1
|
Rehan IF, Elnagar A, Zigo F, Sayed-Ahmed A, Yamada S. Biomimetic strategies for the deputization of proteoglycan functions. Front Cell Dev Biol 2024; 12:1391769. [PMID: 39170918 PMCID: PMC11337302 DOI: 10.3389/fcell.2024.1391769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Proteoglycans (PGs), which have glycosaminoglycan chains attached to their protein cores, are essential for maintaining the morphology and function of healthy body tissues. Extracellular PGs perform various functions, classified into the following four categories: i) the modulation of tissue mechanical properties; ii) the regulation and protection of the extracellular matrix; iii) protein sequestration; and iv) the regulation of cell signaling. The depletion of PGs may significantly impair tissue function, encompassing compromised mechanical characteristics and unregulated inflammatory responses. Since PGs play critical roles in the function of healthy tissues and their synthesis is complex, the development of PG mimetic molecules that recapitulate PG functions for tissue engineering and therapeutic applications has attracted the interest of researchers for more than 20 years. These approaches have ranged from semisynthetic graft copolymers to recombinant PG domains produced by cells that have undergone genetic modifications. This review discusses some essential extracellular PG functions and approaches to mimicking these functions.
Collapse
Affiliation(s)
- Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Asmaa Elnagar
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
3
|
Regulation of biomineralization by proteoglycans: From mechanisms to application. Carbohydr Polym 2022; 294:119773. [DOI: 10.1016/j.carbpol.2022.119773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
4
|
Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol 2022; 10:856261. [PMID: 35433700 PMCID: PMC9010944 DOI: 10.3389/fcell.2022.856261] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Brooke L. Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Ifechukwude J. Biose
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
5
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
6
|
Castellanos BS, Reyes-Nava NG, Quintana AM. Knockdown of hspg2 is associated with abnormal mandibular joint formation and neural crest cell dysfunction in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2021; 21:7. [PMID: 33678174 PMCID: PMC7938484 DOI: 10.1186/s12861-021-00238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heparan sulfate proteoglycan 2 (HSPG2) encodes for perlecan, a large proteoglycan that plays an important role in cartilage formation, cell adhesion, and basement membrane stability. Mutations in HSPG2 have been associated with Schwartz-Jampel Syndrome (SJS) and Dyssegmental Dysplasia Silverman-Handmaker Type (DDSH), two disorders characterized by skeletal abnormalities. These data indicate a function for HSPG2 in cartilage development/maintenance. However, the mechanisms in which HSPG2 regulates cartilage development are not completely understood. Here, we explored the relationship between this gene and craniofacial development through morpholino-mediated knockdown of hspg2 using zebrafish. RESULTS Knockdown of hspg2 resulted in abnormal development of the mandibular jaw joint at 5 days post fertilization (DPF). We surmised that defects in mandible development were a consequence of neural crest cell (NCC) dysfunction, as these multipotent progenitors produce the cartilage of the head. Early NCC development was normal in morphant animals as measured by distal-less homeobox 2a (dlx2a) and SRY-box transcription factor 10 (sox10) expression at 1 DPF. However, subsequent analysis at later stages of development (4 DPF) revealed a decrease in the number of Sox10 + and Collagen, type II, alpha 1a (Col2a1a)+ cells within the mandibular jaw joint region of morphants relative to random control injected embryos. Concurrently, morphants showed a decreased expression of nkx3.2, a marker of jaw joint formation, at 4 DPF. CONCLUSIONS Collectively, these data suggest a complex role for hspg2 in jaw joint formation and late stage NCC differentiation.
Collapse
Affiliation(s)
| | - Nayeli G. Reyes-Nava
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968 USA
| | - Anita M. Quintana
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968 USA
| |
Collapse
|
7
|
Walimbe T, Panitch A. Proteoglycans in Biomedicine: Resurgence of an Underexploited Class of ECM Molecules. Front Pharmacol 2020; 10:1661. [PMID: 32082161 PMCID: PMC7000921 DOI: 10.3389/fphar.2019.01661] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Proteoglycans have emerged as biomacromolecules with important roles in matrix remodeling, homeostasis, and signaling in the past two decades. Due to their negatively charged glycosaminoglycan chains as well as distinct core protein structures, they interact with a variety of molecules, including matrix proteins, growth factors, cytokines and chemokines, pathogens, and enzymes. This led to the dawn of glycan therapies in the 20th century, but this research was quickly overshadowed by readily available DNA and protein-based therapies. The recent development of recombinant technology and advances in our understanding of proteoglycan function have led to a resurgence of these molecules as potential therapeutics. This review focuses on the recent preclinical efforts that are bringing proteoglycan research and therapies back to the forefront. Examples of studies using proteoglycan cores and mimetics have also been included to give the readers a perspective on the wide-ranging and extensive applications of these versatile molecules. Collectively, these advances are opening new avenues for targeting diseases at a molecular level, and providing avenues for the development of new and exciting treatments in regenerative medicine.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Alyssa Panitch
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
9
|
Rnjak‐Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives. Adv Healthc Mater 2018; 7:e1701042. [PMID: 29210510 DOI: 10.1002/adhm.201701042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Proteoglycans and their glycosaminoglycans (GAG) are essential for life as they are responsible for orchestrating many essential functions in development and tissue homeostasis, including biophysical properties and roles in cell signaling and extracellular matrix assembly. In an attempt to capture these biological functions, a range of biomaterials are designed to incorporate off-the-shelf GAGs, typically isolated from animal sources, for tissue engineering, drug delivery, and regenerative medicine applications. All GAGs, with the exception of hyaluronan, are present in the body covalently coupled to the protein core of proteoglycans, yet the incorporation of proteoglycans into biomaterials remains relatively unexplored. Proteoglycan-based biomaterials are more likely to recapitulate the unique, tissue-specific GAG profiles and native GAG presentation in human tissues. The protein core offers additional biological functionality, including cell, growth factor, and extracellular matrix binding domains, as well as sites for protein immobilization chemistries. Finally, proteoglycans can be recombinantly expressed in mammalian cells and thus offer genetic manipulation and metabolic engineering opportunities for control over the protein and GAG structures and functions. This Progress Report summarizes current developments in GAG-based biomaterials and presents emerging research and future opportunities for the development of biomaterials that incorporate GAGs presented in their native proteoglycan form.
Collapse
Affiliation(s)
| | - Fengying Tang
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| |
Collapse
|
10
|
Chiu YC, Fong EL, Grindel BJ, Kasper FK, Harrington DA, Farach-Carson MC. Sustained delivery of recombinant human bone morphogenetic protein-2 from perlecan domain I - functionalized electrospun poly (ε-caprolactone) scaffolds for bone regeneration. J Exp Orthop 2016; 3:25. [PMID: 27714703 PMCID: PMC5053971 DOI: 10.1186/s40634-016-0057-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/01/2016] [Indexed: 11/20/2022] Open
Abstract
Background Biomaterial scaffolds that deliver growth factors such as recombinant human bone morphogenetic proteins-2 (rhBMP-2) have improved clinical bone tissue engineering by enhancing bone tissue regeneration. This approach could be further improved if the controlled delivery of bioactive rhBMP-2 were sustained throughout the duration of osteogenesis from fibrous scaffolds that provide control over dose and bioactivity of rhBMP-2. In nature, heparan sulfate attached to core proteoglycans serves as the co-receptor that delivers growth factors to support tissue morphogenesis. Methods To mimic this behavior, we conjugated heparan sulfate decorated recombinant domain I of perlecan/HSPG2 onto an electrospun poly(ε-caprolactone) (PCL) scaffold, hypothesizing that the heparan sulfate chains will enhance rhBMP-2 loading onto the scaffold and preserve delivered rhBMP-2 bioactivity. Results In this study, we demonstrated that covalently conjugated perlecan domain I increased loading capacity of rhBMP-2 onto PCL scaffolds when compared to control unconjugated scaffolds. Additionally, rhBMP-2 released from the modified scaffolds enhanced alkaline phosphatase activity in W20–17 mouse bone marrow stromal cells, indicating the preservation of rhBMP-2 bioactivity indicative of osteogenesis. Conclusions We conclude that this platform provides a sophisticated and efficient approach to deliver bioactive rhBMP-2 for bone tissue regeneration applications. Electronic supplementary material The online version of this article (doi:10.1186/s40634-016-0057-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Chieh Chiu
- Fischell Department of Bioengineering, University of Maryland, 2212 Jeong H. Kim Building, College Park, MD, 20742, USA.
