1
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2025; 227:52-63. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
2
|
Jiwan NC, Appell CR, Sterling R, Shen CL, Luk HY. The Effect of Geranylgeraniol and Ginger on Satellite Cells Myogenic State in Type 2 Diabetic Rats. Curr Issues Mol Biol 2024; 46:12299-12310. [PMID: 39590324 PMCID: PMC11592527 DOI: 10.3390/cimb46110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with increased inflammation and reactive oxygen species (ROS) in muscles, leading to basal satellite cell (SC) myogenic impairment (i.e., reduction in SC pool), which is critical for maintaining skeletal muscle mass. T2D may contribute to muscle atrophy, possibly due to reductions in the SC pool. Geranylgeraniol (GGOH) and ginger can reduce inflammation and enhance SC myogenesis in damaged muscles, thereby alleviating muscle atrophy; however, their effect on basal SC myogenic state and muscle mass in T2D rats is limited. Rats consumed a control diet (CON), high-fat diet with 35 mg/kg of streptozotocin (HFD), a HFD with 800 mg/kg body weight of GGOH (GG), or a HFD with 0.75% ginger root extract (GRE). In the eighth week, their soleus muscles were analyzed for Pax7, MyoD, and MSTN gene and protein expression, SC myogenic state, and muscle cross-sectional area (CSA). The HFD group had a significantly lower number of Pax7+/MyoD- and Pax7+/MSTN+ cells, less Pax7 and MyoD gene expression, and less MyoD and MSTN protein expression, with a smaller CSA than the CON group. Compared to the GG and GRE groups, the HFD group had a significantly lower number of Pax7+/MSTN+ cells, less MyoD protein expression, and smaller CSA. The GRE group also had a significantly lower number of Pax7-/MyoD+ and greater MSTN protein expression than the HFD group. Nevertheless, the CON group had a significantly greater number of Pax7+/MyoD- than the GG and GRE groups, and a greater number of Pax7-/MyoD+ cells than the GRE group with a larger CSA than the GG group. GGOH and ginger persevered muscle CSA, possibly through increased MyoD and the ability to maintain the SC pool in T2D rats.
Collapse
Affiliation(s)
- Nigel C. Jiwan
- Department of Kinesiology, Hope College, Holland, MI 49423, USA;
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Casey R. Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Raoul Sterling
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| |
Collapse
|
3
|
Zhang L, Zhang S, Zou W, Hu Y, Gao Y, Zhang J, Zheng J. Maternal high-fat diet regulates offspring hepatic ABCG5 expression and cholesterol metabolism via the gut microbiota and its derived butyrate. Clin Sci (Lond) 2024; 138:1039-1054. [PMID: 39136693 DOI: 10.1042/cs20240997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Maternal high-fat diet intake has profound effects on the long-term health of offspring, predisposing them to a higher susceptibility to obesity and metabolic dysfunction-associated steatotic liver disease. However, the detailed mechanisms underlying the role of a maternal high-fat diet in hepatic lipid accumulation in offspring, especially at the weaning age, remain largely unclear. In this study, female C57BL/6J mice were randomly assigned to either a high-fat diet or a control diet, and lipid metabolism parameters were assessed in male offspring at weaning. Gut microbiota analysis and targeted metabolomics of short-chain fatty acids (SCFAs) in these offspring were further performed. Both in vivo and in vitro studies were conducted to explore the role of butyrate in hepatic cholesterol excretion in the liver and HepG2 cells. Our results showed that maternal high-fat feeding led to obesity and dyslipidemia, and exacerbated hepatic lipid accumulation in the livers of offspring at weaning. We observed significant decreases in the abundance of the Firmicutes phylum and the Allobaculum genus, known as producers of SCFAs, particularly butyrate, in the offspring of dams fed a high-fat diet. Additionally, maternal high-fat diet feeding markedly decreased serum butyrate levels and down-regulated ATP-binding cassette transporters G5 (ABCG5) in the liver, accompanied by decreased phosphorylated AMP-activated protein kinase (AMPK) and histone deacetylase 5 (HADC5) expressions. Subsequent in vitro studies revealed that butyrate could induce ABCG5 activation and alleviate lipid accumulation via the AMPK-pHDAC5 pathway in HepG2 cells. Moreover, knockdown of HDAC5 up-regulated ABCG5 expression and promoted cholesterol excretion in HepG2 cells. In conclusion, our study provides novel insights into how maternal high-fat diet feeding inhibits hepatic cholesterol excretion and down-regulates ABCG5 through the butyrate-AMPK-pHDAC5 pathway in offspring at weaning.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Shixuan Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing 100034, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
4
|
Pinckard KM, Félix-Soriano E, Hamilton S, Terentyeva R, Baer LA, Wright KR, Nassal D, Esteves JV, Abay E, Shettigar VK, Ziolo MT, Hund TJ, Wold LE, Terentyev D, Stanford KI. Maternal exercise preserves offspring cardiovascular health via oxidative regulation of the ryanodine receptor. Mol Metab 2024; 82:101914. [PMID: 38479548 PMCID: PMC10965826 DOI: 10.1016/j.molmet.2024.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.
Collapse
Affiliation(s)
- Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Radmila Terentyeva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Drew Nassal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
5
|
Koenig JB, Burnett LA. Understanding the Role of Obesity and Metabolism in Pelvic Floor Disorders. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:389-393. [PMID: 38564623 DOI: 10.1097/spv.0000000000001478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Jenny B Koenig
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | |
Collapse
|
6
|
Dlamini M, Khathi A. Prediabetes-Associated Changes in Skeletal Muscle Function and Their Possible Links with Diabetes: A Literature Review. Int J Mol Sci 2023; 25:469. [PMID: 38203642 PMCID: PMC10778616 DOI: 10.3390/ijms25010469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The skeletal muscle plays a critical role in regulating systemic blood glucose homeostasis. Impaired skeletal muscle glucose homeostasis associated with type 2 diabetes mellitus (T2DM) has been observed to significantly affect the whole-body glucose homeostasis, thereby resulting in other diabetic complications. T2DM does not only affect skeletal muscle glucose homeostasis, but it also affects skeletal muscle structure and functional capacity. Given that T2DM is a global health burden, there is an urgent need to develop therapeutic medical therapies that will aid in the management of T2DM. Prediabetes (PreDM) is a prominent risk factor of T2DM that usually goes unnoticed in many individuals as it is an asymptomatic condition. Hence, research on PreDM is essential because establishing diabetic biomarkers during the prediabetic state would aid in preventing the development of T2DM, as PreDM is a reversible condition if it is detected in the early stages. The literature predominantly documents the changes in skeletal muscle during T2DM, but the changes in skeletal muscle during prediabetes are not well elucidated. In this review, we seek to review the existing literature on PreDM- and T2DM-associated changes in skeletal muscle function.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| |
Collapse
|
7
|
Kim J, Choi A, Kwon YH. Maternal low-protein diet alters hepatic lipid accumulation and gene expression related to glucose metabolism in young adult mouse offspring fed a postweaning high-fat diet. Biochem Biophys Res Commun 2023; 682:193-198. [PMID: 37820455 DOI: 10.1016/j.bbrc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Maternal consumption of low-protein (LP) diet during pregnancy has been demonstrated to increase the chances of adult offspring developing metabolic syndrome, and this risk can be exacerbated when the postnatal diets do not align with the prenatal conditions. However, in our previous study, focusing on serum parameters and gene expression patterns within adipose tissue, we discovered the presence of "healthy obesity" in young adult offspring from dams that were fed an LP, as a response to a postweaning high-fat (HF) diet. Here, we subsequently investigated the role played by the liver and skeletal muscle in alleviation of insulin resistance in male offspring that were fed either control (C/C group) or HF diet (C/HF and LP/HF groups) for 22 weeks. While a postweaning HF diet increased liver weight and hepatic triglyceride (TG) and cholesterol levels in offspring of control dams, these levels were lower in the LP/HF group compared to the C/HF group. Analysis of the liver transcriptome identified 430 differentially expressed genes (DEGs) in the LP/HF and C/HF comparison. Especially, downregulated DEGs were enriched in carbohydrate metabolism and the levels of DEGs were significantly correlated with the levels of markers for serum glucose homeostasis and hepatic lipid accumulation. In the LP/HF group compared to the C/HF group, there was a decrease in the gastrocnemius muscle weight, while no differences were observed in gene expression levels associated with muscle fiber phenotype, mitochondrial function, and inflammation. In conclusion, maternal LP diet induced changes in lipid and glucose metabolism within the liver, similar to what was observed in adipose tissue, while there were no alterations in metabolic functions in the skeletal muscle in young offspring mice fed an HF diet. Further research that investigating the enduring impact of nutritional transition on offspring is essential to gain a comprehensive grasp of developmental programming throughout their entire lifespan.
