1
|
Uwimana A, Gnecco G, Riccaboni M. Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review. Comput Biol Med 2025; 184:109391. [PMID: 39579663 DOI: 10.1016/j.compbiomed.2024.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Recent healthcare advancements highlight the potential of Artificial Intelligence (AI) - and especially, among its subfields, Machine Learning (ML) - in enhancing Breast Cancer (BC) clinical care, leading to improved patient outcomes and increased radiologists' efficiency. While medical imaging techniques have significantly contributed to BC detection and diagnosis, their synergy with AI algorithms has consistently demonstrated superior diagnostic accuracy, reduced False Positives (FPs), and enabled personalized treatment strategies. Despite the burgeoning enthusiasm for leveraging AI for early and effective BC clinical care, its widespread integration into clinical practice is yet to be realized, and the evaluation of AI-based health technologies in terms of health and economic outcomes remains an ongoing endeavor. OBJECTIVES This scoping review aims to investigate AI (and especially ML) applications that have been implemented and evaluated across diverse clinical tasks or decisions in breast imaging and to explore the current state of evidence concerning the assessment of AI-based technologies for BC clinical care within the context of Health Technology Assessment (HTA). METHODS We conducted a systematic literature search following the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) checklist in PubMed and Scopus to identify relevant studies on AI (and particularly ML) applications in BC detection and diagnosis. We limited our search to studies published from January 2015 to October 2023. The Minimum Information about CLinical Artificial Intelligence Modeling (MI-CLAIM) checklist was used to assess the quality of AI algorithms development, evaluation, and reporting quality in the reviewed articles. The HTA Core Model® was also used to analyze the comprehensiveness, robustness, and reliability of the reported results and evidence in AI-systems' evaluations to ensure rigorous assessment of AI systems' utility and cost-effectiveness in clinical practice. RESULTS Of the 1652 initially identified articles, 104 were deemed eligible for inclusion in the review. Most studies examined the clinical effectiveness of AI-based systems (78.84%, n= 82), with one study focusing on safety in clinical settings, and 13.46% (n=14) focusing on patients' benefits. Of the studies, 31.73% (n=33) were ethically approved to be carried out in clinical practice, whereas 25% (n=26) evaluated AI systems legally approved for clinical use. Notably, none of the studies addressed the organizational implications of AI systems in clinical practice. Of the 104 studies, only two of them focused on cost-effectiveness analysis, and were analyzed separately. The average percentage scores for the first 102 AI-based studies' quality assessment based on the MI-CLAIM checklist criteria were 84.12%, 83.92%, 83.98%, 74.51%, and 14.7% for study design, data and optimization, model performance, model examination, and reproducibility, respectively. Notably, 20.59% (n=21) of these studies relied on large-scale representative real-world breast screening datasets, with only 10.78% (n =11) studies demonstrating the robustness and generalizability of the evaluated AI systems. CONCLUSION In bridging the gap between cutting-edge developments and seamless integration of AI systems into clinical workflows, persistent challenges encompass data quality and availability, ethical and legal considerations, robustness and trustworthiness, scalability, and alignment with existing radiologists' workflow. These hurdles impede the synthesis of comprehensive, robust, and reliable evidence to substantiate these systems' clinical utility, relevance, and cost-effectiveness in real-world clinical workflows. Consequently, evaluating AI-based health technologies through established HTA methodologies becomes complicated. We also highlight potential significant influences on AI systems' effectiveness of various factors, such as operational dynamics, organizational structure, the application context of AI systems, and practices in breast screening or examination reading of AI support tools in radiology. Furthermore, we emphasize substantial reciprocal influences on decision-making processes between AI systems and radiologists. Thus, we advocate for an adapted assessment framework specifically designed to address these potential influences on AI systems' effectiveness, mainly addressing system-level transformative implications for AI systems rather than focusing solely on technical performance and task-level evaluations.
Collapse
Affiliation(s)
| | | | - Massimo Riccaboni
- IMT School for Advanced Studies, Lucca, Italy; IUSS University School for Advanced Studies, Pavia, Italy.
| |
Collapse
|
2
|
Guo M, Gong D, Yang W. In-depth analysis of research hotspots and emerging trends in AI for retinal diseases over the past decade. Front Med (Lausanne) 2024; 11:1489139. [PMID: 39635592 PMCID: PMC11614663 DOI: 10.3389/fmed.2024.1489139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Background The application of Artificial Intelligence (AI) in diagnosing retinal diseases represents a significant advancement in ophthalmological research, with the potential to reshape future practices in the field. This study explores the extensive applications and emerging research frontiers of AI in retinal diseases. Objective This study aims to uncover the developments and predict future directions of AI research in retinal disease over the past decade. Methods This study analyzes AI utilization in retinal disease research through articles, using citation data sourced from the Web of Science (WOS) Core Collection database, covering the period from January 1, 2014, to December 31, 2023. A combination of WOS analyzer, CiteSpace 6.2 R4, and VOSviewer 1.6.19 was used for a bibliometric analysis focusing on citation frequency, collaborations, and keyword trends from an expert perspective. Results A total of 2,861 articles across 93 countries or regions were cataloged, with notable growth in article numbers since 2017. China leads with 926 articles, constituting 32% of the total. The United States has the highest h-index at 66, while England has the most significant network centrality at 0.24. Notably, the University of London is the leading institution with 99 articles and shares the highest h-index (25) with University College London. The National University of Singapore stands out for its central role with a score of 0.16. Research primarily spans ophthalmology and computer science, with "network," "transfer learning," and "convolutional neural networks" being prominent burst keywords from 2021 to 2023. Conclusion China leads globally in article counts, while the United States has a significant research impact. The University of London and University College London have made significant contributions to the literature. Diabetic retinopathy is the retinal disease with the highest volume of research. AI applications have focused on developing algorithms for diagnosing retinal diseases and investigating abnormal physiological features of the eye. Future research should pivot toward more advanced diagnostic systems for ophthalmic diseases.
Collapse
Affiliation(s)
- Mingkai Guo
- The Third School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Di Gong
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Weihua Yang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
3
|
Wang S, Yang L, Li M, Zhang X, Tai X. Medical Education and Artificial Intelligence: Web of Science-Based Bibliometric Analysis (2013-2022). JMIR MEDICAL EDUCATION 2024; 10:e51411. [PMID: 39388721 PMCID: PMC11486481 DOI: 10.2196/51411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 10/12/2024]
Abstract
Background Incremental advancements in artificial intelligence (AI) technology have facilitated its integration into various disciplines. In particular, the infusion of AI into medical education has emerged as a significant trend, with noteworthy research findings. Consequently, a comprehensive review and analysis of the current research landscape of AI in medical education is warranted. Objective This study aims to conduct a bibliometric analysis of pertinent papers, spanning the years 2013-2022, using CiteSpace and VOSviewer. The study visually represents the existing research status and trends of AI in medical education. Methods Articles related to AI and medical education, published between 2013 and 2022, were systematically searched in the Web of Science core database. Two reviewers scrutinized the initially retrieved papers, based on their titles and abstracts, to eliminate papers unrelated to the topic. The selected papers were then analyzed and visualized for country, institution, author, reference, and keywords using CiteSpace and VOSviewer. Results A total of 195 papers pertaining to AI in medical education were identified from 2013 to 2022. The annual publications demonstrated an increasing trend over time. The United States emerged as the most active country in this research arena, and Harvard Medical School and the University of Toronto were the most active institutions. Prolific authors in this field included Vincent Bissonnette, Charlotte Blacketer, Rolando F Del Maestro, Nicole Ledows, Nykan Mirchi, Alexander Winkler-Schwartz, and Recai Yilamaz. The paper with the highest citation was "Medical Students' Attitude Towards Artificial Intelligence: A Multicentre Survey." Keyword analysis revealed that "radiology," "medical physics," "ehealth," "surgery," and "specialty" were the primary focus, whereas "big data" and "management" emerged as research frontiers. Conclusions The study underscores the promising potential of AI in medical education research. Current research directions encompass radiology, medical information management, and other aspects. Technological progress is expected to broaden these directions further. There is an urgent need to bolster interregional collaboration and enhance research quality. These findings offer valuable insights for researchers to identify perspectives and guide future research directions.
Collapse
Affiliation(s)
- Shuang Wang
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Liuying Yang
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Min Li
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinghe Zhang
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiantao Tai
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Hawezy DJ, Mahmood KA, Hawezy GA, Sadraldeen GS, Ahmad ST. Medical Students' Perception Toward Using AI in Medical Education in the Kurdistan Region, Iraq: A Cross-Sectional Study. Cureus 2024; 16:e70545. [PMID: 39479104 PMCID: PMC11524511 DOI: 10.7759/cureus.70545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background and aim AI is revolutionizing medical education by offering innovative tools and simulations that augment traditional teaching methods. This study explored the perceptions and expectations of medical students in the Kurdistan region, Iraq, regarding AI integration in medical education. Methods A cross-sectional online survey collected data from 224 medical students over four months. A descriptive analysis was conducted to present the student's attitudes. Results In total, 224 medical students responded to the online survey. The majority of them were female (n=129; 57.6%), while 95 were male (42.4%). Additionally, most of the participants were in stage 4 (54 (24.1%); stage 1, 48 (21.4%); and stage 2, 43 (19.2%). In terms of measuring students' perceptions of AI integration in medical education, 186 (83%) of the students wanted to use smartphones and tablets, and 38 (17%) of them reported wanting hard copies. In addition, 112 (50%) of the medical students considered themselves experts in using AI and 98 (43.8%) did not know exactly what AI was used; however, only a few of them (6.3%) did not use AI. Few patients reported using Manikins instead of real patients (42 (18.8%)), while 140 (62.5%) reported that they could be used but not an alternative. Conclusion While many agree that digital tools and simulations are useful teaching tools, they are frequently viewed as adjunctive approaches. Better integration and training are required for the infrequent use of AI tools in medical education.
