1
|
Wan J, Ding J, Zhang X, Hu X, Chen R, Han S. Exploration of the Amino Acid Metabolic Profiling and Pathway in Clonorchis sinensis-Infected Rats Revealed by the Targeted Metabolomic Analysis. Vector Borne Zoonotic Dis 2024; 24:428-438. [PMID: 38574253 DOI: 10.1089/vbz.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Background: Clonorchiasis remains a serious public health problem. However, the molecular mechanism underlying clonorchiasis remains largely unknown. Amino acid (AA) metabolism plays key roles in protein synthesis and energy sources, and improves immunity in pathological conditions. Therefore, this study aimed to explore the AA profiles of spleen in clonorchiasis and speculate the interaction between the host and parasite. Methods: Here targeted ultrahigh performance liquid chromatography multiple reaction monitoring mass spectrometry was applied to discover the AA profiles in spleen of rats infected with Clonorchis sinensis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was performed to characterize the dysregulated metabolic pathways. Results: Pathway analysis revealed that phenylalanine, tyrosine, and tryptophan biosynthesis and β-alanine metabolism were significantly altered in clonorchiasis. There were no significant correlations between 14 significant differential AAs and interleukin (IL)-1β. Although arginine, asparagine, histidine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were positively correlated with IL-6, IL-10, tumor necrosis factor (TNF)-α as well as aspartate aminotransferase and alanine aminotransferase; β-alanine and 4-hydroxyproline were negatively correlated with IL-6, IL-10, and TNF-α. Conclusion: This study reveals the dysregulation of AA metabolism in clonorchiasis and provides a useful insight of metabolic mechanisms at the molecular level.
Collapse
Affiliation(s)
- Jie Wan
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xinyi Hu
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Jiangnan University Medical Center, Wuxi, China
| | - Su Han
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
- Department of Parasitology, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Herbert C, Luies L, Loots DT, Williams AA. The metabolic consequences of HIV/TB co-infection. BMC Infect Dis 2023; 23:536. [PMID: 37592227 PMCID: PMC10436461 DOI: 10.1186/s12879-023-08505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The synergy between the human immunodeficiency virus (HIV) and Mycobacterium tuberculosis during co-infection of a host is well known. While this synergy is known to be driven by immunological deterioration, the metabolic mechanisms that contribute to the associated disease burden experienced during HIV/tuberculosis (TB) co-infection remain poorly understood. Furthermore, while anti-HIV treatments suppress viral replication, these therapeutics give rise to host metabolic disruption and adaptations beyond that induced by only infection or disease. METHODS In this study, the serum metabolic profiles of healthy controls, untreated HIV-negative TB-positive patients, untreated HIV/TB co-infected patients, and HIV/TB co-infected patients on antiretroviral therapy (ART), were measured using two-dimensional gas chromatography time-of-flight mass spectrometry. Since no global metabolic profile for HIV/TB co-infection and the effect of ART has been published to date, this pilot study aimed to elucidate the general areas of metabolism affected during such conditions. RESULTS HIV/TB co-infection induced significant changes to the host's lipid and protein metabolism, with additional microbial product translocation from the gut to the blood. The results suggest that HIV augments TB synergistically, at least in part, contributing to increased inflammation, oxidative stress, ART-induced mitochondrial damage, and its detrimental effects on gut health, which in turn, affects energy availability. ART reverses these trends to some extent in HIV/TB co-infected patients but not to that of healthy controls. CONCLUSION This study generated several new hypotheses that could direct future metabolic studies, which could be combined with other research techniques or methodologies to further elucidate the underlying mechanisms of these changes.
Collapse
Affiliation(s)
- Chandré Herbert
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
3
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Rugeles MT, Galeano E. Plasma metabolomics by nuclear magnetic resonance reveals biomarkers and metabolic pathways associated with the control of HIV-1 infection/progression. Front Mol Biosci 2023; 10:1204273. [PMID: 37457832 PMCID: PMC10339029 DOI: 10.3389/fmolb.2023.1204273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
How the human body reacts to the exposure of HIV-1 is an important research goal. Frequently, HIV exposure leads to infection, but some individuals show natural resistance to this infection; they are known as HIV-1-exposed but seronegative (HESN). Others, although infected but without antiretroviral therapy, control HIV-1 replication and progression to AIDS; they are named controllers, maintaining low viral levels and an adequate count of CD4+ T lymphocytes. Biological mechanisms explaining these phenomena are not precise. In this context, metabolomics emerges as a method to find metabolites in response to pathophysiological stimuli, which can help to establish mechanisms of natural resistance to HIV-1 infection and its progression. We conducted a cross-sectional study including 30 HESN, 14 HIV-1 progressors, 14 controllers and 30 healthy controls. Plasma samples (directly and deproteinized) were analyzed through Nuclear Magnetic Resonance (NMR) metabolomics to find biomarkers and altered metabolic pathways. The metabolic profile analysis of progressors, controllers and HESN demonstrated significant differences with healthy controls when a discriminant analysis (PLS-DA) was applied. In the discriminant models, 13 metabolites associated with HESN, 14 with progressors and 12 with controllers were identified, which presented statistically significant mean differences with healthy controls. In progressors, the metabolites were related to high energy expenditure (creatinine), mood disorders (tyrosine) and immune activation (lipoproteins), phenomena typical of the natural course of the infection. In controllers, they were related to an inflammation-modulating profile (glutamate and pyruvate) and a better adaptive immune system response (acetate) associated with resistance to progression. In the HESN group, with anti-inflammatory (lactate and phosphocholine) and virucidal (lactate) effects which constitute a protective profile in the sexual transmission of HIV. Concerning the significant metabolites of each group, we identified 24 genes involved in HIV-1 replication or virus proteins that were all altered in progressors but only partially in controllers and HESN. In summary, our results indicate that exposure to HIV-1 in HESN, as well as infection in progressors and controllers, affects the metabolism of individuals and that this affectation can be determined using NMR metabolomics.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo de Investigación en Ciencias Farmacéuticas ICIF-CES, Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
4
|
Guo Y, Huang X, Sun X, Yu Y, Wang Y, Zhang B, Cao J, Wen S, Li Y, Wang X, Cai S, Xia W, Wei F, Duan J, Dong H, Guo S, Zhang F, Zheng D, Sun Z. The Underrated Salivary Virome of Men Who Have Sex With Men Infected With HIV. Front Immunol 2021; 12:759253. [PMID: 34925329 PMCID: PMC8674211 DOI: 10.3389/fimmu.2021.759253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Salivary virome is important for oral ecosystem, but there are few reports on people living with HIV. We performed metagenomic sequencing to compare composition and functional genes of salivary virobiota between one HIV-negative and four HIV-positive groups in which participants were all men who have sex with men (MSM) with different immunosuppression statuses (five samples per group) to find the evidence that salivary virobiota plays a role in the pathogenesis of oral disease. Acute-stage subjects achieved a positive result of HIV RNA, but HIV antibody negative or indeterminate, whereas individuals with mild, moderate, and severe immunosuppression exhibited CD4+ T-lymphocyte counts of at least 500, 200–499, and less than 200 cells/μL or opportunistic infection, respectively. The results showed the composition of salivary virus genera in subjects with mild immunosuppression was the most similar to that in healthy people, followed by that in the acute stage; under severe immunosuppression, virus genera were suppressed and more similar to that under moderate immunosuppression. Furthermore, abnormally high abundance of Lymphocryptovirus was particularly obvious in MSM with HIV infection. Analysis of KEGG Pathway revealed that Caulobacter cell cycle, which affects cell duplication, became shorter in HIV-positive subjects. It is worth noting that in acute-stage participants, protein digestion and absorption related to the anti-HIV-1 activity of secretory leukocyte protease inhibitor was increased. Moreover, in the severely immunosuppressed subjects, glutathione metabolism, which is associated with the activation of lymphocytes, was enhanced. Nevertheless, the ecological dysbiosis in HIV-positive salivary virobiota possibly depended on the changes in blood viral load, and salivary dysfunction of MSM infected with HIV may be related to CD4 counts. Ribonucleoside diphosphate reductase subunit M1 in purine metabolism was negatively correlated, though weakly, to CD4 counts, which may be related to the promotion of HIV-1 DNA synthesis in peripheral blood lymphocytes. 7-Cyano-7-deazaguanine synthase in folate biosynthesis was weakly positively correlated with HIV viral load, suggesting that this compound was produced excessively to correct oral dysfunction for maintaining normal cell development. Despite the limited number of samples, the present study provided insight into the potential role of salivary virome in the oral function of HIV infected MSM.