Collapse
Affiliation(s)
- Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea; Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
8
|
Potes Y, Díaz-Luis A, Bermejo-Millo JC, Pérez-Martínez Z, de Luxán-Delgado B, Rubio-González A, Menéndez-Valle I, Gutiérrez-Rodríguez J, Solano JJ, Caballero B, Vega-Naredo I, Coto-Montes A. Melatonin Alleviates the Impairment of Muscle Bioenergetics and Protein Quality Control Systems in Leptin-Deficiency-Induced Obesity. Antioxidants (Basel) 2023; 12:1962. [PMID: 38001815 PMCID: PMC10669624 DOI: 10.3390/antiox12111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid β-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Andrea Díaz-Luis
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Juan C. Bermejo-Millo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Zulema Pérez-Martínez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Beatriz de Luxán-Delgado
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Iván Menéndez-Valle
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
- Immunology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Juan J. Solano
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| |
Collapse
|
9
|
Ahmadzadeh‐Gavahan L, Hosseinkhani A, Hamidian G, Jarolmasjed S, Yousefi‐Tabrizi R. Restricted maternal nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride during late pregnancy does not affect muscle fibre characteristics of offspring. Vet Med Sci 2023; 9:2260-2268. [PMID: 37556348 PMCID: PMC10508547 DOI: 10.1002/vms3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Grazing in arid and semi-arid regions faces pregnant ewes with feed restrictions and hence affects the offspring muscle fibre characteristics. Using feed additives that enhance nutrient availability during foetal muscle development is expected to alter offspring skeletal muscle characteristics. OBJECTIVES This study evaluated the effect of maternal restricted nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride on lamb's muscle fibre characteristics. METHODS Forty-eight Ghezel ewes were randomly allocated to one of six diets (N = 8) during the last 6 weeks of gestation: ad libitum feed intake (AL); restricted feeding (RF); restricted feeding containing propylene glycol (PG); restricted feeding containing propylene glycol and monensin sodium (MS); restricted feeding containing propylene glycol and rumen-protected choline chloride (RPC); restricted feeding containing propylene glycol, monensin sodium and rumen-protected choline chloride (PMC). The muscle samples were obtained from the semitendinosus muscle of 2-week-old male lambs (n = 5/treatment) via biopsy and were stained and classified as fibre types I, IIA and IIB. RESULTS Pre-parturient maternal feed restriction and administration of propylene glycol, monensin sodium and rumen-protected choline chloride had no significant effect on fibre-type composition, fibre density of muscle, muscle cross-sectional area and volume density of fibres (p > 0.05). CONCLUSIONS Either maternal dietary restriction or supplementation of nutrient flux-involved additives during late pregnancy did not alter muscle fibre development and had no short-term effects on muscle properties of the resulting offspring as myogenesis occurs in early and mid-gestation, not late gestation. Therefore, maternal nutrition may not be a problematic issue in sheep production in arid and semi-arid areas.
Collapse
Affiliation(s)
| | - Ali Hosseinkhani
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | | | - Reza Yousefi‐Tabrizi
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
10
|
Acosta FM, Pacelli S, Rathbone CR. Diabetes diminishes muscle precursor cell-mediated microvascular angiogenesis. PLoS One 2023; 18:e0289477. [PMID: 37540699 PMCID: PMC10403078 DOI: 10.1371/journal.pone.0289477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023] Open
Abstract
The skeletal muscles of Type II diabetic (T2D) patients can be characterized by a reduced vessel density, corresponding to deficiencies in microvascular angiogenesis. Interestingly, T2D also inhibits the function of many myogenic cells resident within skeletal muscle, including satellite cells, which are well-known for the role they play in maintaining homeostasis. The current study was undertaken to gain a better understanding of the mechanisms whereby satellite cell progeny, muscle precursor cells (MPCs), influence microvascular angiogenesis. Network growth and the expression of genes associated with angiogenesis were reduced when microvessels were treated with conditioned media generated by proliferating MPCs isolated from diabetic, as compared to control rat skeletal muscle, a phenomenon that was also observed when myoblasts from control or diabetic human skeletal muscle were used. When only exosomes derived from diabetic or control MPCs were used to treat microvessels, no differences in microvascular growth were observed. An evaluation of the angiogenesis factors in control and diabetic MPCs revealed differences in Leptin, vascular endothelial growth factor (VEGF), IL1-β, interleukin 10, and IP-10, and an evaluation of the MPC secretome revealed differences in interleukin 6, MCP-1, VEGF, and interleukin 4 exist. Angiogenesis was also reduced in tissue-engineered skeletal muscles (TE-SkM) containing microvessels when they were generated from MPCs isolated from diabetic as compared to control skeletal muscle. Lastly, the secretome of injured control, but not diabetic, TE-SkM was able to increase VEGF and increase microvascular angiogenesis. This comprehensive analysis of the interaction between MPCs and microvessels in the context of diabetes points to an area for alleviating the deleterious effects of diabetes on skeletal muscle.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX, United States of America
| | - Settimio Pacelli
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Christopher R. Rathbone
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX, United States of America
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
11
|
Shao T, McCann JC, Shike DW. Effects of Late Gestation Supplements Differing in Fatty Acid Amount and Profile to Beef Cows on Cow Performance, Steer Progeny Growth Performance through Weaning, and Relative mRNA Expression of Genes Associated with Muscle and Adipose Tissue Development. Animals (Basel) 2023; 13:ani13030437. [PMID: 36766325 PMCID: PMC9913262 DOI: 10.3390/ani13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Strategic supplementation during late gestation has the potential to alter progeny performance. Mature fall-calving Simmental × Angus cows were used to evaluate the effects of late gestation supplementation of fatty acids to beef cows on cow performance, steer progeny growth performance during pre-weaning and backgrounding periods, and relative mRNA expression of genes associated with myogenesis and adipogenesis. Cows (n = 190; 4 pasture groups of cows/treatment) grazed endophyte-infected tall fescue and were supplemented during late gestation with calcium salts of either saturated fatty acid/monounsaturated fatty acid (SFA/MUFA), polyunsaturated fatty acid (PUFA), or an isocaloric and isonitrogenous control (CON). There were no differences (p ≥ 0.11) in cow body weight (BW) or body condition scores from pre-supplementation to weaning or steer BW at birth, weaning, or at the end of the backgrounding period. Concentrations of C18:2n-6 in plasma were greater (p = 0.01) in SFA/MUFA and PUFA cows compared to CON cows during supplementation. For mRNA expression in the longissimus muscle of steer progeny from birth to weaning: PAX7 decreased to a greater (p < 0.01) extent for SFA/MUFA and PUFA steers; AGPAT1 and CPT1 increased to a greater (p ≤ 0.02) extent for CON steers. The expression of MYH7 mRNA during the pre-weaning period was greater (p = 0.01) in PUFA. In conclusion, late gestation fatty acid supplementation modified plasma relative concentrations of fatty acids for dams and progeny and modified mRNA expression of genes related to myogenesis and adipogenesis but had limited effects on progeny growth performance during pre-weaning and backgrounding periods.
Collapse
|
12
|
Emerald BS, Al Jailani MA, Ibrahim MF, Kumar CA, Allouh MZ. Cellular and Molecular Variations in Male and Female Murine Skeletal Muscle after Long-Term Feeding with a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23179547. [PMID: 36076943 PMCID: PMC9455932 DOI: 10.3390/ijms23179547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Current information regarding the effects of a high-fat diet (HFD) on skeletal muscle is contradictory. This study aimed to investigate the effects of a long-term HFD on skeletal muscle in male and female mice at the morphological, cellular, and molecular levels. Adult mice of the C57BL/6 strain were fed standard chow or an HFD for 20 weeks. The tibialis anterior muscles were dissected, weighed, and processed for cellular and molecular analyses. Immunocytochemical and morphometric techniques were applied to quantify fiber size, satellite cells (SCs), and myonuclei. Additionally, PCR array and RT-qPCR tests were performed to determine the expression levels of key muscle genes. Muscles from HFD mice showed decreases in weight, SCs, and myonuclei, consistent with the atrophic phenotype. This atrophy was associated with a decrease in the percentage of oxidative fibers within the muscle. These findings were further confirmed by molecular analyses that showed significant reductions in the expression of Pax7, Myh1, and Myh2 genes and increased Mstn gene expression. Male and female mice showed similar trends in response to HFD-induced obesity. These findings indicate that the long-term effects of obesity on skeletal muscle resemble those of age-related sarcopenia.
Collapse
|
13
|
Effects of Supplements Differing in Fatty Acid Profile to Late Gestational Beef Cows on Steer Progeny Finishing Phase Growth Performance, Carcass Characteristics, and mRNA Expression of Myogenic and Adipogenic Genes. Animals (Basel) 2021; 11:ani11071904. [PMID: 34206801 PMCID: PMC8300423 DOI: 10.3390/ani11071904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The objective was to investigate the effects of feeding late gestational beef cows supplements differing in fatty acid profile on steer progeny finishing phase growth performance, carcass characteristics, and relative mRNA expression of myogenic and adipogenic genes. Seventy Angus-cross steers (initial body weight [BW] 273 ± 34 kg) born from dams supplemented with either 155 g DM/d EnerGII (CON, rich in palmitic and oleic acids) or 80 g DM/d Strata + 80 g DM/d Prequel (PUFA, rich in linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid) for the last 77 ± 6 d prepartum were used. Longissimus muscle and subcutaneous adipose biopsies were collected to evaluate relative mRNA expression of genes related to myogenesis and adipogenesis. Steers were slaughtered at 423 ± 6 d of age. No treatment × time interaction or treatment effect (p ≥ 0.21) was detected for steer finishing phase BW, while steers from PUFA supplemented dams tended (p = 0.06) to have a greater gain to feed ratio (G:F). Neither carcass characteristics nor relative mRNA expression was different (p ≥ 0.11). In conclusion, late gestation PUFA supplementation tended to increase steer progeny finishing phase G:F, but had no effects on finishing phase BW, carcass characteristics, or relative mRNA expression during the finishing phase.