Collapse
|
5
|
Gharibshahian M, Torkashvand M, Bavisi M, Aldaghi N, Alizadeh A. Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine. Skin Res Technol 2024; 30:e70016. [PMID: 39189880 PMCID: PMC11348508 DOI: 10.1111/srt.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role. METHODS The "artificial intelligence," "machine learning," "tissue engineering," "clinical evaluation," and "scaffold" keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated. RESULTS The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM. CONCLUSION The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside. HIGHLIGHTS The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Mahya Bavisi
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Niloofar Aldaghi
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Akram Alizadeh
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
6
|
Cedars MI. Reproductive endocrinology and infertility in the year 2035. Fertil Steril 2024; 122:228-229. [PMID: 38494105 DOI: 10.1016/j.fertnstert.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Marcelle I Cedars
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, School of Medicine, San Francisco, California
| |
Collapse
|
7
|
Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri S, Khalid M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput Biol Med 2024; 178:108702. [PMID: 38878397 DOI: 10.1016/j.compbiomed.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 07/24/2024]
Abstract
Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India.
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, 854106, India; Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India.
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| | - S Gowri
- PG & Research, Department of Physics, Cauvery College for Women, Tiruchirapalli, Tamil Nadu, 620018, India
| | - Mohammad Khalid
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
8
|
Diao B, Luo J, Guo Y. A comprehensive survey on deep learning-based identification and predicting the interaction mechanism of long non-coding RNAs. Brief Funct Genomics 2024; 23:314-324. [PMID: 38576205 DOI: 10.1093/bfgp/elae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) have been discovered to be extensively involved in eukaryotic epigenetic, transcriptional, and post-transcriptional regulatory processes with the advancements in sequencing technology and genomics research. Therefore, they play crucial roles in the body's normal physiology and various disease outcomes. Presently, numerous unknown lncRNA sequencing data require exploration. Establishing deep learning-based prediction models for lncRNAs provides valuable insights for researchers, substantially reducing time and costs associated with trial and error and facilitating the disease-relevant lncRNA identification for prognosis analysis and targeted drug development as the era of artificial intelligence progresses. However, most lncRNA-related researchers lack awareness of the latest advancements in deep learning models and model selection and application in functional research on lncRNAs. Thus, we elucidate the concept of deep learning models, explore several prevalent deep learning algorithms and their data preferences, conduct a comprehensive review of recent literature studies with exemplary predictive performance over the past 5 years in conjunction with diverse prediction functions, critically analyze and discuss the merits and limitations of current deep learning models and solutions, while also proposing prospects based on cutting-edge advancements in lncRNA research.
Collapse
Affiliation(s)
- Biyu Diao
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| | - Jin Luo
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| | - Yu Guo
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| |
Collapse
|
9
|
Alrashed FA, Ahmad T, Almurdi MM, Alderaa AA, Alhammad SA, Serajuddin M, Alsubiheen AM. Incorporating Technology Adoption in Medical Education: A Qualitative Study of Medical Students' Perspectives. ADVANCES IN MEDICAL EDUCATION AND PRACTICE 2024; 15:615-625. [PMID: 38975614 PMCID: PMC11227328 DOI: 10.2147/amep.s464555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
Introduction The integration of technology into medical education has witnessed significant growth in recent years, with tools such as virtual reality, artificial intelligence, and telemedicine gaining prominence. These tool in medical education, offering immersive, experiential learning experiences. Methods We approached medical students currently enrolled in medical education programs and who are familiar with and actively use AI in medical education. Initially, we invited 21 random students to participate in the study; however, only 13 agreed to interviews. Some students cited their busy exam schedules as the reason for not participating. The participants were informed of the objective of the study before the commencement of the recorded interviews. Semi-structured interviews were used to guide the record interviews. Audio recordings were transcribed and analyzed using Atlas.ti, a qualitative data analysis software. Results Participants exhibited a diverse range of perceptions and levels of awareness regarding VR, AI, and telemedicine technologies. Learning with virtual reality was considered to be fun, memorable, inclusive, and engaging by participants. The use of virtual reality technology is seen as complementing current teaching and learning approaches, helping to build learners' confidence, as well as providing medical students with a safe environment for problem-solving and trial-and-error learning. The students reported that AI was seen as a potential game-changer in the healthcare sector. Participants hoped that telemedicine would provide healthcare services to remote and underserved populations. Conclusion The study conducted focus group discussions with medical students and residents in Saudi Arabia to explore their views on integrating VR, AI, and telemedicine in medical education and practice. Their insights highlight the need for informed decision-making and strategic development to optimize the benefits and address challenges like initial investments, technical issues, ethics, and regulations. These considerations are crucial for fully realizing the potential benefits of technology in medical education globally.
Collapse
Affiliation(s)
- Fahad Abdulaziz Alrashed
- Department of Medical Education, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tauseef Ahmad
- Department of Medical Education, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Muneera M Almurdi
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asma A Alderaa
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saad A Alhammad
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Abdulrahman M Alsubiheen
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Kranz A, Abele H. The Impact of Artificial Intelligence (AI) on Midwifery Education: A Scoping Review. Healthcare (Basel) 2024; 12:1082. [PMID: 38891157 PMCID: PMC11171549 DOI: 10.3390/healthcare12111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
As in other healthcare professions, artificial intelligence will influence midwifery education. To prepare midwifes for a future where AI plays a significant role in healthcare, educational requirements need to be adapted. This scoping review aims to outline the current state of research regarding the impact of AI on midwifery education. The review follows the framework of Arksey and O'Malley and the PRISMA-ScR. Two databases (Academic Search Premier and PubMed) were searched for different search strings, following defined inclusion criteria, and six articles were included. The results indicate that midwifery practice and education is faced with several challenges as well as opportunities when integrating AI. All articles see the urgent need to implement AI technologies into midwifery education for midwives to actively participate in AI initiatives and research. Midwifery educators need to be trained and supported to use and teach AI technologies in midwifery. In conclusion, the integration of AI in midwifery education is still at an early stage. There is a need for multidisciplinary research. The analysed literature indicates that midwifery curricula should integrate AI at different levels for graduates to be prepared for their future in healthcare.
Collapse
Affiliation(s)
- Angela Kranz
- Section of Midwifery Science, Institute of Health Sciences, University of Tübingen, 72076 Tübingen, Germany;
| | - Harald Abele
- Section of Midwifery Science, Institute of Health Sciences, University of Tübingen, 72076 Tübingen, Germany;
- Department for Women’s Health, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Farah L, Borget I, Martelli N, Vallee A. Suitability of the Current Health Technology Assessment of Innovative Artificial Intelligence-Based Medical Devices: Scoping Literature Review. J Med Internet Res 2024; 26:e51514. [PMID: 38739911 PMCID: PMC11130781 DOI: 10.2196/51514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI)-based medical devices have garnered attention due to their ability to revolutionize medicine. Their health technology assessment framework is lacking. OBJECTIVE This study aims to analyze the suitability of each health technology assessment (HTA) domain for the assessment of AI-based medical devices. METHODS We conducted a scoping literature review following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology. We searched databases (PubMed, Embase, and Cochrane Library), gray literature, and HTA agency websites. RESULTS A total of 10.1% (78/775) of the references were included. Data quality and integration are vital aspects to consider when describing and assessing the technical characteristics of AI-based medical devices during an HTA process. When it comes to implementing specialized HTA for AI-based medical devices, several practical challenges and potential barriers could be highlighted and should be taken into account (AI technological evolution timeline, data requirements, complexity and transparency, clinical validation and safety requirements, regulatory and ethical considerations, and economic evaluation). CONCLUSIONS The adaptation of the HTA process through a methodological framework for AI-based medical devices enhances the comparability of results across different evaluations and jurisdictions. By defining the necessary expertise, the framework supports the development of a skilled workforce capable of conducting robust and reliable HTAs of AI-based medical devices. A comprehensive adapted HTA framework for AI-based medical devices can provide valuable insights into the effectiveness, cost-effectiveness, and societal impact of AI-based medical devices, guiding their responsible implementation and maximizing their benefits for patients and health care systems.