Collapse
Affiliation(s)
- Ying Guo
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xintong Sun
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yixi Yu
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Baojin Zhang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jie Cao
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wen
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuchen Li
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Siyu Cai
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junyi Duan
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haozhi Dong
- Department of Stomatology, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fengqiu Zhang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Dongxiang Zheng
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zheng Sun
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Liebenberg C, Luies L, Williams AA. Metabolomics as a Tool to Investigate HIV/TB Co-Infection. Front Mol Biosci 2021; 8:692823. [PMID: 34746228 PMCID: PMC8565463 DOI: 10.3389/fmolb.2021.692823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
The HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome) and tuberculosis (TB) pandemics are perpetuated by a significant global burden of HIV/TB co-infection. The synergy between HIV and Mycobacterium tuberculosis (Mtb) during co-infection of a host is well established. While this synergy is known to be driven by immunological deterioration, the metabolic mechanisms thereof remain poorly understood. Metabolomics has been applied to study various aspects of HIV and Mtb infection separately, yielding insights into infection- and treatment-induced metabolic adaptations experienced by the host. Despite the contributions that metabolomics has made to the field, this approach has not yet been systematically applied to characterize the HIV/TB co-infected state. Considering that limited HIV/TB co-infection metabolomics studies have been published to date, this review briefly summarizes what is known regarding the HIV/TB co-infection synergism from a conventional and metabolomics perspective. It then explores metabolomics as a tool for the improved characterization of HIV/TB co-infection in the context of previously published human-related HIV infection and TB investigations, respectively as well as for addressing the gaps in existing knowledge based on the similarities and deviating trends reported in these HIV infection and TB studies.
Collapse
|
6
|
Gabazana Z, Sitole L. Raman-based metabonomics unravels metabolic changes related to a first-line tenofovir-based treatment in a small cohort of South African HIV-infected patients. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119256. [PMID: 33310612 DOI: 10.1016/j.saa.2020.119256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/28/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In addition to immunological disorders, human immunodeficiency virus (HIV) also causes metabolic abnormalities. Though successful in viral suppression and immune restoration, continued use of antiretroviral therapy (ART) has also been linked to the development of several metabolic ailments. Currently, the only clinical markers used to manage and monitor the development of HIV-induced metabolic disorders, disease progression as well as observing individual's response to antiviral treatment are CD4 count, viral loads and several other single variable colometric assays. Despite the common use of these clinical markers, these markers remain unreliable and limited in the ability to monitor the development of metabolic disorders as well as monitor treatment response. Given these limitations, it is imperative to discover and develop reliable biological markers for overall HIV disease management. Here, Raman spectroscopy was used to profile metabolic changes in the plasma of 22 HIV+ receiving a first-line tenofovir-based combination antiretroviral therapy compared to their 8 HIV+ ART- and 10 HIV- counterparts. Multivariate statistical analysis was performed in order to classify the samples into their respective groups and to identify significantly altered metabolites between the control and experimental groups. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) discriminant analysis identified significant differences (p < 0.05) in 9 different metabolites. Alterations were identified in spectral regions associated with glucose (1124 cm-1), lipids/phospholipids (1116 cm-1, 1098 cm-1, 1077 cm-1), proteins (1120 cm-1), nucleic acids (1081 cm-1) and phenylalanine (1103 cm-1). Pathway analysis also revealed 3 significantly altered pathways. This study presented the reproducible nature of Raman spectroscopy in distinguishing between HIV-infected (treated and untreated) and uninfected blood plasma and allowed for the detection and identification of treatment induced metabolite changes. The results obtained in the study may, therefore, give insights into understanding the metabolic effect of HIV therapy.
Collapse
Affiliation(s)
- Zikhona Gabazana
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Lungile Sitole
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
7
|
Cleaver LM, Moazzez RV, Carpenter GH. Evidence for Proline Utilization by Oral Bacterial Biofilms Grown in Saliva. Front Microbiol 2021; 11:619968. [PMID: 33552029 PMCID: PMC7855038 DOI: 10.3389/fmicb.2020.619968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Within the mouth bacteria are starved of saccharides as their main nutrient source between meals and it is unclear what drives their metabolism. Previously oral in vitro biofilms grown in saliva have shown proteolytic degradation of salivary proteins and increased extracellular proline. Although arginine and glucose have been shown before to have an effect on oral biofilm growth and activity, there is limited evidence for proline. Nuclear magnetic resonance (NMR) spectroscopy was used to identify extracellular metabolites produced by bacteria in oral biofilms grown on hydroxyapatite discs. Biofilms were inoculated with stimulated whole mouth saliva and then grown for 7 days using sterilized stimulated whole mouth saliva supplemented with proline, arginine or glucose as a growth-medium. Overall proline had a beneficial effect on biofilm growth-with significantly fewer dead bacteria present by biomass and surface area of the biofilms (p < 0.05). Where arginine and glucose significantly increased and decreased pH, respectively, the pH of proline supplemented biofilms remained neutral at pH 7.3-7.5. SDS-polyacrylamide gel electrophoresis of the spent saliva from proline and arginine supplemented biofilms showed inhibition of salivary protein degradation of immature biofilms. NMR analysis of the spent saliva revealed that proline supplemented biofilms were metabolically similar to unsupplemented biofilms, but these biofilms actively metabolized proline to 5-aminopentanoate, butyrate and propionate, and actively utilized glycine. This study shows that in a nutrient limited environment, proline has a beneficial effect on in vitro oral biofilms grown from a saliva inoculum.
Collapse
Affiliation(s)
- Leanne M. Cleaver
- Centre for Host Microbiome Interactions, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| | - Rebecca V. Moazzez
- Centre for Oral, Clinical and Translational Science, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| | - Guy H. Carpenter
- Centre for Host Microbiome Interactions, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| |
Collapse
|
8
|
Costa dos Santos Junior G, Pereira CM, Kelly da Silva Fidalgo T, Valente AP. Saliva NMR-Based Metabolomics in the War Against COVID-19. Anal Chem 2020; 92:15688-15692. [PMID: 33215503 PMCID: PMC7688045 DOI: 10.1021/acs.analchem.0c04679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 is an emergent, worldwide public health concern. Joint efforts have been made by scientific communities of various fields to better understand the mechanisms of action of SARS-CoV-2. The need to understand the pathophysiological fingerprint and pathways of this disease make metabolomics-related approaches an indispensable tool for properly answering concerns relating to disease course. Determination of the metabolomic profile may help to explain the heterogeneous spectra of COVID-19 clinical phenotypes and be useful in monitoring disease progression as well as therapeutic treatments. In this sense, saliva has proven to be a strategic biofluid, owing not only to its appeal as a noninvasive sampling method but also due to the capacity of the virus to invade epithelial cells of the oral mucosa and salivary gland ducts via ACE2 receptors. Accordingly, important changes in metabolism have been described relating to COVID-19, indicating that metabolomics may open new avenues for understanding the pathophysiology of this disease, especially via longitudinal study designs. Thus, we discuss the importance of comprehending the SARS-CoV-2 salivary metabolomic fingerprint and also highlight the situation of Brazil on the frontlines of the war against COVID-19.
Collapse
Affiliation(s)
- Gilson Costa dos Santos Junior
- Laboratory of NMR Metabolomics, IBRAG, Department of
Genetics, State University of Rio de Janeiro, Boulevard 28 de
Setembro 77 fds, Vila Isabel, RJ, 20551-030 Rio de Janeiro,
Brazil
| | - Claudia Maria Pereira
- Postgraduate Program in Translational Biomedicine,
Grande Rio University, Rua Professor José de Souza
Herdy, 1160, Jardim Vinte e Cinco de Agosto, 25071-202 Duque de Caxias,
Brazil
| | - Tatiana Kelly da Silva Fidalgo
- Dental School, Department of Preventive and Community
Dentistry, State University of Rio de Janeiro, Boulevard 28 de
Setembro, 157, Vila Isabel, 20551-030 Rio de Janeiro, Brazil
| | - Ana Paula Valente
- BioNMR, CENABIO I, Department of Structural Biology,
Federal University of Rio de Janeiro, Av. Carlos Chagas
Filho, 373, CCS/bloco K-anexo, 21941-599 Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Zhao P, Hou K, Yang S, Xia X. Characterization of small metabolites alteration in mice brain tissues after infected by rabies virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104571. [PMID: 32980577 DOI: 10.1016/j.meegid.2020.104571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023]
Abstract
Rabies, caused by rabies virus (RABV), is still one of the deadliest infectious diseases. Host metabolomic changes against RABV infection has not yet been fully understood. We performed untargeted metabolomics to discover the metabolites associated with RABV infection. The brain tissues from 20 RABV infected mice and 10 mock infected mice were used for this method. A total of 1352 differential metabolites were identified after the first-run screen, and the number reduced to 75 after second-run screen. Multivariate analysis using PLS-DA and OPLS-DA clearly discriminated the RABV infected samples from controls. Pathways enrichment analysis revealed that most differential metabolites were associated with metabolism of nucleotide and amino acid, and aminoacyl - tRNA biosynthesis and purine metabolism were the most active pathways. The findings presented in our study would promote the understanding of metabolomics changes in brains of mice after RABV infection as well as a new perspective to study the relationship between RABV and host.