Collapse
|
14
|
Shao T, Ireland FA, McCann JC, Shike DW. Effects of supplements differing in fatty acid profile to late gestational beef cows on cow performance, calf growth performance, and mRNA expression of genes associated with myogenesis and adipogenesis. J Anim Sci Biotechnol 2021; 12:67. [PMID: 34120653 PMCID: PMC8201839 DOI: 10.1186/s40104-021-00588-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Maternal nutrition during gestation affects fetal development, which has long-term programming effects on offspring postnatal growth performance. With a critical role in protein and lipid metabolism, essential fatty acids can influence the development of muscle and adipose tissue. The experiment investigated the effects of late gestation supplements (77 d prepartum), either rich in saturated and monounsaturated fatty acids (CON; 155 g/cow/d EnerGII) or polyunsaturated fatty acids (PUFA; 80 g/cow/d Strata and 80 g/cow/d Prequel), on cow performance and subsequent calf growth performance as well as mRNA expression in longissimus muscle (LM) and subcutaneous adipose tissue at birth and weaning. Results There was no difference (P ≥ 0.34) in cow body weight (BW) or body condition score from pre-supplementation through weaning. Relative concentrations of C18:3n-3 and C20:4n-6 decreased (P ≤ 0.05) to a greater extent from mid-supplementation to calving for PUFA compared with CON cows. Cow plasma C20:0, C20:5n-3, and C22:6n-3 were increased (P ≤ 0.01) in PUFA during supplementation period. At birth, PUFA steers had greater (P = 0.01) plasma C20:5n-3. No differences (P ≥ 0.33) were detected in steer birth BW or dam milk production, however, CON steers tended (P = 0.06) to have greater pre-weaning average daily gain and had greater (P = 0.05) weaning BW compared with PUFA. For mRNA expression in steers: MYH7 and C/EBPβ in LM increased (P ≤ 0.04) to a greater extent from birth to weaning for PUFA compared with CON; MYF5 in LM and C/EBPβ in adipose tissue tended (P ≤ 0.08) to decrease more from birth to weaning for CON compared with PUFA; SCD in PUFA adipose tissue tended (P = 0.08) to decrease to a greater extent from birth to weaning than CON. In addition, maternal PUFA supplementation tended (P = 0.08) to decrease MYOG mRNA expression in LM and decreased (P = 0.02) ZFP423 in adipose tissue during the pre-weaning stage. Conclusions Late gestation PUFA supplementation decreased pre-weaning growth performance of the subsequent steer progeny compared with CON supplementation, which could have been a result of downregulated mRNA expression of myogenic genes during pre-weaning period. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00588-w.
Collapse
Affiliation(s)
- Taoqi Shao
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frank A Ireland
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
15
|
Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021; 31:9743. [PMID: 33733717 PMCID: PMC8056169 DOI: 10.4081/ejtm.2021.9743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
On 19-21 November 2020, the meeting of the 30 years of the Padova Muscle Days was virtually held while the SARS-CoV-2 epidemic was hitting the world after a seemingly quiet summer. During the 2020-2021 winter, the epidemic is still active, despite the start of vaccinations. The organizers hope to hold the 2021 Padua Days on Myology and Mobility Medicine in a semi-virtual form (2021 S-V PDM3) from May 26 to May 29 at the Thermae of Euganean Hills, Padova, Italy. Here the program and the Collection of Abstracts are presented. Despite numerous world problems, the number of submitted/selected presentations (lectures and oral presentations) has increased, prompting the organizers to extend the program to four dense days.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences of the University of Padova, Italy; CIR-Myo - Myology Centre, University of Padova, Italy; A-C Mioni-Carraro Foundation for Translational Myology, Padova.
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
16
|
Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood. Int J Mol Sci 2020; 21:ijms21249459. [PMID: 33322681 PMCID: PMC7763900 DOI: 10.3390/ijms21249459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Postnatal growth restriction (PGR) increases the risk for cardiovascular disease (CVD) in adulthood, yet there is minimal mechanistic rationale for the observed pathology. The purpose of this study was to identify proteomic differences in hearts of growth-restricted and unrestricted mice, and propose mechanisms related to impairment in adulthood. Friend leukemia virus B (FVB) mouse dams were fed a control (CON: 20% protein), or low-protein (LP: 8% protein) isocaloric diet 2 weeks before mating. LP dams produce 20% less milk, inducing growth restriction. At birth (postnatal; PN1), pups born to dams fed the CON diet were switched to LP dams (PGR group) or a different CON dam. At PN21, a sub-cohort of CON (n = 3 males; n = 3 females) and PGR (n = 3 males; n = 3 females) were euthanized and their proteome analyzed by two-dimensional differential in-gel electrophoresis (2D DIGE) and mass spectroscopy. Western blotting and silver nitrate staining confirmed 2D DIGE results. Littermates (CON: n = 4 males and n = 4 females; PGR: n = 4 males and n = 4 females) were weaned to the CON diet. At PN77, echocardiography measured cardiac function. At PN80, hearts were removed for western blotting to determine if differences persisted into adulthood. 2D DIGE and western blot confirmation indicated PGR had reductions in p57kip2, Titin (Ttn), and Collagen (Col). At PN77, PGR had impaired cardiac function as measured by echocardiography. At PN80, western blots of p57kip2 showed protein abundance recovered from PN21. PN80 silver staining of large molecular weight proteins (Ttn and Col) was reduced in PGR. PGR reduces cell cycle activity at PN21, which is recovered in adulthood. However, collagen fiber networks are altered into adulthood.
Collapse
|
17
|
Mikovic J, Brightwell C, Lindsay A, Wen Y, Kowalski G, Russell AP, Fry CS, Lamon S. An obesogenic maternal environment impairs mouse growth patterns, satellite cell activation, and markers of postnatal myogenesis. Am J Physiol Endocrinol Metab 2020; 319:E1008-E1018. [PMID: 32954829 DOI: 10.1152/ajpendo.00398.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle is sensitive to environmental cues that are first present in utero. Maternal overnutrition is a model of impaired muscle development leading to structural and metabolic dysfunction in adult life. In this study, we investigated the effect of an obesogenic maternal environment on growth and postnatal myogenesis in the offspring. Male C57BL/6J mice born to chow- or high-fat-diet-fed mothers were allocated to four different groups at the end of weaning. For the following 10 wk, half of the pups were maintained on the same diet as their mother and half of the pups were switched to the other diet (chow or high-fat). At 12 wk of age, muscle injury was induced using an intramuscular injection of barium chloride. Seven days later, mice were humanely killed and muscle tissue was harvested. A high-fat maternal diet impaired offspring growth patterns and downregulated satellite cell activation and markers of postnatal myogenesis 7 days after injury without altering the number of newly synthetized fibers over the whole 7-day period. Importantly, a healthy postnatal diet could not reverse any of these effects. In addition, we demonstrated that postnatal myogenesis was associated with a diet-independent upregulation of three miRNAs, mmu-miR-31-5p, mmu-miR-136-5p, and mmu-miR-296-5p. Furthermore, in vitro analysis confirmed the role of these miRNAs in myocyte proliferation. Our findings are the first to demonstrate that maternal overnutrition impairs markers of postnatal myogenesis in the offspring and are particularly relevant to today's society where the incidence of overweight/obesity in women of childbearing age is increasing.
Collapse
Affiliation(s)
- Jasmine Mikovic
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Camille Brightwell
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Yuan Wen
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Greg Kowalski
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Christopher S Fry
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
18
|
Maternal undernutrition affects secondary myogenesis in a muscle-dependent way across the major muscles of 70-day old ovine fetuses. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Calcaterra V, Regalbuto C, Porri D, Pelizzo G, Mazzon E, Vinci F, Zuccotti G, Fabiano V, Cena H. Inflammation in Obesity-Related Complications in Children: The Protective Effect of Diet and Its Potential Role as a Therapeutic Agent. Biomolecules 2020; 10:E1324. [PMID: 32947869 PMCID: PMC7564478 DOI: 10.3390/biom10091324] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is a growing health problem in both children and adults, impairing physical and mental state and impacting health care system costs in both developed and developing countries. It is well-known that individuals with excessive weight gain frequently develop obesity-related complications, which are mainly known as Non-Communicable Diseases (NCDs), including cardiovascular disease, type 2 diabetes mellitus, metabolic syndrome, non-alcoholic fatty liver disease, hypertension, hyperlipidemia and many other risk factors proven to be associated with chronic inflammation, causing disability and reduced life expectancy. This review aims to present and discuss complications related to inflammation in pediatric obesity, the critical role of nutrition and diet in obesity-comorbidity prevention and treatment, and the impact of lifestyle. Appropriate early dietary intervention for the management of pediatric overweight and obesity is recommended for overall healthy growth and prevention of comorbidities in adulthood.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
| | - Corrado Regalbuto
- Pediatric Unit, Fond. IRCCS Policlinico S. Matteo and University of Pavia, 27100 Pavia, Italy; (C.R.); (F.V.)
| | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (D.P.); (H.C.)
| | - Gloria Pelizzo
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
- Pediatric Surgery Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy;
| | - Federica Vinci
- Pediatric Unit, Fond. IRCCS Policlinico S. Matteo and University of Pavia, 27100 Pavia, Italy; (C.R.); (F.V.)
| | - Gianvincenzo Zuccotti
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
| | - Valentina Fabiano
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (D.P.); (H.C.)