Collapse
Affiliation(s)
- Line Farah
- Innovation Center for Medical Devices Department, Foch Hospital, Suresnes, France
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé Department, University Paris-Saclay, Orsay, France
| | - Isabelle Borget
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé Department, University Paris-Saclay, Orsay, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, University Paris-Saclay, Villejuif, France
- Oncostat U1018, Inserm, Équipe Labellisée Ligue Contre le Cancer, University Paris-Saclay, Villejuif, France
| | - Nicolas Martelli
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé Department, University Paris-Saclay, Orsay, France
- Pharmacy Department, Georges Pompidou European Hospital, Paris, France
| | - Alexandre Vallee
- Department of Epidemiology and Public Health, Foch Hospital, Suresnes, France
| |
Collapse
|
12
|
Zhang L, Shao Y, Chen G, Tian S, Zhang Q, Wu J, Bai C, Yang D. An artificial intelligence-assisted diagnostic system for the prediction of benignity and malignancy of pulmonary nodules and its practical value for patients with different clinical characteristics. Front Med (Lausanne) 2023; 10:1286433. [PMID: 38196835 PMCID: PMC10774219 DOI: 10.3389/fmed.2023.1286433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Objectives This study aimed to explore the value of an artificial intelligence (AI)-assisted diagnostic system in the prediction of pulmonary nodules. Methods The AI system was able to make predictions of benign or malignant nodules. 260 cases of solitary pulmonary nodules (SPNs) were divided into 173 malignant cases and 87 benign cases based on the surgical pathological diagnosis. A stratified data analysis was applied to compare the diagnostic effectiveness of the AI system to distinguish between the subgroups with different clinical characteristics. Results The accuracy of AI system in judging benignity and malignancy of the nodules was 75.77% (p < 0.05). We created an ROC curve by calculating the true positive rate (TPR) and the false positive rate (FPR) at different threshold values, and the AUC was 0.755. Results of the stratified analysis were as follows. (1) By nodule position: the AUC was 0.677, 0.758, 0.744, 0.982, and 0.725, respectively, for the nodules in the left upper lobe, left lower lobe, right upper lobe, right middle lobe, and right lower lobe. (2) By nodule size: the AUC was 0.778, 0.771, and 0.686, respectively, for the nodules measuring 5-10, 10-20, and 20-30 mm in diameter. (3) The predictive accuracy was higher for the subsolid pulmonary nodules than for the solid ones (80.54 vs. 66.67%). Conclusion The AI system can be applied to assist in the prediction of benign and malignant pulmonary nodules. It can provide a valuable reference, especially for the diagnosis of subsolid nodules and small nodules measuring 5-10 mm in diameter.
Collapse
Affiliation(s)
- Lichuan Zhang
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yue Shao
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Guangmei Chen
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Simiao Tian
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qing Zhang
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jianlin Wu
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Chunxue Bai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Shanghai Respiratory Research Institution, Shanghai, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Shanghai Respiratory Research Institution, Shanghai, China
| |
Collapse
|
13
|
Chen TF, Yang L, Chen HB, Zhou ZG, Wu ZT, Luo HH, Li Q, Zhu Y. A pairwise radiomics algorithm-lesion pair relation estimation model for distinguishing multiple primary lung cancer from intrapulmonary metastasis. PRECISION CLINICAL MEDICINE 2023; 6:pbad029. [PMID: 38024138 PMCID: PMC10662663 DOI: 10.1093/pcmedi/pbad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Distinguishing multiple primary lung cancer (MPLC) from intrapulmonary metastasis (IPM) is critical for their disparate treatment strategy and prognosis. This study aimed to establish a non-invasive model to make the differentiation pre-operatively. Methods We retrospectively studied 168 patients with multiple lung cancers (307 pairs of lesions) including 118 cases for modeling and internal validation, and 50 cases for independent external validation. Radiomic features on computed tomography (CT) were extracted to calculate the absolute deviation of paired lesions. Features were then selected by correlation coefficients and random forest classifier 5-fold cross-validation, based on which the lesion pair relation estimation (PRE) model was developed. A major voting strategy was used to decide diagnosis for cases with multiple pairs of lesions. Cases from another institute were included as the external validation set for the PRE model to compete with two experienced clinicians. Results Seven radiomic features were selected for the PRE model construction. With major voting strategy, the mean area under receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity of the training versus internal validation versus external validation cohort to distinguish MPLC were 0.983 versus 0.844 versus 0.793, 0.942 versus 0.846 versus 0.760, 0.905 versus 0.728 versus 0.727, and 0.962 versus 0.910 versus 0.769, respectively. AUCs of the two clinicians were 0.619 and 0.580. Conclusions The CT radiomic feature-based lesion PRE model is potentially an accurate diagnostic tool for the differentiation of MPLC and IPM, which could help with clinical decision making.
Collapse
Affiliation(s)
- Ting-Fei Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Lei Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Hai-Bin Chen
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing 100017, China
| | - Zhi-Guo Zhou
- Reliable Intelligence and Medical Innovation Laboratory (RIMI Lab), Department of Biostatistics & Data Science, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Zhen-Tian Wu
- Center for Information Technology & Statistics, Statistics Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Hong-He Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Qiong Li
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
14
|
Surlari Z, Budală DG, Lupu CI, Stelea CG, Butnaru OM, Luchian I. Current Progress and Challenges of Using Artificial Intelligence in Clinical Dentistry-A Narrative Review. J Clin Med 2023; 12:7378. [PMID: 38068430 PMCID: PMC10707023 DOI: 10.3390/jcm12237378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 07/25/2024] Open
Abstract
The concept of machines learning and acting like humans is what is meant by the phrase "artificial intelligence" (AI). Several branches of dentistry are increasingly relying on artificial intelligence (AI) tools. The literature usually focuses on AI models. These AI models have been used to detect and diagnose a wide range of conditions, including, but not limited to, dental caries, vertical root fractures, apical lesions, diseases of the salivary glands, maxillary sinusitis, maxillofacial cysts, cervical lymph node metastasis, osteoporosis, cancerous lesions, alveolar bone loss, the need for orthodontic extractions or treatments, cephalometric analysis, age and gender determination, and more. The primary contemporary applications of AI in the dental field are in undergraduate teaching and research. Before these methods can be used in everyday dentistry, however, the underlying technology and user interfaces need to be refined.
Collapse
Affiliation(s)
- Zinovia Surlari
- Department of Fixed Protheses, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Dana Gabriela Budală
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Costin Iulian Lupu
- Department of Dental Management, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Carmen Gabriela Stelea
- Department of Oral Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Maria Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| |
Collapse
|
15
|
Bondi D, Bevere M, Piccirillo R, Sorci G, Di Felice V, Re Cecconi AD, D'Amico D, Pietrangelo T, Fulle S. Integrated procedures for accelerating, deepening, and leading genetic inquiry: A first application on human muscle secretome. Mol Genet Metab 2023; 140:107705. [PMID: 37837864 DOI: 10.1016/j.ymgme.2023.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer unprecedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, as well as standardized procedures. Especially those topics with a huge body of data may benefit from data science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS-assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and define a workflow. METHODS Recognized scholars with expertise on myokines were invited to provide a list of the most important myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert-led discussion has been then integrated with an DS-led approach to provide further perspectives. RESULTS Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS tools were described as present in the cargo of extracellular vesicles. CONCLUSIONS Including both supervised and unsupervised learning methods, as well as encompassing algorithms focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting original scenarios are worth exploring as in silico recommendations to be integrated with experts' ideas for optimizing molecular studies.
Collapse
Affiliation(s)
- Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.
| | - Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Andrea David Re Cecconi
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Daniela D'Amico
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| |
Collapse
|
16
|
Jeyaraman M, Ratna HVK, Jeyaraman N, Venkatesan A, Ramasubramanian S, Yadav S. Leveraging Artificial Intelligence and Machine Learning in Regenerative Orthopedics: A Paradigm Shift in Patient Care. Cureus 2023; 15:e49756. [PMID: 38161806 PMCID: PMC10757680 DOI: 10.7759/cureus.49756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The integration of artificial intelligence (AI) and machine learning (ML) into regenerative orthopedics heralds a paradigm shift in clinical methodologies and patient management. This review article scrutinizes AI's role in augmenting diagnostic accuracy, refining predictive models, and customizing patient care in orthopedic medicine. Focusing on innovations such as KeyGene and CellNet, we illustrate AI's adeptness in navigating complex genomic datasets, cellular differentiation, and scaffold biodegradation, which are critical components of tissue engineering. Despite its transformative potential, AI's clinical adoption remains in its infancy, contending with challenges in validation, ethical oversight, and model training for clinical relevance. This review posits AI as a vital complement to human intelligence (HI), advocating for an interdisciplinary approach that merges AI's computational prowess with medical expertise to fulfill precision medicine's promise. By analyzing historical and contemporary developments in AI, from the foundational theories of McCullough and Pitts to sophisticated neural networks, the paper emphasizes the need for a synergistic alliance between AI and HI. This collaboration is imperative for improving surgical outcomes, streamlining therapeutic modalities, and enhancing the quality of patient care. Our article calls for robust interdisciplinary strategies to overcome current obstacles and harness AI's full potential in revolutionizing patient outcomes, thereby significantly contributing to the advancement of regenerative orthopedics and the broader field of scientific research.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | | | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | | | | | - Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| |
Collapse
|
17
|
Sokolski M, Kalużna-Oleksy M, Tycińska A, Jankowska EA. Telemedicine in Heart Failure in the COVID-19 and Post-Pandemic Era: What Have We Learned? Biomedicines 2023; 11:2222. [PMID: 37626719 PMCID: PMC10452788 DOI: 10.3390/biomedicines11082222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous studies showed that patients with heart failure (HF) and COVID-19 are at high risk of in-hospital complications and long-term mortality. Changes in the organisation of the medical system during the pandemic also worsened access to standard procedures, increasing the general mortality in HF and forcing the systems to be reorganised with the implementation and development of telemedical technologies. The main challenges for HF patients during the pandemic could be solved with new technologies aimed to limit the risk of SARS-CoV-2 transmission, optimise and titrate the therapy, prevent the progression and worsening of HF, and monitor patients with acute HF events in the course of and after COVID-19. Dedicated platforms, phone calls or video conferencing and consultation, and remote non-invasive and invasive cardiac monitoring became potential tools used to meet the aforementioned challenges. These solutions showed to be effective in the model of care for patients with HF and undoubtedly will be developed after the experience of the pandemic. However, the multitude of possibilities requires central coordination and collaboration between institutes with data protection and cost reimbursement to create effective mechanisms in HF management. It is crucial that lessons be learned from the pandemic experience to improve the quality of care for HF patients.