| | - Eliza L Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Brian J Grindel
- Department of BioSciences, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - Fred K Kasper
- Department of Orthodontics, The University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, TX, 77054, USA
| | - Daniel A Harrington
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - Mary C Farach-Carson
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA.,Department of BioSciences, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Exogenous Heparan Sulfate Enhances the TGF-β3-Induced Chondrogenesis in Human Mesenchymal Stem Cells by Activating TGF-β/Smad Signaling. Stem Cells Int 2015; 2016:1520136. [PMID: 26783399 PMCID: PMC4691498 DOI: 10.1155/2016/1520136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/21/2015] [Accepted: 08/10/2015] [Indexed: 12/25/2022] Open
Abstract
Heparan sulfate (HS) interacts with growth factors and has been implicated in regulating chondrogenesis. However, the effect of HS on TGF-β-mediated mesenchymal stem cell (MSC) chondrogenesis and molecular mechanisms remains unknown. In this study, we explored the effects of exogenous HS alone and in combination with TGF-β3 on chondrogenic differentiation of human MSCs and possible signal mechanisms. The results indicated that HS alone had no obvious effects on chondrogenic differentiation of human MSCs and TGF-β/Smad2/3 signal pathways. However, the combined TGF-β3/HS treatment resulted in a significant increase in GAG synthesis, cartilage matrix protein secretion, and cartilage-specific gene expression compared to cells treated with TGF-β3 alone. Furthermore, HS inhibited type III TGF-β receptors (TβRIII) expression and increased TGF-β3-mediated ratio of the type II (TβRII) to the type I (TβRI) TGF-β receptors and phosphorylation levels of Smad2/3. The inhibitor of the TGF-β/Smad signal, SB431542, not only completely inhibited HS-stimulated TGF-β3-mediated Smad2/3 phosphorylation but also completely inhibited the effects of HS on TGF-β3-induced chondrogenic differentiation. These results demonstrate exogenous HS enhances TGF-β3-induced chondrogenic differentiation of human MSCs by activating TGF-β/Smad2/3 signaling.
Collapse
|
12
|
Magalhães J, Lebourg M, Deplaine H, Gómez Ribelles JL, Blanco FJ. Effect of the Physicochemical Properties of Pure or Chitosan-Coated Poly(L-Lactic Acid)Scaffolds on the Chondrogenic Differentiation of Mesenchymal Stem Cells from Osteoarthritic Patients. Tissue Eng Part A 2015; 21:716-28. [DOI: 10.1089/ten.tea.2014.0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Joana Magalhães
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Grupo de Bioingeniería Tisular y Terapia Celular (GBTTC-CHUAC), Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Myriam Lebourg
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia. Valencia, Spain
| | - Harmony Deplaine
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia. Valencia, Spain
| | - José Luis Gómez Ribelles
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia. Valencia, Spain
| | - Francisco J. Blanco
- Grupo de Bioingeniería Tisular y Terapia Celular (GBTTC-CHUAC), Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
13
|
Nakamura R, Nakamura F, Fukunaga S. Disruption of endogenous perlecan function improves differentiation of rat articular chondrocytesin vitro. Anim Sci J 2014; 86:449-58. [DOI: 10.1111/asj.12309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Ryosuke Nakamura
- Laboratory of Animal By-Product Science; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Fumio Nakamura
- Laboratory of Animal By-Product Science; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Shigeharu Fukunaga
- Laboratory of Animal By-Product Science; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| |
Collapse
|
14
|
Lowe DA, Lepori-Bui N, Fomin PV, Sloofman LG, Zhou X, Farach-Carson MC, Wang L, Kirn-Safran CB. Deficiency in perlecan/HSPG2 during bone development enhances osteogenesis and decreases quality of adult bone in mice. Calcif Tissue Int 2014; 95:29-38. [PMID: 24798737 PMCID: PMC4137566 DOI: 10.1007/s00223-014-9859-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/10/2014] [Indexed: 12/22/2022]
Abstract
Perlecan/HSPG2 (Pln) is a large heparan sulfate proteoglycan abundant in the extracellular matrix of cartilage and the lacunocanalicular space of adult bones. Although Pln function during cartilage development is critical, evidenced by deficiency disorders including Schwartz-Jampel Syndrome and dyssegmental dysplasia Silverman-Handmaker type, little is known about its function in development of bone shape and quality. The purpose of this study was to understand the contribution of Pln to bone geometric and mechanical properties. We used hypomorph mutant mice that secrete negligible amount of Pln into skeletal tissues and analyzed their adult bone properties using micro-computed tomography and three-point-bending tests. Bone shortening and widening in Pln mutants was observed and could be attributed to loss of growth plate organization and accelerated osteogenesis that was reflected by elevated cortical thickness at older ages. This effect was more pronounced in Pln mutant females, indicating a sex-specific effect of Pln deficiency on bone geometry. Additionally, mutant females, and to a lesser extent mutant males, increased their elastic modulus and bone mineral densities to counteract changes in bone shape, but at the expense of increased brittleness. In summary, Pln deficiency alters cartilage matrix patterning and, as we now show, coordinately influences bone formation and calcification.
Collapse
Affiliation(s)
- Dylan A. Lowe
- University of Delaware, Department of Biological Sciences, Newark, DE
| | - Nadia Lepori-Bui
- University of Delaware, Department of Biological Sciences, Newark, DE
| | - Peter V. Fomin
- University of Delaware, Department of Biological Sciences, Newark, DE
| | - Laura G. Sloofman
- University of Delaware, Department of Biological Sciences, Newark, DE
| | - Xiaozhou Zhou
- University of Delaware, Department of Mechanical Engineering, Newark, DE
| | - Mary C. Farach-Carson
- University of Delaware, Department of Biological Sciences, Newark, DE
- Rice University, Department of Biochemistry and Cell Biology, Houston, TX
| | - Liyun Wang
- University of Delaware, Department of Mechanical Engineering, Newark, DE
| | - Catherine B. Kirn-Safran
- University of Delaware, Department of Biological Sciences, Newark, DE
- author to whom correspondence should be addressed: Catherine Kirn-Safran, University of Delaware, Department of Biological Science, 310 Wolf Hall, Newark, DE 19716, Tel: (302) 831-3249, Fax: (302) 831-2281,
| |
Collapse
|
15
|
Hubka KM, Dahlin RL, Meretoja VV, Kasper FK, Mikos AG. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:641-54. [PMID: 24834484 DOI: 10.1089/ten.teb.2014.0034] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage exhibits an inherently low rate of regeneration. Consequently, damage to articular cartilage often requires surgical intervention. However, existing treatments generally result in the formation of fibrocartilage tissue, which is inferior to native articular cartilage. As a result, cartilage engineering strategies seek to repair or replace damaged cartilage with an engineered tissue that restores full functionality to the impaired joint. These strategies often involve the use of chondrocytes, yet in vitro expansion and culture can lead to undesirable changes in chondrocyte phenotype. This review focuses on the use of articular chondrocytes and mesenchymal stem cells (MSCs) in either monoculture or coculture for the enhancement of chondrogenesis. Coculture strategies increasingly outperform their monoculture counterparts with regard to chondrogenesis and present unique opportunities to attain chondrocyte phenotype stability in vitro. Methods to prevent chondrocyte dedifferentiation and promote chondrocyte redifferentiation as well as to promote the chondrogenic differentiation of MSCs while preventing MSC hypertrophy are discussed.