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
20
|
Harris JE, Pinckard KM, Wright KR, Baer LA, Arts PJ, Abay E, Shettigar VK, Lehnig AC, Robertson B, Madaris K, Canova TJ, Sims C, Goodyear LJ, Andres A, Ziolo MT, Bode L, Stanford KI. Exercise-induced 3'-sialyllactose in breast milk is a critical mediator to improve metabolic health and cardiac function in mouse offspring. Nat Metab 2020; 2:678-687. [PMID: 32694823 PMCID: PMC7438265 DOI: 10.1038/s42255-020-0223-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
Poor maternal environments, such as under- or overnutrition, can increase the risk for the development of obesity, type 2 diabetes and cardiovascular disease in offspring1-9. Recent studies in animal models have shown that maternal exercise before and during pregnancy abolishes the age-related development of impaired glucose metabolism10-15, decreased cardiovascular function16 and increased adiposity11,15; however, the underlying mechanisms for maternal exercise to improve offspring's health have not been identified. In the present study, we identify an exercise-induced increase in the oligosaccharide 3'-sialyllactose (3'-SL) in milk in humans and mice, and show that the beneficial effects of maternal exercise on mouse offspring's metabolic health and cardiac function are mediated by 3'-SL. In global 3'-SL knockout mice (3'-SL-/-), maternal exercise training failed to improve offspring metabolic health or cardiac function in mice. There was no beneficial effect of maternal exercise on wild-type offspring who consumed milk from exercise-trained 3'-SL-/- dams, whereas supplementing 3'-SL during lactation to wild-type mice improved metabolic health and cardiac function in offspring during adulthood. Importantly, supplementation of 3'-SL negated the detrimental effects of a high-fat diet on body composition and metabolism. The present study reveals a critical role for the oligosaccharide 3'-SL in milk to mediate the effects of maternal exercise on offspring's health. 3'-SL supplementation is a potential therapeutic approach to combat the development of obesity, type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Johan E Harris
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peter J Arts
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Adam C Lehnig
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bianca Robertson
- Department of Pediatrics and Larsson-Rosenquist-Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Kendra Madaris
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tyler J Canova
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Clark Sims
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist-Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Geiger AE, Daughtry MR, Yen C, Kirkpatrick LT, Shi H, Gerrard DE. Dual effects of obesity on satellite cells and muscle regeneration. Physiol Rep 2020; 8:e14511. [PMID: 32776502 PMCID: PMC7415910 DOI: 10.14814/phy2.14511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a complex metabolic disorder that often leads to a decrease in insulin sensitivity, chronic inflammation, and overall decline in human health and well-being. In mouse skeletal muscle, obesity has been shown to impair muscle regeneration after injury; however, the mechanism underlying these changes has yet to be determined. To test whether there is a negative impact of obesity on satellite cell (SC) decisions and behaviors, we fed C57BL/6 mice normal chow (NC, control) or a high-fat diet (HFD) for 10 weeks and performed SC proliferation and differentiation assays in vitro. SCs from HFD mice formed colonies with smaller size (p < .001) compared to those from NC mice, and this decreased proliferation was confirmed (p < .05) by BrdU incorporation. Moreover, in vitro assays showed that HFD SCs exhibited diminished (p < .001) fusion capacity compared to NC SCs. In single fiber explants, a higher ratio of SCs experienced apoptotic events (p < .001) in HFD mice compared to that of NC-fed mice. In vivo lineage tracing using H2B-GFP mice showed that SCs from HFD treatment also cycled faster (p < .001) than their NC counterparts. In spite of all these autonomous cellular effects, obesity as triggered by high-fat feeding did not significantly impair muscle regeneration in vivo, as reflected by the comparable cross-sectional area (p > .05) of the regenerating fibers in HFD and NC muscles, suggesting that other factors may mitigate the negative impact of obesity on SCs properties.
Collapse
Affiliation(s)
- Ashley E. Geiger
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Morgan R. Daughtry
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Con‐Ning Yen
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Laila T. Kirkpatrick
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Hao Shi
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - David E. Gerrard
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| |
Collapse
|
22
|
Zheng J, Zhang L, Wang Z, Zhang J. Maternal high-fat diet regulates glucose metabolism and pancreatic β cell phenotype in mouse offspring at weaning. PeerJ 2020; 8:e9407. [PMID: 32607287 PMCID: PMC7316079 DOI: 10.7717/peerj.9407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Background Maternal malnutrition is a critical factor in determining the risk of obesity and glucose intolerance in offspring. However, little is known about the effects of a maternal high-fat diet (HFD) on the β cell phenotype in offspring, which is a major factor in glucose homeostasis, especially during the early life of offspring. Methods Dams were randomly fed a HFD (60% kcal from fat) or a chow diet before pregnancy and during gestation and lactation. Glucose metabolism and the β cell phenotype were assessed in male offspring at weaning. Results Dams fed a HFD showed impaired glucose tolerance. A HFD predisposed the offspring to increased impairment of metabolic health, including obesity, glucose intolerance and insulin resistance, compared with offspring from chow diet-fed dams. Furthermore, increased islet sizes and islet densities were observed in male offspring from HFD-fed dams at weaning. There were increases in the insulin-positive area, β cell mass and β cell proliferation in male offspring from HFD-fed dams at weaning age. Next, we further determined whether a maternal HFD could affect β cell apoptosis in mouse offspring and found that there was no significant change in β cell apoptosis between the HFD and control groups. Conclusion Our study is novel in showing that a maternal HFD predisposes offspring to impaired glucose metabolism and has a profound effect on β cell mass and proliferation in offspring mice, which is observed in mice as early as at weaning age. However, further study to clarify the underlying mechanisms is warranted.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ziwei Wang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
23
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
24
|
Dungan CM, Peck BD, Walton RG, Huang Z, Bamman MM, Kern PA, Peterson CA. In vivo analysis of γH2AX+ cells in skeletal muscle from aged and obese humans. FASEB J 2020; 34:7018-7035. [PMID: 32246795 DOI: 10.1096/fj.202000111rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
Over the past 20 years, various identifiers of cellular senescence have been used to quantify the abundance of these cells in different tissues. These include classic markers such as p16, senescence-associated β-gal, and γH2AX, in addition to more recent markers (Sudan Black B and HMGB1). In vivo data on the usefulness of these markers in skeletal muscle are very limited and inconsistent. In the present study, we attempted to identify senescent cells in frozen human skeletal muscle biopsies using these markers to determine the effects of age and obesity on senescent cell burden; however, we were only able to assess the abundance of DNA-damaged nuclei using γH2AX immunohistochemistry. The abundance of γH2AX+ cells, including satellite cells, was not higher in muscle from old compared to young individuals; however, γH2AX+ cells were higher with obesity. Additionally, terminally differentiated, postmitotic myofiber nuclei from obese individuals had elevated γH2AX abundance compared to muscle from lean individuals. Analyses of gene expression support the conclusion that the elevated DNA damage and the senescence-associated secretory phenotype are preferentially associated with obesity in skeletal muscle. These data implicate obesity as a larger contributor to DNA damage in skeletal muscle than aging; however, more sensitive senescence markers for human skeletal muscle are needed to determine if these cells are in fact senescent.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - R Grace Walton
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Zhengyan Huang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama, Birmingham, AL, USA.,Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Philip A Kern
- Department of Internal Medicine/Endocrinology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
25
|
Pendergrast LA, Leszczynski EC, Visker JR, Triplett AN, Ferguson DP. Early life undernutrition reduces maximum treadmill running capacity in adulthood in mice. Appl Physiol Nutr Metab 2020; 45:240-250. [DOI: 10.1139/apnm-2019-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Undernutrition during early life causes chronic disease with specific impairments to the heart and skeletal muscle. The purpose of this study was to determine the effects of early life undernutrition on adult exercise capacity as a result of cardiac and skeletal muscle function. Pups were undernourished during gestation (GUN) or lactation (PUN) using a cross-fostering nutritive mouse model. At postnatal day 21, all mice were weaned and refed a control diet. At postnatal day 67, mice performed a maximal treadmill test. Echocardiography and Doppler blood flow analysis was performed at postnatal day 72, following which skeletal muscle cross-sectional area (CSA) and fiber type were determined. Maximal running capacity was reduced (diet: P = 0.0002) in GUN and PUN mice. Left ventricular mass (diet: P = 0.03) and posterior wall thickness during systole (diet × sex: P = 0.03) of GUN and PUN mice was reduced, causing PUN mice to have reduced (diet: P = 0.04) stroke volume. Heart rate of GUN mice showed a trend (diet: P = 0.07) towards greater resting values than other groups. PUN mice had greater CSA of soleus fibers. PUN had a reduced (diet: P = 0.03) proportion of type-IIX fibers in the extensor digitorum longus (EDL) and a greater (diet: P = 0.008) percentage of type-IIB fibers in the EDL. In conclusion, gestational and postnatal undernourishment impairs exercise capacity.
Collapse
Affiliation(s)
- Logan A. Pendergrast
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Eric C. Leszczynski
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph R. Visker
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Ashley N. Triplett
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - David P. Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Broholm C, Ribel-Madsen R, Hjort L, Olsson AH, Ahlers JMD, Hansen NS, Schrölkamp M, Gillberg L, Perfilyev A, Volkov P, Ling C, Jørgensen SW, Mortensen B, Hingst J, Wojtaszewski J, Scheele C, Brøns C, Pedersen BK, Vaag A. Epigenome- and Transcriptome-wide Changes in Muscle Stem Cells from Low Birth Weight Men. Endocr Res 2020; 45:58-71. [PMID: 31566019 DOI: 10.1080/07435800.2019.1669160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells.Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements.After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake.Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.
