1
|
Baba Ismail YM, Reinwald Y, Ferreira AM, Bretcanu O, Dalgarno K, El Haj AJ. Manufacturing of 3D-Printed Hybrid Scaffolds with Polyelectrolyte Multilayer Coating in Static and Dynamic Culture Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2811. [PMID: 38930181 PMCID: PMC11205028 DOI: 10.3390/ma17122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Three-dimensional printing (3DP) has emerged as a promising method for creating intricate scaffold designs. This study assessed three 3DP scaffold designs fabricated using biodegradable poly(lactic) acid (PLA) through fused deposition modelling (FDM): mesh, two channels (2C), and four channels (4C). To address the limitations of PLA, such as hydrophobic properties and poor cell attachment, a post-fabrication modification technique employing Polyelectrolyte Multilayers (PEMs) coating was implemented. The scaffolds underwent aminolysis followed by coating with SiCHA nanopowders dispersed in hyaluronic acid and collagen type I, and finally crosslinked the outermost coated layers with EDC/NHS solution to complete the hybrid scaffold production. The study employed rotating wall vessels (RWVs) to investigate how simulating microgravity affects cell proliferation and differentiation. Human mesenchymal stem cells (hMSCs) cultured on these scaffolds using proliferation medium (PM) and osteogenic media (OM), subjected to static (TCP) and dynamic (RWVs) conditions for 21 days, revealed superior performance of 4C hybrid scaffolds, particularly in OM. Compared to commercial hydroxyapatite scaffolds, these hybrid scaffolds demonstrated enhanced cell activity and survival. The pre-vascularisation concept on 4C hybrid scaffolds showed the proliferation of both HUVECs and hMSCs throughout the scaffolds, with a positive expression of osteogenic and angiogenic markers at the early stages.
Collapse
Affiliation(s)
- Yanny Marliana Baba Ismail
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Yvonne Reinwald
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- School of Science & Technology, Department of Engineering, Nottingham Trent University, Clifton Campus, Nottingham NG1 18NS, UK
- Medical Technology Innovation Facility, Nottingham Trent University, Clifton Campus, Nottingham NG1 18NS, UK
| | - Ana Marina Ferreira
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Oana Bretcanu
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Alicia J. El Haj
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- Institute of Translational Medicine, Heritage Building (Old Queen Elizabeth Hospital), Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
2
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Yan HF, Zhang T, Sun HW, Yang JW, Zhou JL, Cui Y. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:1-17. [PMID: 38670635 DOI: 10.1016/j.lssr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 04/28/2024]
Abstract
Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
3
|
Ratushnyy AY, Buravkova LB. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1763-1777. [PMID: 38105197 DOI: 10.1134/s0006297923110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.
Collapse
Affiliation(s)
- Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Ludmila B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
4
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
5
|
Untargeted Lipidomics of Erythrocytes under Simulated Microgravity Conditions. Int J Mol Sci 2023; 24:ijms24054379. [PMID: 36901810 PMCID: PMC10002504 DOI: 10.3390/ijms24054379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Lipidomics and metabolomics are nowadays widely used to provide promising insights into the pathophysiology of cellular stress disorders. Our study expands, with the use of a hyphenated ion mobility mass spectrometric platform, the understanding of the cellular processes and stress due to microgravity. By lipid profiling of human erythrocytes, we annotated complex lipids such as oxidized phosphocholines, phosphocholines bearing arachidonic in their moiety, as well as sphingomyelins and hexosyl ceramides associated with microgravity conditions. Overall, our findings give an insight into the molecular alterations and identify erythrocyte lipidomics signatures associated with microgravity conditions. If the present results are confirmed in future studies, they may help to develop suitable treatments for astronauts after return to Earth.