Collapse
Affiliation(s)
- Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Shaoguan 512025, China.
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| |
Collapse
|
10
|
Schulte F, King OD, Paster BJ, Moscicki AB, Yao TJ, Van Dyke RB, Shiboski C, Ryder M, Seage G, Hardt M. Salivary metabolite levels in perinatally HIV-infected youth with periodontal disease. Metabolomics 2020; 16:98. [PMID: 32915320 PMCID: PMC7784422 DOI: 10.1007/s11306-020-01719-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Salivary metabolite profiles are altered in adults with HIV compared to their uninfected counterparts. Less is known about youth with HIV and how oral disorders that commonly accompany HIV infection impact salivary metabolite levels. OBJECTIVE As part of the Adolescent Master Protocol multi-site cohort study of the Pediatric HIV/AIDS Cohort Study (PHACS) network we compared the salivary metabolome of youth with perinatally-acquired HIV (PHIV) and youth HIV-exposed, but uninfected (PHEU) and determined whether metabolites differ in PHIV versus PHEU. METHODS We used three complementary targeted and discovery-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflows to characterize salivary metabolite levels in 20 PHIV and 20 PHEU youth with and without moderate periodontitis. We examined main effects associated with PHIV and periodontal disease, and the interaction between them. RESULTS We did not identify differences in salivary metabolite profiles that remained significant under stringent control for both multiple between-group comparisons and multiple metabolites. Levels of cadaverine, a known periodontitis-associated metabolite, were more abundant in individuals with periodontal disease with the difference being more pronounced in PHEU than PHIV. In the discovery-based dataset, we identified a total of 564 endogenous peptides in the metabolite extracts, showing that proteolytic processing and amino acid metabolism are important to consider in the context of HIV infection. CONCLUSION The salivary metabolite profiles of PHIV and PHEU youth were overall very similar. Individuals with periodontitis particularly among the PHEU youth had higher levels of cadaverine, suggesting that HIV infection, or its treatment, may influence the metabolism of oral bacteria.
Collapse
Affiliation(s)
- Fabian Schulte
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruce J Paster
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA
| | - Anna-Barbara Moscicki
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, University of California, Los Angeles, CA, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Mark Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - George Seage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Markus Hardt
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA.
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
11
|
Kumar R, Ghosh M, Kumar S, Prasad M. Single Cell Metabolomics: A Future Tool to Unmask Cellular Heterogeneity and Virus-Host Interaction in Context of Emerging Viral Diseases. Front Microbiol 2020; 11:1152. [PMID: 32582094 PMCID: PMC7286130 DOI: 10.3389/fmicb.2020.01152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Viral emergence is an unpredictable but obvious event, particularly in the era of climate change and globalization. Efficient management of viral outbreaks depends on pre-existing knowledge and alertness. The potential hotspots of viral emergence often remain neglected and the information related to them is insufficient, particularly for emerging viruses. Viral replication and transmission rely upon usurping the host metabolic machineries. So altered host metabolic pathways can be exploited for containment of these viruses. Metabolomics provides the insight for tracing out such checkpoints. Consequently introspection of metabolic alteration at virus-host interface has evolved as prime area in current virology research. Chromatographic separation followed by mass spectrometry has been used as the predominant analytical platform in bulk of the analyses followed by nuclear magnetic resonance (NMR) and fluorescence based techniques. Although valuable information regarding viral replication and modulation of host metabolic pathways have been extracted but ambiguity often superseded the real events due to population effect over the infected cells. Exploration of cellular heterogeneity and differentiation of infected cells from the nearby healthy ones has become essential. Single cell metabolomics (SCM) emerges as necessity to explore such minute details. Mass spectrometry imaging (MSI) coupled with several soft ionization techniques such as electrospray ionization (ESI), laser ablation electrospray ionization (LAESI), matrix assisted laser desorption/ionization (MALDI), matrix-free laser desorption ionization (LDI) have evolved as the best suited platforms for SCM analyses. The potential of SCM has already been exploited to resolve several biological conundrums. Thus SCM is knocking at the door of virus-host interface.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur, India
| | - Sandeep Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
12
|
Sitole LJ, Tugizimana F, Meyer D. Multi-platform metabonomics unravel amino acids as markers of HIV/combination antiretroviral therapy-induced oxidative stress. J Pharm Biomed Anal 2019; 176:112796. [PMID: 31398507 DOI: 10.1016/j.jpba.2019.112796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/29/2019] [Indexed: 01/14/2023]
Abstract
Infection by the human immunodeficiency virus (HIV) elicits an immune response wherein neutrophils produce reactive oxygen species (ROS) to defend against pathogen invasion. Consequently, disproportionate levels of ROS in relation to antioxidants lead to oxidative stress (OS), which plays a key role in HIV disease progression and pathogenesis. There is a close relationship between oxidative stress status and HIV infection/progression, both separately and in the presence of combination antiretroviral therapy (cART). Biomarkers of oxidative stress present an additional means of monitoring HIV disease progression and/or management. Thus, the objective of this study was to apply untargeted nuclear magnetic resonance (NMR)-based metabonomics followed by targeted quantitative gas chromatography-mass spectrometry (GC/MS) analyses to identify predictors of oxidative stress in HIV infected individuals, with or without cART. Untargeted NMR-based metabonomics allowed a global profiling of metabolic perturbations in HIV-infected sera. The cohort consisted of 21 HIV-negative control subjects (HIV-) and 113 HIV-infected individuals, of which 100 were on cART. Significant differences in metabolic features corresponding to changes in glucose, lipids, phenylalanine, glutamic acid, aspartic acid and branched amino acids were observed, which point to oxidative stress and insulin resistance. To further confirm oxidative stress, targeted GC/MS-based metabonomics, performed in succession, allowed for a quantitative description of a total of 9 oxidative stress-related metabolites. Significant up-regulation of aspartic acid, phenylalanine and glutamic acid were observed in the HIV-infected cohorts as compared to controls. Tryptophan and tyrosine were down-regulated whereas cystine levels were increased in HIV-infected and untreated individuals as compared to both HIV treated and negative control subjects. Pathway analysis also revealed 11 metabolic pathways to be significantly altered by infection and/or treatment. These pathways included aminoacyl-tRNA biosynthesis, nitrogen metabolism and phenylalanine, tyrosine and tryptophan biosynthesis. This pilot study demonstrated the use of multiplatform metabonomic strategies to elucidate metabolic markers that would be essential in predicting HIV/cART-induced oxidative stress. This could aid and contribute in HIV treatment and management programmes.
Collapse
Affiliation(s)
- Lungile J Sitole
- Department of Biochemistry, University of Johannesburg, Johannesburg 2006, South Africa.
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Johannesburg 2006, South Africa
| | - Debra Meyer
- Department of Biochemistry, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
13
|
Silvestre R, Torrado E. Metabolomic-Based Methods in Diagnosis and Monitoring Infection Progression. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 109:283-315. [PMID: 30535603 PMCID: PMC7124096 DOI: 10.1007/978-3-319-74932-7_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A robust biomarker screening and validation is crucial for overcoming the current limits in the clinical management of infectious diseases. In this chapter, a general workflow for metabolomics is summarized. Subsequently, an overview of the major contributions of this omics science to the field of biomarkers of infectious diseases is discussed. Different approaches using a variety of analytical platforms can be distinguished to unveil the key metabolites for the diagnosis, prognosis, response to treatment and susceptibility for infectious diseases. To allow the implementation of such biomarkers into the clinics, the performance of large-scale studies employing solid validation criteria becomes essential. Focusing on the etiological agents and after an extensive review of the field, we present a comprehensive revision of the main metabolic biomarkers of viral, bacterial, fungal, and parasitic diseases. Finally, we discussed several articles which show the strongest validation criteria. Following these research avenues, precious clinical resources will be revealed, allowing for reduced misdiagnosis, more efficient therapies, and affordable costs, ultimately leading to a better patient management.
Collapse
Affiliation(s)
- Ricardo Silvestre
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| |
Collapse
|
14
|
Mesquita I, Estaquier J. Viral Manipulation of the Host Metabolic Network. EXPERIENTIA. SUPPLEMENTUM 2019; 109:377-401. [PMID: 30535606 DOI: 10.1007/978-3-319-74932-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Viruses are intracellular parasites that rely on host machinery to replicate and achieve a successful infection. Viruses have evolved to retain a broad range of strategies to manipulate host cell metabolism and metabolic resources, channeling them toward the production of virion components leading to viral production. Although several viruses share similar strategies for manipulating host cell metabolism, these processes depend on several factors, namely, the viral life cycle and the metabolic and energetic status of the infected cell. Based on this knowledge, the development of new therapeutic approaches that circumvent viral spread through the target of altered metabolic pathways is an opportunity to tackle the infection. However, finding effective broad-spectrum strategies that aim at restoring to homeostasis the metabolic alterations induced upon virus infection is still a Holy Grail quest for antiviral therapies. Here, we review the strategies by which viruses manipulate host metabolism for their own benefit, with a particular emphasis on carbohydrate, glutamine, and lipid metabolism.