Collapse
Affiliation(s)
- Christa Broholm
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Line Hjort
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Henrik Olsson
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | | | - Ninna Schiøler Hansen
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish PhD School of Molecular Metabolism, Odense, Denmark
| | - Maren Schrölkamp
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | - Linn Gillberg
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | - Alexander Perfilyev
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, CRC, Malmo, Sweden
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, CRC, Malmo, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, CRC, Malmo, Sweden
| | | | | | - Janne Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sport, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sport, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Brøns
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Allan Vaag
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
27
|
Purohit G, Dhawan J. Adult Muscle Stem Cells: Exploring the Links Between Systemic and Cellular Metabolism. Front Cell Dev Biol 2019; 7:312. [PMID: 31921837 PMCID: PMC6915107 DOI: 10.3389/fcell.2019.00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that metabolites are important regulators of skeletal muscle stem cell (MuSC) function and fate. While highly proliferative in early life, MuSCs reside in adult skeletal muscle tissue in a quiescent and metabolically depressed state, but are critical for the homeostatic maintenance and regenerative response of the tissue to damage. It is well established that metabolic activity in MuSC changes with their functional activation, but the spatiotemporal links between physiological metabolism and stem cell metabolism require explicit delineation. The quiescent MuSC is defined by a specific metabolic state, which is controlled by intrinsic and extrinsic factors during physiological and pathological tissue dynamics. However, the extent of tissue and organismal level changes driven by alteration in metabolic state of quiescent MuSC is currently not well defined. In addition to their role as biosynthetic precursors and signaling molecules, metabolites are key regulators of epigenetic mechanisms. Emerging evidence points to metabolic control of epigenetic mechanisms in MuSC and their impact on muscle regenerative capacity. In this review, we explore the links between cell-intrinsic, tissue level, and systemic metabolic state in the context of MuSC metabolic state, quiescence, and tissue homeostasis to highlight unanswered questions.
Collapse
Affiliation(s)
- Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, India
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW A growing body of epidemiological and experimental data indicate that nutritional or environmental stressors during early development can induce long-term adaptations that increase risk of obesity, diabetes, cardiovascular disease, and other chronic conditions-a phenomenon termed "developmental programming." A common phenotype in humans and animal models is altered body composition, with reduced muscle and bone mass, and increased fat mass. In this review, we summarize the recent literature linking prenatal factors to future body composition and explore contributing mechanisms. RECENT FINDINGS Many prenatal exposures, including intrauterine growth restriction, extremes of birth weight, maternal obesity, and maternal diabetes, are associated with increased fat mass, reduced muscle mass, and decreased bone density, with effects reported throughout infancy and childhood, and persisting into middle age. Mechanisms and mediators include maternal diet, breastmilk composition, metabolites, appetite regulation, genetic and epigenetic influences, stem cell commitment and function, and mitochondrial metabolism. Differences in body composition are a common phenotype following disruptions to the prenatal environment, and may contribute to developmental programming of obesity and diabetes risk.
Collapse
Affiliation(s)
- Elvira Isganaitis
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Research Division, Joslin Diabetes Center, 1 Joslin Place, Room 655A, Boston, 02215, MA, USA.
| |
Collapse
|
29
|
Potes Y, Pérez-Martinez Z, Bermejo-Millo JC, Rubio-Gonzalez A, Fernandez-Fernández M, Bermudez M, Arche JM, Solano JJ, Boga JA, Oliván M, Caballero B, Vega-Naredo I, Coto-Montes A. Overweight in the Elderly Induces a Switch in Energy Metabolism that Undermines Muscle Integrity. Aging Dis 2019; 10:217-230. [PMID: 31011474 PMCID: PMC6457058 DOI: 10.14336/ad.2018.0430] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Aging is characterized by a progressive loss of skeletal muscle mass and function (sarcopenia). Obesity exacerbates age-related decline and lead to frailty. Skeletal muscle fat infiltration increases with aging and seems to be crucial for the progression of sarcopenia. Additionally, skeletal muscle plasticity modulates metabolic adaptation to different pathophysiological situations. Thus, cellular bioenergetics and mitochondrial profile were studied in the skeletal muscle of overweight aged people without reaching obesity to prevent this extreme situation. Overweight aged muscle lacked ATP production, as indicated by defects in the phosphagen system, glycolysis and especially mostly by oxidative phosphorylation metabolic pathway. Overweight subjects exhibited an inhibition of mitophagy that was linked to an increase in mitochondrial biogenesis that underlies the accumulation of dysfunctional mitochondria and encourages the onset of sarcopenia. As a strategy to maintain cellular homeostasis, overweight subjects experienced a metabolic switch from oxidative to lactic acid fermentation metabolism, which allows continued ATP production under mitochondrial dysfunction, but without reaching physiological aged basal levels. This ATP depletion induced early signs of impaired contractile function and a decline in skeletal muscle structural integrity, evidenced by lower levels of filamin C. Our findings reveal the main effector pathways at an early stage of obesity and highlight the importance of mitochondrial metabolism in overweight and obese individuals. Exploiting mitochondrial profiles for therapeutic purposes in humans is an ambitious strategy for treating muscle impairment diseases.
Collapse
Affiliation(s)
- Yaiza Potes
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | | | - Juan C Bermejo-Millo
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Adrian Rubio-Gonzalez
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain
| | | | | | - Jose M Arche
- 4Geriatric Service, Monte Naranco Hospital, Asturias, Spain
| | - Juan J Solano
- 2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain.,4Geriatric Service, Monte Naranco Hospital, Asturias, Spain
| | - Jose A Boga
- 3Microbiology Service, Central University Hospital of Asturias, Asturias, Spain
| | - Mamen Oliván
- 2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain.,5Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Asturias, Spain
| | - Beatriz Caballero
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Ignacio Vega-Naredo
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Ana Coto-Montes
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| |
Collapse
|
30
|
Teng S, Huang P. The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function. Stem Cell Res Ther 2019; 10:103. [PMID: 30898146 PMCID: PMC6427880 DOI: 10.1186/s13287-019-1186-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In addition to its primary function to provide movement and maintain posture, the skeletal muscle plays important roles in energy and glucose metabolism. In healthy humans, skeletal muscle is the major site for postprandial glucose uptake and impairment of this process contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). A key component to the maintenance of skeletal muscle integrity and plasticity is the presence of muscle progenitor cells, including satellite cells, fibroadipogenic progenitors, and some interstitial progenitor cells associated with vessels (myo-endothelial cells, pericytes, and mesoangioblasts). In this review, we aim to discuss the emerging concepts related to these progenitor cells, focusing on the identification and characterization of distinct progenitor cell populations, and the impact of obesity and T2DM on these cells. The recent advances in stem cell therapies by targeting diabetic and obese muscle are also discussed.
Collapse
Affiliation(s)
- Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
31
|
Salvestrini V, Sell C, Lorenzini A. Obesity May Accelerate the Aging Process. Front Endocrinol (Lausanne) 2019; 10:266. [PMID: 31130916 PMCID: PMC6509231 DOI: 10.3389/fendo.2019.00266] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Lines of evidence from several studies have shown that increases in life expectancy are now accompanied by increased disability rate. The expanded lifespan of the aging population imposes a challenge on the continuous increase of chronic disease. The prevalence of overweight and obesity is increasing at an alarming rate in many parts of the world. Further to increasing the onset of metabolic imbalances, obesity leads to reduced life span and affects cellular and molecular processes in a fashion resembling aging. Nine key hallmarks of the aging process have been proposed. In this review, we will review these hallmarks and discuss pathophysiological changes that occur with obesity, that are similar to or contribute to those that occur during aging. We present and discuss the idea that obesity, in addition to having disease-specific effects, may accelerate the rate of aging affecting all aspects of physiology and thus shortening life span and health span.
Collapse
Affiliation(s)
- Valentina Salvestrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, Biochemistry Unit, University of Bologna, Bologna, Italy
- *Correspondence: Antonello Lorenzini
| |
Collapse
|
32
|
Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells. Stem Cell Rev Rep 2018; 14:535-545. [PMID: 29667027 DOI: 10.1007/s12015-018-9812-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.