Collapse
Affiliation(s)
- Mateusz Sokolski
- Institute of Heart Disease, Wrocław University Hospital, Wroclaw Medical University, 50-556 Wrocław, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| | - Marta Kalużna-Oleksy
- Department of Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Agnieszka Tycińska
- Department of Cardiology, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Ewa A. Jankowska
- Institute of Heart Disease, Wrocław University Hospital, Wroclaw Medical University, 50-556 Wrocław, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
18
|
Farah L, Davaze-Schneider J, Martin T, Nguyen P, Borget I, Martelli N. Are current clinical studies on artificial intelligence-based medical devices comprehensive enough to support a full health technology assessment? A systematic review. Artif Intell Med 2023; 140:102547. [PMID: 37210155 DOI: 10.1016/j.artmed.2023.102547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Artificial Intelligence-based Medical Devices (AI-based MDs) are experiencing exponential growth in healthcare. This study aimed to investigate whether current studies assessing AI contain the information required for health technology assessment (HTA) by HTA bodies. METHODS We conducted a systematic literature review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology to extract articles published between 2016 and 2021 related to the assessment of AI-based MDs. Data extraction focused on study characteristics, technology, algorithms, comparators, and results. AI quality assessment and HTA scores were calculated to evaluate whether the items present in the included studies were concordant with the HTA requirements. We performed a linear regression for the HTA and AI scores with the explanatory variables of the impact factor, publication date, and medical specialty. We conducted a univariate analysis of the HTA score and a multivariate analysis of the AI score with an alpha risk of 5 %. RESULTS Of 5578 retrieved records, 56 were included. The mean AI quality assessment score was 67 %; 32 % of articles had an AI quality score ≥ 70 %, 50 % had a score between 50 % and 70 %, and 18 % had a score under 50 %. The highest quality scores were observed for the study design (82 %) and optimisation (69 %) categories, whereas the scores were lowest in the clinical practice category (23 %). The mean HTA score was 52 % for all seven domains. 100 % of the studies assessed clinical effectiveness, whereas only 9 % evaluated safety, and 20 % evaluated economic issues. There was a statistically significant relationship between the impact factor and the HTA and AI scores (both p = 0.046). DISCUSSION Clinical studies on AI-based MDs have limitations and often lack adapted, robust, and complete evidence. High-quality datasets are also required because the output data can only be trusted if the inputs are reliable. The existing assessment frameworks are not specifically designed to assess AI-based MDs. From the perspective of regulatory authorities, we suggest that these frameworks should be adapted to assess the interpretability, explainability, cybersecurity, and safety of ongoing updates. From the perspective of HTA agencies, we highlight that transparency, professional and patient acceptance, ethical issues, and organizational changes are required for the implementation of these devices. Economic assessments of AI should rely on a robust methodology (business impact or health economic models) to provide decision-makers with more reliable evidence. CONCLUSION Currently, AI studies are insufficient to cover HTA prerequisites. HTA processes also need to be adapted because they do not consider the important specificities of AI-based MDs. Specific HTA workflows and accurate assessment tools should be designed to standardise evaluations, generate reliable evidence, and create confidence.
Collapse
Affiliation(s)
- Line Farah
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé (GRADES) Department, University Paris-Saclay, Orsay, France; Innovation Center for Medical Devices, Foch Hospital, 40 Rue Worth, 92150 Suresnes, France.
| | - Julie Davaze-Schneider
- Pharmacy Department, Georges Pompidou European Hospital, AP-HP, 20 Rue Leblanc, 75015 Paris, France
| | - Tess Martin
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé (GRADES) Department, University Paris-Saclay, Orsay, France; Pharmacy Department, Georges Pompidou European Hospital, AP-HP, 20 Rue Leblanc, 75015 Paris, France
| | - Pierre Nguyen
- Pharmacy Department, Georges Pompidou European Hospital, AP-HP, 20 Rue Leblanc, 75015 Paris, France
| | - Isabelle Borget
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé (GRADES) Department, University Paris-Saclay, Orsay, France; Department of Biostatistics and Epidemiology, Gustave Roussy, University Paris-Saclay, 94805 Villejuif, France; Oncostat U1018, Inserm, University Paris-Saclay, Équipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Nicolas Martelli
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé (GRADES) Department, University Paris-Saclay, Orsay, France; Pharmacy Department, Georges Pompidou European Hospital, AP-HP, 20 Rue Leblanc, 75015 Paris, France
| |
Collapse
|
19
|
Kim N, Kim Y, Park J, Choi J, Hwang H. Evaluation of automated calibration and quality control processes using the Aptio total laboratory automation system. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: The objective of this study was to determine whether manually performed calibration and quality control (QC) processes could be replaced with an automated laboratory system when installed analyzers fail to provide automated calibration and QC functions.Methods: Alanine aminotransferase (ALT), total cholesterol (TC), creatinine (Cr), direct bilirubin (DB), and lipase (Lip) items were used as analytes. We prepared pooled serum samples at 10 levels for each test item and divided them into two groups; five for the analytical measurement range (AMR) group and five for the medical decision point (MDP) group. Calibration and QC processes were performed for five consecutive days, and ALT, TC, Cr, DB, and Lip levels were measured in the two groups using automated and manual methods. Precision and the mean difference between the calibration and QC methods were evaluated using the reported values of the test items in each group.Results: Repeatability and within-laboratory coefficients of variation (CVs) between the automated system and the conventional manual system in the AMR group were similar. However, the mean reported values for test items were significantly different between the two systems. In the MDP group, repeatability and within-laboratory CVs were better with the automation system. All calibration and QC processes were successfully implemented with the Aptio total laboratory automation system.Conclusion: The Aptio total laboratory automation system could be applied to routine practice to improve precision and efficiency.
Collapse
|
20
|
The ethical and legal landscape of brain data governance. PLoS One 2022; 17:e0273473. [PMID: 36580464 PMCID: PMC9799320 DOI: 10.1371/journal.pone.0273473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/09/2022] [Indexed: 12/30/2022] Open
Abstract
Neuroscience research is producing big brain data which informs both advancements in neuroscience research and drives the development of advanced datasets to provide advanced medical solutions. These brain data are produced under different jurisdictions in different formats and are governed under different regulations. The governance of data has become essential and critical resulting in the development of various governance structures to ensure that the quality, availability, findability, accessibility, usability, and utility of data is maintained. Furthermore, data governance is influenced by various ethical and legal principles. However, it is still not clear what ethical and legal principles should be used as a standard or baseline when managing brain data due to varying practices and evolving concepts. Therefore, this study asks what ethical and legal principles shape the current brain data governance landscape? A systematic scoping review and thematic analysis of articles focused on biomedical, neuro and brain data governance was carried out to identify the ethical and legal principles which shape the current brain data governance landscape. The results revealed that there is currently a large variation of how the principles are presented and discussions around the terms are very multidimensional. Some of the principles are still at their infancy and are barely visible. A range of principles emerged during the thematic analysis providing a potential list of principles which can provide a more comprehensive framework for brain data governance and a conceptual expansion of neuroethics.
Collapse
|
21
|
Bao XL, Sun YJ, Zhan X, Li GY. Orbital and eyelid diseases: The next breakthrough in artificial intelligence? Front Cell Dev Biol 2022; 10:1069248. [PMID: 36467418 PMCID: PMC9716028 DOI: 10.3389/fcell.2022.1069248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2023] Open
Abstract
Orbital and eyelid disorders affect normal visual functions and facial appearance, and precise oculoplastic and reconstructive surgeries are crucial. Artificial intelligence (AI) network models exhibit a remarkable ability to analyze large sets of medical images to locate lesions. Currently, AI-based technology can automatically diagnose and grade orbital and eyelid diseases, such as thyroid-associated ophthalmopathy (TAO), as well as measure eyelid morphological parameters based on external ocular photographs to assist surgical strategies. The various types of imaging data for orbital and eyelid diseases provide a large amount of training data for network models, which might be the next breakthrough in AI-related research. This paper retrospectively summarizes different imaging data aspects addressed in AI-related research on orbital and eyelid diseases, and discusses the advantages and limitations of this research field.
