1
|
Tan J, Virtue S, Norris DM, Conway OJ, Yang M, Bidault G, Gribben C, Lugtu F, Kamzolas I, Krycer JR, Mills RJ, Liang L, Pereira C, Dale M, Shun-Shion AS, Baird HJ, Horscroft JA, Sowton AP, Ma M, Carobbio S, Petsalaki E, Murray AJ, Gershlick DC, Nathan JA, Hudson JE, Vallier L, Fisher-Wellman KH, Frezza C, Vidal-Puig A, Fazakerley DJ. Limited oxygen in standard cell culture alters metabolism and function of differentiated cells. EMBO J 2024; 43:2127-2165. [PMID: 38580776 PMCID: PMC11148168 DOI: 10.1038/s44318-024-00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024] Open
Abstract
The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.
Collapse
Affiliation(s)
- Joycelyn Tan
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sam Virtue
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Olivia J Conway
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, 50931, Germany
| | - Guillaume Bidault
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Fatima Lugtu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Ioannis Kamzolas
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - James R Krycer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Lu Liang
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Martin Dale
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Harry Jm Baird
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James A Horscroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Marcella Ma
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stefania Carobbio
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, 50931, Germany
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain.
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
2
|
Cai S, Dai Q. Progress in preclinical research on induced pluripotent stem cell therapy for acute myocardial infarction. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:244-253. [PMID: 38594961 PMCID: PMC11057988 DOI: 10.3724/zdxbyxb-2023-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Induced pluripotent stem cells (iPSCs) are obtained by introducing exogenous genes or adding chemicals to the culture medium to induce somatic cell differentiation. Similarly to embryonic stem cells, iPSCs have the ability to differentiate into all three embryonic cell lines. iPSCs can differentiate into cardiac muscle cells through two-dimensional differentiation methods such as monolayer cell culture and co-culture, or through embryoid body and scaffold-based three-dimensional differentiation methods. In addition, the process of iPSCs differentiation into cardiac muscle cells also requires activation or inhibition of specific signaling pathways,such as Wnt, BMP, Notch signaling pathways to mimic the development of the heart in vivo. In recent years, suspension culturing in bioreactors has been shown to produce large number of iPSCs derived cardiac muscle cells (iPSC-CMs). Before transplantation, it is necessary to purify iPSC-CMs through metabolic regulation or cell sorting to eliminate undifferentiated iPSCs, which may lead to teratoma formation. The transplantation methods for iPSC-CMs are mainly injection of cell suspension and transplantation of cell patches into the infarcted myocardium. Animal studies have shown that transplantation of iPSC-CMs into the infarcted myocardium can improve cardiac function. This article reviews the progress in preclinical studies on iPSC-CMs therapy for acute myocardial infarction and discusses the limitations and challenges of its clinical application to provide references for further clinical research and application.
Collapse
Affiliation(s)
- Songyan Cai
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Qingyuan Dai
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
3
|
Friedman CE, Cheetham SW, Negi S, Mills RJ, Ogawa M, Redd MA, Chiu HS, Shen S, Sun Y, Mizikovsky D, Bouveret R, Chen X, Voges HK, Paterson S, De Angelis JE, Andersen SB, Cao Y, Wu Y, Jafrani YMA, Yoon S, Faulkner GJ, Smith KA, Porrello E, Harvey RP, Hogan BM, Nguyen Q, Zeng J, Kikuchi K, Hudson JE, Palpant NJ. HOPX-associated molecular programs control cardiomyocyte cell states underpinning cardiac structure and function. Dev Cell 2024; 59:91-107.e6. [PMID: 38091997 DOI: 10.1016/j.devcel.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.
Collapse
Affiliation(s)
- Clayton E Friedman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sumedha Negi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Masahito Ogawa
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine and School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Romaric Bouveret
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine and School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Scott Paterson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jessica E De Angelis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stacey B Andersen
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yohaann M A Jafrani
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sohye Yoon
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kelly A Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Enzo Porrello
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine and School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine and School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Kok CY, Tsurusaki S, Cabanes-Creus M, Igoor S, Rao R, Skelton R, Liao SH, Ginn SL, Knight M, Scott S, Mietzsch M, Fitzsimmons R, Miller J, Mohamed TM, McKenna R, Chong JJ, Hill AP, Hudson JE, Alexander IE, Lisowski L, Kizana E. Development of new adeno-associated virus capsid variants for targeted gene delivery to human cardiomyocytes. Mol Ther Methods Clin Dev 2023; 30:459-473. [PMID: 37674904 PMCID: PMC10477751 DOI: 10.1016/j.omtm.2023.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as one of the most promising gene therapy vectors that have been successfully used in pre-clinical models of heart disease. However, this has not translated well to humans due to species differences in rAAV transduction efficiency. As a result, the search for human cardiotropic capsids is a major contemporary challenge. We used a capsid-shuffled rAAV library to perform directed evolution in human iPSC-derived cardiomyocytes (hiPSC-CMs). Five candidates emerged, with four presenting high sequence identity to AAV6, while a fifth divergent variant was related to AAV3b. Functional analysis of the variants was performed in vitro using hiPSC-CMs, cardiac organoids, human cardiac slices, non-human primate and porcine cardiac slices, as well as mouse heart and liver in vivo. We showed that cell entry was not the best predictor of transgene expression efficiency. The novel variant rAAV.KK04 was the best-performing vector in human-based screening platforms, exceeding the benchmark rAAV6. None of the novel capsids demonstrate a significant transduction of liver in vivo. The range of experimental models used revealed the value of testing for tropism differences under the conditions of human specificity, bona fide, myocardium and cell type of interest.
Collapse
Affiliation(s)
- Cindy Y. Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Shinya Tsurusaki
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sindhu Igoor
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Renuka Rao
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rhys Skelton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H.Y. Liao
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospital Network, Westmead, NSW 2145, Australia
| | - Maddison Knight
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Rebecca Fitzsimmons
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jessica Miller
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Tamer M.A. Mohamed
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
- Surgery Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - James J.H. Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Adam P. Hill
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW 2052, Australia
| | - James E. Hudson
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospital Network, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney Medical School, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Centre, 24-100 Pulawy, Poland
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Velichkova G, Dobreva G. Human pluripotent stem cell-based models of heart development and disease. Cells Dev 2023; 175:203857. [PMID: 37257755 DOI: 10.1016/j.cdev.2023.203857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The heart is a complex organ composed of distinct cell types, such as cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, neuronal cells and immune cells. All these cell types contribute to the structural, electrical and mechanical properties of the heart. Genetic manipulation and lineage tracing studies in mice have been instrumental in gaining critical insights into the networks regulating cardiac cell lineage specification, cell fate and plasticity. Such knowledge has been of fundamental importance for the development of efficient protocols for the directed differentiation of pluripotent stem cells (PSCs) in highly specialized cardiac cell types. In this review, we summarize the evolution and current advances in protocols for cardiac subtype specification, maturation, and assembly in cardiac microtissues and organoids.