Collapse
Affiliation(s)
- Kelsea M Hubka
- Department of Bioengineering, Rice University , Houston, Texas
| | | | | | | | | |
Collapse
|
16
|
Bierbaum S, Hintze V, Scharnweber D. Functionalization of biomaterial surfaces using artificial extracellular matrices. BIOMATTER 2014; 2:132-41. [PMID: 23507864 PMCID: PMC3549866 DOI: 10.4161/biom.20921] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Construction of biomaterials with the ability to guide cell function is a topic of high interest in biomaterial development. One approach is using components native to the ECM of the target tissue to generate in vitro a microenvironment that can also elicit specific responses in cells and tissues—an artificial ECM (aECM). The focus is on collagen as the basic material, which can be modified using a number of different glycoproteins, proteoglycans and glycosaminoglycans. Preparation, immobilization and the biochemical characteristics of such aECM are discussed, as well as the in vitro and in vivo response of cells and tissues, illustrating the potential of such matrices to direct cell fate.
Collapse
Affiliation(s)
- Susanne Bierbaum
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
17
|
Lord MS, Tsoi BM, Farrugia BL, Simon Ting SR, Baker S, Wiesmann WP, Whitelock JM. Synthesis and characterization of water soluble biomimetic chitosans for bone and cartilage tissue regeneration. J Mater Chem B 2014; 2:6517-6526. [DOI: 10.1039/c4tb00531g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfated chitosan-arginine was synthesized to replicate growth factor-binding glycosaminoglycans. This material promoted cartilage formation from human progenitor cells while chitosan-arginine promoted bone.
Collapse
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - Bonny M. Tsoi
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - Brooke L. Farrugia
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - S. R. Simon Ting
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | | | | | - John M. Whitelock
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| |
Collapse
|
18
|
Kang ML, Im GI. Drug delivery systems for intra-articular treatment of osteoarthritis. Expert Opin Drug Deliv 2013; 11:269-82. [PMID: 24308404 DOI: 10.1517/17425247.2014.867325] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Intra-articular (IA) drug delivery is very useful in the treatment of osteoarthritis (OA), the most common chronic joint affliction. However, the therapeutic effect of IA administration depends mostly on the efficacy of drug delivery. AREAS COVERED The present article reviews the current status of IA therapy for OA treatment as well as its rationale. Outlines of drug delivery parameters such as release profile, retention time, distribution, size and transport that influence the drug's biological performance in the joints are summarized. New delivery systems, currently under investigation, including liposome, nanoparticle, microparticle and hydrogel formulations are introduced. Functionalized drug delivery systems by targeting and thermoresponsiveness that are being investigated for OA treatment via IA therapy are also addressed. EXPERT OPINION Several delivery systems, including liposome, microparticles, nanoparticles and hydrogels, have been investigated for the sustained drug delivery to the joints. These can be advanced by the use of functionalized drug delivery systems that can lead targeting to specific regions and thermoresponsiveness for prolonged drug release in the joints. Further advances will bring forth new biocompatible and biodegradable materials as a drug carrier or new combination regimens. Future innovations in this field should be directed toward the development of adapted delivery systems that can induce tissue regeneration in OA patients.
Collapse
Affiliation(s)
- Mi Lan Kang
- Dongguk University Ilsan Hospital, Department of Orthopedics , Goyang 410-773 , Korea +82 31 961 7315 ; +82 31 961 7314 ;
| | | |
Collapse
|
19
|
Olee T, Grogan SP, Lotz MK, Colwell CW, D'Lima DD, Snyder EY. Repair of cartilage defects in arthritic tissue with differentiated human embryonic stem cells. Tissue Eng Part A 2013; 20:683-92. [PMID: 24028447 DOI: 10.1089/ten.tea.2012.0751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chondrocytes have been generated in vitro from a range of progenitor cell types and by a number of strategies. However, achieving reconstitution of actual physiologically relevant, appropriately-laminated cartilage in situ that would be applicable to conditions, such as arthritis and cartilage degeneration remains elusive. This lack of success is multifactorial and includes limited cell source, decreased proliferation rate of mature chondrocytes, lack of maintenance of phenotype, reduced matrix synthesis, and poor integration with host tissue. We report an efficient approach for deriving mesenchymal chondroprogenitor cells from human embryonic stem cells. These cells generated tissue containing cartilage-specific matrix proteins that integrated in situ in a partial-thickness defect in ex vivo articular cartilage harvested from human arthritic joints. Given that stem cells provide a virtually inexhaustible supply of starting material and that our technique is easily scalable, cartilaginous tissue primed and grafted in this manner could be suitable for clinical translation.
Collapse
Affiliation(s)
- Tsaiwei Olee
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Health , La Jolla, California
| | | | | | | | | | | |
Collapse
|
20
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
21
|
Weyers A, Linhardt RJ. Neoproteoglycans in tissue engineering. FEBS J 2013; 280:2511-22. [PMID: 23399318 DOI: 10.1111/febs.12187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 01/12/2023]
Abstract
Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein-glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer-glycosaminoglycan complexes.
Collapse
Affiliation(s)
- Amanda Weyers
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
22
|
Förster Y, Hintze V, Rentsch C, Rentsch B, Bierbaum S, Wiesmann HP, Scharnweber D, Worch H, Rammelt S. Surface functionalization of biomaterials with tissue-inductive artificial extracellular matrices. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/bnm-2013-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Melrose J, Smith MM, Smith SM, Ravi V, Young AA, Dart AJ, Sonnabend DH, Little CB. Altered stress induced by partial transection of the infraspinatus tendon leads to perlecan (HSPG2) accumulation in an ovine model of tendinopathy. Tissue Cell 2012; 45:77-82. [PMID: 23245384 DOI: 10.1016/j.tice.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/05/2012] [Accepted: 10/07/2012] [Indexed: 01/01/2023]
Abstract
Perlecan is a widely distributed, heparan sulphate proteoglycan with roles in the sequestration of FGFs, PDGF, VEGF through which it promotes cell proliferation and matrix production. Perlecan also stabilises extracellular matrices through interaction with a diverse range of matrix components. This study examined the distribution of perlecan in an ovine partial transection tendinopathy model. In normal tendon, perlecan was immunolocalised to small blood vessels in intrafascicular regions in the tendon-bone and muscle-tendon attachments and to linear arrays of oval shaped tenocytes in the tendon mid-region. Partial transection in the mid-tendon region significantly increased perlecan accumulation within the fascicles, in granulation tissue filling the transection site and in the tendon-bone and tendon-muscle attachments. The accumulation of perlecan in the transected tendon and its known roles in matrix stabilisation and cell proliferation indicate possible roles in tendon remodelling and repair. Perlecan domain-1 has been used as a growth factor delivery vehicle for FGF-2, BMP-2 and BMP-7 in regenerative medicine but has yet to be evaluated in infraspinatus tendon repair. A better understanding of perlecan's contributions to pathobiological processes in remodelling tendon may be useful in such regenerative strategies in the future.