Collapse
Affiliation(s)
- Xiao-Li Bao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ying-Jian Sun
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Xi Zhan
- Department of Engineering, The Army Engineering University of PLA, Nanjing, China
| | - Guang-Yu Li
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Prediction, Discovery, and Characterization of Plant- and Food-Derived Health-Beneficial Bioactive Peptides. Nutrients 2022; 14:nu14224810. [PMID: 36432497 PMCID: PMC9697201 DOI: 10.3390/nu14224810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Nature may have the answer to many of our questions about human, animal, and environmental health. Natural bioactives, especially when harvested from sustainable plant and food sources, provide a plethora of molecular solutions to nutritionally actionable, chronic conditions. The spectrum of these conditions, such as metabolic, immune, and gastrointestinal disorders, has changed with prolonged human life span, which should be matched with an appropriately extended health span, which would in turn favour more sustainable health care: "adding years to life and adding life to years". To date, bioactive peptides have been undervalued and underexploited as food ingredients and drugs. The future of translational science on bioactive peptides-and natural bioactives in general-is being built on (a) systems-level rather than reductionist strategies for understanding their interdependent, and at times synergistic, functions; and (b) the leverage of artificial intelligence for prediction and discovery, thereby significantly reducing the time from idea and concept to finished solutions for consumers and patients. This new strategy follows the path from benefit definition via design to prediction and, eventually, validation and production.
Collapse
|
23
|
Monteith S, Glenn T, Geddes J, Whybrow PC, Achtyes E, Bauer M. Expectations for Artificial Intelligence (AI) in Psychiatry. Curr Psychiatry Rep 2022; 24:709-721. [PMID: 36214931 PMCID: PMC9549456 DOI: 10.1007/s11920-022-01378-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Artificial intelligence (AI) is often presented as a transformative technology for clinical medicine even though the current technology maturity of AI is low. The purpose of this narrative review is to describe the complex reasons for the low technology maturity and set realistic expectations for the safe, routine use of AI in clinical medicine. RECENT FINDINGS For AI to be productive in clinical medicine, many diverse factors that contribute to the low maturity level need to be addressed. These include technical problems such as data quality, dataset shift, black-box opacity, validation and regulatory challenges, and human factors such as a lack of education in AI, workflow changes, automation bias, and deskilling. There will also be new and unanticipated safety risks with the introduction of AI. The solutions to these issues are complex and will take time to discover, develop, validate, and implement. However, addressing the many problems in a methodical manner will expedite the safe and beneficial use of AI to augment medical decision making in psychiatry.
Collapse
Affiliation(s)
- Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, 49684, USA.
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - John Geddes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Eric Achtyes
- Michigan State University College of Human Medicine, Grand Rapids, MI, 49684, USA
- Network180, Grand Rapids, MI, USA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Mumuni AN, Hasford F, Udeme NI, Dada MO, Awojoyogbe BO. A SWOT analysis of artificial intelligence in diagnostic imaging in the developing world: making a case for a paradigm shift. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Diagnostic imaging (DI) refers to techniques and methods of creating images of the body’s internal parts and organs with or without the use of ionizing radiation, for purposes of diagnosing, monitoring and characterizing diseases. By default, DI equipment are technology based and in recent times, there has been widespread automation of DI operations in high-income countries while low and middle-income countries (LMICs) are yet to gain traction in automated DI. Advanced DI techniques employ artificial intelligence (AI) protocols to enable imaging equipment perceive data more accurately than humans do, and yet automatically or under expert evaluation, make clinical decisions such as diagnosis and characterization of diseases. In this narrative review, SWOT analysis is used to examine the strengths, weaknesses, opportunities and threats associated with the deployment of AI-based DI protocols in LMICs. Drawing from this analysis, a case is then made to justify the need for widespread AI applications in DI in resource-poor settings. Among other strengths discussed, AI-based DI systems could enhance accuracies in diagnosis, monitoring, characterization of diseases and offer efficient image acquisition, processing, segmentation and analysis procedures, but may have weaknesses regarding the need for big data, huge initial and maintenance costs, and inadequate technical expertise of professionals. They present opportunities for synthetic modality transfer, increased access to imaging services, and protocol optimization; and threats of input training data biases, lack of regulatory frameworks and perceived fear of job losses among DI professionals. The analysis showed that successful integration of AI in DI procedures could position LMICs towards achievement of universal health coverage by 2030/2035. LMICs will however have to learn from the experiences of advanced settings, train critical staff in relevant areas of AI and proceed to develop in-house AI systems with all relevant stakeholders onboard.
Collapse
Affiliation(s)
| | - Francis Hasford
- Department of Medical Physics , University of Ghana, Ghana Atomic Energy Commission , Accra , Ghana
| | | | | | | |
Collapse
|
25
|
Nguyen MB, Villemain O, Friedberg MK, Lovstakken L, Rusin CG, Mertens L. Artificial intelligence in the pediatric echocardiography laboratory: Automation, physiology, and outcomes. FRONTIERS IN RADIOLOGY 2022; 2:881777. [PMID: 37492680 PMCID: PMC10365116 DOI: 10.3389/fradi.2022.881777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/01/2022] [Indexed: 07/27/2023]
Abstract
Artificial intelligence (AI) is frequently used in non-medical fields to assist with automation and decision-making. The potential for AI in pediatric cardiology, especially in the echocardiography laboratory, is very high. There are multiple tasks AI is designed to do that could improve the quality, interpretation, and clinical application of echocardiographic data at the level of the sonographer, echocardiographer, and clinician. In this state-of-the-art review, we highlight the pertinent literature on machine learning in echocardiography and discuss its applications in the pediatric echocardiography lab with a focus on automation of the pediatric echocardiogram and the use of echo data to better understand physiology and outcomes in pediatric cardiology. We also discuss next steps in utilizing AI in pediatric echocardiography.
Collapse
Affiliation(s)
- Minh B. Nguyen
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Olivier Villemain
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mark K. Friedberg
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Lasse Lovstakken
- Centre for Innovative Ultrasound Solutions and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Craig G. Rusin
- Department of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Luc Mertens
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Szatmary P, Grammatikopoulos T, Cai W, Huang W, Mukherjee R, Halloran C, Beyer G, Sutton R. Acute Pancreatitis: Diagnosis and Treatment. Drugs 2022; 82:1251-1276. [PMID: 36074322 PMCID: PMC9454414 DOI: 10.1007/s40265-022-01766-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Acute pancreatitis is a common indication for hospital admission, increasing in incidence, including in children, pregnancy and the elderly. Moderately severe acute pancreatitis with fluid and/or necrotic collections causes substantial morbidity, and severe disease with persistent organ failure causes significant mortality. The diagnosis requires two of upper abdominal pain, amylase/lipase ≥ 3 ×upper limit of normal, and/or cross-sectional imaging findings. Gallstones and ethanol predominate while hypertriglyceridaemia and drugs are notable among many causes. Serum triglycerides, full blood count, renal and liver function tests, glucose, calcium, transabdominal ultrasound, and chest imaging are indicated, with abdominal cross-sectional imaging if there is diagnostic uncertainty. Subsequent imaging is undertaken to detect complications, for example, if C-reactive protein exceeds 150 mg/L, or rarer aetiologies. Pancreatic intracellular calcium overload, mitochondrial impairment, and inflammatory responses are critical in pathogenesis, targeted in current treatment trials, which are crucially important as there is no internationally licenced drug to treat acute pancreatitis and prevent complications. Initial priorities are intravenous fluid resuscitation, analgesia, and enteral nutrition, and when necessary, critical care and organ support, parenteral nutrition, antibiotics, pancreatic exocrine and endocrine replacement therapy; all may have adverse effects. Patients with local complications should be referred to specialist tertiary centres to guide further management, which may include drainage and/or necrosectomy. The impact of acute pancreatitis can be devastating, so prevention or reduction of the risk of recurrence and progression to chronic pancreatitis with an increased risk of pancreas cancer requires proactive management that should be long term for some patients.
Collapse
Affiliation(s)
- Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Tassos Grammatikopoulos
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital NHS Foundation Trust, London, UK
| | - Wenhao Cai
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,West China Centre of Excellence for Pancreatitis and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.,Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool , UK
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK. .,Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK. .,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
27
|
Discovering the Landscape and Evolution of Responsible Research and Innovation (RRI): Science Mapping Based on Bibliometric Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14148944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growing number of papers on Responsible Innovation (RI) and Responsible Research and Innovation (RRI) have shaped the popularity and usefulness of RI and RRI as a technology governance concept. This study reviews and assesses the development of RRI research through a bibliometric analysis of 702 RRI-focused papers and 26,471 secondary references published in the Web of Science Core Collection database between 2006 and 2020. Firstly, the paper provides a broad outline of the field based on annual growth trends, journal distribution, and disciplinary distribution for RRI publications. Secondly, this study reveals the current state of RRI research by identifying influential literature, journals, authors, countries, and institutions. Thirdly, a phased keyword analysis is conducted to determine the stage characteristics of the RRI field. Finally, based on the bibliometric analyses, this study summarises the evolutionary trajectory of RRI and makes recommendations for future research directions. As a complement to the previous qualitative literature review, the paper provides a systematic and dynamic understanding of RRI research.