Collapse
Affiliation(s)
- Gabriel Velichkova
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
6
|
Muneer R, Qazi REM, Fatima A, Ahmad W, Salim A, Dini L, Khan I. Wnt signaling pathway inhibitor promotes mesenchymal stem cells differentiation into cardiac progenitor cells in vitro and improves cardiomyopathy in vivo. World J Stem Cells 2023; 15:821-841. [PMID: 37700819 PMCID: PMC10494566 DOI: 10.4252/wjsc.v15.i8.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Cardiovascular diseases particularly myocardial infarction (MI) are the leading cause of mortality and morbidity around the globe. As cardiac tissue possesses very limited regeneration potential, therefore use of a potent small molecule, inhibitor Wnt production-4 (IWP-4) for stem cell differentiation into cardiomyocytes could be a promising approach for cardiac regeneration. Wnt pathway inhibitors may help stem cells in their fate determination towards cardiomyogenic lineage and provide better homing and survival of cells in vivo. Mesenchymal stem cells (MSCs) derived from the human umbilical cord have the potential to regenerate cardiac tissue, as they are easy to isolate and possess multilineage differentiation capability. IWP-4 may promote the differentiation of MSCs into the cardiac lineage. AIM To evaluate the cardiac differentiation ability of IWP-4 and its subsequent in vivo effects. METHODS Umbilical cord tissue of human origin was utilized to isolate the MSCs which were characterized by their morphology, immunophenotyping of surface markers specific to MSCs, as well as by tri-lineage differentiation capability. Cytotoxicity analysis was performed to identify the optimal concentration of IWP-4. MSCs were treated with 5 μM IWP-4 at two different time intervals. Differentiation of MSCs into cardiomyocytes was evaluated at DNA and protein levels. The MI rat model was developed. IWP-4 treated as well as untreated MSCs were implanted in the MI model, then the cardiac function was analyzed via echocardiography. MSCs were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) dye for tracking, while the regeneration of infarcted myocardium was examined by histology and immunohistochemistry. RESULTS MSCs were isolated and characterized. Cytotoxicity analysis showed that IWP-4 was non-cytotoxic at 5 μM concentration. Cardiac specific gene and protein expression analyses exhibited more remarkable results in fourteen days treated group that was eventually selected for in vivo transplantation. Cardiac function was restored in the IWP-4 treated group in comparison to the MI group. Immunohistochemical analysis confirmed the homing of pre-differentiated MSCs that were labeled with DiI cell labeling dye. Histological analysis confirmed the significant reduction in fibrotic area, and improved left ventricular wall thickness in IWP-4 treated MSC group. CONCLUSION Treatment of MSCs with IWP-4 inhibits Wnt pathway and promotes cardiac differentiation. These pre-conditioned MSCs transplanted in vivo improved cardiac function by cell homing, survival, and differentiation at the infarcted region, increased left ventricular wall thickness, and reduced infarct size.
Collapse
Affiliation(s)
- Rabbia Muneer
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Rida-E-Maria Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Abiha Fatima
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Waqas Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Luciana Dini
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
7
|
Voges HK, Foster SR, Reynolds L, Parker BL, Devilée L, Quaife-Ryan GA, Fortuna PRJ, Mathieson E, Fitzsimmons R, Lor M, Batho C, Reid J, Pocock M, Friedman CE, Mizikovsky D, Francois M, Palpant NJ, Needham EJ, Peralta M, Monte-Nieto GD, Jones LK, Smyth IM, Mehdiabadi NR, Bolk F, Janbandhu V, Yao E, Harvey RP, Chong JJH, Elliott DA, Stanley EG, Wiszniak S, Schwarz Q, James DE, Mills RJ, Porrello ER, Hudson JE. Vascular cells improve functionality of human cardiac organoids. Cell Rep 2023:112322. [PMID: 37105170 DOI: 10.1016/j.celrep.2023.112322] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor β (PDGFRβ) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.
Collapse
Affiliation(s)
- Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Liam Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gregory A Quaife-Ryan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janice Reid
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Pocock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Clayton E Friedman
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardiovascular Research: Gene Regulation and Editing, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marina Peralta
- Australian Regenerative Medicine Institute. Monash University, Clayton, VIC 3800, Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernestene Yao
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, 2010 NSW, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Murata K, Masumoto H. Systems for the functional evaluation of human heart tissues derived from pluripotent stem cells. Stem Cells 2022; 40:537-545. [PMID: 35303744 PMCID: PMC9216506 DOI: 10.1093/stmcls/sxac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022]
Abstract
Human pluripotent stem cells (hPSCs) are expected to be a promising cell source in regenerative medicine and drug discovery for the treatment of various intractable diseases. An approach for creating a three-dimensional (3D) structure from hPSCs that mimics human cardiac tissue functions has made it theoretically possible to conduct drug discovery and cardiotoxicity tests by assessing pharmacological responses in human cardiac tissues by a screening system using a compound library. The myocardium functions as a tissue composed of organized vascular networks, supporting stromal cells and cardiac muscle cells. Considering this, the reconstruction of tissue structure by various cells of cardiovascular lineages, such as vascular cells and cardiac muscle cells, is desirable for the ideal conformation of hPSC-derived cardiac tissues. Heart-on-a-chip, an organ-on-a-chip system to evaluate the physiological pump function of 3D cardiac tissues might hold promise in medical researches such as drug discovery and regenerative medicine. Here, we review various modalities to evaluate the function of human stem cell-derived cardiac tissues and introduce heart-on-a-chip systems that can recapitulate physiological parameters of hPSC-derived cardiac tissues.
Collapse
Affiliation(s)
- Kozue Murata
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Hidetoshi Masumoto
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Raad FS, Khan TA, Esser TU, Hudson JE, Seth BI, Fujita B, Gandamala R, Tietze LF, Zimmermann WH. Chalcone-Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering. ChemMedChem 2021; 16:3300-3305. [PMID: 34309224 PMCID: PMC8597156 DOI: 10.1002/cmdc.202100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/14/2021] [Indexed: 11/12/2022]
Abstract
Human pluripotent stem cells (hPSCs) hold great promise for applications in cell therapy and drug screening in the cardiovascular field. Bone morphogenetic protein 4 (BMP4) is key for early cardiac mesoderm induction in hPSC and subsequent cardiomyocyte derivation. Small-molecular BMP4 mimetics may help to standardize cardiomyocyte derivation from hPSCs. Based on observations that chalcones can stimulate BMP4 signaling pathways, we hypothesized their utility in cardiac mesoderm induction. To test this, we set up a two-tiered screening strategy, (1) for directed differentiation of hPSCs with commercially available chalcones (4'-hydroxychalcone [4'HC] and Isoliquiritigen) and 24 newly synthesized chalcone derivatives, and (2) a functional screen to assess the propensity of the obtained cardiomyocytes to self-organize into contractile engineered human myocardium (EHM). We identified 4'HC, 4-fluoro-4'-methoxychalcone, and 4-fluoro-4'-hydroxychalcone as similarly effective in cardiac mesoderm induction, but only 4'HC as an effective replacement for BMP4 in the derivation of contractile EHM-forming cardiomyocytes.