Collapse
Affiliation(s)
- James Melrose
- The Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, The Royal North Shore Hospital of Sydney, St. Leonards, NSW 2065, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Decarlo AA, Belousova M, Ellis AL, Petersen D, Grenett H, Hardigan P, O'Grady R, Lord M, Whitelock JM. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis. BMC Biotechnol 2012; 12:60. [PMID: 22967000 PMCID: PMC3485628 DOI: 10.1186/1472-6750-12-60] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Background Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™). Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.
Collapse
Affiliation(s)
- Arthur A Decarlo
- Agenta Biotechnologies, Inc, 1500 1st Ave, N, Unit 31, Birmingham, AL 35203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee HR, Park KM, Joung YK, Park KD, Do SH. Platelet-rich plasma loadedin situ-formed hydrogel enhances hyaline cartilage regeneration by CB1 upregulation. J Biomed Mater Res A 2012; 100:3099-107. [DOI: 10.1002/jbm.a.34254] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/23/2012] [Accepted: 05/07/2012] [Indexed: 01/22/2023]
|
26
|
The cartilage matrix molecule components produced by human foetal cartilage rudiment cells within scaffolds and the role of exogenous growth factors. Biomaterials 2012; 33:4078-88. [DOI: 10.1016/j.biomaterials.2012.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/14/2012] [Indexed: 11/18/2022]
|
27
|
Ko EC, Fujihara Y, Ogasawara T, Asawa Y, Nishizawa S, Nagata S, Takato T, Hoshi K. BMP-2 Embedded Atelocollagen Scaffold for Tissue-Engineered Cartilage Cultured in the Medium Containing Insulin and Triiodothyronine—A New Protocol for Three-Dimensional In Vitro Culture of Human Chondrocytes. Tissue Eng Part C Methods 2012; 18:374-86. [DOI: 10.1089/ten.tec.2011.0217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Edward Chengchuan Ko
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- School of Dentistry, Collge of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuko Fujihara
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
| | - Toru Ogasawara
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiyo Asawa
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
| | - Satoru Nishizawa
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
| | - Satoru Nagata
- Nagata Microtia and Reconstructive Plastic Surgery Clinic, Saitama, Japan
| | - Tsuyoshi Takato
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Hoshi
- Departments of Cartilage and Bone Regeneration (Fujisoft), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Srinivasan PP, McCoy SY, Jha AK, Yang W, Jia X, Farach-Carson MC, Kirn-Safran CB. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis. Biomed Mater 2012; 7:024109. [PMID: 22455987 DOI: 10.1088/1748-6041/7/2/024109] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.
Collapse
Affiliation(s)
- Padma P Srinivasan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Siu RK, Zara JN, Hou Y, James AW, Kwak J, Zhang X, Ting K, Wu BM, Soo C, Lee M. NELL-1 promotes cartilage regeneration in an in vivo rabbit model. Tissue Eng Part A 2011; 18:252-61. [PMID: 21902605 DOI: 10.1089/ten.tea.2011.0142] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repair of cartilage due to joint trauma remains challenging due to the poor healing capacity of cartilage and adverse effects related to current growth factor-based strategies. NELL-1 (Nel-like molecule-1; Nel [a protein strongly expressed in neural tissue encoding epidermal growth factor like domain]), a protein first characterized in the context of premature cranial suture fusion, is believed to accelerate differentiation along the osteochondral lineage. We previously demonstrated the ability of NELL-1 protein to maintain the cartilaginous phenotype of explanted rabbit chondrocytes in vitro. Our objective in the current study is to determine whether NELL-1 can affect endogenous chondrocytes in an in vivo cartilage defect model. To generate the implant, NELL-1 was incorporated into chitosan nanoparticles and embedded into alginate hydrogels. These implants were press fit into 3-mm circular osteochondral defects created in the femoral condylar cartilage of 3-month-old New Zealand White rabbits (n=10). Controls included unfilled defects (n=8) and defects filled with phosphate-buffered saline-loaded chitosan nanoparticles embedded in alginate hydrogels (n=8). Rabbits were sacrificed 3 months postimplantation for histological analysis. Defects filled with alginate containing NELL-1 demonstrated significantly improved cartilage regeneration. Remarkably, histology of NELL-1-treated defects closely resembled that of native cartilage, including stronger Alcian blue and Safranin-O staining and increased deposition of type II collagen and absence of the bone markers type I collagen and Runt-related transcription factor 2 (Runx2) as demonstrated by immunohistochemistry. Our results suggest that NELL-1 may produce functional cartilage with properties similar to native cartilage, and is an exciting candidate for tissue engineering-based approaches for treating diverse pathologies of cartilage defects and degeneration.
Collapse
Affiliation(s)
- Ronald K Siu
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xu X, Jha AK, Duncan RL, Jia X. Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomater 2011; 7:3050-9. [PMID: 21550426 DOI: 10.1016/j.actbio.2011.04.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
We are interested in developing hydrophilic particulate systems that are capable of sequestering growth factors, regulating their release and potentiating their biological functions. To this end heparin (HP)-decorated, hyaluronic acid (HA)-based hydrogel particles (HGPs) were synthesized using an inverse emulsion polymerization technique employing divinyl sulfone as the crosslinker. By varying the feed composition of the aqueous phase the amount of HP integrated in the particles can be systematically tuned. The resulting microscopic particles are spherical in shape and contain nanosized pores suitable for growth factor encapsulation. The covalently immobilized HP retained its ability to bind bone morphogenetic protein-2 (BMP-2) specifically, and its release kinetics can be adjusted by tuning the particle composition. Compared with pure HA particles the hybrid HA/HP HGPs show a higher BMP-2 loading capacity. While BMP-2 was released from HA HGPs with a significant initial burst, a near zero order release kinetics was observed from HA/HP hybrid particles with an optimized heparin content of 0.55 μg per mg HGPs. The ability of HA/HP hybrid particles to present BMP-2 in a controlled manner, combined with the innate bioactivity of HA, induced robust and consistent chondrogenic differentiation of murine mesenchymal stem cells, as shown by up-regulation of the mRNA levels of chondrogenic markers and the production of cartilage-specific extracellular matrix components. The simplicity of the particle synthesis, combined with the defined biological activities of the constituent building blocks, renders the HP-decorated, HA-based hydrogel particle system an attractive candidate for the sustained release of BMP-2, possibly for cartilage repair and regeneration.
Collapse
|
31
|
Hudalla GA, Murphy WL. Biomaterials that regulate growth factor activity via bioinspired interactions. ADVANCED FUNCTIONAL MATERIALS 2011; 21:1754-1768. [PMID: 21921999 PMCID: PMC3171147 DOI: 10.1002/adfm.201002468] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Growth factor activity is localized within the natural extracellular matrix (ECM) by specific non-covalent interactions with core ECM biomolecules, such as proteins and proteoglycans. Recently, these interactions have inspired us and others to develop synthetic biomaterials that can non-covalently regulate growth factor activity for tissue engineering applications. For example, biomaterials covalently or non-covalently modified with heparin glycosaminoglycans can augment growth factor release strategies. In addition, recent studies demonstrate that biomaterials modified with heparin-binding peptides can sequester cell-secreted heparin proteoglycans and, in turn, sequester growth factors and regulate stem cell behavior. Another set of studies show that modular versions of growth factor molecules can be designed to interact with specific components of natural and synthetic ECMs, including collagen and hydroxyapatite. In addition, layer-by-layer assemblies of GAGs and other natural polyelectrolytes retain growth factors at a cell-material interface via specific non-covalent interactions. This review will detail the various bioinspired strategies being used to non-covalently localize growth factor activity within biomaterials, and will highlight in vivo examples of the efficacy of these materials to promote tissue regeneration.