Collapse
|
28
|
Valenzuela W, Balsiger F, Wiest R, Scheidegger O. Medical-Blocks: A Platform for Exploration, Management, Analysis, and Sharing of Data in Biomedical Research. JMIR Form Res 2022; 6:e32287. [PMID: 35232718 PMCID: PMC9039815 DOI: 10.2196/32287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Biomedical research requires healthcare institutions to provide sensitive clinical data to leverage data science and artificial intelligence technologies. However, providing healthcare data to researchers simple and secure, proves to be challenging for healthcare institutions. OBJECTIVE We describe and introduce Medical-Blocks, a platform for data exploration, data management, data analysis, and data sharing in biomedical research. METHODS The specification requirements for Medical-Blocks included: i) Connection to data sources of healthcare institutions with an interface for data exploration, ii) management of data in an internal file storage system, iii) data analysis through visualization and classification of data, and iv) data sharing via a file hosting service for collaboration. Medical-Blocks should be simple to use via a web-based user interface and extensible with new functionalities by a modular design via microservices ("blocks"). The scalability of the platform should be ensured by containerization. Security and legal regulations were considered during the development. RESULTS Medical-Blocks is a web application that runs in the cloud or as a local instance at a healthcare institution. Local instances of Medical-Blocks access data sources such as electronic health records and picture archiving and communications system (PACS) at healthcare institutions. Researchers and clinicians can explore, manage, and analyze the available data through Medical-Blocks. The data analysis involves classification of data for metadata extraction and the formation of cohorts. In collaborations, metadata (e.g., number of patients per cohort) and/or the data itself can be shared through Medical-Blocks locally or via a cloud instance to other researchers and clinicians. CONCLUSIONS Medical-Blocks facilitates biomedical research by providing a centralized platform to interact with medical data in collaborative research projects. The access to and management of medical data is simplified. Data can be swiftly analyzed to form cohorts for research and be shared among researchers. The modularity of Medical-Blocks makes the platform feasible for biomedical research where heterogenous medical data is needed. CLINICALTRIAL
Collapse
Affiliation(s)
- Waldo Valenzuela
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, CH
| | - Fabian Balsiger
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, CH
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, CH
| | - Olivier Scheidegger
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, CH.,Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, CH
| |
Collapse
|
29
|
Wang S, Hou Y, Li X, Meng X, Zhang Y, Wang X. Practical Implementation of Artificial Intelligence-Based Deep Learning and Cloud Computing on the Application of Traditional Medicine and Western Medicine in the Diagnosis and Treatment of Rheumatoid Arthritis. Front Pharmacol 2022; 12:765435. [PMID: 35002704 PMCID: PMC8733656 DOI: 10.3389/fphar.2021.765435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology, is a serious threat to the health of middle-aged and elderly people. Although western medicine, traditional medicine such as traditional Chinese medicine, Tibetan medicine and other ethnic medicine have shown certain advantages in the diagnosis and treatment of RA, there are still some practical shortcomings, such as delayed diagnosis, improper treatment scheme and unclear drug mechanism. At present, the applications of artificial intelligence (AI)-based deep learning and cloud computing has aroused wide attention in the medical and health field, especially in screening potential active ingredients, targets and action pathways of single drugs or prescriptions in traditional medicine and optimizing disease diagnosis and treatment models. Integrated information and analysis of RA patients based on AI and medical big data will unquestionably benefit more RA patients worldwide. In this review, we mainly elaborated the application status and prospect of AI-assisted deep learning and cloud computation-oriented western medicine and traditional medicine on the diagnosis and treatment of RA in different stages. It can be predicted that with the help of AI, more pharmacological mechanisms of effective ethnic drugs against RA will be elucidated and more accurate solutions will be provided for the treatment and diagnosis of RA in the future.
Collapse
Affiliation(s)
- Shaohui Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuanhao Li
- Chengdu Second People's Hospital, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Barakat MT, Girotra M, Banerjee S. Initial application of deep learning to borescope detection of endoscope working channel damage and residue. Endosc Int Open 2022; 10:E112-E118. [PMID: 35047341 PMCID: PMC8759945 DOI: 10.1055/a-1591-0258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background and study aims Outbreaks of endoscopy-related infections have prompted evaluation for potential contributing factors. We and others have demonstrated the utility of borescope inspection of endoscope working channels to identify occult damage that may impact the adequacy of endoscope reprocessing. The time investment and training necessary for borescope inspection have been cited as barriers preventing implementation. We investigated the utility of artificial intelligence (AI) for streamlining and enhancing the value of borescope inspection of endoscope working channels. Methods We applied a deep learning AI approach to borescope inspection videos of the working channels of 20 endoscopes in use at our academic institution. We evaluated the sensitivity, accuracy, and reliability of this software for detection of endoscope working channel findings. Results Overall sensitivity for AI-based detection of borescope inspection findings identified by gold standard endoscopist inspection was 91.4 %. Labels were accurate for 67 % of these working channel findings and accuracy varied by endoscope segment. Read-to-read variability was noted to be minimal, with test-retest correlation value of 0.986. Endoscope type did not predict accuracy of the AI system ( P = 0.26). Conclusions Harnessing the power of AI for detection of endoscope working channel damage and residue could enable sterile processing department technicians to feasibly assess endoscopes for working channel damage and perform endoscope reprocessing surveillance. Endoscopes that accumulate an unacceptable level of damage may be flagged for further manual evaluation and consideration for manufacturer evaluation/repair.
Collapse
Affiliation(s)
- Monique T Barakat
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States
| | - Mohit Girotra
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States
| | - Subhas Banerjee
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
31
|
Bélisle-Pipon JC, Couture V, Roy MC, Ganache I, Goetghebeur M, Cohen IG. What Makes Artificial Intelligence Exceptional in Health Technology Assessment? Front Artif Intell 2021; 4:736697. [PMID: 34796318 PMCID: PMC8594317 DOI: 10.3389/frai.2021.736697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
The application of artificial intelligence (AI) may revolutionize the healthcare system, leading to enhance efficiency by automatizing routine tasks and decreasing health-related costs, broadening access to healthcare delivery, targeting more precisely patient needs, and assisting clinicians in their decision-making. For these benefits to materialize, governments and health authorities must regulate AI, and conduct appropriate health technology assessment (HTA). Many authors have highlighted that AI health technologies (AIHT) challenge traditional evaluation and regulatory processes. To inform and support HTA organizations and regulators in adapting their processes to AIHTs, we conducted a systematic review of the literature on the challenges posed by AIHTs in HTA and health regulation. Our research question was: What makes artificial intelligence exceptional in HTA? The current body of literature appears to portray AIHTs as being exceptional to HTA. This exceptionalism is expressed along 5 dimensions: 1) AIHT's distinctive features; 2) their systemic impacts on health care and the health sector; 3) the increased expectations towards AI in health; 4) the new ethical, social and legal challenges that arise from deploying AI in the health sector; and 5) the new evaluative constraints that AI poses to HTA. Thus, AIHTs are perceived as exceptional because of their technological characteristics and potential impacts on society at large. As AI implementation by governments and health organizations carries risks of generating new, and amplifying existing, challenges, there are strong arguments for taking into consideration the exceptional aspects of AIHTs, especially as their impacts on the healthcare system will be far greater than that of drugs and medical devices. As AIHTs begin to be increasingly introduced into the health care sector, there is a window of opportunity for HTA agencies and scholars to consider AIHTs' exceptionalism and to work towards only deploying clinically, economically, socially acceptable AIHTs in the health care system.
Collapse
Affiliation(s)
| | | | | | - Isabelle Ganache
- Institut National D’Excellence en Santé et en Services Sociaux (INESSS), Montréal, Québec, QC, Canada
| | - Mireille Goetghebeur
- Institut National D’Excellence en Santé et en Services Sociaux (INESSS), Montréal, Québec, QC, Canada
| | | |
Collapse
|
32
|
Coppola F, Faggioni L, Gabelloni M, De Vietro F, Mendola V, Cattabriga A, Cocozza MA, Vara G, Piccinino A, Lo Monaco S, Pastore LV, Mottola M, Malavasi S, Bevilacqua A, Neri E, Golfieri R. Human, All Too Human? An All-Around Appraisal of the "Artificial Intelligence Revolution" in Medical Imaging. Front Psychol 2021; 12:710982. [PMID: 34650476 PMCID: PMC8505993 DOI: 10.3389/fpsyg.2021.710982] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Artificial intelligence (AI) has seen dramatic growth over the past decade, evolving from a niche super specialty computer application into a powerful tool which has revolutionized many areas of our professional and daily lives, and the potential of which seems to be still largely untapped. The field of medicine and medical imaging, as one of its various specialties, has gained considerable benefit from AI, including improved diagnostic accuracy and the possibility of predicting individual patient outcomes and options of more personalized treatment. It should be noted that this process can actively support the ongoing development of advanced, highly specific treatment strategies (e.g., target therapies for cancer patients) while enabling faster workflow and more efficient use of healthcare resources. The potential advantages of AI over conventional methods have made it attractive for physicians and other healthcare stakeholders, raising much interest in both the research and the industry communities. However, the fast development of AI has unveiled its potential for disrupting the work of healthcare professionals, spawning concerns among radiologists that, in the future, AI may outperform them, thus damaging their reputations or putting their jobs at risk. Furthermore, this development has raised relevant psychological, ethical, and medico-legal issues which need to be addressed for AI to be considered fully capable of patient management. The aim of this review is to provide a brief, hopefully exhaustive, overview of the state of the art of AI systems regarding medical imaging, with a special focus on how AI and the entire healthcare environment should be prepared to accomplish the goal of a more advanced human-centered world.