Collapse
|
33
|
Wang X, Zhao D, Cui Y, Lu S, Gao D, Liu J. Proinflammatory macrophages impair skeletal muscle differentiation in obesity through secretion of tumor necrosis factor‐α via sustained activation of p38 mitogen‐activated protein kinase. J Cell Physiol 2018; 234:2566-2580. [DOI: 10.1002/jcp.27012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Xueqiang Wang
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| | - Daina Zhao
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| | - Yajuan Cui
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| | - Shemin Lu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an China
| | - Dan Gao
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| | - Jiankang Liu
- Center for Mitochondrial Biology and MedicineThe Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong UniversityXi’an China
| |
Collapse
|
34
|
Rasool S, Geetha T, Broderick TL, Babu JR. High Fat With High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Front Physiol 2018; 9:1054. [PMID: 30258366 PMCID: PMC6143817 DOI: 10.3389/fphys.2018.01054] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle utilizes both free fatty acids (FFAs) and glucose that circulate in the blood stream. When blood glucose levels acutely increase, insulin stimulates muscle glucose uptake, oxidation, and glycogen synthesis. Under these conditions, skeletal muscle preferentially oxidizes glucose while the oxidation of fatty acids (FAs) oxidation is reciprocally decreased. In metabolic disorders associated with insulin resistance, such as diabetes and obesity, both glucose uptake, and utilization muscle are significantly reduced causing FA oxidation to provide the majority of ATP for metabolic processes and contraction. Although the causes of this metabolic inflexibility or disrupted "glucose-fatty acid cycle" are largely unknown, a diet high in fat and sugar (HFS) may be a contributing factor. This metabolic inflexibility observed in models of obesity or with HFS feeding is detrimental because high rates of FA oxidation in skeletal muscle can lead to the buildup of toxic metabolites of fat metabolism and the accumulation of pro-inflammatory cytokines, which further exacerbate the insulin resistance. Further, HFS leads to skeletal muscle atrophy with a decrease in myofibrillar proteins and phenotypically characterized by loss of muscle mass and strength. Overactivation of ubiquitin proteasome pathway, oxidative stress, myonuclear apoptosis, and mitochondrial dysfunction are some of the mechanisms involved in muscle atrophy induced by obesity or in mice fed with HFS. In this review, we will discuss how HFS diet negatively impacts the various physiological and metabolic mechanisms in skeletal muscle.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, Glendale, AZ, United States
| | - Jeganathan R Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| |
Collapse
|
35
|
Effect of maternal weight during pregnancy on offspring muscle strength response to resistance training in late adulthood. Adv Med Sci 2018; 63:353-358. [PMID: 30099329 DOI: 10.1016/j.advms.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Maternal obesity can unfavorably influence offspring body composition, muscle strength, and possibly muscle's adaptability to training, but the human studies are scarce. Therefore, we aimed to investigate the effect of maternal obesity on offspring muscle strength responses to resistance training intervention in elderly frail women. MATERIALS/METHODS Recruited participants were elderly frail women offspring of lean/normal weight mothers (n = 19, mean body mass index (BMI): 22.8 kg/m2, range: 19.9-24.5) or overweight/obese mothers (n = 16, mean BMI: 29.7 kg/m2, range: 28.2-34.2). Information on maternal BMI immediately prior to delivery was collected from the birth registers. All women participated in a 4-month supervised progressive resistance training intervention three times a week for 60 min. Predicted 1-RM of abdominal crunch, hip abduction, leg curl, leg press, seated row, and total strength were measured at baseline and after each month of training. RESULTS According to rANOVA, strength increased significantly in both groups (p for time <0.001), but no significant between the group difference were detected (p for time x group interaction > 0.072). On average, muscle strength of the women offspring of overweight/obese mothers tended to be lower than in women offspring of lean/normal weight mothers, but the only significant difference was found in leg curl (p = 0.006). No significant differences between the groups were found in relative strength changes from baseline to 4-months. CONCLUSIONS Muscle strength response to supervised resistance training is not modulated by maternal adiposity in late pregnancy in elderly frail female offspring.
Collapse
|
36
|
Xu P, Werner JU, Milerski S, Hamp CM, Kuzenko T, Jähnert M, Gottmann P, de Roy L, Warnecke D, Abaei A, Palmer A, Huber-Lang M, Dürselen L, Rasche V, Schürmann A, Wabitsch M, Knippschild U. Diet-Induced Obesity Affects Muscle Regeneration After Murine Blunt Muscle Trauma-A Broad Spectrum Analysis. Front Physiol 2018; 9:674. [PMID: 29922174 PMCID: PMC5996306 DOI: 10.3389/fphys.2018.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Injury to skeletal muscle affects millions of people worldwide. The underlying regenerative process however, is a very complex mechanism, time-wise highly coordinated, and subdivided in an initial inflammatory, a regenerative and a remodeling phase. Muscle regeneration can be impaired by several factors, among them diet-induced obesity (DIO). In order to evaluate if obesity negatively affects healing processes after trauma, we utilized a blunt injury approach to damage the extensor iliotibialis anticus muscle on the left hind limb of obese and normal weight C57BL/6J without showing any significant differences in force input between normal weight and obese mice. Magnetic resonance imaging (MRI) of the injury and regeneration process revealed edema formation and hemorrhage exudate in muscle tissue of normal weight and obese mice. In addition, morphological analysis of physiological changes revealed tissue necrosis, immune cell infiltration, extracellular matrix (ECM) remodeling, and fibrosis formation in the damaged muscle tissue. Regeneration was delayed in muscles of obese mice, with a higher incidence of fibrosis formation due to hampered expression levels of genes involved in ECM organization. Furthermore, a detailed molecular fingerprint in different stages of muscle regeneration underlined a delay or even lack of a regenerative response to injury in obese mice. A time-lapse heatmap determined 81 differentially expressed genes (DEG) with at least three hits in our model at all-time points, suggesting key candidates with a high impact on muscle regeneration. Pathway analysis of the DEG revealed five pathways with a high confidence level: myeloid leukocyte migration, regulation of tumor necrosis factor production, CD4-positive, alpha-beta T cell differentiation, ECM organization, and toll-like receptor (TLR) signaling. Moreover, changes in complement-, Wnt-, and satellite cell-related genes were found to be impaired in obese animals after trauma. Furthermore, histological satellite cell evaluation showed lower satellite cell numbers in the obese model upon injury. Ankrd1, C3ar1, Ccl8, Mpeg1, and Myog expression levels were also verified by qPCR. In summary, increased fibrosis formation, the reduction of Pax7+ satellite cells as well as specific changes in gene expression and signaling pathways could explain the delay of tissue regeneration in obese mice post trauma.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Jens-Uwe Werner
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Sebastian Milerski
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Carmen M Hamp
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Tatjana Kuzenko
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Luisa de Roy
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Daniela Warnecke
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Alireza Abaei
- Core facility "Small Animal Imaging", Ulm University, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Volker Rasche
- Core facility "Small Animal Imaging", Ulm University, Ulm, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Hospital for Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
37
|
Panzeri I, Pospisilik JA. Epigenetic control of variation and stochasticity in metabolic disease. Mol Metab 2018; 14:26-38. [PMID: 29909200 PMCID: PMC6034039 DOI: 10.1016/j.molmet.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The alarming rise of obesity and its associated comorbidities represents a medical burden and a major global health and economic issue. Understanding etiological mechanisms underpinning susceptibility and therapeutic response is of primary importance. Obesity, diabetes, and metabolic diseases are complex trait disorders with only partial genetic heritability, indicating important roles for environmental programing and epigenetic effects. SCOPE OF THE REVIEW We will highlight some of the reasons for the scarce predictability of metabolic diseases. We will outline how genetic variants generate phenotypic variation in disease susceptibility across populations. We will then focus on recent conclusions about epigenetic mechanisms playing a fundamental role in increasing variability and subsequently disease triggering. MAJOR CONCLUSIONS Currently, we are unable to predict or mechanistically define how "missing heritability" drives disease. Unravelling this black box of regulatory processes will allow us to move towards a truly personalized and precision medicine.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - John Andrew Pospisilik
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| |
Collapse
|
38
|
Postnatal undernutrition in mice causes cardiac arrhythmogenesis which is exacerbated when pharmacologically stressed. J Dev Orig Health Dis 2018; 9:417-424. [DOI: 10.1017/s2040174418000156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractGrowth restriction caused by postnatal undernutrition increases risk for cardiovascular disease in adulthood with the potential to induce arrhythmogenesis. Thus, the purpose was to determine if undernutrition during development produced arrhythmias at rest and when stressed with dobutamine in adulthood. Mouse dams were fed (CON: 20% protein), or low-protein (LP: 8%) diet before mating. A cross-fostering model was used where pups nursed by dams fed LP diet in early [EUN; postnatal day (PN) 1–10], late (LUN; PN11–21) and whole (PUN; 1–21) phases of postnatal life. Weaned pups were switched to CON diets for the remainder of the study (PN80). At PN80, body composition (magnetic resonance imaging), and quantitative electrocardiogram (ECG) measurements were obtained under 1% isoflurane anesthesia. After baseline ECG, an IP injection (1.5 µg/g body weight) of dobutamine was administered and ECG repeated. Undernutrition significantly (P<0.05) reduced body weight in LUN (22.68±0.88 g) and PUN (19.96±0.32 g) but not in CON (25.05±0.96 g) and EUN (25.28±0.9207 g). Fat mass decreased in all groups compared with controls (CON: 8.00±1.2 g, EUN: 6.32±0.65 g, LUN: 5.11±1.1 g, PUN: 3.90±0.25 g). Lean mass was only significantly reduced in PUN (CON: 17.99±0.26 g, EUN: 17.78±0.39 g, LUN: 17.34±0.33 g, PUN: 15.85±0.28 g). Absolute heart weights were significantly less from CON, with PUN having the smallest. ECG showed LUN had occurrences of atrial fibrillation; EUN had increases of 1st degree atrioventricular block upon stimulation, and PUN had increased risk for ventricular depolarization arrhythmias. CON did not display arrhythmias. Undernutrition in early life resulted in ventricular arrhythmias under stressed conditions, but undernutrition occurring in later postnatal life there is an increased incidence of atrial arrhythmias.
Collapse
|
39
|
Harris JE, Baer LA, Stanford KI. Maternal Exercise Improves the Metabolic Health of Adult Offspring. Trends Endocrinol Metab 2018; 29:164-177. [PMID: 29402734 PMCID: PMC5826804 DOI: 10.1016/j.tem.2018.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
The intrauterine environment can modulate the course of development and confer an enduring effect on offspring health. The effects of maternal diet to impair offspring metabolic health are well established, but the effects of maternal exercise on offspring metabolic health have been less defined. Because physical exercise is a treatment for obesity and type 2 diabetes (T2D), maternal exercise is an appealing intervention to positively influence the intrauterine environment and improve the metabolic health of offspring. Recent research has provided insights into the effects of maternal exercise on the metabolic health of adult offspring, which is the focus of this review.