Collapse
Affiliation(s)
- Gregory A. Hudalla
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
- Department of Pharmacology, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
| |
Collapse
|
32
|
Karlsen TA, Mirtaheri P, Shahdadfar A, Fløisand Y, Brinchmann JE. Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells. J Cell Biochem 2011; 112:684-93. [PMID: 21268090 DOI: 10.1002/jcb.22978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To obtain sufficient numbers of cells for tissue engineering applications, human bone marrow-derived mesenchymal stem cells (hBM-MSC) are commonly cultured as monolayers in incubators containing room air. In this study, we investigated whether three-dimensional (3D) culture conditions and incubator gas concentrations more similar to those observed in vivo impacted on cell expansion, differentiation capability, or phenotype of hBM-MSC. We found that 3D culture alone increased the expression of some molecules involved in osteogenic and adipogenic differentiation. In contrast, 3D culture did not induce chondrogenic differentiation, but enhanced the response to the chondrogenic differentiation medium. Changing the oxygen concentration to 6% and the carbon dioxide concentration to 7.5% did not impact on the results of any of our assays, showing that the hyperoxia of room air is not detrimental to hBM-MSC proliferation, differentiation, or phenotype.
Collapse
Affiliation(s)
- Tommy A Karlsen
- Institute of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | |
Collapse
|
33
|
Whitelock J, Melrose J. Heparan sulfate proteoglycans in healthy and diseased systems. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:739-51. [PMID: 21462353 DOI: 10.1002/wsbm.149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heparin and heparan sulfate (HS) are glycosaminoglycans (GAGs) that are synthesized in the tissues and organs of mammals. They are synthesized and attached to a core protein as proteoglycans through serine-glycine concensus motifs along the core protein. These GAGs are linear polysaccharides composed of repeating disaccharide saccharide units that are variously modified along their length. As a consequence of these modifications naturally occurring heparin and HS are extremely heterogeneous in their structures. A diverse range of proteins bind heparin and HS. The types of proteins that bind are dictated by the structure of the HS or heparin chains with which they are interacting. Heparan sulfates play major roles in tissue development and in maintaining homeostasis within healthy individuals. Recent genetic studies illustrate that alterations in their structural organization can have important consequences often giving rise to, or directly causing, a disease situation. A greater understanding of the repertoire of proteins with which heparin and HS interact and the diseases that can be caused by perturbations in the structures of heparin and HS proteoglycan may provide insights into possible therapeutic interventions. These issues are discussed with a focus on musculoskeletal phenotypes and diseases.
Collapse
Affiliation(s)
- John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia.
| | | |
Collapse
|
34
|
Zhang Y, Su J, Yu J, Bu X, Ren T, Liu X, Yao L. An essential role of discoidin domain receptor 2 (DDR2) in osteoblast differentiation and chondrocyte maturation via modulation of Runx2 activation. J Bone Miner Res 2011; 26:604-17. [PMID: 20734453 DOI: 10.1002/jbmr.225] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Discoidin domain receptor 2 (DDR2) belongs to receptor tyrosine kinase (RTK) family and is activated by collagen binding. Although the bone defects in Ddr2 null mice have been reported for a decade, the molecular mechanism remains unclear. This study sought to investigate the function and detailed mechanism of DDR2 in osteogenic and chondrogenic differentiation. Herein we found that in preosteoblastic cells, DDR2 activation was enhanced by osteogenic induction but was not paralleled with the alteration of DDR2 expression. Under differentiated condition, downregulation of endogenous DDR2 through specific shRNA dramatically repressed osteoblastic marker gene expression and osteogenic differentiation. Enforced expression of constitutively activated DDR2 increased the expression of bone markers in both undifferentiated and differentiated osteoblasts. Importantly, molecular evidence showed that DDR2 regulated the transactivity of Runx2, a master transcription factor involved in skeletal development, by modulating its phosphorylation. Analysis of candidate protein kinases indicated that extracellular signal-regulated kinase (ERK) activation is responsive to DDR2 signaling and involved in DDR2 regulation of Runx2 phosphorylation and transcriptional activity. Notably, a gain-of-function mutant of Runx2 with enhanced ERK-independent phosphorylation rescued the impaired osteogenic phenotypes observed in Ddr2-silenced cells, whereas a Runx2 mutant devoid of phosphorylation regulation by ERK inhibited DDR2 induction of osteogenesis. In addition, DDR2 facilitated Runx2 transactivation and type X collagen expression in hypertrophic chondrocytes. Thus this study reveals for the first time that DDR2 plays an essential role in osteoblast and chondrocyte differentiation. The mechanism disclosure may provide therapeutic targets for human genetic disorders caused by DDR2 deficiency.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang ZH, Yang ZQ, He XJ, Kamal BE, Xing Z. Lentivirus-mediated knockdown of aggrecanase-1 and -2 promotes chondrocyte-engineered cartilage formation in vitro. Biotechnol Bioeng 2011; 107:730-6. [PMID: 20632367 DOI: 10.1002/bit.22862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondrocyte-based tissue engineering has emerged as a promising approach for repair of injured cartilage tissues that have a poor self-healing capacity. However, this technique faces a major limitation: dedifferentiation of chondrocytes occurs following several passages in culture. Aggrecan, a major component of cartilage extracellular matrix, plays an essential role in chondrocyte differentiation. The aim of this study is to determine whether inhibition of chondrocyte aggrecanases, key degradative enzymes for aggrecan in cartilage, could benefit chondrocyte differentiation and the preservation of chondrocyte phenotype within a long-term period. Lentivirus-mediated RNA interference (RNAi) was employed to target both aggrecanase-1 and -2 in primary rat chondrocytes, and the transduced cells were seeded into chitosan-gelatin three-dimensional scaffolds. Histological, morphological, and biochemical analyses were performed at 1-8 weeks post-implantation to study chondrocyte survival, differentiation, and function. We found that lentivirus-mediated RNAi notably decreased the abundance of aggrecanase transcripts in chondrocytes but did not affect cell viability. Most importantly, compared to the control constructs seeded with untransduced chondrocytes, the aggrecanase inhibition increased chondrocyte proliferation and reinforced the production of glycosaminoglycans and total collagen, indicative of chondrocyte differentiation. The mRNA expression of chondrocyte marker genes (collagen II and aggrecan) was enhanced by aggrecanase silencing relative to the control. Together our data demonstrate that inhibition of endogenous aggrecanases facilitates chondrocyte differentiation and chondrocyte-engineered cartilage formation in vitro. The combination of lentiviral delivery system and genetic manipulation techniques provides a useful tool for modulation of chondrocyte phenotype in cartilage engineering.