Collapse
Affiliation(s)
- Francesca Coppola
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology, Milan, Italy
| | - Lorenzo Faggioni
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Michela Gabelloni
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Fabrizio De Vietro
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Vincenzo Mendola
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Arrigo Cattabriga
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Maria Adriana Cocozza
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Alberto Piccinino
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Silvia Lo Monaco
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Luigi Vincenzo Pastore
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Margherita Mottola
- Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
| | - Silvia Malavasi
- Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
| | - Alessandro Bevilacqua
- Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
| | - Emanuele Neri
- SIRM Foundation, Italian Society of Medical and Interventional Radiology, Milan, Italy
- Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
33
|
Dzobo K. What to Do for Increasing Cancer Burden on the African Continent? Accelerating Public Health Diagnostics Innovation for Prevention and Early Intervention on Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:567-579. [PMID: 34399067 DOI: 10.1089/omi.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
No other place illustrates the increasing burden of cancer than in Africa and in particular, sub-Saharan Africa. Many of the individuals to be diagnosed with cancer will be in low-resource settings in the future due to, for example, an increase in populations and aging, and high co-morbidity with infections with viruses such as human immunodeficiency virus (HIV) and human papillomavirus (HPV), as well as the presence of infectious agents linked to cancer development. Due to lack of prevention and diagnostic innovation, patients present with advanced cancers, leading to poor survival and increased mortality. HIV infection-associated cancers such as B cell lymphomas, Kaposi's sarcoma, and HPV-associated cancers such as cervical cancer are particularly noteworthy in this context. Recent reports show that a host of other cancers are also associated with viral infection and these include lung, oral cavity, esophageal, and pharyngeal, hepatocellular carcinoma, and anal and vulvar cancers. This article examines the ways in which diagnostic innovation empowered by integrative biology and informed by public health priorities can improve cancer prevention or early intervention in Africa and beyond. In addition, I argue that because diagnostic biomarkers can often overlap with novel therapeutic targets, diagnostics research and development can have broader value for and impact on medical innovation.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Shlivko IL, Garanina OY, Klemenova IA, Uskova KA, Mironycheva AM, Dardyk VI, Laskov VN. Artificial intelligence: how it works and criteria for assessment. CONSILIUM MEDICUM 2021. [DOI: 10.26442/20751753.2021.8.201148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Artificial intelligence is a term used to describe computer technology in the modeling of intelligent behavior and critical thinking comparable to that of humans. To date, some of the first areas of medicine to be influenced by advances in artificial intelligence technologies will be those most dependent on imaging. These include ophthalmology, radiology, and dermatology. In connection with the emergence of numerous medical applications, scientists have formulated criteria for their assessment. This list included: clinical validation, regular application updates, functional focus, cost, availability of an information block for specialists and patients, compliance with the conditions of government regulation, and registration. One of the applications that meet all the requirements is the ProRodinki software package, developed for use by patients and specialists in the Russian Federation. Taking into account a widespread and rapidly developing competitive environment, it is necessary to soberly treat the resources of such applications, not exaggerating their capabilities and not considering them as a substitute for a specialist.
Collapse
|
35
|
Mackay BS, Marshall K, Grant-Jacob JA, Kanczler J, Eason RW, Oreffo ROC, Mills B. The future of bone regeneration: integrating AI into tissue engineering. Biomed Phys Eng Express 2021; 7. [PMID: 34271556 DOI: 10.1088/2057-1976/ac154f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023]
Abstract
Tissue engineering is a branch of regenerative medicine that harnesses biomaterial and stem cell research to utilise the body's natural healing responses to regenerate tissue and organs. There remain many unanswered questions in tissue engineering, with optimal biomaterial designs still to be developed and a lack of adequate stem cell knowledge limiting successful application. Advances in artificial intelligence (AI), and deep learning specifically, offer the potential to improve both scientific understanding and clinical outcomes in regenerative medicine. With enhanced perception of how to integrate artificial intelligence into current research and clinical practice, AI offers an invaluable tool to improve patient outcome.
Collapse
Affiliation(s)
- Benita S Mackay
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Karen Marshall
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom
| | - James A Grant-Jacob
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom
| | - Robert W Eason
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.,Institute of Developmental Sciences, Faculty of Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom.,Institute of Developmental Sciences, Faculty of Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Ben Mills
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
36
|
Allan K, Oren N, Hutchison J, Martin D. In search of a Goldilocks zone for credible AI. Sci Rep 2021; 11:13687. [PMID: 34211064 PMCID: PMC8249604 DOI: 10.1038/s41598-021-93109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
If artificial intelligence (AI) is to help solve individual, societal and global problems, humans should neither underestimate nor overestimate its trustworthiness. Situated in-between these two extremes is an ideal 'Goldilocks' zone of credibility. But what will keep trust in this zone? We hypothesise that this role ultimately falls to the social cognition mechanisms which adaptively regulate conformity between humans. This novel hypothesis predicts that human-like functional biases in conformity should occur during interactions with AI. We examined multiple tests of this prediction using a collaborative remembering paradigm, where participants viewed household scenes for 30 s vs. 2 min, then saw 2-alternative forced-choice decisions about scene content originating either from AI- or human-sources. We manipulated the credibility of different sources (Experiment 1) and, from a single source, the estimated-likelihood (Experiment 2) and objective accuracy (Experiment 3) of specific decisions. As predicted, each manipulation produced functional biases for AI-sources mirroring those found for human-sources. Participants conformed more to higher credibility sources, and higher-likelihood or more objectively accurate decisions, becoming increasingly sensitive to source accuracy when their own capability was reduced. These findings support the hypothesised role of social cognition in regulating AI's influence, raising important implications and new directions for research on human-AI interaction.
Collapse
Affiliation(s)
- Kevin Allan
- School of Psychology, University of Aberdeen, Aberdeen, AB24 2UB, UK.
| | - Nir Oren
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, AB24 2UB, UK
| | - Jacqui Hutchison
- School of Psychology, University of Aberdeen, Aberdeen, AB24 2UB, UK
| | - Douglas Martin
- School of Psychology, University of Aberdeen, Aberdeen, AB24 2UB, UK
| |
Collapse
|
37
|
Dzobo K. Recent Trends in Multipotent Human Mesenchymal Stem/Stromal Cells: Learning from History and Advancing Clinical Applications. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:342-357. [PMID: 34115524 DOI: 10.1089/omi.2021.0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early cell biology reports demonstrated the presence of cells with stem-like properties in bone marrow, with both hematopoietic and mesenchymal lineages. Over the years, various investigations have purified and characterized mesenchymal stromal/stem cells (MSCs) from different human tissues as cells with multilineage differentiation potential under the appropriate conditions. Due to their appealing characteristics and versatile potentials, MSCs are leveraged in many applications in medicine such as oncology, bioprinting, and as recent as therapeutics discovery and innovation for COVID-19. To date, studies indicate that MSCs have varied differentiation capabilities into different cell types, and demonstrate immunomodulating and anti-inflammatory properties. Different microenvironments or niche for MSCs and their resulting heterogeneity may influence attendant cellular behavior and differentiation capacity. The potential clinical applications of MSCs and exosomes derived from these cells have led to an avalanche of research reports on their properties and hundreds of clinical trials being undertaken. There is ample reason to think, as discussed in this expert review that the future looks bright and promising for MSC research, with many clinical trials under way to ascertain their clinical utility. This review provides a synthesis of the latest advances and trends in MSC research to allow for broad and critically informed use of MSCs. Early observations of the presence of these cells in the bone marrow and their remarkable differentiation capabilities and immunomodulation are also presented.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
38
|
Barak-Corren Y, Agarwal I, Michelson KA, Lyons TW, Neuman MI, Lipsett SC, Kimia AA, Eisenberg MA, Capraro AJ, Levy JA, Hudgins JD, Reis BY, Fine AM. Prediction of patient disposition: comparison of computer and human approaches and a proposed synthesis. J Am Med Inform Assoc 2021; 28:1736-1745. [PMID: 34010406 DOI: 10.1093/jamia/ocab076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To compare the accuracy of computer versus physician predictions of hospitalization and to explore the potential synergies of hybrid physician-computer models. MATERIALS AND METHODS A single-center prospective observational study in a tertiary pediatric hospital in Boston, Massachusetts, United States. Nine emergency department (ED) attending physicians participated in the study. Physicians predicted the likelihood of admission for patients in the ED whose hospitalization disposition had not yet been decided. In parallel, a random-forest computer model was developed to predict hospitalizations from the ED, based on data available within the first hour of the ED encounter. The model was tested on the same cohort of patients evaluated by the participating physicians. RESULTS 198 pediatric patients were considered for inclusion. Six patients were excluded due to incomplete or erroneous physician forms. Of the 192 included patients, 54 (28%) were admitted and 138 (72%) were discharged. The positive predictive value for the prediction of admission was 66% for the clinicians, 73% for the computer model, and 86% for a hybrid model combining the two. To predict admission, physicians relied more heavily on the clinical appearance of the patient, while the computer model relied more heavily on technical data-driven features, such as the rate of prior admissions or distance traveled to hospital. DISCUSSION Computer-generated predictions of patient disposition were more accurate than clinician-generated predictions. A hybrid prediction model improved accuracy over both individual predictions, highlighting the complementary and synergistic effects of both approaches. CONCLUSION The integration of computer and clinician predictions can yield improved predictive performance.