Collapse
Affiliation(s)
- Johan E Harris
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lisa A Baer
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Werner JU, Tödter K, Xu P, Lockhart L, Jähnert M, Gottmann P, Schürmann A, Scheja L, Wabitsch M, Knippschild U. Comparison of Fatty Acid and Gene Profiles in Skeletal Muscle in Normal and Obese C57BL/6J Mice before and after Blunt Muscle Injury. Front Physiol 2018; 9:19. [PMID: 29441023 PMCID: PMC5797686 DOI: 10.3389/fphys.2018.00019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/08/2018] [Indexed: 01/14/2023] Open
Abstract
Injury and obesity are two major health burdens affecting millions of people worldwide. Obesity is recognized as a state of chronic inflammation accompanied by various co-morbidities like T2D or cardiovascular diseases. There is increasing evidence that obesity impairs muscle regeneration, which is mainly due to chronic inflammation and to excessive accumulation of lipids in adipose and non-adipose tissue. To compare fatty acid profiles and changes in gene expression at different time points after muscle injury, we used an established drop tower-based model with a defined force input to damage the extensor iliotibialis anticus on the left hind limb of female C57BL/6J mice of normal weight and obese mice. Although most changes in fatty acid content in muscle tissue are diet related, levels of eicosaenoic (normal weight) and DHG-linolenic acid (obese) in the phospholipid and docosahexaenoic acid (normal weight) in the triglyceride fraction are altered after injury. Furthermore, changes in gene transcription were detected in 3829 genes in muscles of normal weight mice, whereas only 287 genes were altered in muscles of obese mice after trauma. Alterations were found within several pathways, among them notch-signaling, insulin-signaling, sonic hedgehog-signaling, apoptosis related pathways, fat metabolism related cholesterol homeostasis, fatty acid biosynthetic process, fatty acid elongation, and acyl-CoA metabolic process. We could show that genes involved in fat metabolism are affected 3 days after trauma induction mostly in normal weight but not in obese mice. The strongest effects were observed in normal weight mice for Alox5ap, the activating protein for leukotriene synthesis, and Apobec1, an enzyme substantial for LDL synthesis. In summary, we show that obesity changes the fat content of skeletal muscle and generally shows a negative impact upon blunt muscle injury on various cellular processes, among them fatty acid related metabolism, notch-, insulin-, sonic hedgehog-signaling, and apoptosis.
Collapse
Affiliation(s)
- Jens-Uwe Werner
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Lydia Lockhart
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital for Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
41
|
Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System. Int J Mol Sci 2017; 18:ijms18102147. [PMID: 29036909 PMCID: PMC5666829 DOI: 10.3390/ijms18102147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.
Collapse
|
42
|
Ma H, Sales VM, Wolf AR, Subramanian S, Matthews TJ, Chen M, Sharma A, Gall W, Kulik W, Cohen DE, Adachi Y, Griffin NW, Gordon JI, Patti ME, Isganaitis E. Attenuated Effects of Bile Acids on Glucose Metabolism and Insulin Sensitivity in a Male Mouse Model of Prenatal Undernutrition. Endocrinology 2017; 158. [PMID: 28637315 PMCID: PMC5551557 DOI: 10.1210/en.2017-00288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prenatal undernutrition and low birth weight are associated with risk of type 2 diabetes and obesity. Prenatal caloric restriction results in low birth weight, glucose intolerance, obesity, and reduced plasma bile acids (BAs) in offspring mice. Because BAs can regulate systemic metabolism and glucose homeostasis, we hypothesized that BA supplementation could prevent diet-induced obesity and glucose intolerance in this model of developmental programming. Pregnant dams were food restricted by 50% from gestational days 12.5 to 18.5. Offspring of both undernourished (UN) and control (C) dams given unrestricted diets were weaned to high-fat diets with or without supplementation with 0.25% w/w ursodeoxycholic acid (UDCA), yielding four experimental groups: C, UN, C + UDCA, and UN + UDCA. Glucose homeostasis, BA composition, liver and intestinal gene expression, and microbiota composition were analyzed in the four groups. Although UDCA supplementation ameliorated diet-induced obesity in C mice, there was no effect in UN mice. UDCA similarly lowered fasting insulin, and improved glucose tolerance, pyruvate tolerance, and liver steatosis in C, but not UN, animals. BA composition differed significantly, and liver and ileal expression of genes involved in BA metabolism (Cyp7b1, Shp) were differentially induced by UDCA in C vs UN animals. Bacterial taxa in fecal microbiota correlated with treatment groups and metabolic parameters. In conclusion, prenatal undernutrition alters responsiveness to the metabolic benefits of BA supplementation, with resistance to the weight-lowering and insulin-sensitizing effects of UDCA supplementation. Our findings suggest that BA metabolism may be a previously unrecognized contributor to developmentally programmed diabetes risk.
Collapse
Affiliation(s)
- Huijuan Ma
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
- Department of Endocrinology and Metabolism, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Vicencia M Sales
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Ashley R Wolf
- Center for Genome Sciences and Systems Biology, and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sathish Subramanian
- Center for Genome Sciences and Systems Biology, and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tucker J Matthews
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Michael Chen
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Aparna Sharma
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Walt Gall
- Metabolon, Durham, North Carolina 27713
| | - Wim Kulik
- Laboratory of Genetic Metabolic Diseases, Departments of Pediatrics and Clinical Chemistry, University of Amsterdam, 1105 AZ Amsterdam-Zuidoost, The Netherlands
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021
| | - Yusuke Adachi
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Nicholas W Griffin
- Center for Genome Sciences and Systems Biology, and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
43
|
Stanford KI, Takahashi H, So K, Alves-Wagner AB, Prince NB, Lehnig AC, Getchell KM, Lee MY, Hirshman MF, Goodyear LJ. Maternal Exercise Improves Glucose Tolerance in Female Offspring. Diabetes 2017; 66:2124-2136. [PMID: 28572303 PMCID: PMC5521858 DOI: 10.2337/db17-0098] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Poor maternal diet can lead to metabolic disease in offspring, whereas maternal exercise may have beneficial effects on offspring health. In this study, we determined ifmaternal exercise could reverse the detrimental effects of maternal high-fat feeding on offspring metabolism of female mice. C57BL/6 female mice were fed a chow (21%) or high-fat (60%) diet and further divided by housing in static cages or cages with running wheels for 2 weeks prior to breeding and throughout gestation. Females were bred with chow-fed sedentary C57BL/6 males. High fat-fed sedentary dams produced female offspring with impaired glucose tolerance compared with offspring of chow-fed dams throughout their first year of life, an effect not present in the offspring from high fat-fed dams that had trained. Offspring from high fat-fed trained dams had normalized glucose tolerance, decreased fasting insulin, and decreased adiposity. Liver metabolic function, measured by hepatic glucose production in isolated hepatocytes, hyperinsulinemic-euglycemic clamps, liver triglyceride content, and liver enzyme expression, was enhanced in offspring from trained dams. In conclusion, maternal exercise negates the detrimental effects of a maternal high-fat diet on glucose tolerance and hepatocyte glucose metabolism in female offspring. The ability of maternal exercise to improve the metabolic health of female offspring is important, as this intervention could combat the transmission of obesity and diabetes to subsequent generations.
Collapse
Affiliation(s)
- Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hirokazu Takahashi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kawai So
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
| | - Ana Barbara Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Noah B Prince
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
| | - Adam C Lehnig
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kristen M Getchell
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
| | - Min-Young Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
44
|
Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic Mechanisms of Transmission of Metabolic Disease across Generations. Cell Metab 2017; 25:559-571. [PMID: 28273478 PMCID: PMC5404272 DOI: 10.1016/j.cmet.2017.02.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both human and animal studies indicate that environmental exposures experienced during early life can robustly influence risk for adult disease. Moreover, environmental exposures experienced by parents during either intrauterine or postnatal life can also influence the health of their offspring, thus initiating a cycle of disease risk across generations. In this Perspective, we focus on epigenetic mechanisms in germ cells, including DNA methylation, histone modification, and non-coding RNAs, which collectively may provide a non-genetic molecular legacy of prior environmental exposures and influence transcriptional regulation, developmental trajectories, and adult disease risk in offspring.