Collapse
Affiliation(s)
- Zheng-Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiao Tong University, Xi'an, China.
| | | | | | | | | |
Collapse
|
36
|
Muthusamy A, Cooper CR, Gomes RR. Soluble perlecan domain I enhances vascular endothelial growth factor-165 activity and receptor phosphorylation in human bone marrow endothelial cells. BMC BIOCHEMISTRY 2010; 11:43. [PMID: 21047416 PMCID: PMC2987766 DOI: 10.1186/1471-2091-11-43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/03/2010] [Indexed: 01/13/2023]
Abstract
Background Immobilized recombinant perlecan domain I (PlnDI) binds and modulates the activity of heparin-binding growth factors, in vitro. However, activities for PlnDI, in solution, have not been reported. In this study, we assessed the ability of soluble forms to modulate vascular endothelial growth factor-165 (VEGF165) enhanced capillary tube-like formation, and VEGF receptor-2 phosphorylation of human bone marrow endothelial cells, in vitro. Results In solution, PlnDI binds VEGF165 in a heparan sulfate and pH dependent manner. Capillary tube-like formation is enhanced by exogenous PlnDI; however, PlnDI/VEGF165 mixtures combine to enhance formation beyond that stimulated by either PlnDI or VEGF165 alone. PlnDI also stimulates VEGF receptor-2 phosphorylation, and mixtures of PlnDI/VEGF165 reduce the time required for peak VEGF receptor-2 phosphorylation (Tyr-951), and increase Akt phosphorylation. PlnDI binds both immobilized neuropilin-1 and VEGF receptor-2, but has a greater affinity for neuropilin-1. PlnDI binding to neuropilin-1, but not to VEGF receptor-2 is dependent upon the heparan sulfate chains adorning PlnDI. Interestingly, the presence of VEGF165 but not VEGF121 significantly enhances PlnDI binding to Neuropilin-1 and VEGF receptor-2. Conclusions Our observations suggest soluble forms of PlnDI are biologically active. Moreover, PlnDI heparan sulfate chains alone or together with VEGF165 can enhance VEGFR-2 signaling and angiogenic events, in vitro. We propose PlnDI liberated during basement membrane or extracellular matrix turnover may have similar activities, in vivo.
Collapse
Affiliation(s)
- Arivalagan Muthusamy
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
37
|
Pradhan S, Farach-Carson MC. Mining the extracellular matrix for tissue engineering applications. Regen Med 2010; 5:961-70. [DOI: 10.2217/rme.10.61] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering is a rapidly evolving interdisciplinary field that aims to regenerate new tissue to replace damaged tissues or organs. The extracellular matrix (ECM) of animal tissues is a complex mixture of macromolecules that play an essential instructional role in the development of tissues and organs. Therefore, tissue engineering approaches rely on the need to present the correct cues to cells, to guide them to maintain tissue-specific functions. Recent research efforts have allowed us to mine various sequences and motifs, which play key roles in these guidance functions, from the ECM. Small conserved peptide sequences mined from ECM molecules can mimic some of the biological functions of their large parent molecules. In addition, these peptide sequences can be linked to various biomaterial scaffolds that can provide the cells with mechanical support to ensure appropriate cell growth and aid the formation of the correct tissue structure. The tissue engineering field will continue to benefit from the advent of these mined ECM sequences which have two major advantages over recombinant ECM molecules: material consistency and scalability.
Collapse
Affiliation(s)
- Swati Pradhan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA Biochemistry & Cell Biology, Rice University, Houston, TX 77251-1892, USA
- Center for Translational Cancer Research (CTCR), University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
38
|
Smith SM, Shu C, Melrose J. Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem Cell Biol 2010; 134:251-63. [PMID: 20690028 DOI: 10.1007/s00418-010-0730-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2010] [Indexed: 11/24/2022]
Abstract
We undertook a comparative immunolocalisation study on type II collagen, aggrecan and perlecan in a number of 12- to 14-week-old human foetal and postnatal (7-19 months) ovine joints including finger, toe, knee, elbow, hip and shoulder. This demonstrated that perlecan followed a virtually identical immunolocalisation pattern to that of type II collagen in the foetal tissues, but a slightly divergent localisation pattern in adult tissues. Aggrecan was also localised in the cartilaginous joint tissues, which were clearly delineated by toluidine blue staining and the type II collagen immunolocalisations. It was also present in the capsular joint tissues and in ligaments and tendons in the joint, which stained poorly or not at all with toluidine blue. In higher power microscopic views, antibodies to perlecan also stained small blood vessels in the synovial lining tissues of the joint capsule; however, this was not discernable in low power macroscopic views where the immunolocalisation of perlecan to pericellular regions of cells within the cartilaginous rudiments was a predominant feature. Perlecan was also evident in small blood vessels in stromal connective tissues associated with the cartilage rudiments and with occasional nerves in the vicinity of the joint tissues. Perlecan was expressed by rounded cells in the enthesis attachment points of tendons to bone and in rounded cells in the inner third of the meniscus, which stained prominently with type II collagen and aggrecan identifying the chondrogenic background of these cells and local compressive loads. Flattened cells within the tendon and in the surface laminas of articular cartilages and the meniscus did not express perlecan. Collected evidence presented herein, therefore, indicates that besides being a basement membrane component, perlecan is also a marker of chondrogenic cells in prenatal cartilages. In postnatal cartilages, perlecan displayed a pericellular localisation pattern rather than the territorial or interterritorial localisation it displayed in foetal cartilages. This may reflect processing of extracellular perlecan presumably as a consequence of intrinsic biomechanical loading on these tissues or to divergent functions for perlecan and type II collagen in adult compared to prenatal tissues.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, Level 10, Kolling Building B6, St. Leonards, NSW 2065, Australia
| | | | | |
Collapse
|
39
|
Lee M, Siu RK, Ting K, Wu BM. Effect of Nell-1 delivery on chondrocyte proliferation and cartilaginous extracellular matrix deposition. Tissue Eng Part A 2010; 16:1791-800. [PMID: 20028218 DOI: 10.1089/ten.tea.2009.0384] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cartilage tissue engineering using chondrogenic growth factors is an attractive strategy to promote cartilage repair. Bone morphogenetic proteins have been widely studied for their application in cartilage repair. However, functional heterogeneity of bone morphogenetic proteins and unpredictable effects such as cyst formation may limit their therapeutic use. Thus, the use of alternative growth factors with greater osteochondral specificity may be advantageous for cartilage regeneration. Nel-like molecule-1 (Nell-1; Nel is a protein strongly expressed in neural tissue encoding epidermal growth factor-like domain) is a novel growth factor believed to specifically target cells committed to the osteochondral lineage. Mutation of the Nell-1 gene has been shown to disrupt normal cartilage growth and development in rodents. This study investigates the chondrogenic potential of recombinant human Nell-1 protein in a three-dimensional alginate hydrogel microenvironment containing rabbit chondrocytes. To provide controlled delivery and maximize biological efficiency, Nell-1 was incorporated in chitosan microparticles. Over 42 days of culture, chondrocyte proliferation and cluster formation was significantly enhanced by Nell-1 in a dose-dependent manner. Further, the clusters formed in the presence of Nell-1 contained more type II collagen and glycosaminoglycans than clusters formed within Nell-free control gels. These findings demonstrate the ability of Nell-1 to promote chondrocyte proliferation and deposition of cartilage-specific extracellular matrix materials.
Collapse
Affiliation(s)
- Min Lee
- Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
40
|
Jha AK, Malik MS, Farach-Carson MC, Duncan RL, Jia X. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. SOFT MATTER 2010; 6:5045-5055. [PMID: 20936090 PMCID: PMC2950657 DOI: 10.1039/c0sm00101e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We aimed to develop biomimetic hydrogel matrices that not only exhibit structural hierarchy and mechanical integrity, but also present biological cues in a controlled fashion. To this end, photocrosslinkable, hyaluronic acid (HA)-based hydrogel particles (HGPs) were synthesized via an inverse emulsion crosslinking process followed by chemical modification with glycidyl methacrylate (GMA). HA modified with GMA (HA-GMA) was employed as the soluble macromer. Macroscopic hydrogels containing covalently integrated hydrogel particles (HA-c-HGP) were prepared by radical polymerization of HA-GMA in the presence of crosslinkable HGPs. The covalent linkages between the hydrogel particles and the secondary HA matrix resulted in the formation of a diffuse, fibrilar interface around the particles. Compared to the traditional bulk gels synthesized by photocrosslinking of HA-GMA, these hydrogels exhibited a reduced sol fraction and a lower equilibrium swelling ratio. When tested under uniaxial compression, the HA-c-HGP gels were more pliable than the HA-p-HGP gels and fractured at higher strain than the HA-GMA gels. Primary bovine chondrocytes were photoencapsulated in the HA matrices with minimal cell damage. The 3D microenvironment created by HA-GMA and HA HGPs not only maintained the chondrocyte phenotype but also fostered the production of cartilage specific extracellular matrix. To further improve the biological activities of the HA-c-HGP gels, bone morphogenetic protein 2 (BMP-2) was loaded into the immobilized HGPs. BMP-2 was released from the HA-c-HGP gels in a controlled manner with reduced initial burst over prolonged periods of time. The HA-c-HGP gels are promising candidates for use as bioactive matrices for cartilage tissue engineering.