Collapse
Affiliation(s)
- Yuval Barak-Corren
- Predictive Medicine Group, Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Isha Agarwal
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kenneth A Michelson
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Todd W Lyons
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mark I Neuman
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Susan C Lipsett
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Amir A Kimia
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Matthew A Eisenberg
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Andrew J Capraro
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jason A Levy
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joel D Hudgins
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ben Y Reis
- Predictive Medicine Group, Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew M Fine
- Harvard Medical School, Boston, Massachusetts, USA.,Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Abstract
Importance Artificial intelligence (AI) will play an increasing role in health care. In gynecologic oncology, it can advance tailored screening, precision surgery, and personalized targeted therapies. Objective The aim of this study was to review the role of AI in gynecologic oncology. Evidence Acquisition Artificial intelligence publications in gynecologic oncology were identified by searching "gynecologic oncology AND artificial intelligence" in the PubMed database. A review of the literature was performed on the history of AI, its fundamentals, and current applications as related to diagnosis and treatment of cervical, uterine, and ovarian cancers. Results A PubMed literature search since the year 2000 showed a significant increase in oncology publications related to AI and oncology. Early studies focused on using AI to interrogate electronic health records in order to improve clinical outcome and facilitate clinical research. In cervical cancer, AI algorithms can enhance image analysis of cytology and visual inspection with acetic acid or colposcopy. In uterine cancers, AI can improve the diagnostic accuracies of radiologic imaging and predictive/prognostic capabilities of clinicopathologic characteristics. Artificial intelligence has also been used to better detect early-stage ovarian cancer and predict surgical outcomes and treatment response. Conclusions and Relevance Artificial intelligence has been shown to enhance diagnosis, refine clinical decision making, and advance personalized therapies in gynecologic cancers. The rapid adoption of AI in gynecologic oncology will depend on overcoming the challenges related to data transparency, quality, and interpretation. Artificial intelligence is rapidly transforming health care. However, many physicians are unaware that this technology is being used in their practices and could benefit from a better understanding of the statistics and computer science behind these algorithms. This review provides a summary of AI, its applicability, and its limitations in gynecologic oncology.
Collapse
|
40
|
Dzobo K. Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unraveling Genome Regulation in Humans and Infectious Agents. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:269-278. [PMID: 33904782 DOI: 10.1089/omi.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With coronavirus disease 19 (COVID-19), we have witnessed a shift from public health to planetary health and a growing recognition of the importance of systems science in developing effective solutions against pandemics in the 21st century. COVID-19 and the history of frequent infectious outbreaks in the last two decades suggest that COVID-19 is likely a dry run for future ecological crises. Now is the right time to plan ahead and deploy the armamentarium of systems science scholarship for planetary health. The science of epigenomics, which investigates both genetic and nongenetic traits regarding heritable phenotypic alterations, and new approaches to understanding genome regulation in humans and pathogens offer veritable prospects to boost the global scientific capacities to innovate therapeutics and diagnostics against novel and existing infectious agents. Several reversible epigenetic alterations, such as chromatin remodeling and histone methylation, control and influence gene expression. COVID-19 lethality is linked, in part, to the cytokine storm, age, and status of the immune system in a given person. Additionally, due to reduced human mobility and daily activities, effects of the pandemic on the environment have been both positive and negative. For example, reduction in environmental pollution and lesser extraction from nature have potential positive corollaries on water and air quality. Negative effects include pollution as plastics and other materials were disposed in unconventional places and spaces in the course of the pandemic. I discuss the opportunities and challenges associated with the science of epigenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century. In particular, this article underscores that epigenetics of both viruses and the host may influence virus infectivity and severity of attendant disease.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
|
42
|
Ramakrishna RR, Abd Hamid Z, Wan Zaki WMD, Huddin AB, Mathialagan R. Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology. PeerJ 2020; 8:e10346. [PMID: 33240655 PMCID: PMC7680049 DOI: 10.7717/peerj.10346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cells are primitive and precursor cells with the potential to reproduce into diverse mature and functional cell types in the body throughout the developmental stages of life. Their remarkable potential has led to numerous medical discoveries and breakthroughs in science. As a result, stem cell-based therapy has emerged as a new subspecialty in medicine. One promising stem cell being investigated is the induced pluripotent stem cell (iPSC), which is obtained by genetically reprogramming mature cells to convert them into embryonic-like stem cells. These iPSCs are used to study the onset of disease, drug development, and medical therapies. However, functional studies on iPSCs involve the analysis of iPSC-derived colonies through manual identification, which is time-consuming, error-prone, and training-dependent. Thus, an automated instrument for the analysis of iPSC colonies is needed. Recently, artificial intelligence (AI) has emerged as a novel technology to tackle this challenge. In particular, deep learning, a subfield of AI, offers an automated platform for analyzing iPSC colonies and other colony-forming stem cells. Deep learning rectifies data features using a convolutional neural network (CNN), a type of multi-layered neural network that can play an innovative role in image recognition. CNNs are able to distinguish cells with high accuracy based on morphologic and textural changes. Therefore, CNNs have the potential to create a future field of deep learning tasks aimed at solving various challenges in stem cell studies. This review discusses the progress and future of CNNs in stem cell imaging for therapy and research.
Collapse
Affiliation(s)
- Ramanaesh Rao Ramakrishna
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Mimi Diyana Wan Zaki
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ramya Mathialagan
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Liu W, Yang J, Bi K. Factors Influencing Private Hospitals' Participation in the Innovation of Biomedical Engineering Industry: A Perspective of Evolutionary Game Theory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7442. [PMID: 33066099 PMCID: PMC7600621 DOI: 10.3390/ijerph17207442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022]
Abstract
The innovation of the biomedical engineering (BME) industry is inseparable from its cooperation with medical institutions. China has considerable medical institutions. Although private hospitals account for more than half of Chinese medical institutions, they rarely participate in biomedical engineering industry innovation. This paper analyzed the collaborative relationship among biomedical engineering enterprises, universities, research institutes, public hospitals and private hospitals through evolutionary game theory and discussed the influence of different factors on the collaborative innovation among them. A tripartite evolutionary game model is established which regards private hospitals as a stakeholder. The results show that (1) the good credit of private hospitals has a positive effect on their participation in collaborative innovation; (2) it is helpful for BME collaborative innovation to enhance the collaborative innovation ability of partners; (3) the novelty of innovation projects has an impact on BME collaborative innovation. The specific impacts depend on the revenue, cost and risk allocation ratio of innovation partners; (4) the higher the practicability of innovation projects, the more conducive to collaborative innovation.
Collapse
Affiliation(s)
- Weiwei Liu
- School of Economics and Management, Harbin Engineering University, Harbin 150001, China; (J.Y.); (K.B.)
- Management School, Queen’s University Belfast, Belfast BT9 5EE, UK
| | - Jianing Yang
- School of Economics and Management, Harbin Engineering University, Harbin 150001, China; (J.Y.); (K.B.)
| | - Kexin Bi
- School of Economics and Management, Harbin Engineering University, Harbin 150001, China; (J.Y.); (K.B.)
- School of Management, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
44
|
Ter-Levonian AS, Koshechkin KA. Review of Machine Learning Technologies and Neural Networks in Drug Synergy Combination pharmacological research. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.49591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction: Nowadays an increase in the amount of information creates the need to replace and update data processing technologies. One of the tasks of clinical pharmacology is to create the right combination of drugs for the treatment of a particular disease. It takes months and even years to create a treatment regimen. Using machine learning (in silico) allows predicting how to get the right combination of drugs and skip the experimental steps in a study that take a lot of time and financial expenses. Gradual preparation is needed for the Deep Learning of Drug Synergy, starting from creating a base of drugs, their characteristics and ways of interacting.
Aim: Our review aims to draw attention to the prospect of the introduction of Deep Learning technology to predict possible combinations of drugs for the treatment of various diseases.
Materials and methods: Literary review of articles based on the PUBMED project and related bibliographic resources over the past 5 years (2015–2019).
Results and discussion: In the analyzed articles, Machine or Deep Learning completed the assigned tasks. It was able to determine the most appropriate combinations for the treatment of certain diseases, select the necessary regimen and doses. In addition, using this technology, new combinations have been identified that may be further involved in preclinical studies.
Conclusions: From the analysis of the articles, we obtained evidence of the positive effects of Deep Learning to select “key” combinations for further stages of preclinical research.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW In this article, we review the current state of artificial intelligence applications in retinopathy of prematurity (ROP) and provide insight on challenges as well as strategies for bringing these algorithms to the bedside. RECENT FINDINGS In the past few years, there has been a dramatic shift from machine learning approaches based on feature extraction to 'deep' convolutional neural networks for artificial intelligence applications. Several artificial intelligence for ROP approaches have demonstrated adequate proof-of-concept performance in research studies. The next steps are to determine whether these algorithms are robust to variable clinical and technical parameters in practice. Integration of artificial intelligence into ROP screening and treatment is limited by generalizability of the algorithms to maintain performance on unseen data and integration of artificial intelligence technology into new or existing clinical workflows. SUMMARY Real-world implementation of artificial intelligence for ROP diagnosis will require massive efforts targeted at developing standards for data acquisition, true external validation, and demonstration of feasibility. We must now focus on ethical, technical, clinical, regulatory, and financial considerations to bring this technology to the infant bedside to realize the promise offered by this technology to reduce preventable blindness from ROP.
Collapse
|
46
|
Huss R, Coupland SE. Software‐assisted decision support in digital histopathology. J Pathol 2020; 250:685-692. [DOI: 10.1002/path.5388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ralf Huss
- Institute of Pathology and Molecular Diagnostics University Hospital Augsburg Augsburg Germany
| | - Sarah E Coupland
- Department of Cellular and Molecular Pathology University of Liverpool Liverpool UK
| |
Collapse
|