Collapse
|
6
|
iPSC-neural crest derived cells embedded in 3D printable bio-ink promote cranial bone defect repair. Sci Rep 2022; 12:18701. [PMID: 36333414 PMCID: PMC9636385 DOI: 10.1038/s41598-022-22502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cranial bone loss presents a major clinical challenge and new regenerative approaches to address craniofacial reconstruction are in great demand. Induced pluripotent stem cell (iPSC) differentiation is a powerful tool to generate mesenchymal stromal cells (MSCs). Prior research demonstrated the potential of bone marrow-derived MSCs (BM-MSCs) and iPSC-derived mesenchymal progenitor cells via the neural crest (NCC-MPCs) or mesodermal lineages (iMSCs) to be promising cell source for bone regeneration. Overexpression of human recombinant bone morphogenetic protein (BMP)6 efficiently stimulates bone formation. The study aimed to evaluate the potential of iPSC-derived cells via neural crest or mesoderm overexpressing BMP6 and embedded in 3D printable bio-ink to generate viable bone graft alternatives for cranial reconstruction. Cell viability, osteogenic potential of cells, and bio-ink (Ink-Bone or GelXa) combinations were investigated in vitro using bioluminescent imaging. The osteogenic potential of bio-ink-cell constructs were evaluated in osteogenic media or nucleofected with BMP6 using qRT-PCR and in vitro μCT. For in vivo testing, two 2 mm circular defects were created in the frontal and parietal bones of NOD/SCID mice and treated with Ink-Bone, Ink-Bone + BM-MSC-BMP6, Ink-Bone + iMSC-BMP6, Ink-Bone + iNCC-MPC-BMP6, or left untreated. For follow-up, µCT was performed at weeks 0, 4, and 8 weeks. At the time of sacrifice (week 8), histological and immunofluorescent analyses were performed. Both bio-inks supported cell survival and promoted osteogenic differentiation of iNCC-MPCs and BM-MSCs in vitro. At 4 weeks, cell viability of both BM-MSCs and iNCC-MPCs were increased in Ink-Bone compared to GelXA. The combination of Ink-Bone with iNCC-MPC-BMP6 resulted in an increased bone volume in the frontal bone compared to the other groups at 4 weeks post-surgery. At 8 weeks, both iNCC-MPC-BMP6 and iMSC-MSC-BMP6 resulted in an increased bone volume and partial bone bridging between the implant and host bone compared to the other groups. The results of this study show the potential of NCC-MPC-incorporated bio-ink to regenerate frontal cranial defects. Therefore, this bio-ink-cell combination should be further investigated for its therapeutic potential in large animal models with larger cranial defects, allowing for 3D printing of the cell-incorporated material.
Collapse
|
7
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
8
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
9
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal stromal/stem cells spheroid culture effect on the therapeutic efficacy of these cells and their exosomes: A new strategy to overcome cell therapy limitations. Biomed Pharmacother 2022; 152:113211. [PMID: 35696942 DOI: 10.1016/j.biopha.2022.113211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cell therapy is one of the new treatment methods in which mesenchymal stem/stromal cell (MSCs) transplantation is one of the cells widely used in this field. The results of MSCs application in the clinic prove their therapeutic efficacy. For this reason, many clinical trials have been designed based on the application of MSCs for various diseases, especially inflammatory disease and regenerative medicine. These cells perform their therapeutic functions through multiple mechanisms, including the differentiative potential, immunomodulatory properties, production of therapeutic exosomes, production of growth factors and cytokines, and anti-apoptotic effects. Exosomes are nanosized extracellular vesicles (EVs) that change target cell functions by transferring different cargos. The therapeutic ability of MSCs-derived exosomes has been demonstrated in many studies. However, some limitations, such as the low production of exosomes by cells and the need for large amounts of them and also their limited therapeutic ability, have encouraged researchers to find methods that increase exosomes' therapeutic potential. One of these methods is the spheroid culture of MSCs. Studies show that the three-dimensional culture (3DCC) of MSCs in the form of multicellular spheroids increases the therapeutic efficacy of these cells in laboratory and animal applications. In addition, the spheroid culture of MSCs leads to enhanced therapeutic properties of their exosomes and production rate. Due to the novelty of the field of using 3DCC MSCs-derived exosomes, examination of their properties and the results of their therapeutic application can increase our view of this field. This review discussed MSCs and their exosomes enhanced properties in spheroid culture.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021; 22:ijms221910507. [PMID: 34638848 PMCID: PMC8508777 DOI: 10.3390/ijms221910507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.
Collapse
Affiliation(s)
- Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: or (A.B.); (M.M.)
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: or (A.B.); (M.M.)