Collapse
Affiliation(s)
- Farah S. Raad
- Institute of Pharmacology and ToxicologyUniversity Medical CenterGeorg-August-UniversityGöttingenGermany
- DZHK (German Center for Cardiovascular Research) – Partner site GöttingenGöttingenGermany
| | - Taukeer A. Khan
- DZHK (German Center for Cardiovascular Research) – Partner site GöttingenGöttingenGermany
- Institute of Organic and Biomolecular ChemistryGeorg-August-UniversityGöttingenGermany
| | - Tilman U. Esser
- Institute of Pharmacology and ToxicologyUniversity Medical CenterGeorg-August-UniversityGöttingenGermany
- DZHK (German Center for Cardiovascular Research) – Partner site GöttingenGöttingenGermany
| | - James E. Hudson
- Institute of Pharmacology and ToxicologyUniversity Medical CenterGeorg-August-UniversityGöttingenGermany
- DZHK (German Center for Cardiovascular Research) – Partner site GöttingenGöttingenGermany
| | - Bhakti Irene Seth
- Institute of Pharmacology and ToxicologyUniversity Medical CenterGeorg-August-UniversityGöttingenGermany
- DZHK (German Center for Cardiovascular Research) – Partner site GöttingenGöttingenGermany
| | - Buntaro Fujita
- Institute of Pharmacology and ToxicologyUniversity Medical CenterGeorg-August-UniversityGöttingenGermany
- DZHK (German Center for Cardiovascular Research) – Partner site GöttingenGöttingenGermany
| | - Ravi Gandamala
- Institute of Organic and Biomolecular ChemistryGeorg-August-UniversityGöttingenGermany
| | - Lutz F. Tietze
- DZHK (German Center for Cardiovascular Research) – Partner site GöttingenGöttingenGermany
- Institute of Organic and Biomolecular ChemistryGeorg-August-UniversityGöttingenGermany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and ToxicologyUniversity Medical CenterGeorg-August-UniversityGöttingenGermany
- DZHK (German Center for Cardiovascular Research) – Partner site GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)Georg-August-UniversityGöttingenGermany
- DZNE (German Center for Neurodegenerative Diseases) – Partner site GöttingenGöttingenGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP)GöttingenGermany
| |
Collapse
|
10
|
Shankaran A, Prasad K, Chaudhari S, Brand A, Satyamoorthy K. Advances in development and application of human organoids. 3 Biotech 2021; 11:257. [PMID: 33977021 PMCID: PMC8105691 DOI: 10.1007/s13205-021-02815-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Innumerable studies associated with cellular differentiation, tissue response and disease modeling have been conducted in two-dimensional (2D) culture systems or animal models. This has been invaluable in deciphering the normal and disease states in cell biology; the key shortcomings of it being suitability for translational or clinical correlations. The past decade has seen several major advances in organoid culture technologies and this has enhanced our understanding of mimicking organ reconstruction. The term organoid has generally been used to describe cellular aggregates derived from primary tissues or stem cells that can self-organize into organotypic structures. Organoids mimic the cellular microenvironment of tissues better than 2D cell culture systems and represent the tissue physiology. Human organoids of brain, thyroid, gastrointestinal, lung, cardiac, liver, pancreatic and kidney have been established from various diseases, healthy tissues and from pluripotent stem cells (PSCs). Advances in patient-derived organoid culture further provides a unique perspective from which treatment modalities can be personalized. In this review article, we have discussed the current strategies for establishing various types of organoids of ectodermal, endodermal and mesodermal origin. We have also discussed their applications in modeling human health and diseases (such as cancer, genetic, neurodegenerative and infectious diseases), applications in regenerative medicine and evolutionary studies.
Collapse
Affiliation(s)
- Abhijith Shankaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Angela Brand
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
- Department International Health, Faculty of Medicine, Health and Life Sciences, Maastricht University, Duboisdomein 30, 6229 GT Maastricht, The Netherlands
- United Nations University- Maastricht Economic and Social Research Institute On Innovation and Technology (UNU-MERIT), Boschstraat 24, 6211 AX Maastricht, The Netherlands
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| |
Collapse
|
11
|
Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021; 5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Indexed: 12/17/2022]
Abstract
A sound understanding of developmental biology is part of the foundation of effective stem cell-derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Hadel Al Asafen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
12
|
Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021; 9:658088. [PMID: 34055788 PMCID: PMC8149736 DOI: 10.3389/fcell.2021.658088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are derived from human embryos (human embryonic stem cells) or reprogrammed from human somatic cells (human induced pluripotent stem cells). They can differentiate into cardiovascular cells, which have great potential as exogenous cell resources for restoring cardiac structure and function in patients with heart disease or heart failure. A variety of protocols have been developed to generate and expand cardiovascular cells derived from hPSCs in vitro. Precisely and spatiotemporally activating or inhibiting various pathways in hPSCs is required to obtain cardiovascular lineages with high differentiation efficiency. In this concise review, we summarize the protocols of differentiating hPSCs into cardiovascular cells, highlight their therapeutic application for treatment of cardiac diseases in large animal models, and discuss the challenges and limitations in the use of cardiac cells generated from hPSCs for a better clinical application of hPSC-based cardiac cell therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Mills RJ, Humphrey SJ, Fortuna PRJ, Lor M, Foster SR, Quaife-Ryan GA, Johnston RL, Dumenil T, Bishop C, Rudraraju R, Rawle DJ, Le T, Zhao W, Lee L, Mackenzie-Kludas C, Mehdiabadi NR, Halliday C, Gilham D, Fu L, Nicholls SJ, Johansson J, Sweeney M, Wong NCW, Kulikowski E, Sokolowski KA, Tse BWC, Devilée L, Voges HK, Reynolds LT, Krumeich S, Mathieson E, Abu-Bonsrah D, Karavendzas K, Griffen B, Titmarsh D, Elliott DA, McMahon J, Suhrbier A, Subbarao K, Porrello ER, Smyth MJ, Engwerda CR, MacDonald KPA, Bald T, James DE, Hudson JE. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell 2021; 184:2167-2182.e22. [PMID: 33811809 PMCID: PMC7962543 DOI: 10.1016/j.cell.2021.03.026] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1β, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.
Collapse
Affiliation(s)
- Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | - Rebecca L Johnston
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Troy Dumenil
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Cameron Bishop
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Rajeev Rudraraju
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3052, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Thuy Le
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Wei Zhao
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Leo Lee
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | | | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | | | - Dean Gilham
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Li Fu
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Stephen J Nicholls
- Victorian Heart Hospital, Monash University, Clayton 3168, VIC, Australia
| | | | | | | | | | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Liam T Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sophie Krumeich
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Dad Abu-Bonsrah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Kathy Karavendzas
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Brendan Griffen
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - Drew Titmarsh
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne 3004, VIC, Australia; Department of Infectious Diseases, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Kanta Subbarao
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | | | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Institute of Experimental Oncology, University Hospital Bonn, Bonn 53127, Germany
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney 2006, NSW, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| |
Collapse
|
14
|
Lee CS, Cho HJ, Lee JW, Son H, Chai J, Kim HS. Adhesion GPCR Latrophilin-2 Specifies Cardiac Lineage Commitment through CDK5, Src, and P38MAPK. Stem Cell Reports 2021; 16:868-882. [PMID: 33798451 PMCID: PMC8072181 DOI: 10.1016/j.stemcr.2021.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Identifying lineage-specific markers is pivotal for understanding developmental processes and developing cell therapies. Here, we investigated the functioning of a cardiomyogenic cell-surface marker, latrophilin-2 (LPHN2), an adhesion G-protein-coupled receptor, in cardiac differentiation. LPHN2 was selectively expressed in cardiac progenitor cells (CPCs) and cardiomyocytes (CMCs) during mouse and human pluripotent stem cell (PSC) differentiation; cell sorting with an anti-LPHN2 antibody promoted the isolation of populations highly enriched in CPCs and CMCs. Lphn2 knockdown or knockout PSCs did not express cardiac genes. We used the Phospho Explorer Antibody Array, which encompasses nearly all known signaling pathways, to assess molecular mechanisms underlying LPHN2-induced cardiac differentiation. LPHN2-dependent phosphorylation was the strongest for cyclin-dependent kinase 5 (CDK5) at Tyr15. We identified CDK5, Src, and P38MAPK as key downstream molecules of LPHN2 signaling. These findings provide a valuable strategy for isolating CPCs and CMCs from PSCs and insights into the still-unknown cardiac differentiation mechanisms.
Collapse
Affiliation(s)
- Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - HyunJu Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jinho Chai
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Zhang L, Yang H. Promotive effects of tetrahydroxystilbene glucoside on the differentiation of neural stem cells from the mesencephalon into dopaminergic neurons. Neurosci Lett 2020; 742:135520. [PMID: 33246026 DOI: 10.1016/j.neulet.2020.135520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. Neural stem cells (NSCs) are the most promising cells for cell-replacement therapy for PD. However, the poor differentiation and maturation of DA neurons and decreased cell survival after transplantation are a challenge. Tetrahydroxystilbene glucoside (2,3,5,4'-tetrahydroxystilbene-2-O-glucoside; TSG), an active component of the popular traditional Chinese medicinal plant Polygonum multiflorum Thunb, possesses multiple pharmacological actions. In this study, we determined whether TSG can induce neural stem cell (NSCs) differentiation into neurons, especially DA neurons, and the possible involvement of Wnt/β-catenin signaling pathways. Results revealed that NSCs differentiated primarily into astrocytes when cultured in 2 % serum-containing medium. However, TSG treatment during NSC differentiation in vitro increased the number of Tuj-1-positive neurons, as well as the proportion of tyrosine hydroxylase(TH)-positive cells and dopamine- transporter- positive neurons, a late marker of mature DA neurons. We also found that TSG enhanced the expression of nuclear receptor related factor 1, a transcription factor specific for the development and maintenance of midbrain DA neurons in inducing NSC differentiation into TH -immunoreactive DA neurons. Moreover, TSG upregulated the expression of Wnt/β-catenin signaling molecules (Wnt1, Wnt3a, Wnt5a, and β-catenin). However, these promoting effects were significantly inhibited by the application of IWR1, a Wnt signaling-specific blocker in culture. Our findings suggested that TSG may have potential in inducing the DA neuronal differentiation of mouse NSCs mediated by triggering the Wnt/β-catenin signaling pathway. These results indicated the possible role for TSG in the transplantation of NSCs for PD.