Collapse
Affiliation(s)
- Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jérôme Estaquier
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada. .,CNRS FR 3636, Université Paris Descartes, Paris, France.
| |
Collapse
|
15
|
Tarancon-Diez L, Rodríguez-Gallego E, Rull A, Peraire J, Viladés C, Portilla I, Jimenez-Leon MR, Alba V, Herrero P, Leal M, Ruiz-Mateos E, Vidal F. Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection. EBioMedicine 2019; 42:86-96. [PMID: 30879922 PMCID: PMC6491381 DOI: 10.1016/j.ebiom.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Approximately 25% of elite controllers (ECs) lose their virological control by mechanisms that are only partially known. Recently, immunovirological and proteomic factors have been associated to the loss of spontaneous control. Our aim was to perform a metabolomic approach to identify the underlying mechanistic pathways and potential biomarkers associated with this loss of control. METHODS Plasma samples from EC who spontaneously lost virological control (Transient Controllers, TC, n = 8), at two and one year before the loss of control, were compared with a control group of EC who persistently maintained virological control during the same follow-up period (Persistent Controllers, PC, n = 8). The determination of metabolites and plasma lipids was performed by GC-qTOF and LC-qTOF using targeted and untargeted approaches. Metabolite levels were associated with the polyfunctionality of HIV-specific CD8+T-cell response. FINDINGS Our data suggest that, before the loss of control, TCs showed a specific circulating metabolomic profile characterized by aerobic glycolytic metabolism, deregulated mitochondrial function, oxidative stress and increased immunological activation. In addition, CD8+ T-cell polyfunctionality was strongly associated with metabolite levels. Finally, valine was the main differentiating factor between TCs and PCs. INTERPRETATION All these metabolomic differences should be considered not only as potential biomarkers but also as therapeutic targets in HIV infection. FUND: This work was supported by grants from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Fondos FEDER; Red de Investigación en Sida, Gilead Fellowship program, Spanish Ministry of Education and Spanish Ministry of Economy and Competitiveness.
Collapse
Affiliation(s)
- Laura Tarancon-Diez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Esther Rodríguez-Gallego
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Rull
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joaquim Peraire
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Consuelo Viladés
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Irene Portilla
- Infectious Diseases, Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL - FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
| | - María Reyes Jimenez-Leon
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Verónica Alba
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Manuel Leal
- Servicio de Medicina Interna, Hospital Viamed Santa Ángela de la Cruz, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Sevilla
| | - Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain.
| | - Francesc Vidal
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain.
| |
Collapse
|
16
|
Metabolite changes in blood predict the onset of tuberculosis. Nat Commun 2018; 9:5208. [PMID: 30523338 PMCID: PMC6283869 DOI: 10.1038/s41467-018-07635-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
New biomarkers of tuberculosis (TB) risk and disease are critical for the urgently needed control of the ongoing TB pandemic. In a prospective multisite study across Subsaharan Africa, we analyzed metabolic profiles in serum and plasma from HIV-negative, TB-exposed individuals who either progressed to TB 3–24 months post-exposure (progressors) or remained healthy (controls). We generated a trans-African metabolic biosignature for TB, which identifies future progressors both on blinded test samples and in external data sets and shows a performance of 69% sensitivity at 75% specificity in samples within 5 months of diagnosis. These prognostic metabolic signatures are consistent with development of subclinical disease prior to manifestation of active TB. Metabolic changes associated with pre-symptomatic disease are observed as early as 12 months prior to TB diagnosis, thus enabling timely interventions to prevent disease progression and transmission. The tuberculosis pandemic requires new methods for diagnosing and containing infections prior to active disease. Here, the authors performed a multi-site observational study within sub-Saharan Africa and present serum and plasma metabolic signatures that can predict the onset of active TB with a high degree of sensitivity and specificity.
Collapse
|
17
|
Rana A, Thakur S, Kumar G, Akhter Y. Recent Trends in System-Scale Integrative Approaches for Discovering Protective Antigens Against Mycobacterial Pathogens. Front Genet 2018; 9:572. [PMID: 30538722 PMCID: PMC6277634 DOI: 10.3389/fgene.2018.00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterial infections are one of the deadliest infectious diseases still posing a major health burden worldwide. The battle against these pathogens needs to focus on novel approaches and key interventions. In recent times, availability of genome scale data has revolutionized the fields of computational biology and immunoproteomics. Here, we summarize the cutting-edge ‘omics’ technologies and innovative system scale strategies exploited to mine the available data. These may be targeted using high-throughput technologies to expedite the identification of novel antigenic candidates for the rational next generation vaccines and serodiagnostic development against mycobacterial pathogens for which traditional methods have been failing.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Girish Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
18
|
Persistent metabolic changes in HIV-infected patients during the first year of combination antiretroviral therapy. Sci Rep 2018; 8:16947. [PMID: 30446683 PMCID: PMC6240055 DOI: 10.1038/s41598-018-35271-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
The HIV-human metabolic relationship is a complex interaction convoluted even more by antiretroviral therapy (cART) and comorbidities. The ability of cART to undo the HIV induced metabolic dysregulation is unclear and under-investigated. Using targeted metabolomics and multiplex immune biomarker analysis, we characterized plasma samples obtained from 18 untreated HIV-1-infected adult patients and compared these to a non-HIV infected (n = 23) control population. The biogenic amine perturbations during an untreated HIV infection implicated altered tryptophan- nitrogen- and muscle metabolism. Furthermore, the lipid profiles of untreated patients were also significantly altered compared to controls. In untreated HIV infection, the sphingomyelins and phospholipids correlated negatively to markers of infection IP-10 and sIL-2R whereas a strong association was found between triglycerides and MCP-1. In a second cohort, we characterized plasma samples obtained from 28 HIV-1-infected adult patients before and 12 months after the start of cART, to investigate the immune-metabolic changes associated with cART. The identified altered immune-metabolic pathways of an untreated HIV infection showed minimal change after 12 months of cART. In conclusion, 12 months of cART impacts only mildly on the metabolic dysregulation underlying an untreated HIV infection and provide insights into the comorbidities present in virally suppressed HIV patients.
Collapse
|
19
|
Ahmed D, Roy D, Cassol E. Examining Relationships between Metabolism and Persistent Inflammation in HIV Patients on Antiretroviral Therapy. Mediators Inflamm 2018; 2018:6238978. [PMID: 30363715 PMCID: PMC6181007 DOI: 10.1155/2018/6238978] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022] Open
Abstract
With the advent of antiretroviral therapy (ART), HIV-infected individuals are now living longer and healthier lives. However, ART does not completely restore health and treated individuals are experiencing increased rates of noncommunicable diseases such as dyslipidemia, insulin resistance, type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. While it is well known that persistent immune activation and inflammation contribute to the development of these comorbid diseases, the mechanisms underlying this chronic activation remain incompletely understood. In this review, we will discuss emerging evidence that suggests that alterations in cellular metabolism may play a central role in driving this immune dysfunction in HIV patients on ART.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Alterations in the oral microbiome in HIV-infected participants after antiretroviral therapy administration are influenced by immune status. AIDS 2018; 32:1279-1287. [PMID: 29851662 DOI: 10.1097/qad.0000000000001811] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To characterize the oral bacterial microbiome in HIV-infected participants at baseline and after 24 weeks of EFV/FTC/TDF. DESIGN Thirty-five participants co-enrolled in two AIDS Clinical Trials Group (ACTG) studies, A5272 and A5280, with paired saliva samples and complete data sets were assessed. METHODS Paired saliva samples were evaluated for bacterial microbiome using 16S rDNA PCR followed by Illumina sequencing. Diversity and differential abundance was compared between groups. A random forest classification scheme was used to determine the contribution of parameters in classifying participants' CD4+ T-cell count. RESULTS Bacterial communities demonstrated considerable variability both within participants and between timepoints, although they became more similar after 24 weeks of ART. At baseline, both the number of taxa detected and the average alpha diversity were variable between participants, but did not differ significantly based on CD4+ cell count, viral load or other factors. After 24 weeks of ART samples obtained from participants with persistently low CD4+ T-cell counts had significantly higher bacterial richness and diversity. Several differentially abundant taxa, including Porphyromonas species associated with periodontal disease, were identified, which discriminated between baseline and posttreatment samples. Analysis demonstrated that although inflammatory markers are important in untreated disease, the salivary microbiome may play an important role in CD4+ T-cell count recovery after ART. CONCLUSION Shifts in the oral microbiome after ART initiation are complex, and may play an important role in immune function and inflammatory disease.