Collapse
Affiliation(s)
- Vicencia Micheline Sales
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Sixth Floor, Boston, MA 02215, USA
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Sixth Floor, Boston, MA 02215, USA.
| |
Collapse
|
45
|
Gokulakrishnan G, Chang X, Fleischmann R, Fiorotto ML. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat. J Endocrinol 2017; 232:561-572. [PMID: 28096434 PMCID: PMC5321625 DOI: 10.1530/joe-16-0372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/17/2017] [Indexed: 01/07/2023]
Abstract
Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are unknown. To test the hypothesis that blunting of Pax7+ muscle progenitor cell proliferative activity by GLC in vivo also contributes to reduced fetal muscle growth, pregnant rats were administered dexamethasone (DEX: 1 mg/L drinking water) from embryonic day (ED) 13 to ED21. Their responses were compared to pair-fed (PF) and ad libitum-fed controls (CON). Bromodeoxyuridine (BrdU) was administered before delivery to measure myonuclear accretion. Fetal hind limb and diaphragm muscles were collected at term and analyzed for myofiber cross-sectional area (CSA), total and BrdU+ myonuclei, Pax7+ nuclei, MyoD and myogenin protein and mRNA abundance and myosin heavy chain (MyHC) isoform composition. Mean fiber CSA, myonuclei/myofiber and Pax7+ nuclei/myofiber ratios were reduced in DEX compared to those in CON and PF muscles; CSA/myonucleus, BrdU+/total myonuclei and BrdU+ myonuclei/Pax7+ nuclei were similar among groups. Myogenin abundance was reduced and MyHC-slow was increased in DEX fetuses. The data are consistent with GLC inhibition of muscle progenitor cell proliferation limiting satellite cell and myonuclear accretion. The response of PF-fed compared to CON muscles indicated that decreased food consumption by DEX dams contributed to the smaller myofiber CSA but did not affect Pax7+ nuclear accretion. Thus, the effect on satellite cell reserve and myonuclear number also contributes to the blunting of fetal muscle growth by GLC.
Collapse
Affiliation(s)
- Ganga Gokulakrishnan
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of PediatricsTexas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoyan Chang
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ryan Fleischmann
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
46
|
Soto SM, Blake AC, Wesolowski SR, Rozance PJ, Barthel KB, Gao B, Hetrick B, McCurdy CE, Garza NG, Hay WW, Leinwand LA, Friedman JE, Brown LD. Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro. J Endocrinol 2017; 232:475-491. [PMID: 28053000 PMCID: PMC5440081 DOI: 10.1530/joe-16-0123] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 02/04/2023]
Abstract
Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass and insulin resistance, suggesting muscle growth may be restricted by molecular events that occur during fetal development. To explore the basis of restricted fetal muscle growth, we used a sheep model of progressive placental insufficiency-induced IUGR to assess myoblast proliferation within intact skeletal muscle in vivo and isolated myoblasts stimulated with insulin in vitro Gastrocnemius and soleus muscle weights were reduced by 25% in IUGR fetuses compared to those in controls (CON). The ratio of PAX7+ nuclei (a marker of myoblasts) to total nuclei was maintained in IUGR muscle compared to CON, but the fraction of PAX7+ myoblasts that also expressed Ki-67 (a marker of cellular proliferation) was reduced by 23%. Despite reduced proliferation in vivo, fetal myoblasts isolated from IUGR biceps femoris and cultured in enriched media in vitro responded robustly to insulin in a dose- and time-dependent manner to increase proliferation. Similarly, insulin stimulation of IUGR myoblasts upregulated key cell cycle genes and DNA replication. There were no differences in the expression of myogenic regulatory transcription factors that drive commitment to muscle differentiation between CON and IUGR groups. These results demonstrate that the molecular machinery necessary for transcriptional control of proliferation remains intact in IUGR fetal myoblasts, indicating that in vivo factors such as reduced insulin and IGF1, hypoxia and/or elevated counter-regulatory hormones may be inhibiting muscle growth in IUGR fetuses.
Collapse
Affiliation(s)
- Susan M Soto
- Department of PediatricsUniversity of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Amy C Blake
- Department of PediatricsUniversity of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Stephanie R Wesolowski
- Department of PediatricsUniversity of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Paul J Rozance
- Department of PediatricsUniversity of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Kristen B Barthel
- Department of MolecularCellular, and Developmental Biology, University of Colorado Boulder, BioFrontiers Institute, Boulder, Colorado, USA
| | - Bifeng Gao
- Department of MedicineUniversity of Colorado School of Medicine, Aurora, Colorado, USA
| | - Byron Hetrick
- Department of Human PhysiologyUniversity of Oregon, Eugene, Oregon, USA
| | - Carrie E McCurdy
- Department of Human PhysiologyUniversity of Oregon, Eugene, Oregon, USA
| | - Natalia G Garza
- Department of PediatricsUniversity of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - William W Hay
- Department of PediatricsUniversity of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Leslie A Leinwand
- Department of MolecularCellular, and Developmental Biology, University of Colorado Boulder, BioFrontiers Institute, Boulder, Colorado, USA
| | - Jacob E Friedman
- Department of PediatricsUniversity of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Laura D Brown
- Department of PediatricsUniversity of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| |
Collapse
|
47
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Sinha I, Sakthivel D, Olenchock BA, Kruse CR, Williams J, Varon DE, Smith JD, Madenci AL, Nuutila K, Wagers AJ. Prolyl Hydroxylase Domain-2 Inhibition Improves Skeletal Muscle Regeneration in a Male Murine Model of Obesity. Front Endocrinol (Lausanne) 2017; 8:153. [PMID: 28725215 PMCID: PMC5497248 DOI: 10.3389/fendo.2017.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity leads to a loss of muscle mass and impaired muscle regeneration. In obese individuals, pathologically elevated levels of prolyl hydroxylase domain enzyme 2 (PHD2) limit skeletal muscle hypoxia-inducible factor-1 alpha and vascular endothelial growth factor (VEGF) expression. Loss of local VEGF may further impair skeletal muscle regeneration. We hypothesized that PHD2 inhibition would restore vigorous muscle regeneration in a murine model of obesity. Adult (22-week-old) male mice were fed either a high-fat diet (HFD), with 60% of calories derived from fat, or a regular diet (RD), with 10% of calories derived from fat, for 16 weeks. On day 5 following cryoinjury to the tibialis anterior muscle, newly regenerated muscle fiber cross-sectional areas were significantly smaller in mice fed an HFD as compared to RD, indicating an impaired regenerative response. Cryoinjured gastrocnemius muscles of HFD mice also showed elevated PHD2 levels (twofold higher) and reduced VEGF levels (twofold lower) as compared to RD. Dimethyloxalylglycine, a cell permeable competitive inhibitor of PHD2, restored VEGF levels and significantly improved regenerating myofiber size in cryoinjured mice fed an HFD. We conclude that pathologically increased PHD2 in the obese state drives impairments in muscle regeneration, in part by blunting VEGF production. Inhibition of PHD2 over activity in the obese state normalizes VEGF levels and restores muscle regenerative potential.
Collapse
Affiliation(s)
- Indranil Sinha
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- *Correspondence: Indranil Sinha, ; Amy J. Wagers,
| | - Dharaniya Sakthivel
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Benjamin A. Olenchock
- Harvard Medical School, Boston, MA, United States
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Carla R. Kruse
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jeremy Williams
- University of California San Francisco, San Francisco, CA, United States
| | - David E. Varon
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jessica D. Smith
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Arin L. Madenci
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Amy J. Wagers
- Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Joslin Diabetes Center, Boston, MA, United States
- *Correspondence: Indranil Sinha, ; Amy J. Wagers,
| |
Collapse
|
49
|
Sinha I, Sakthivel D, Varon DE. Systemic Regulators of Skeletal Muscle Regeneration in Obesity. Front Endocrinol (Lausanne) 2017; 8:29. [PMID: 28261159 PMCID: PMC5311070 DOI: 10.3389/fendo.2017.00029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle maintenance is a dynamic process and undergoes constant repair and regeneration. However, skeletal muscle regenerative capacity declines in obesity. In this review, we focus on obesity-associated changes in inflammation, metabolism, and impaired insulin signaling, which are pathologically dysregulated and ultimately result in a loss of muscle mass and function. In addition, we examine the relationships between skeletal muscle, liver, and visceral adipose tissue in an obese state.
Collapse
Affiliation(s)
- Indranil Sinha
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
- *Correspondence: Indranil Sinha,
| | | | - David E. Varon
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
50
|
Effects of Poor Maternal Nutrition during Gestation on Bone Development and Mesenchymal Stem Cell Activity in Offspring. PLoS One 2016; 11:e0168382. [PMID: 27942040 PMCID: PMC5152907 DOI: 10.1371/journal.pone.0168382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
Poor maternal nutrition impairs overall growth and development of offspring. These changes can significantly impact the general health and production efficiency of offspring. Specifically, poor maternal nutrition is known to reduce growth of bone and muscle, and increase adipose tissue. Mesenchymal stem cells (MSC) are multipotent stem cells which contribute to development of these tissues and are responsive to changes in the maternal environment. The main objective was to evaluate the effects of poor maternal nutirtion during gestation on bone and MSC function in offspring. Thirty-six ewes were fed 100%, 60%, or 140% of energy requirements [NRC, 1985] beginning at day 31 ± 1.3 of gestation. Lambs from ewes fed 100% (CON), 60% (RES) and 140% (OVER) were euthanized within 24 hours of birth (1 day; n = 18) or at 3 months of age (n = 15) and bone and MSC samples were collected. Dual X-ray absorptiometry was performed on bones obtained from day 1 and 3 months. Proliferation, differentiation, and metabolic activity were determined in the MSC isolated from lambs at day 1. Data were analyzed using mixed procedure in SAS. Maternal diet negatively affected offspring MSC by reducing proliferation 50% and reducing mitochondrial metabolic activity. Maternal diet did not alter MSC glycolytic activity or differentiation in culture. Maternal diet tended to decrease expression of P2Y purinoreceptor 1, but did not alter expression of other genes involved in MSC proliferation and differentiation. Maternal diet did not alter bone parameters in offspring. In conclusion, poor maternal diet may alter offspring growth through reduced MSC proliferation and metabolism. Further studies evaluating the potential molecular changes associated with altered proliferation and metabolism in MSC due to poor maternal nutrition are warranted.
Collapse
|