Collapse
Affiliation(s)
- Lingling Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
16
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review summarizes the important role that metabolism plays in driving maturation of human pluripotent stem cell-derived cardiomyocytes. RECENT FINDINGS Human pluripotent stem cell-derived cardiomyocytes provide a model system for human cardiac biology. However, these models have been unable to fully recapitulate the maturity observed in the adult heart. By simulating the glucose to fatty acid transition observed in neonatal mammals, human pluripotent stem cell-derived cardiomyocytes undergo structural and functional maturation also accompanied by transcriptional changes and cell cycle arrest. The role of metabolism in energy production, signaling, and epigenetic modifications illustrates that metabolism and cellular phenotype are intimately linked. Further understanding of key metabolic factors driving cardiac maturation will facilitate the generation of more mature human pluripotent stem cell-derived cardiomyocyte models. This will increase our understanding of cardiac biology and potentially lead to novel therapeutics to enhance heart function.
Collapse
|
18
|
Bloxham CJ, Foster SR, Thomas WG. A Bitter Taste in Your Heart. Front Physiol 2020; 11:431. [PMID: 32457649 PMCID: PMC7225360 DOI: 10.3389/fphys.2020.00431] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.
Collapse
Affiliation(s)
- Conor J Bloxham
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Simon R Foster
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
19
|
Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. ADVANCED THERAPEUTICS 2020; 3:1900182. [PMID: 33665356 PMCID: PMC7928435 DOI: 10.1002/adtp.201900182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease resulting from irreversible death of cardiomyocytes (CMs) and weakening of the heart blood-pumping function. Stem cell-based therapies have been studied for MI treatment over the last two decades with promising outcome. In this review, we critically summarize the past work in this field to elucidate the advantages and disadvantages of treating MI using pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells, and cardiac progenitor cells. The main advantage of the latter is their cytokine production capability to modulate immune responses and control the progression of healing. However, human adult stem cells have very limited (if not 'no') capacity to differentiate into functional CMs in vitro or in vivo. In contrast, PSCs can be differentiated into functional CMs although the protocols for the cardiac differentiation of PSCs are mainly for adherent cells under 2D culture. Derivation of PSC-CMs in 3D, allowing for large-scale production of CMs via modulation of the Wnt/β-catenin signal pathway with defined chemicals and medium, may be desired for clinical translation. Furthermore, the technology of purification and maturation of the PSC-CMs may need further improvements to eliminate teratoma formation after in vivo implantation of the PSC-CMs for treating MI. In addition, in vitro derived PSC-CMs may have mechanical and electrical mismatch with the patient's cardiac tissue, which causes arrhythmia. This supports the use of PSC-derived cells committed to cardiac lineage without beating for implantation to treat MI. In this case, the PSC derived cells may utilize the mechanical, electrical, and chemical cues in the heart to further differentiate into mature/functional CMs in situ. Another major challenge facing stem cell therapy of MI is the low retention/survival of stem cells or their derivatives (e.g., PSC-CMs) in the heart for MI treatment after injection in vivo. This may be resolved by using biomaterials to engineer stem cells for reduced immunogenicity, immobilization of the cells in the heart, and increased integration with the host cardiac tissue. Biomaterials have also been applied in the derivation of CMs in vitro to increase the efficiency and maturation of differentiation. Collectively, a lot has been learned from the past failure of simply injecting intact stem cells or their derivatives in vivo for treating MI, and bioengineering stem cells with biomaterials is expected to be a valuable strategy for advancing stem cell therapy towards its widespread application for treating MI in the clinic.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Hakun
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019; 20:E5760. [PMID: 31744081 PMCID: PMC6888119 DOI: 10.3390/ijms20225760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of the molecular basis and mechanisms underlying cardiac diseases is mandatory for the development of new and effective therapeutic strategies. The lack of appropriate in vitro cell models that faithfully mirror the human disease phenotypes has hampered the understanding of molecular insights responsible of heart injury and disease development. Over the past decade, important scientific advances have revolutionized the field of stem cell biology through the remarkable discovery of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). These advances allowed to achieve the long-standing ambition of modelling human disease in a dish and, more interestingly, paved the way for unprecedented opportunities to translate bench discoveries into new therapies and to come closer to a real and effective stem cell-based medicine. The possibility to generate patient-specific iPSCs, together with the new advances in stem cell differentiation procedures and the availability of novel gene editing approaches and tissue engineering, has proven to be a powerful combination for the generation of phenotypically complex, pluripotent stem cell-based cellular disease models with potential use for early diagnosis, drug screening, and personalized therapy. This review will focus on recent progress and future outcome of iPSCs technology toward a customized medicine and new therapeutic options.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Research Center for Advanced Biochemistry and Molecular Biology, University “Magna Graecia” of Catanzaro, 88100 Loc., Germaneto, Catanzaro, Italy; (S.S.); (L.S.); (G.C.)
| | | | | | | |
Collapse
|
21
|
Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway. Cell Stem Cell 2019; 24:895-907.e6. [PMID: 30930147 DOI: 10.1016/j.stem.2019.03.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/05/2018] [Accepted: 03/07/2019] [Indexed: 12/28/2022]
Abstract
We have previously developed a high-throughput bioengineered human cardiac organoid (hCO) platform, which provides functional contractile tissue with biological properties similar to native heart tissue, including mature, cell-cycle-arrested cardiomyocytes. In this study, we perform functional screening of 105 small molecules with pro-regenerative potential. Our findings reveal surprising discordance between our hCO system and traditional 2D assays. In addition, functional analyses uncovered detrimental effects of many hit compounds. Two pro-proliferative small molecules without detrimental impacts on cardiac function were identified. High-throughput proteomics in hCO revealed synergistic activation of the mevalonate pathway and a cell-cycle network by the pro-proliferative compounds. Cell-cycle reentry in hCO and in vivo required the mevalonate pathway as inhibition of the mevalonate pathway with a statin attenuated pro-proliferative effects. This study highlights the utility of human cardiac organoids for pro-regenerative drug development, including identification of underlying biological mechanisms and minimization of adverse side effects.
Collapse
|
22
|
Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The envisioned routine application of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for therapies and industry-compliant screening approaches will require efficient and highly reproducible processes for the mass production of well-characterized CM batches.On their way toward beating CMs, hPSCs initially undergo an epithelial-to-mesenchymal transition into a primitive-streak (PS)-like population that later gives rise to all endodermal and mesodermal lineages, including cardiovascular progenies (CVPs). CVPs are multipotent and possess the capability to give rise to all major cell types of the heart, including CMs, endothelial cells, cardiac fibroblasts, and smooth muscle cells. This article provides an historical overview and describes the stepwise development of protocols that typically result in the appearance of beating CMs within 7-12 days of hPSC differentiation.We describe the development of directed and closely controlled cardiomyogenic differentiation, which now enables the induction of >90% CM purity without further lineage enrichment. Although secreted lineage specifiers (revealed from developmental biology) were initially used, we outline the advantages of chemical pathway modulators, as defined by more recent screening approaches. Subsequently, we discuss the use of defined culture media for upscaling the production of hPSC-CMs in controlled bioreactors and how this, in principle, unlimited source of human CMs can be used to progress heart regeneration and stimulate the drug discovery pipeline. Graphical Abstract.