Collapse
|
21
|
Williams AA, Sitole LJ, Meyer D. HIV/HAART-associated oxidative stress is detectable by metabonomics. MOLECULAR BIOSYSTEMS 2018; 13:2202-2217. [PMID: 28920117 DOI: 10.1039/c7mb00336f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic human immunodeficiency virus (HIV) infection, separately and in combination with highly active antiretroviral therapy (HAART) is closely associated with oxidative stress (OS). Most studies demonstrating redox imbalances in HIV-infected individuals have done so using conventional biochemical methodologies. The limited simultaneous detection of multiple OS markers within one sample is a major drawback of these methodologies and can be addressed through the use of metabonomics. HIV-metabonomic studies utilizing biofluids from HAART cohorts as the investigative source, are on the increase. Data from many of these studies identified metabolic markers indicative of HIV-induced OS, usually as an outcome of an untargeted metabonomics study. Untargeted studies cast a wide net for any and all detectable metabolites in complex mixtures. Given the prevalence of OS during HIV infection and antiviral treatment, it is perhaps not surprising that indicators of this malady would become evident during metabolite identification. At times, targeted studies for specific (non-OS) metabolites would also yield OS markers as an outcome. This review examines the findings of these studies by first providing the necessary background information on OS and the main ways in which free radicals/reactive oxygen species (ROS) produced during OS, cause biomolecular damage. This is followed by information on the biomarkers which come about as a result of free radical damage and the techniques used for assaying these stress indicators. The established links between elevated ROS and lowered antioxidants during HIV infection and the subsequent use of HAART is then presented followed by a review of the OS markers detected in HIV metabonomic studies to date. We identify gaps in HIV/HAART-associated OS research and finally suggest how these research gaps can be addressed through metabonomic analysis, specifically targeting the multiple markers of HIV-induced OS.
Collapse
Affiliation(s)
- Aurelia A Williams
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
| | | | | |
Collapse
|
22
|
Li X, Wu T, Jiang Y, Zhang Z, Han X, Geng W, Ding H, Kang J, Wang Q, Shang H. Plasma metabolic changes in Chinese HIV-infected patients receiving lopinavir/ritonavir based treatment: Implications for HIV precision therapy. Cytokine 2018; 110:204-212. [PMID: 29778008 DOI: 10.1016/j.cyto.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The goal of this study is to profile the metabolic changes in the plasma of HIV patients receiving lopinavir/ritonavir (LPV/r)-based highly active antiretroviral therapy (HAART) relative to their treatment-naïve phase, aimed to identify precision therapy for HIV for improving prognosis and predicting dyslipidemia caused by LPV/r. METHODS 38 longitudinal plasma samples were collected from 19 HIV-infected patients both before and after antiretroviral therapy, and 18 samples from healthy individuals were used as controls. Untargeted metabolomics profiling of these plasma samples was performed using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). RESULTS A total of 331 compounds of known identity were detected among these metabolites, a 67-metabolite signature mainly mapping to tryptophan, histidine, acyl carnitine, ketone bodies and fatty acid metabolism distinguished HIV patients from healthy controls. The levels of 19 out of the 67 altered metabolites including histidine, kynurenine, and 3-hydroxybutyrate (BHBA), recovered after LPV/r-based antiretroviral therapy, and histidine was positively correlated with the presence of CD4 + T lymphocytes. Furthermore, using receiver operating characteristic (ROC) analyses, we discovered that butyrylcarnitine in combination with myristic acid from plasma in treatment-naïve patients could predict dyslipidemia caused by LPV/r with 87% accuracy. CONCLUSIONS Metabolites alterations in treatment-naïve HIV patients may indicate an inflammatory, oxidative state and mitochondrial dysfunction that is permissive for disease progression. Histidine may provide a specific protective function for HIV patients. Besides, elevated fatty acids levels including butyrylcarnitine and myristic acid after infection may indicate patients at risk of suffering from dyslipidemia after LPV/r-based HAART.
Collapse
Affiliation(s)
- Xiaolin Li
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Tong Wu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Wenqing Geng
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Jing Kang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Qi Wang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China.
| |
Collapse
|
23
|
A baseline metabolomic signature is associated with immunological CD4+ T-cell recovery after 36 months of antiretroviral therapy in HIV-infected patients. AIDS 2018; 32:565-573. [PMID: 29280761 PMCID: PMC5844590 DOI: 10.1097/qad.0000000000001730] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Poor immunological recovery in treated HIV-infected patients is associated with greater morbidity and mortality. To date, predictive biomarkers of this incomplete immune reconstitution have not been established. We aimed to identify a baseline metabolomic signature associated with a poor immunological recovery after antiretroviral therapy (ART) to envisage the underlying mechanistic pathways that influence the treatment response. Design: This was a multicentre, prospective cohort study in ART-naive and a pre-ART low nadir (<200 cells/μl) HIV-infected patients (n = 64). Methods: We obtained clinical data and metabolomic profiles for each individual, in which low molecular weight metabolites, lipids and lipoproteins (including particle concentrations and sizes) were measured by NMR spectroscopy. Immunological recovery was defined as reaching CD4+ T-cell count at least 250 cells/μl after 36 months of virologically successful ART. We used univariate comparisons, Random Forest test and receiver-operating characteristic curves to identify and evaluate the predictive factors of immunological recovery after treatment. Results: HIV-infected patients with a baseline metabolic pattern characterized by high levels of large high density lipoprotein (HDL) particles, HDL cholesterol and larger sizes of low density lipoprotein particles had a better immunological recovery after treatment. Conversely, patients with high ratios of non-HDL lipoprotein particles did not experience this full recovery. Medium very-low-density lipoprotein particles and glucose increased the classification power of the multivariate model despite not showing any significant differences between the two groups. Conclusion: In HIV-infected patients, a baseline healthier metabolomic profile is related to a better response to ART where the lipoprotein profile, mainly large HDL particles, may play a key role.
Collapse
|
24
|
Abstract
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Collapse
|
25
|
Mukherjee PK, Funchain P, Retuerto M, Jurevic RJ, Fowler N, Burkey B, Eng C, Ghannoum MA. Metabolomic analysis identifies differentially produced oral metabolites, including the oncometabolite 2-hydroxyglutarate, in patients with head and neck squamous cell carcinoma. BBA CLINICAL 2017; 7:8-15. [PMID: 28053877 PMCID: PMC5199158 DOI: 10.1016/j.bbacli.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Metabolomics represents a promising approach for discovering novel targets and biomarkers in head and neck squamous cell carcinoma (HNSCC). Here we used metabolomics to identify oral metabolites associated with HNSCC. METHODS Tumor and adjacent normal tissue from surgical resections and presurgical oral washes as well as oral washes were collected from healthy participants. Metabolites extractions of these samples were analyzed by liquid chromatography-mass spectroscopy (LC/MS), LC/MS/MS and gas chromatography-MS (GC/MS). RESULTS Among 28 samples obtained from 7 HNSCC cases and 7 controls, 422 metabolites were detected (269 identified and 153 unidentified). Oral washes contained 12 and 23 metabolites in healthy controls and HNSCC patients, respectively, with phosphate and lactate being the most abundant. Small molecules related to energy metabolism were significantly elevated in HNSCC patients compared to controls. Levels of beta-alanine, alpha-hydroxyisovalerate, tryptophan, and hexanoylcarnitine were elevated in HNSCC oral washes compared to healthy controls (range 7.8-12.2-fold). Resection tissues contained 22 metabolites, of which eight were overproduced in tumor by 1.9- to 12-fold compared to controls. TCA cycle analogs 2-hydroxyglutarate (2-HG) and 3-GMP were detected exclusively in tumor tissues. Targeted quantification of 2-HG in a representative HNSCC patient showed increase in tumor tissue (14.7 μg/mL), but undetectable in normal tissue. Moreover, high levels of 2-HG were detected in HNSCC cell lines but not in healthy primary oral keratinocyte cultures. CONCLUSIONS Oral metabolites related to energy metabolism were elevated in HNSCC, and acylcarnitine and 2HG may have potential as non-invasive biomarkers. Further validation in clinical studies is warranted.