Collapse
Affiliation(s)
- Amit K. Jha
- Department of Materials Science and Engineerinsg, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716
| | - Manisha S. Malik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Mary C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251
| | - Randall L. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Xinqiao Jia
- Department of Materials Science and Engineerinsg, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716
| |
Collapse
|
41
|
Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surg Sports Traumatol Arthrosc 2009; 17:1289-97. [PMID: 19333576 DOI: 10.1007/s00167-009-0782-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/04/2009] [Indexed: 12/13/2022]
Abstract
Articular cartilage injury remains one of the major concerns in orthopaedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques. The purpose of this paper is to review the literature on MSC-based cell therapy for articular cartilage repair to determine if it can be an alternative treatment for cartilage injury. MSCs retain both high proliferative potential and multipotentiality, including chondrogenic differentiation potential, and a number of successful results in transplantation of MSCs into cartilage defects have been reported in animal studies. However, the use of MSCs for cartilage repair is still at the stage of preclinical and phase I studies, and no comparative clinical studies have been reported. Therefore, it is difficult to make conclusions in human studies. This requires randomized clinical trials to evaluate the effectiveness of MSC-based cell therapy for cartilage repair.
Collapse
|
42
|
Jha AK, Yang W, Kirn-Safran CB, Farach-Carson MC, Jia X. Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials 2009; 30:6964-75. [PMID: 19775743 DOI: 10.1016/j.biomaterials.2009.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
We have developed a biomimetic growth factor delivery system that effectively stimulates the chondrogenic differentiation of the cultured mesenchymal stem cells via the controlled presentation of bone morphogenetic protein-2 (BMP-2). Hyaluronic acid (HA)-based, microscopic hydrogel particles (HGPs) with inherent nanopores and defined functional groups were synthesized by an inverse emulsion polymerization technique. Recombinantly produced, heparan sulfate (HS)-bearing perlecan domain I (PlnDI) was covalently immobilized to HA HGPs (HGP-P(1)) via a flexible poly(ethylene glycol) (PEG) linker through the lysine amines in the core protein of PlnDI employing reductive amination. Compared to HGP without PlnDI, HGP-P(1) exhibited significantly (p<0.05) higher BMP-2 binding capacity and distinctly different BMP-2 release kinetics. Heparitinase treatment increased the amount of BMP-2 released from HGP-P(1), confirming the HS-dependent BMP-2 binding. While BMP-2 was released from HGPs with a distinct burst release followed by a minimal cumulative release, its release from HGP-P(1) exhibited a minimal burst release followed by linear release kinetics over 15 days. The bioactivity of the hydrogel particles was evaluated using micromass culture of multipotent mesenchymal stem cells (MSCs), and the chondrogenic differentiation was assessed by the production of glycosaminoglycan, aggrecan and collagen type II. Our results revealed that BMP-2 loaded HGP-P(1) stimulates more robust cartilage specific ECM production as compared to BMP-2 loaded HGP, due to the ability of HGP-P(1) to potentiate BMP-2 and modulate its release with a near zero-order release kinetics. The PlnDI-conjugated, HA HGPs provide an improved BMP-2 delivery system for stimulating chondrogenic differentiation in vitro, with potential therapeutic application for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Amit K Jha
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
43
|
Uebersax L, Merkle HP, Meinel L. Biopolymer-Based Growth Factor Delivery for Tissue Repair: From Natural Concepts to Engineered Systems. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:263-89. [DOI: 10.1089/ten.teb.2008.0668] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenz Uebersax
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hans P. Merkle
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Lorenz Meinel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| |
Collapse
|
44
|
Quantitative modeling and analysis of the transforming growth factor beta signaling pathway. Biophys J 2009; 96:1733-50. [PMID: 19254534 DOI: 10.1016/j.bpj.2008.11.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/12/2008] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) signaling, which regulates multiple cellular processes including proliferation, apoptosis, and differentiation, plays an important but incompletely understood role in normal and cancerous tissues. For instance, although TGF-beta functions as a tumor suppressor in the premalignant stages of tumorigenesis, paradoxically, it also seems to act as a tumor promoter in advanced cancer leading to metastasis. The mechanisms by which TGF-beta elicits such diverse responses during cancer progression are still not entirely clear. As a first step toward understanding TGF-beta signaling quantitatively, we have developed a comprehensive, dynamic model of the canonical TGF-beta pathway via Smad transcription factors. By describing how an extracellular signal of the TGF-beta ligand is sensed by receptors and transmitted into the nucleus through intracellular Smad proteins, the model provides quantitative insight into how TGF-beta-induced responses are modulated and regulated. Subsequent model analysis shows that mechanisms associated with Smad activation by ligand-activated receptor, nuclear complex formation among Smad proteins, and inactivation of ligand-activated Smad (e.g., degradation, dephosphorylation) may be critical for regulating TGF-beta-targeted functional responses. The model was also used to predict dynamic characteristics of the Smad-mediated pathway in abnormal cells, from which we generated four testable hypotheses regarding potential mechanisms by which TGF-beta's tumor-suppressive roles may appear to morph into tumor-promotion during cancer progression.
Collapse
|
45
|
D'Souza S, Yang W, Marchetti D, Muir C, Farach-Carson MC, Carson DD. HIP/RPL29 antagonizes VEGF and FGF2 stimulated angiogenesis by interfering with HS-dependent responses. J Cell Biochem 2009; 105:1183-93. [PMID: 18980226 DOI: 10.1002/jcb.21899] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIP/RPL29 is a heparan sulfate (HS) binding protein with diverse activities including modulation of heparanase (HPSE) activity. We examined HIP/RPL29's ability to modulate actions of HS-binding growth factors (HBGFs) in angiogenesis. Between 1 and 2.5 microg/ml (ca. 60-150 nM), HIP/RPL29 inhibited HBGF-stimulated endothelial cell tube formation. Aortic explant outgrowth also was inhibited, but at higher concentrations (40 microg/ml). At this concentration, HIP/RPL29 had no effect on HBGF-stimulated MAPK phosphorylation or VEGF-stimulated receptor-2 phosphorylation at site Y-996. Partial inhibition occurred at VEGF receptor-2 site Y951, associated with cell migration. HBGF displacement from HS-bearing perlecan domain I showed that HIP/RPL29 released 50% of bound HBGF at 20 microg/ml, a dose where endothelial tube formation is inhibited. Similar FGF2 release occurred at pH 5.0 and 7.0, conditions where HPSE is highly and residually active, respectively. We considered that HIP/RPL29 inhibits HPSE-dependent release of HS-bound HBGFs. At pH 5.0, release of soluble HS was inhibited by 64% at concentrations of 5 microg/ml and by 77% at 40 microg/ml, indicating that HIP/RPL29 antagonizes HPSE activity. At concentrations up to 40 microg/ml (ca. 2.5 microM) where angiogenic processes are inhibited, release of FGF2 occurred in the presence of HPSE and HIP/RPL29. The majority of this FGF2 is not bound to soluble HS. Studies of HIP/RPL29 binding to HS indicated that many structural features of HS are important in modulation of HBGF activities. Our findings suggest that inhibition of angiogenic processes by HIP/RPL29 involves attenuation of the formation of soluble, biologically active HBGF:HS complexes that activate HBGF receptors.