Collapse
|
23
|
Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e000043. [PMID: 29874173 PMCID: PMC6708586 DOI: 10.1161/hcg.0000000000000043] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to treat ischemic heart disease or heart failure.
Collapse
|
24
|
Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A 2017; 114:E8372-E8381. [PMID: 28916735 DOI: 10.1073/pnas.1707316114] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.
Collapse
|
25
|
Tan Y, Han P, Gu Q, Chen G, Wang L, Ma R, Wu J, Feng C, Zhang Y, Wang L, Hu B, Li W, Hao J, Zhou Q. Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions. J Tissue Eng Regen Med 2017; 12:153-163. [PMID: 27943600 DOI: 10.1002/term.2381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/21/2016] [Accepted: 12/06/2016] [Indexed: 01/26/2023]
Abstract
A highly efficient cardiac differentiation from human pluripotent stem cells (hPSCs) is achievable using existing methods, especially with the standard B27 induction system. However, bovine serum albumin (BSA), one of the essential ingredients in B27, may pose significant complications for clinical studies owing to its animal origin and potential risks of virus contamination. Furthermore, the high cost of the B27 induction system also limits the applications of hPSCs-derived cardiomyocytes. Here, a BSA-free and chemically defined medium has been developed for differentiating hPSCs to clinical-grade cardiomyocytes, which generated over 80% cardiac troponin T (cTNT)-positive cardiomyocytes with high yield. When engrafting the cardiomyocytes into the hearts of myocardial infarction model rats, the rats survived with significantly improved heart functions in Δ ejection fraction and Δ fractional shortening. Importantly, the human embryonic stem cell (hESC) line (Q-CTS-hESC-2) chosen for differentiation was of a clinical-grade maintained in defined xeno-free conditions. Compliant with the biological safety requirements, the Q-CTS-hESC-2-derived cardiomyocytes have passed the sterility and pathogen criteria tests for clinical applications. This study reports, for the first time, the generation of clinical-grade and functional cardiomyocytes from hPSCs where BSA-free and chemically defined conditions were maintained throughout the whole process. This provides the possibility of future therapeutic use of clinical-grade hPSCs-derived cardiomyocytes in treating heart diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuanqing Tan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| | - Pengcheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| | - Gang Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| | - Lei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| | - Ruoyu Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| | - Chunjing Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100192, China
| |
Collapse
|
26
|
Voges HK, Mills RJ, Elliott DA, Parton RG, Porrello ER, Hudson JE. Development of a human cardiac organoid injury model reveals innate regenerative potential. Development 2017; 144:1118-1127. [PMID: 28174241 DOI: 10.1242/dev.143966] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
The adult human heart possesses a limited regenerative potential following an ischemic event, and undergoes a number of pathological changes in response to injury. Although cardiac regeneration has been documented in zebrafish and neonatal mouse hearts, it is currently unknown whether the immature human heart is capable of undergoing complete regeneration. Combined progress in pluripotent stem cell differentiation and tissue engineering has facilitated the development of human cardiac organoids (hCOs), which resemble fetal heart tissue and can be used to address this important knowledge gap. This study aimed to characterize the regenerative capacity of immature human heart tissue in response to injury. Following cryoinjury with a dry ice probe, hCOs exhibited an endogenous regenerative response with full functional recovery 2 weeks after acute injury. Cardiac functional recovery occurred in the absence of pathological fibrosis or cardiomyocyte hypertrophy. Consistent with regenerative organisms and neonatal human hearts, there was a high basal level of cardiomyocyte proliferation, which may be responsible for the regenerative capacity of the hCOs. This study suggests that immature human heart tissue has an intrinsic capacity to regenerate.
Collapse
Affiliation(s)
- Holly K Voges
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Richard J Mills
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, Royal Children's Hospital, School of Biosciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
27
|
Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao ML, Levent E, Raad F, Zeidler S, Wingender E, Riegler J, Wang M, Gold JD, Kehat I, Wettwer E, Ravens U, Dierickx P, van Laake LW, Goumans MJ, Khadjeh S, Toischer K, Hasenfuss G, Couture LA, Unger A, Linke WA, Araki T, Neel B, Keller G, Gepstein L, Wu JC, Zimmermann WH. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation 2017; 135:1832-1847. [PMID: 28167635 DOI: 10.1161/circulationaha.116.024145] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. RESULTS EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.
Collapse
Affiliation(s)
- Malte Tiburcy
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - James E Hudson
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Paul Balfanz
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Susanne Schlick
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Tim Meyer
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Mei-Ling Chang Liao
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Elif Levent
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Farah Raad
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Sebastian Zeidler
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Edgar Wingender
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Johannes Riegler
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Mouer Wang
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Joseph D Gold
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Izhak Kehat
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Erich Wettwer
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Ursula Ravens
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Pieterjan Dierickx
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Linda W van Laake
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Marie Jose Goumans
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Sara Khadjeh
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Karl Toischer
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Gerd Hasenfuss
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Larry A Couture
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Andreas Unger
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Wolfgang A Linke
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Toshiyuki Araki
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Benjamin Neel
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Gordon Keller
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Lior Gepstein
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Joseph C Wu
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia
| | - Wolfram-Hubertus Zimmermann
- From Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wettwer, W.-H.Z.); German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany (M.T., J.E.H., P.B., S.S., T.M., M.-L.C.L., E.L., F.R., S.Z., E. Wingender, W.A.L., W.-H.Z.); Institute of Bioinformatics, University Medical Center Göttingen, Germany (S.Z., E. Wingender); Stanford Cardiovascular Institute (J.R., M.W., J.D.G., J.C.W.) and Department of Radiology (J.D.G., J.C.W.), Molecular Imaging Program, Stanford University School of Medicine, CA; The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology, Haifa (I.K., L.G.); Institute of Pharmacology and Toxicology, Technical University Dresden, Germany (E. Wettwer, U.R.); University Medical Center Utrecht and Hubrecht Institute, The Netherlands (P.D., L.W.v.L.); Leiden University Medical Center, The Netherlands (M.J.G.); Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany (S.K., K.T., G.H., W.A.L.); Center for Applied Technology, Beckman Research Institute, City of Hope, Duarte, CA (L.A.C.); Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany (A.U., W.A.L.); New Laura and Isaac Perlmutter Cancer Center at New York University Langone (T.A., B.N.); and McEwen Centre for Regenerative Medicine, Toronto, Canada (G.K.). The current address for Dr Hudson is Laboratory for Cardiac Regeneration, School of Biomedical Sciences, The University of Queensland, Australia.
| |
Collapse
|
28
|
Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise. EBioMedicine 2017; 16:30-40. [PMID: 28169191 PMCID: PMC5474503 DOI: 10.1016/j.ebiom.2017.01.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs) have emerged as attractive cell source to obtain cardiomyocytes (CMs), with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation. Human pluripotent stem cells emerge as attractive tool for cardiac regeneration approaches. Plasticity of human pluripotent stem cells towards cardiac-related cell types guarantees repopulation of injured heart. Combination of stem cell and gene editing therapies has potential to become next generation treatment for cardiac diseases.
Data for this Review were identified by searches of MEDLINE and PubMed, and references from relevant articles using the search terms “cardiomyogenesis”, “adult stem cells”, “pluripotent stem cells” and “cardiac regeneration”. Only articles published in English between 1976 and 2017 were included. The majority of the articles reported were published after 2000.