Collapse
Affiliation(s)
- Pranab K. Mukherjee
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Pauline Funchain
- Genomic Medicine Institute, Lerner Research Institute, Taussig Cancer Institute, United States
| | - Mauricio Retuerto
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Richard J. Jurevic
- Diagnostic Sciences, School of Dentistry, West Virginia University, Morgantown, WV, United States
| | | | - Brian Burkey
- Head and Neck Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Taussig Cancer Institute, United States
- Department of Genetics and Genome Sciences, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Mahmoud A Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, United States
| |
Collapse
|
26
|
Manchester M, Anand A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. Adv Virus Res 2017; 98:57-81. [PMID: 28433052 DOI: 10.1016/bs.aivir.2017.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolomics is an analytical profiling technique for measuring and comparing large numbers of metabolites present in biological samples. Combining high-throughput analytical chemistry and multivariate data analysis, metabolomics offers a window on metabolic mechanisms. Because they intimately utilize and often rewire host metabolism, viruses are an excellent choice to study by metabolomics techniques. Studies of the effects of viruses on metabolism during replication in vitro and infection in animal models or human subjects have provided novel insights into these networks and provided new targets for therapy and biomarker development. Identifying the common metabolic pathways utilized by viruses has the potential to reveal those that can be targeted by broad-spectrum antiviral and vaccine approaches.
Collapse
Affiliation(s)
- Marianne Manchester
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.
| | - Anisha Anand
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
27
|
Serum metabolomics analysis of patients with chikungunya and dengue mono/co-infections reveals distinct metabolite signatures in the three disease conditions. Sci Rep 2016; 6:36833. [PMID: 27845374 PMCID: PMC5109290 DOI: 10.1038/srep36833] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022] Open
Abstract
Chikungunya and dengue are arboviral infections with overlapping clinical symptoms. A subset of chikungunya infection occurs also as co-infections with dengue, resulting in complications during diagnosis and patient management. The present study was undertaken to identify the global metabolome of patient sera infected with chikungunya as mono infections and with dengue as co-infections. Using nuclear magnetic resonance (NMR) spectroscopy, the metabolome of sera of three disease conditions, namely, chikungunya and dengue as mono-infections and when co-infected were ascertained and compared with healthy individuals. Further, the cohorts were analyzed on the basis of age, onset of fever and joint involvement. Here we show that many metabolites in the serum are significantly differentially regulated during chikungunya mono-infection as well as during chikungunya co-infection with dengue. We observed that glycine, serine, threonine, galactose and pyrimidine metabolisms are the most perturbed pathways in both mono and co-infection conditions. The affected pathways in our study correlate well with the clinical manifestation like fever, inflammation, energy deprivation and joint pain during the infections. These results may serve as a starting point for validations and identification of distinct biomolecules that could be exploited as biomarker candidates thereby helping in better patient management.
Collapse
|
28
|
Pandiyan P, Younes SA, Ribeiro SP, Talla A, McDonald D, Bhaskaran N, Levine AD, Weinberg A, Sekaly RP. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation. Front Immunol 2016; 7:228. [PMID: 27379092 PMCID: PMC4913236 DOI: 10.3389/fimmu.2016.00228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4+ T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4+ T lymphocytes, such as T helper 17 cells and CD4+Foxp3+ regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light on mucosal immune dysfunction and HIV reservoirs, and lead to novel ways to restore immune functions in HIV+ patients.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Souheil-Antoine Younes
- Department of Medicine, Division of Infectious Diseases, University Hospitals, Case Western Reserve University , Cleveland, OH , USA
| | | | - Aarthi Talla
- Department of Pathology, Case Western Reserve University , Cleveland, OH , USA
| | - David McDonald
- Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Alan D Levine
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Rafick P Sekaly
- Department of Pathology, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
29
|
Abstract
Until recently, the study of mycobacterial diseases was trapped in culture-based technology that is more than a century old. The use of nucleic acid amplification is changing this, and powerful new technologies are on the horizon. Metabolomics, which is the study of sets of metabolites of both the bacteria and host, is being used to clarify mechanisms of disease, and can identify changes leading to better diagnosis, treatment, and prognostication of mycobacterial diseases. Metabolomic profiles are arrays of biochemical products of genes in their environment. These complex patterns are biomarkers that can allow a more complete understanding of cell function, dysfunction, and perturbation than genomics or proteomics. Metabolomics could herald sweeping advances in personalized medicine and clinical trial design, but the challenges in metabolomics are also great. Measured metabolite concentrations vary with the timing within a condition, the intrinsic biology, the instruments, and the sample preparation. Metabolism profoundly changes with age, sex, variations in gut microbial flora, and lifestyle. Validation of biomarkers is complicated by measurement accuracy, selectivity, linearity, reproducibility, robustness, and limits of detection. The statistical challenges include analysis, interpretation, and description of the vast amount of data generated. Despite these drawbacks, metabolomics provides great opportunity and the potential to understand and manage mycobacterial diseases.
Collapse
|
30
|
Cribbs SK, Uppal K, Li S, Jones DP, Huang L, Tipton L, Fitch A, Greenblatt RM, Kingsley L, Guidot DM, Ghedin E, Morris A. Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. MICROBIOME 2016; 4:3. [PMID: 26792212 PMCID: PMC4721204 DOI: 10.1186/s40168-016-0147-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/11/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND While 16S ribosomal RNA (rRNA) sequencing has been used to characterize the lung's bacterial microbiota in human immunodeficiency virus (HIV)-infected individuals, taxonomic studies provide limited information on bacterial function and impact on the host. Metabolic profiles can provide functional information on host-microbe interactions in the lungs. We investigated the relationship between the respiratory microbiota and metabolic profiles in the bronchoalveolar lavage fluid of HIV-infected and HIV-uninfected outpatients. RESULTS Targeted sequencing of the 16S rRNA gene was used to analyze the bacterial community structure and liquid chromatography-high-resolution mass spectrometry was used to detect features in bronchoalveolar lavage fluid. Global integration of all metabolic features with microbial species was done using sparse partial least squares regression. Thirty-nine HIV-infected subjects and 20 HIV-uninfected controls without acute respiratory symptoms were enrolled. Twelve mass-to-charge ratio (m/z) features from C18 analysis were significantly different between HIV-infected individuals and controls (false discovery rate (FDR) = 0.2); another 79 features were identified by network analysis. Further metabolite analysis demonstrated that four features were significantly overrepresented in the bronchoalveolar lavage (BAL) fluid of HIV-infected individuals compared to HIV-uninfected, including cystine, two complex carbohydrates, and 3,5-dibromo-L-tyrosine. There were 231 m/z features significantly associated with peripheral blood CD4 cell counts identified using sparse partial least squares regression (sPLS) at a variable importance on projection (VIP) threshold of 2. Twenty-five percent of these 91 m/z features were associated with various microbial species. Bacteria from families Caulobacteraceae, Staphylococcaceae, Nocardioidaceae, and genus Streptococcus were associated with the greatest number of features. Glycerophospholipid and lineolate pathways correlated with these bacteria. CONCLUSIONS In bronchoalveolar lavage fluid, specific metabolic profiles correlated with bacterial organisms known to play a role in the pathogenesis of pneumonia in HIV-infected individuals. These findings suggest that microbial communities and their interactions with the host may have functional metabolic impact in the lung.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs Medical Center, 1670 Clairmont Rd, Mailstop 151p, Decatur, 30033, GA, USA.
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, GA, USA.
| | - Karan Uppal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, GA, USA.
| | - Shuzhao Li
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, GA, USA.
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, GA, USA.
| | - Laurence Huang
- Department of Medicine, HIV/AIDS Division and Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, Medicine, San Francisco, CA, USA.
| | - Laura Tipton
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Biology, Center for Genomics and Systems Biology, and Global Institute of Public Health, New York University, New York, NY, USA.
| | - Adam Fitch
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ruth M Greenblatt
- Department of Clinical Pharmacy, University of California, San Francisco, Medicine, San Francisco, CA, USA.
| | - Lawrence Kingsley
- Departments of Infectious Diseases and Microbiology and Epidemiology, GSPH, University of Pittsburgh, Pittsburgh, PA, USA.
| | - David M Guidot
- Pulmonary Medicine, Department of Veterans Affairs Medical Center, 1670 Clairmont Rd, Mailstop 151p, Decatur, 30033, GA, USA.
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, GA, USA.
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, and Global Institute of Public Health, New York University, New York, NY, USA.
