PSA mimicking peptide. Given the distinct morphological outcomes between the two glycomimetics, our study indicates that the enhancement of recovery following peripheral nerve injury induced by PSA- and HNK-functionalized collagen hydrogels likely occurs through distinct mechanisms.
Collapse
Affiliation(s)
- Shirley N Masand
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cell-laden microfluidic devices have broad potential in various biomedical applications, including tissue engineering and drug discovery. However, multiple difficulties encountered while culturing cells within devices affecting cell viability, proliferation, and behavior has complicated their use. While active perfusion systems have been used to overcome the diffusive limitations associated with nutrient delivery into microchannels to support longer culture times, these systems can result in non-uniform oxygen and nutrient delivery and subject cells to shear stresses, which can affect cell behavior. Additionally, histological analysis of cell cultures within devices is generally laborious and yields inconsistent results due to difficulties in delivering labeling agents in microchannels. Herein, we describe a simple, cost-effective approach to preserve cell viability and simplify labeling within microfluidic networks without the need for active perfusion. Instead of bonding a microfluidic network to glass, PDMS, or other solid substrate, the network is bonded to a semi-permeable nanoporous membrane. The membrane-sealed devices allow free exchange of proteins, nutrients, buffers, and labeling reagents between the microfluidic channels and culture media in static culture plates under sterile conditions. The use of the semi-permeable membrane dramatically simplifies microniche cell culturing while avoiding many of the complications which arise from perfusion systems.
Collapse
|
33
|
Fiddes LK, Luk VN, Au SH, Ng AHC, Luk V, Kumacheva E, Wheeler AR. Hydrogel discs for digital microfluidics. BIOMICROFLUIDICS 2012; 6:14112-1411211. [PMID: 22662096 PMCID: PMC3365348 DOI: 10.1063/1.3687381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/27/2012] [Indexed: 05/10/2023]
Abstract
Hydrogels are networks of hydrophilic polymer chains that are swollen with water, and they are useful for a wide range of applications because they provide stable niches for immobilizing proteins and cells. We report here the marriage of hydrogels with digital microfluidic devices. Until recently, digital microfluidics, a fluid handling technique in which discrete droplets are manipulated electromechanically on the surface of an array of electrodes, has been used only for homogeneous systems involving liquid reagents. Here, we demonstrate for the first time that the cylindrical hydrogel discs can be incorporated into digital microfluidic systems and that these discs can be systematically addressed by droplets of reagents. Droplet movement is observed to be unimpeded by interaction with the gel discs, and gel discs remain stationary when droplets pass through them. Analyte transport into gel discs is observed to be identical to diffusion in cases in which droplets are incubated with gels passively, but transport is enhanced when droplets are continually actuated through the gels. The system is useful for generating integrated enzymatic microreactors and for three-dimensional cell culture. This paper demonstrates a new combination of techniques for lab-on-a-chip systems which we propose will be useful for a wide range of applications.
Collapse
|
34
|
Masand SN, Perron IJ, Schachner M, Shreiber DI. Neural cell type-specific responses to glycomimetic functionalized collagen. Biomaterials 2011; 33:790-7. [PMID: 22027596 DOI: 10.1016/j.biomaterials.2011.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/09/2011] [Indexed: 01/18/2023]
Abstract
Despite their noted functional role, glycans have had limited therapeutic use due to difficulties in synthesis and quick degradation in vivo. The recent discovery of glycomimetics has provided new opportunities for their application. In this study, we have functionalized type I collagen with peptide mimics of two glycans: (1) polysialic acid (PSA) and (2) an epitope first discovered on human natural killer cells (HNK-1). These glycans and their glycomimetic counterparts have been shown to be important regulators of repair following injury through their unique and phenotypically specific effects on neural behavior. We show that these molecules retain their bioactivity following functionalization to the collagen backbone. Grafted HNK-1 encouraged motor neuron outgrowth, while grafted PSA encouraged sensory and motor neuron outgrowth and enhanced Schwann cell proliferation and process extension. These data support the potential of glycomimetic-functionalized collagen as a biomaterial strategy to increase the efficiency of synaptic reconnection following nervous system injury.
Collapse
Affiliation(s)
- Shirley N Masand
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|