Collapse
|
29
|
Han X, Yu H, Huang D, Xu Y, Saadatpour A, Li X, Wang L, Yu J, Pinello L, Lai S, Jiang M, Tian X, Zhang F, Cen Y, Fujiwara Y, Zhu W, Zhou B, Zhou T, Ouyang H, Wang J, Yuan GC, Duan S, Orkin SH, Guo G. A molecular roadmap for induced multi-lineage trans-differentiation of fibroblasts by chemical combinations. Cell Res 2017; 27:386-401. [PMID: 28128194 DOI: 10.1038/cr.2017.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/03/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Recent advances have demonstrated the power of small molecules in promoting cellular reprogramming. Yet, the full potential of such chemicals in cell fate manipulation and the underlying mechanisms require further characterization. Through functional screening assays, we find that mouse embryonic fibroblast cells can be induced to trans-differentiate into a wide range of somatic lineages simultaneously by treatment with a combination of four chemicals. Genomic analysis of the process indicates activation of multi-lineage modules and relaxation of epigenetic silencing programs. In addition, we identify Sox2 as an important regulator within the induced network. Single cell analysis uncovers a novel priming state that enables transition from fibroblast cells to diverse somatic lineages. Finally, we demonstrate that modification of the culture system enables directional trans-differentiation towards myocytic, glial or adipocytic lineages. Our study describes a cell fate control system that may be harnessed for regenerative medicine.
Collapse
Affiliation(s)
- Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Pediatric Hematology/Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Yu
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Daosheng Huang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Xu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Assieh Saadatpour
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Xia Li
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lengmei Wang
- The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Yu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueying Tian
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Fen Zhang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanhong Cen
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuko Fujiwara
- Division of Pediatric Hematology/Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Zhu
- The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bin Zhou
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Tianhua Zhou
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hongwei Ouyang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianan Wang
- The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Shumin Duan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Stuart H Orkin
- Division of Pediatric Hematology/Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Pediatric Hematology/Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
30
|
Activin A Modulates CRIPTO-1/HNF4 α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int 2017; 2017:4651238. [PMID: 28163723 PMCID: PMC5253508 DOI: 10.1155/2017/4651238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/29/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023] Open
Abstract
The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-, atrial-, and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives, which in turn promoted cardiomyocyte differentiation. Moreover, a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation, improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation, measuring action potentials, and intracellular Ca2+ dynamics. These findings are relevant for improving our understanding on human heart development, and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes, similar to those observed in adult cardiac myocytes.
Collapse
|
31
|
Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35:77-94. [PMID: 28007615 PMCID: PMC5237393 DOI: 10.1016/j.biotechadv.2016.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Winnie Leung
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Michael A Laflamme
- Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Shroff G, Vatsa D. Cell Viability of Human Embryonic Stem Cells Stored for a Period of 9 Years. EXP CLIN TRANSPLANT 2016; 15:344-349. [PMID: 27938317 DOI: 10.6002/ect.2016.0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Human embryonic stem cells are pluripotent cell lines usually derived from human blastocysts. Their potential critically depends on long-term proliferative capacity, developmental potential after prolonged culture, and karyotypic stability. Cell viability is an important parameter for assessing cell sample quality. Here, we elaborate the stored human embryonic stem cell lines' viability in a ready to use form for a period of 9 years (from 2007 to 2015). MATERIALS AND METHODS Spare pre implantation stage in vitro fertilized ovum-derived cell lines were cultured in suitable media. Thereafter, they were centrifuged at 1000 revolutions/min over 5 minutes, and pellets were suspended in normal saline. Next, they were tested for viability from storage at -20°C. After being allowed to thaw slowly, the cells were stained with propidium iodide and analyzed using flow cytometry. Images of cells were taken at ×40 and ×100 magnification. RESULTS At ×100 magnification, cell population size ranged from 0.2 to 2 μm. The percentage of live cells was more than 95% throughout the 9 years. Cells frozen in 2015 showed cell viability of 96.8%. CONCLUSIONS We observed high cell viability in our cell lines for 9 years. Human embryonic stem cell lines in a ready-to-use form can be preserved for long-term purposes. Thus, they could be made available globally.
Collapse
|
33
|
Li Z, Fan Z, Xu Y, Niu H, Xie X, Liu Z, Guan J. Thermosensitive and Highly Flexible Hydrogels Capable of Stimulating Cardiac Differentiation of Cardiosphere-Derived Cells under Static and Dynamic Mechanical Training Conditions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15948-57. [PMID: 27281488 PMCID: PMC5386508 DOI: 10.1021/acsami.6b04932] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cardiac stem cell therapy has been considered as a promising strategy for heart tissue regeneration. Yet achieving cardiac differentiation after stem cell transplantation remains challenging. This compromises the efficacy of current stem cell therapy. Delivery of cells using matrices that stimulate the cardiac differentiation may improve the degree of cardiac differentiation in the heart tissue. In this report, we investigated whether elastic modulus of highly flexible poly(N-isopropylamide) (PNIPAAm)-based hydrogels can be modulated to stimulate the encapsulated cardiosphere derived cells (CDCs) to differentiate into cardiac lineage under static condition and dynamic stretching that mimics the heart beating condition. We have developed hydrogels whose moduli do not change under both dynamic stretching and static conditions for 14 days. The hydrogels had the same chemical structure but different elastic moduli (11, 21, and 40 kPa). CDCs were encapsulated into these hydrogels and cultured under either native heart-mimicking dynamic stretching environment (12% strain and 1 Hz frequency) or static culture condition. CDCs were able to grow in all three hydrogels. The greatest growth was found in the hydrogel with elastic modulus of 40 kPa. The dynamic stretching condition stimulated CDC growth. The CDCs demonstrated elastic modulus-dependent cardiac differentiation under both static and dynamic stretching conditions as evidenced by gene and protein expressions of cardiac markers such as MYH6, CACNA1c, cTnI, and Connexin 43. The highest differentiation was found in the 40 kPa hydrogel. These results suggest that delivery of CDCs with the 40 kPa hydrogel may enhance cardiac differentiation in the infarct hearts.
Collapse
Affiliation(s)
- Zhenqing Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater Res 2016; 20:13. [PMID: 27226899 PMCID: PMC4879750 DOI: 10.1186/s40824-016-0060-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach currently available. Myofibroblasts are primarily responsible for cardiac fibrosis. They are formed by cardiac fibroblast differentiation, fibrocyte differentiation, epithelial to mesenchymal transdifferentiation, and endothelial to mesenchymal transition, driven by cytokines such as transforming growth factor beta (TGF-β), angiotensin II and platelet-derived growth factor (PDGF). The approaches that inhibit myofibroblast formation have been demonstrated to prevent cardiac fibrosis, including systemic delivery of antifibrotic drugs, localized delivery of biomaterials, localized delivery of biomaterials and antifibrotic drugs, and localized delivery of cells using biomaterials. This review addresses current progresses in cardiac fibrosis therapies.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| |
Collapse
|
35
|
Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep 2016; 6:24637. [PMID: 27097795 PMCID: PMC4838928 DOI: 10.1038/srep24637] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/29/2016] [Indexed: 01/25/2023] Open
Abstract
Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) – a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration.
Collapse
|
36
|
Abstract
Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target.
Collapse
|
37
|
Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol 2016; 13:333-49. [PMID: 27009425 DOI: 10.1038/nrcardio.2016.36] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed.