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
McKnight TR, Yoshihara HAI, Sitole LJ, Martin JN, Steffens F, Meyer D. A combined chemometric and quantitative NMR analysis of HIV/AIDS serum discloses metabolic alterations associated with disease status. MOLECULAR BIOSYSTEMS 2015; 10:2889-97. [PMID: 25105420 DOI: 10.1039/c4mb00347k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Individuals infected with the human immunodeficiency virus (HIV) often suffer from concomitant metabolic complications. Treatment with antiretroviral therapy has also been shown to alter the metabolism of patients. Although chemometric analysis of nuclear magnetic resonance (NMR) spectra of human sera can distinguish normal sera (HIVneg) from HIV-infected sera (HIVpos) and sera from HIV-infected patients on antiretroviral therapy (ART), quantitative analysis of the discriminating metabolites and their relationship to disease status has yet to be determined. The objectives of the study were to analyze NMR spectra of HIVneg, HIVpos, and ART serum samples with a combination of chemometric and quantitative methods and to compare the NMR data with disease status as measured by viral load and CD4 count. High-resolution magic angle spinning (HRMAS) NMR spectroscopy was performed on HIVneg (N = 10), HIVpos (N = 10), and ART (N = 10) serum samples. Chemometric linear discriminant analysis classified the three groups of spectra with 100% accuracy. Concentrations of 12 metabolites were determined with a semi-parametric metabolite quantification method named high-resolution quantum estimation (HR-QUEST). CD4 count was directly associated with alanine (p = 0.008), and inversely correlated with both glutamine (p = 0.017) and glucose (p = 0.022) concentrations. A multivariate linear model using alanine, glutamine and glucose as covariates demonstrated an association with CD4 count (p = 0.038). The combined chemometric and quantitative analysis of the data disclosed previously unknown associations between specific metabolites and disease status. The observed associations with CD4 count are consistent with metabolic disorders that are commonly seen in HIV-infected patients.
Collapse
Affiliation(s)
- Tracy R McKnight
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Quorum-sensing dysbiotic shifts in the HIV-infected oral metabiome. PLoS One 2015; 10:e0123880. [PMID: 25886290 PMCID: PMC4401692 DOI: 10.1371/journal.pone.0123880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/23/2015] [Indexed: 12/04/2022] Open
Abstract
We implemented a Systems Biology approach using Correlation Difference Probability Network (CDPN) analysis to provide insights into the statistically significant functional differences between HIV-infected patients and uninfected individuals. The analysis correlates bacterial microbiome (“bacteriome”), fungal microbiome (“mycobiome”), and metabolome data to model the underlying biological processes comprising the Human Oral Metabiome. CDPN highlights the taxa-metabolite-taxa differences between the cohorts that frequently capture quorum-sensing modifications that reflect communication disruptions in the dysbiotic HIV cohort. The results also highlight the significant role of cyclic mono and dipeptides as quorum-sensing (QS) mediators between oral bacteria and fungal genus. The developed CDPN approach allowed us to model the interactions of taxa and key metabolites, and hypothesize their possible contribution to the etiology of Oral Candidiasis (OC).
Collapse
|
33
|
Gostner JM, Becker K, Kurz K, Fuchs D. Disturbed Amino Acid Metabolism in HIV: Association with Neuropsychiatric Symptoms. Front Psychiatry 2015; 6:97. [PMID: 26236243 PMCID: PMC4500866 DOI: 10.3389/fpsyt.2015.00097] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 06/17/2015] [Indexed: 12/31/2022] Open
Abstract
Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1)-infected patients. Both essential amino acids, tryptophan and phenylalanine, are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms, such as development of depression, fatigue, and cognitive impairment. Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Kathrin Becker
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Katharina Kurz
- Department of Internal Medicine VI, Medical University of Innsbruck , Innsbruck , Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
34
|
Koola MM, Tsapakis EM, Wright P, Smith S, Kerwin Rip RW, Nugent KL, Aitchison KJ. Association of tardive dyskinesia with variation in CYP2D6: Is there a role for active metabolites? J Psychopharmacol 2014; 28:665-70. [PMID: 24595968 PMCID: PMC5950711 DOI: 10.1177/0269881114523861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The aim of this study was to examine whether there was an association between tardive dyskinesia (TD) and number of functional CYP2D6 genes. METHODS A Caucasian sample of 70 patients was recruited in 1996-1997 from South London and Maudsley National Health Service (NHS) Foundation Trust, UK. Subjects had a DSM-IIIR diagnosis of schizophrenia and were treated with typical antipsychotics at doses equivalent to at least 100 mg chlorpromazine daily for at least 12 months prior to assessment. All patients were genotyped for CYP2D6 alleles*3-5, *41, and for amplifications of the gene. RESULTS There were 13 patients with TD. The mean (standard deviation (SD)) years of duration of antipsychotic treatment in TD-positive was 15.8 (7.9) vs TD-negative 11.1 (7.4) (p=0.04). Increased odds of experiencing TD were associated with increased ability to metabolize CYP2D6, as measured by genotypic category (odds ratio (OR)=4.2), increasing duration in treatment (OR=1.0), and having drug-induced Parkinsonism (OR=9.7). DISCUSSION We found a significant association between CYP2D6 genotypic category and TD with the direction of effect being an increase in the number of functional CYP2D6 genes being associated with an increased risk of TD. This is the first study to examine the association between TD and CYP2D6 in Caucasians with this number of genotypic categories. In the future, metabolomics may be utilized in the discovery of biomarkers and novel drug targets.
Collapse
Affiliation(s)
- Maju M Koola
- Clinical Research Program, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Evangelia M Tsapakis
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | | | - Shubulade Smith
- Department of Forensic and Neurodevelopmental Science, King's College London, London, UK
| | | | - Katie L Nugent
- Maryland Psychiatric Research Center, University of Maryland, Baltimore, MD, USA
| | - Katherine J Aitchison
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK Department of Psychiatry and Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Cribbs SK, Park Y, Guidot DM, Martin GS, Brown LA, Lennox J, Jones DP. Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. AIDS Res Hum Retroviruses 2014; 30:579-85. [PMID: 24417396 DOI: 10.1089/aid.2013.0198] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite antiretroviral therapy, pneumonias from pathogens such as pneumococcus continue to cause significant morbidity and mortality in HIV-1-infected individuals. Respiratory infections occur despite high CD4 counts and low viral loads; therefore, better understanding of lung immunity and infection predictors is necessary. We tested whether metabolomics, an integrated biosystems approach to molecular fingerprinting, could differentiate such individual characteristics. Bronchoalveolar lavage fluid (BALf ) was collected from otherwise healthy HIV-1-infected individuals and healthy controls. A liquid chromatography-high-resolution mass spectrometry method was used to detect metabolites in BALf. Statistical and bioinformatic analyses used false discovery rate (FDR) and orthogonally corrected partial least-squares discriminant analysis (OPLS-DA) to identify groupwise discriminatory factors as the top 5% of metabolites contributing to 95% separation of HIV-1 and control. We enrolled 24 subjects with HIV-1 (median CD4=432) and 24 controls. A total of 115 accurate mass m/z features from C18 and AE analysis were significantly different between HIV-1 subjects and controls (FDR=0.05). Hierarchical cluster analysis revealed clusters of metabolites, which discriminated the samples according to HIV-1 status (FDR=0.05). Several of these did not match any metabolites in metabolomics databases; mass-to-charge 325.065 ([M+H](+)) was significantly higher (FDR=0.05) in the BAL of HIV-1-infected subjects and matched pyochelin, a siderophore-produced Pseudomonas aeruginosa. Metabolic profiles in BALf differentiated healthy HIV-1-infected subjects and controls. The lack of association with known human metabolites and inclusion of a match to a bacterial metabolite suggest that the differences could reflect the host's lung microbiome and/or be related to subclinical infection in HIV-1-infected patients.
Collapse
Affiliation(s)
- Sushma K. Cribbs
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
| | - Youngja Park
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
- College of Pharmacy, Korea University, Sejong City, Korea
| | - David M. Guidot
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
| | - Greg S. Martin
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
| | - Lou Ann Brown
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory University, Atlanta, Georgia
| | - Jeffrey Lennox
- Department of Medicine, Division of Infectious Disease, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
| |
Collapse
|
36
|
Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 2014; 10:e1003996. [PMID: 24626467 PMCID: PMC3953492 DOI: 10.1371/journal.ppat.1003996] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Oral microbiota contribute to health and disease, and their disruption may influence the course of oral diseases. Here, we used pyrosequencing to characterize the oral bacteriome and mycobiome of 12 HIV-infected patients and matched 12 uninfected controls. The number of bacterial and fungal genera in individuals ranged between 8-14 and 1-9, among uninfected and HIV-infected participants, respectively. The core oral bacteriome (COB) comprised 14 genera, of which 13 were common between the two groups. In contrast, the core oral mycobiome (COM) differed between HIV-infected and uninfected individuals, with Candida being the predominant fungus in both groups. Among Candida species, C. albicans was the most common (58% in uninfected and 83% in HIV-infected participants). Furthermore, 15 and 12 bacteria-fungi pairs were correlated significantly within uninfected and HIV-infected groups, respectively. Increase in Candida colonization was associated with a concomitant decrease in the abundance of Pichia, suggesting antagonism. We found that Pichia spent medium (PSM) inhibited growth of Candida, Aspergillus and Fusarium. Moreover, Pichia cells and PSM inhibited Candida biofilms (P = .002 and .02, respectively, compared to untreated controls). The mechanism by which Pichia inhibited Candida involved nutrient limitation, and modulation of growth and virulence factors. Finally, in an experimental murine model of oral candidiasis, we demonstrated that mice treated with PSM exhibited significantly lower infection score (P = .011) and fungal burden (P = .04) compared to untreated mice. Moreover, tongues of PSM-treated mice had few hyphae and intact epithelium, while vehicle- and nystatin-treated mice exhibited extensive fungal invasion of tissue with epithelial disruption. These results showed that PSM was efficacious against oral candidiasis in vitro and in vivo. The inhibitory activity of PSM was associated with secretory protein/s. Our findings provide the first evidence of interaction among members of the oral mycobiota, and identifies a potential novel antifungal.