Collapse
Affiliation(s)
- Sonia D'Souza
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rodgers KD, San Antonio JD, Jacenko O. Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 2008; 237:2622-42. [PMID: 18629873 DOI: 10.1002/dvdy.21593] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current understanding of the presence and function of heparan sulfate proteoglycans (HSPGs) in skeletal development and hematopoiesis. Although proteoglycans (PGs) comprise a large and diverse group of cell surface and matrix molecules, we chose to focus on HSPGs owing to their many proposed functions in skeletogenesis and hematopoiesis. Specifically, we discuss how HSPGs play predominant roles in establishing and regulating niches during skeleto-hematopoietic development by participating in distinct developmental processes such as patterning, compartmentalization, growth, differentiation, and maintenance of tissues. Special emphasis is placed on our novel hypothesis that mechanistically links endochondral skeletogenesis to the establishment of the hematopoietic stem cell (HSC) niche in the marrow. HSPGs may contribute to these developmental processes through their unique abilities to establish and mediate morphogen, growth factor, and cytokine gradients; facilitate signaling; provide structural stability to tissues; and act as molecular filters and barriers.
Collapse
Affiliation(s)
- Kathryn D Rodgers
- Department of Animal Biology, Division of Biochemistry, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6046, USA.
| | | | | |
Collapse
|
47
|
Ren R, Hutcheon AEK, Guo XQ, Saeidi N, Melotti SA, Ruberti JW, Zieske JD, Trinkaus-Randall V. Human primary corneal fibroblasts synthesize and deposit proteoglycans in long-term 3-D cultures. Dev Dyn 2008; 237:2705-15. [PMID: 18624285 DOI: 10.1002/dvdy.21606] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our goal was to develop a 3-D multi-cellular construct using primary human corneal fibroblasts cultured on a disorganized collagen substrate in a scaffold-free environment and to use it to determine the regulation of proteoglycans over an extended period of time (11 weeks). Electron micrographs revealed multi-layered constructs with cells present in between alternating parallel and perpendicular arrays of fibrils. Type I collagen increased 2-4-fold. Stromal proteoglycans including lumican, syndecan4, decorin, biglycan, mimecan, and perlecan were expressed. The presence of glycosaminoglycan chains was demonstrated for a subset of the core proteins (lumican, biglycan, and decorin) using lyase digestion. Cuprolinic blue-stained cultures showed that sulfated proteoglycans were present throughout the construct and most prominent in its mid-region. The size of the Cuprolinic-positive filaments resembled those previously reported in a human corneal stroma. Under the current culture conditions, the cells mimic a development or nonfibrotic repair phenotype.
Collapse
Affiliation(s)
- R Ren
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Brown AJ, Alicknavitch M, D’Souza S, Daikoku T, Kirn-Safran C, Marchetti D, Carson DD, Farach-Carson M. Heparanase expression and activity influences chondrogenic and osteogenic processes during endochondral bone formation. Bone 2008; 43:689-99. [PMID: 18589009 PMCID: PMC2621444 DOI: 10.1016/j.bone.2008.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/28/2008] [Accepted: 05/20/2008] [Indexed: 11/30/2022]
Abstract
Endochondral bone formation is a highly orchestrated process involving coordination among cell-cell, cell-matrix and growth factor signaling that eventually results in the production of mineralized bone from a cartilage template. Chondrogenic and osteogenic differentiation occur in sequence during this process, and the temporospatial patterning clearly requires the activities of heparin binding growth factors and their receptors. Heparanase (HPSE) plays a role in osteogenesis, but the mechanism by which it does so is incompletely understood. We used a combination of ex vivo and in vitro approaches and a well described HPSE inhibitor, PI-88 to study HPSE in endochondral bone formation. In situ hybridization and immunolocalization with HPSE antibodies revealed that HPSE is expressed in the peri-chondrium, peri-osteum, and at the chondro-osseous junction, all sites of key signaling events and tissue morphogenesis. Transcripts encoding Hpse also were observed in the pre-hypertrophic zone. Addition of PI-88 to metatarsals in organ culture reduced growth and suggested that HPSE activity aids the transition from chondrogenic to osteogenic processes in growth of long bones. To study this, we used high density cultures of ATDC5 pre-chondrogenic cells grown under conditions favoring chondrogenesis or osteogenesis. Under chondrogenic conditions, HPSE/Hpse was expressed at high levels during the mid-culture period, at the onset of terminal chondrogenesis. PI-88 addition reduced chondrogenesis and accelerated osteogenesis, including a dramatic up-regulation of osteocalcin levels. In normal growth medium, addition of PI-88 reduced migration of ATDC-5 cells, suggesting that HPSE facilitates cartilage replacement by bone at the chondro-osseous junction by removing the HS component of proteoglycans, such as perlecan/HSPG2, that otherwise prevent osteogenic cells from remodeling hypertrophic cartilage.
Collapse
Affiliation(s)
- A. J. Brown
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | | | - S.S. D’Souza
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - T. Daikoku
- Division of Reproductive and Developmental Biology, Vanderbilt Medical Center, Nashville, TN 37232
| | - C.B. Kirn-Safran
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - D. Marchetti
- Department of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - D. D. Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - M.C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
- Department of Material Sciences, University of Delaware, Newark, DE 19716
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716
- Corresponding Author: Department of Biological Sciences, University of Delaware, 326 Wolf Hall, Newark, DE 19716 Tel. 302 831-4296; FAX 302 831-2281; E-Mail:
| |
Collapse
|
49
|
Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Nöth U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther 2008; 9:213. [PMID: 17561986 PMCID: PMC2206353 DOI: 10.1186/ar2195] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hyaline articular cartilage, the load-bearing tissue of the joint, has very limited repair and regeneration capacities. The lack of efficient treatment modalities for large chondral defects has motivated attempts to engineer cartilage constructs in vitro by combining cells, scaffold materials and environmental factors, including growth factors, signaling molecules, and physical influences. Despite promising experimental approaches, however, none of the current cartilage repair strategies has generated long lasting hyaline cartilage replacement tissue that meets the functional demands placed upon this tissue in vivo. The reasons for this are diverse and can ultimately result in matrix degradation, differentiation or integration insufficiencies, or loss of the transplanted cells and tissues. This article aims to systematically review the different causes that lead to these impairments, including the lack of appropriate differentiation factors, hypertrophy, senescence, apoptosis, necrosis, inflammation, and mechanical stress. The current conceptual basis of the major biological obstacles for persistent cell-based regeneration of articular cartilage is discussed, as well as future trends to overcome these limitations.
Collapse
Affiliation(s)
- Andre F Steinert
- Orthopaedic Center for Musculoskeletal Research, König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany
| | - Steven C Ghivizzani
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Julius-Maximilians-University, Würzburg, Germany
| | - Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Ulrich Nöth
- Orthopaedic Center for Musculoskeletal Research, König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
50
|
Melrose J, Hayes AJ, Whitelock JM, Little CB. Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 2008; 30:457-69. [DOI: 10.1002/bies.20748] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|