Collapse
Affiliation(s)
- Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
38
|
Lewandowski J, Kolanowski TJ, Kurpisz M. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. J Tissue Eng Regen Med 2016; 11:1658-1674. [PMID: 26777594 DOI: 10.1002/term.2117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/16/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
The derivation of pluripotent stem cells from human embryos and the generation of induced pluripotent stem cells (iPSCs) from somatic cells opened a new chapter in studies on the regeneration of the post-infarction heart and regenerative medicine as a whole. Thus, protocols for obtaining iPSCs were enthusiastically adopted and widely used for further experiments on cardiac differentiation. iPSC-mediated cardiomyocytes (iPSC-CMs) under in vitro culture conditions are generated by simulating natural cardiomyogenesis and involve the wingless-type mouse mammary tumour virus integration site family (WNT), transforming growth factor beta (TGF-β) and fibroblast growth factor (FGF) signalling pathways. New strategies have been proposed to take advantage of small chemical molecules, organic compounds and even electric or mechanical stimulation. There are three main approaches to support cardiac commitment in vitro: embryoid bodis (EBs), monolayer in vitro cultures and inductive co-cultures with visceral endoderm-like (END2) cells. In EB technique initial uniform size of pluripotent stem cell (PSC) colonies has a pivotal significance. Hence, some methods were designed to support cells aggregation. Another well-suited procedure is based on culturing cells in monolayer conditions in order to improve accessibility of growth factors and nutrients. Other distinct tactics are using visceral endoderm-like cells to culture them with PSCs due to secretion of procardiac cytokines. Finally, the appropriate purification of the obtained cardiomyocytes is required prior to their administration to a patient under the prospective cellular therapy strategy. This goal can be achieved using non-genetic methods, such as the application of surface markers and fluorescent dyes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jarosław Lewandowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz J Kolanowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Kurpisz
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
39
|
Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev 2016; 96:3-17. [PMID: 25980938 DOI: 10.1016/j.addr.2015.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cells (PSCs) represent an attractive source of cardiomyocytes with potential applications including disease modeling, drug discovery and safety screening, and novel cell-based cardiac therapies. Insights from embryology have contributed to the development of efficient, reliable methods capable of generating large quantities of human PSC-cardiomyocytes with cardiac purities ranging up to 90%. However, for human PSCs to meet their full potential, the field must identify methods to generate cardiomyocyte populations that are uniform in subtype (e.g. homogeneous ventricular cardiomyocytes) and have more mature structural and functional properties. For in vivo applications, cardiomyocyte production must be highly scalable and clinical grade, and we will need to overcome challenges including graft cell death, immune rejection, arrhythmogenesis, and tumorigenic potential. Here we discuss the types of human PSCs, commonly used methods to guide their differentiation into cardiomyocytes, the phenotype of the resultant cardiomyocytes, and the remaining obstacles to their successful translation.
Collapse
|
40
|
Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016; 96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Regenerative medicine, including preclinical studies in large animal models and tissue engineering approaches as well as innovative assays for drug discovery, will require the constant supply of hPSC-derived cardiomyocytes and other functional progenies. Respective cell production processes must be robust, economically viable and ultimately GMP-compliant. Recent research has enabled transition of lab scale protocols for hPSC expansion and cardiomyogenic differentiation towards more controlled processing in industry-compatible culture platforms. Here, advanced strategies for the cultivation and differentiation of hPSCs will be reviewed by focusing on stirred bioreactor-based techniques for process upscaling. We will discuss how cardiomyocyte mass production might benefit from recent findings such as cell expansion at the cardiovascular progenitor state. Finally, remaining challenges will be highlighted, specifically regarding three dimensional (3D) hPSC suspension culture and critical safety issues ahead of clinical translation.
Collapse
Affiliation(s)
- Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Birgit Andree
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
41
|
Weisbrod D, Khun SH, Bueno H, Peretz A, Attali B. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacol Sin 2016; 37:82-97. [PMID: 26725737 PMCID: PMC4722971 DOI: 10.1038/aps.2015.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022] Open
Abstract
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
Collapse
Affiliation(s)
- David Weisbrod
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiraz Haron Khun
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hanna Bueno
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
42
|
Li XH, Li Q, Jiang L, Deng C, Liu Z, Fu Y, Zhang M, Tan H, Feng Y, Shan Z, Wang J, Yu XY. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction. Stem Cells Transl Med 2015; 4:1415-24. [PMID: 26564862 DOI: 10.5966/sctm.2015-0136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The reprogramming of fibroblasts to induced pluripotent stem cells raises the possibility that somatic cells could be directly reprogrammed to cardiac progenitor cells (CPCs). The present study aimed to assess highly efficient protein-based approaches to reduce or eliminate the genetic manipulations to generate CPCs for cardiac regeneration therapy. A combination of QQ-reagent-modified Gata4, Hand2, Mef2c, and Tbx5 and three cytokines rapidly and efficiently reprogrammed human dermal fibroblasts (HDFs) into CPCs. This reprogramming process enriched trimethylated histone H3 lysine 4, monoacetylated histone H3 lysine 9, and Baf60c at the Nkx2.5 cardiac enhancer region by the chromatin immunoprecipitation quantitative polymerase chain reaction assay. Protein-induced CPCs transplanted into rat hearts after myocardial infarction improved cardiac function, and this was related to differentiation into cardiomyocyte-like cells. These findings demonstrate that the highly efficient protein-transduction method can directly reprogram HDFs into CPCs. This protein reprogramming strategy lays the foundation for future refinements both in vitro and in vivo and might provide a source of CPCs for regenerative approaches. SIGNIFICANCE The findings from the present study have demonstrated an efficient protein-transduction method of directly reprogramming fibroblasts into cardiac progenitor cells. These results have great potential in cell-based therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China Biochemistry and Molecular Biology Department, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Qianqian Li
- Biochemistry and Molecular Biology Department, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lin Jiang
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Chunyu Deng
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Zaiyi Liu
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yongheng Fu
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Mengzhen Zhang
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Honghong Tan
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yuliang Feng
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Zhixin Shan
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Jianjun Wang
- Biochemistry and Molecular Biology Department, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Xi-Yong Yu
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
43
|
Directed cardiomyogenesis of human pluripotent stem cells by modulating Wnt/β-catenin and BMP signalling with small molecules. Biochem J 2015; 469:235-41. [PMID: 26171831 DOI: 10.1042/bj20150186] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cardiomyocytes derived from human pluripotent stem cells (PSCs) are a potential cell source for regenerative medicine, disease modelling and drug development. However, current approaches for in vitro cardiac differentiation of human PSCs are often time-consuming, heavily depend on expensive growth factors and involve the tedious formation of embryonic bodies whose signalling pathways are difficult to precisely modulate due to their complex microenvironments. In the present study, we report a new small molecule-based differentiation approach, which significantly promoted contracting cardiomyocytes in human PSCs in a monolayer format in as little as 7 days, in contrast with most traditional differentiation methods that usually take up to 3 weeks for cardiomyogenesis. This approach consists in activation of the Wnt/β-catenin signalling at day 0-1 with small molecule CHIR99021 (CH) followed by inhibition of bone morphogenetic protein (BMP) signalling at day 1-4 with DMH1 [termed as CH(0-1)/DMH1(1-4) treatment], a selective small molecule BMP inhibitor reported by us previously. Our study further demonstrated that the CH(0-1)/DMH1(1-4) treatment significantly promotes cardiac formation via mesoderm and mesoderm-derived cardiac progenitor cells without impacts on either endoderm or ectoderm differentiation of human PSCs. This rapid, efficient and inexpensive small molecule-based cardiomyogenic method may potentially harness the use of human PSCs in regenerative medicine as well as other applications.