Collapse
Affiliation(s)
- Pranab K. Mukherjee
- OHARA/ACTG Mycology Unit at Case Western Reserve University, Department of Dermatology, Cleveland, Ohio, United States of America
- Center for Medical Microbiology, Department of Dermatology, School of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Jyotsna Chandra
- OHARA/ACTG Mycology Unit at Case Western Reserve University, Department of Dermatology, Cleveland, Ohio, United States of America
| | - Mauricio Retuerto
- OHARA/ACTG Mycology Unit at Case Western Reserve University, Department of Dermatology, Cleveland, Ohio, United States of America
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Robert E. Brown
- Microbiome Analysis Center, Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Richard Jurevic
- Microbiome Analysis Center, Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Robert A. Salata
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Patrick M. Gillevet
- Microbiome Analysis Center, Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Mahmoud A. Ghannoum
- OHARA/ACTG Mycology Unit at Case Western Reserve University, Department of Dermatology, Cleveland, Ohio, United States of America
- Center for Medical Microbiology, Department of Dermatology, School of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Micheli JE, Chinn LW, Shugarts SB, Patel A, Martin JN, Bangsberg DR, Kroetz DL. Measuring the overall genetic component of nevirapine pharmacokinetics and the role of selected polymorphisms: towards addressing the missing heritability in pharmacogenetic phenotypes? Pharmacogenet Genomics 2013; 23:591-6. [PMID: 23982262 PMCID: PMC4048019 DOI: 10.1097/fpc.0b013e32836533a5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Nevirapine is an important component of highly active antiretroviral therapy used in the treatment of HIV infection. There is a considerable variation in the pharmacokinetics of nevirapine and this variation can impact the efficacy and toxicity of nevirapine. Although some of this variation can be attributed to environmental factors, the degree to which heritability influences nevirapine pharmacokinetics is unknown. This study aims to estimate how much variation in nevirapine pharmacokinetics is due to genetic factors and to investigate the contribution of selected polymorphisms to this variability. METHODS Two doses of immediate-release nevirapine were administered to European (n=11) and African American (n=6) participants recruited from the Research in Access to Care in the Homeless cohort. A repeated drug administration method was then used to determine the relative genetic contribution (r(GC)) to variability in nevirapine AUC(0-6 h). Nevirapine plasma levels were quantified using LC/MS/MS. Patients were also genotyped for selected polymorphisms in candidate genes that may influence nevirapine pharmacokinetics. RESULTS A significant r(GC) for nevirapine AUC(0-6 h) was found in Europeans (P=0.02) and African Americans (P=0.01). A trend toward higher nevirapine AUC(0-6 h) for the CYP2B6 516TT (rs3745274; Q172H) genotype was observed in European Americans (P=0.19). CONCLUSION This study demonstrates that there is a significant genetic component to variability in nevirapine pharmacokinetics. Although genetic variants such as CYP2B6 polymorphisms attributed to some of this variation, these data suggest that there may be additional genetic factors that influence nevirapine pharmacokinetics.
Collapse
Affiliation(s)
- Janine E Micheli
- Departments of aBioengineering and Therapeutic Sciences bEpidemiology cMedicine dThe Institute for Human Genetics, University of California, San Francisco, California eRagon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Massachusetts General Hospital Center for Global Health, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Exploring the effect of dentition, dental decay and familiality on oral health using metabolomics. INFECTION GENETICS AND EVOLUTION 2013; 22:201-7. [PMID: 24080168 DOI: 10.1016/j.meegid.2013.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022]
Abstract
As a proof of principle, we used an untargeted global metabolic profiling of saliva to understand the biochemical processes associated with dental decay, dentition (primary and secondary tooth eruption) and familiality in a sample of 25 sibling pairs. Pairs were selected to represent four different combinations of dentition and tooth health: (1) both siblings with primary teeth and no decay (n=5); (2) both siblings with primary teeth and discordant for dental decay (n=6); (3) both siblings with primary teeth and dental decay (n=4); and (4) one sibling with primary teeth the other with mixed dentition and both with no dental decay (n=10). There was a strong effect of sibship on the metabolite profiles identified; this may reflect the effects of common genes, environment and behaviors, and shared oral microbial communities. Nested in the familial effects were associations of metabolite profile with dentition and with dental decay. Using three different analyses (Euclidean distance, hierarchical clustering and PCA using selected biochemicals) metabolite profiles of saliva from children with decayed teeth were more similar than the metabolite profiles of saliva from children with healthy (sound) teeth. Larger studies that include host behaviors, environmental factors, oral microbiota composition and structure, and host genetic predisposition are required to identify biomarkers for decay, and to estimate the relative contribution of host factors and oral microbes on risk of dental decay.
Collapse
|
39
|
Munshi SU, Rewari BB, Bhavesh NS, Jameel S. Nuclear magnetic resonance based profiling of biofluids reveals metabolic dysregulation in HIV-infected persons and those on anti-retroviral therapy. PLoS One 2013; 8:e64298. [PMID: 23696880 PMCID: PMC3655987 DOI: 10.1371/journal.pone.0064298] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/11/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although HIV causes immune deficiency by infection and depletion of immunocytes, metabolic alterations with clinical manifestations are also reported in HIV/AIDS patients. Here we aimed to profile metabolite changes in the plasma, urine, and saliva of HIV/AIDS patients, including those on anti-retroviral therapy (ART). METHODS Metabolic profiling of biofluids collected from treatment naïve HIV/AIDS patients and those receiving ART was done with solution-state nuclear magnetic resonance (NMR) spectroscopy followed by statistical analysis and annotation. RESULTS In Principal Component Analysis (PCA) of the NMR spectra, Principal Component 1 (PC1) alone accounted for 99.3%, 87.2% and 78.8% variations in plasma, urine, and saliva, respectively. Partial least squares discriminant analysis (PLS-DA) was applied to generate three-component models, which showed plasma and urine to be better than saliva in discriminating between patients and healthy controls, and between ART-naïve patients and those receiving therapy. Twenty-six metabolites were differentially altered in any or two types of samples. Our results suggest that urinary Neopterin, and plasma Choline and Sarcosine could be used as metabolic biomarkers of HIV/AIDS infection. Pathway analysis revealed significant alternations in 12 metabolic pathways. CONCLUSIONS This study catalogs differentially regulated metabolites in biofluids, which helped classify subjects as healthy controls, HIV/AIDS patients, and those on ART. It also underscores the importance of further studying the consequences of HIV infection on host metabolism and its implications for pathogenesis.
Collapse
Affiliation(s)
- Saif Ullah Munshi
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Neel Sarovar Bhavesh
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shahid Jameel
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
40
|
Sitole LJ, Williams AA, Meyer D. Metabonomic analysis of HIV-infected biofluids. MOLECULAR BIOSYSTEMS 2012; 9:18-28. [PMID: 23114495 DOI: 10.1039/c2mb25318f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring the progression of HIV infection to full-blown acquired immune deficiency syndrome (AIDS) and assessing responses to treatment will benefit greatly from the identification of novel biological markers especially since existing clinical indicators of disease are not infallible. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are powerful methodologies used in metabonomic analyses for an approximation of HIV-induced changes to the phenotype of an infected individual. Although early in its application to HIV/AIDS, (biofluid) metabonomics has already identified metabolic pathways influenced by both HIV and/or its treatment. To date, biofluid NMR and MS data show that the virus and highly active antiretroviral treatment (HAART) mainly influence carbohydrate and lipid metabolism, suggesting that infected individuals are susceptible to very specific metabolic complications. A number of well-defined biofluid metabonomic studies clearly distinguished HIV negative, positive and treatment experienced patient profiles from one another. While many of the virus or treatment affected metabolites have been identified, the metabonomics measurements were mostly qualitative. The identities of the molecules were not always validated neither were the statistical models used to distinguish between groups. Assigning particular metabolic changes to specific drug regimens using metabonomics also remains to be done. Studies exist where identified metabolites have been linked to various disease states suggesting great potential for the use of metabonomics in disease prognostics. This review therefore examines the field of metabonomics in the context of HIV/AIDS, comments on metabolites routinely detected as being affected by the pathogen or treatment, explains what existing data suggest and makes recommendations on future research.
Collapse
Affiliation(s)
- Lungile J Sitole
- Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa
| | | | | |
Collapse
|