Collapse
|
44
|
Ovchinnikov DA, Hidalgo A, Yang SK, Zhang X, Hudson J, Mazzone SB, Chen C, Cooper-White JJ, Wolvetang EJ. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev 2015; 24:11-20. [PMID: 25075536 DOI: 10.1089/scd.2014.0195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prospective isolation of defined contractile human pluripotent stem cell (hPSC)-derived cardiomyocytes is advantageous for regenerative medicine and drug screening applications. Currently, enrichment of cardiomyocyte populations from such cultures can be achieved by combinations of cell surface markers or the labor-intensive genetic modification of cardiac developmental genes, such as NKX2.5 or MYH6, with fluorescent reporters. To create a facile, portable method for the isolation of contractile cardiomyocytes from cardiomyogenic hPSC cultures, we employed a highly conserved cardiac enhancer sequence in the SLC8A1 (NCX1) gene to generate a lentivirally deliverable, antibiotic-selectable NCX1cp-EGFP reporter. We show that human embryonic stem cells (and induced pluripotent stem cells) transduced with the NCX1cp-EGFP reporter cassette exhibit enhanced green fluorescent protein (EGFP) expression in cardiac progenitors from 5 days into the directed cardiac hPSC differentiation protocol, with all reporter-positive cells transitioning to spontaneously contracting foci 3 days later. In subsequent stages of cardiomyocyte maturation, NCX1cp-EGFP expression was exclusively limited to contractile cells expressing high levels of cardiac troponin T (CTNT), MLC2a/v, and α-actinin proteins, and was not present in CD90/THY1(+) cardiac stromal cells or CD31/PECAM(+) endothelial cells. Flow-assisted cytometrically sorted EGFP(+) fractions of differentiated cultures were highly enriched in both early (NKX2.5 and TBX5) and late (CTNT/TNNI2, MYH6, MYH7, NPPA, and MYL2) cardiomyocyte markers, with a significant proportion of cells displaying a ventricular-like action potential pattern in patch-clamp recordings. We conclude that the use of the cardiac-specific promoter of the human SLC8A1(NCX1) gene is an effective strategy to isolate contractile cardiac cells and their progenitors from hPSC-derived cardiomyogenic cultures.
Collapse
Affiliation(s)
- Dmitry A Ovchinnikov
- 1 Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St. Lucia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015; 16:18894-922. [PMID: 26274955 PMCID: PMC4581278 DOI: 10.3390/ijms160818894] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.
Collapse
|
47
|
Thakar NY, Ovchinnikov DA, Hastie ML, Gorman J, Wolvetang EJ. RELB Alters Proliferation of Human Pluripotent Stem Cells via IMP3- and LIN28-Mediated Modulation of the Expression of IGF2 and Other Cell-Cycle Regulators. Stem Cells Dev 2015; 24:1888-900. [PMID: 25794352 DOI: 10.1089/scd.2014.0587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms that orchestrate the exit from pluripotency, cell cycle progression, and lineage-specific differentiation in human pluripotent stem cells (hPSCs) are poorly understood. RELB, a key protein in the noncanonical nuclear factor-kappaB (NFκB) signaling pathway, was previously implicated in controlling the switch between human embryonic stem cell (hESC) proliferation and differentiation. Here, we show that RELB enhances the proliferation of hESCs and human-induced pluripotent stem cells (hiPSCs) without affecting their pluripotency. We demonstrate that RELB does this by interacting with two RNA-binding proteins LIN28A and IMP3 (IGF2 mRNA-binding protein 3); further, these interactions control mRNA levels and protein expression of insulin-like growth factor 2 (IGF2) and key cell-cycle genes. Finally, after stress, these proteins co-localize in stress granules in hESCs and iPSCs. Our data identify RELB as a novel regulator of hPSC proliferation, and suggest a new function for RELB, in addition to its widely accepted role as a transcription factor, that involves recruitment of IMP3 and LIN28 to the cytosolic mRNA translation-control domains for post-transcriptional modulation of IGF2 and cell-cycle gene expression.
Collapse
Affiliation(s)
- Nilay Yogeshkumar Thakar
- 1 Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St. Lucia, QLD, Australia
| | - Dmitry Alexander Ovchinnikov
- 1 Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St. Lucia, QLD, Australia
| | - Marcus Lachlan Hastie
- 2 Protein Discovery Centre, QIMR Berghofer Medical Research Institute , Herston, QLD, Australia
| | - Jeffrey Gorman
- 2 Protein Discovery Centre, QIMR Berghofer Medical Research Institute , Herston, QLD, Australia
| | - Ernst Jurgen Wolvetang
- 1 Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St. Lucia, QLD, Australia
| |
Collapse
|
48
|
Laco F, Low JL, Seow J, Woo TL, Zhong Q, Seayad J, Liu Z, Wei H, Reuveny S, Elliott DA, Chai CLL, Oh SKW. Cardiomyocyte differentiation of pluripotent stem cells with SB203580 analogues correlates with Wnt pathway CK1 inhibition independent of p38 MAPK signaling. J Mol Cell Cardiol 2014; 80:56-70. [PMID: 25528965 DOI: 10.1016/j.yjmcc.2014.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/16/2014] [Accepted: 12/03/2014] [Indexed: 01/22/2023]
Abstract
Differentiation of human pluripotent stem cells as embryoid bodies (EBs) has been achieved previously with p38alfa MAPK inhibitors such as SB203580 with moderate efficiency of 10-15%. We synthesized and screened 42 compounds that are 2,4,5-trisubstituted azole analogues of SB203580 for efficient cardiomyocyte differentiation. Our screen identified novel compounds that have similar cardiac differentiation activity as SB203580. However, the cardiac differentiation did not correlate with p38alfa MAPK inhibition, indicating an alternative mechanism in cardiac differentiation. Upon profiling several 2,4,5-trisubstituted azole compounds against a panel of 97 kinases we identified several off targets, among them casein kinases 1 (CK1). The cardiomyogenic activities of SB203580 and its analogues showed a correlation with post mesoderm Wnt/beta-catenin pathway inhibition of CK1 epsilon and delta. These findings united the mechanism of 2,4,5-trisubstituted azole with the current theory of Wnt/beta-catenin regulated pathway of cardiac differentiation. Consequently an efficient cardiomyocyte protocol was developed with Wnt activator CHIR99021 and 2,4,5-trisubstituted azoles to give high yields of 50-70% cardiomyocytes and a 2-fold increase in growth.
Collapse
Affiliation(s)
- Filip Laco
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Joo-Leng Low
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Jasmin Seow
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Tsung Liang Woo
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Qixing Zhong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Zhenfeng Liu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, DUKE-NUS Graduate Medical School Singapore, Singapore
| | - Heiming Wei
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Australia
| | - Christina L L Chai
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Steve K W Oh
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore.
| |
Collapse
|
49
|
Kempf H, Olmer R, Kropp C, Rückert M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M, Roa Lara A, Kensah G, Gruh I, Haverich A, Martin U, Zweigerdt R. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 2014; 3:1132-46. [PMID: 25454631 PMCID: PMC4264033 DOI: 10.1016/j.stemcr.2014.09.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] Open
Abstract
To harness the potential of human pluripotent stem cells (hPSCs), an abundant supply of their progenies is required. Here, hPSC expansion as matrix-independent aggregates in suspension culture was combined with cardiomyogenic differentiation using chemical Wnt pathway modulators. A multiwell screen was scaled up to stirred Erlenmeyer flasks and subsequently to tank bioreactors, applying controlled feeding strategies (batch and cyclic perfusion). Cardiomyogenesis was sensitive to the GSK3 inhibitor CHIR99021 concentration, whereas the aggregate size was no prevailing factor across culture platforms. However, in bioreactors, the pattern of aggregate formation in the expansion phase dominated subsequent differentiation. Global profiling revealed a culture-dependent expression of BMP agonists/antagonists, suggesting their decisive role in cell-fate determination. Furthermore, metallothionein was discovered as a potentially stress-related marker in hPSCs. In 100 ml bioreactors, the production of 40 million predominantly ventricular-like cardiomyocytes (up to 85% purity) was enabled that were directly applicable to bioartificial cardiac tissue formation. Efficient cardiac differentiation protocol in suspension by chemical Wnt modulators Differentiation is CHIR concentration dependent, but aggregate size independent Bioreactor-controlled hPSC expansion dictates subsequent lineage differentiation Metallothionein is a potentially stress-induced marker of hPSC culture
Collapse
Affiliation(s)
- Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; Member of the Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Christina Kropp
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Michael Rückert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Monica Jara-Avaca
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Diana Robles-Diaz
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Daniel Wojciechowski
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Angelica Roa Lara
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - George Kensah
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; Member of the Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Straβe 1, 30625 Hannover, Germany.
| |
Collapse
|
50
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|