| |
Collapse
|
11
|
Kouroupis D, Correa D. Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications. Front Bioeng Biotechnol 2021; 9:621748. [PMID: 33644016 PMCID: PMC7907607 DOI: 10.3389/fbioe.2021.621748] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC) exist within their in vivo niches as part of heterogeneous cell populations, exhibiting variable stemness potential and supportive functionalities. Conventional extensive 2D in vitro MSC expansion, aimed at obtaining clinically relevant therapeutic cell numbers, results in detrimental effects on both cellular characteristics (e.g., phenotypic changes and senescence) and functions (e.g., differentiation capacity and immunomodulatory effects). These deleterious effects, added to the inherent inter-donor variability, negatively affect the standardization and reproducibility of MSC therapeutic potential. The resulting manufacturing challenges that drive the qualitative variability of MSC-based products is evident in various clinical trials where MSC therapeutic efficacy is moderate or, in some cases, totally insufficient. To circumvent these limitations, various in vitro/ex vivo techniques have been applied to manufacturing protocols to induce specific features, attributes, and functions in expanding cells. Exposure to inflammatory cues (cell priming) is one of them, however, with untoward effects such as transient expression of HLA-DR preventing allogeneic therapeutic schemes. MSC functionalization can be also achieved by in vitro 3D culturing techniques, in an effort to more closely recapitulate the in vivo MSC niche. The resulting spheroid structures provide spatial cell organization with increased cell–cell interactions, stable, or even enhanced phenotypic profiles, and increased trophic and immunomodulatory functionalities. In that context, MSC 3D spheroids have shown enhanced “medicinal signaling” activities and increased homing and survival capacities upon transplantation in vivo. Importantly, MSC spheroids have been applied in various preclinical animal models including wound healing, bone and osteochondral defects, and cardiovascular diseases showing safety and efficacy in vivo. Therefore, the incorporation of 3D MSC culturing approach into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved without requiring ex vivo stimulatory regimes. In the present review, we discuss the MSC functionalization in 3D settings and how this strategy can contribute to an improved MSC-based product for safer and more effective therapeutic applications.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
12
|
Glaeser JD, Behrens P, Stefanovic T, Salehi K, Papalamprou A, Tawackoli W, Metzger MF, Eberlein S, Nelson T, Arabi Y, Kim K, Baloh RH, Ben-David S, Cohn-Schwartz D, Ryu R, Bae HW, Gazit Z, Sheyn D. Neural crest-derived mesenchymal progenitor cells enhance cranial allograft integration. Stem Cells Transl Med 2021; 10:797-809. [PMID: 33512772 PMCID: PMC8046069 DOI: 10.1002/sctm.20-0364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/09/2020] [Indexed: 01/17/2023] Open
Abstract
Replacement of lost cranial bone (partly mesodermal and partly neural crest‐derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow‐derived mesenchymal stromal cells (mesoderm‐derived BM‐MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell‐mesenchymal progenitor cells (iNCC‐MPCs) improves implant‐to‐bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC‐MPCs. BM‐MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non‐obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (μCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC‐MPC‐Luc2 vs BM‐MSC‐Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, μCT analysis showed enhanced structural parameters in the iNCC‐MPC‐Luc2 group and increased bone volume in the BM‐MSC‐Luc2 group compared to controls. Histology demonstrated improved integration of iNCC‐MPC‐Luc2 allografts compared to BM‐MSC‐Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft‐host interphase in cell‐seeded groups. The iNCC‐MPC‐Luc2 group also demonstrated improved biomechanical properties compared to BM‐MSC‐Luc2 implants and cell‐free controls. Our results show an improved integration of iNCC‐MPC‐Luc2‐coated allografts compared to BM‐MSC‐Luc2 and controls, suggesting the use of iNCC‐MPCs as potential cell source for cranial bone repair.
Collapse
Affiliation(s)
- Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phillip Behrens
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samuel Eberlein
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Trevor Nelson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yasaman Arabi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Doron Cohn-Schwartz
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Division of Internal Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Robert Ryu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hyun W Bae
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
13
|
Chahla J, Papalamprou A, Chan V, Arabi Y, Salehi K, Nelson TJ, Limpisvasti O, Mandelbaum BR, Tawackoli W, Metzger MF, Sheyn D. Assessing the Resident Progenitor Cell Population and the Vascularity of the Adult Human Meniscus. Arthroscopy 2021; 37:252-265. [PMID: 32979500 PMCID: PMC7829352 DOI: 10.1016/j.arthro.2020.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To identify, characterize, and compare the resident progenitor cell populations within the red-red, red-white, and white-white (WW) zones of freshly harvested human cadaver menisci and to characterize the vascularity of human menisci using immunofluorescence and 3-dimensional (3D) imaging. METHODS Fresh adult human menisci were harvested from healthy donors. Menisci were enzymatically digested, mononuclear cells isolated, and characterized using flow cytometry with antibodies against mesenchymal stem cell surface markers (CD105, CD90, CD44, and CD29). Cells were expanded in culture, characterized, and compared with bone marrow-derived mesenchymal stem cells. Trilineage differentiation potential of cultured cells was determined. Vasculature of menisci was mapped in 3D using a modified uDisco clearing and immunofluorescence against vascular markers CD31, lectin, and alpha smooth muscle actin. RESULTS There were no significant differences in the clonogenicity of isolated cells between the 3 zones. Flow cytometry showed presence of CD44+CD105+CD29+CD90+ cells in all 3 zones with high prevalence in the WW zone. Progenitors from all zones were found to be potent to differentiate to mesenchymal lineages. Larger vessels in the red-red zone of meniscus were observed spanning toward red-white, sprouting to smaller arterioles and venules. CD31+ cells were identified in all zones using the 3D imaging and co-localization of additional markers of vasculature (lectin and alpha smooth muscle actin) was observed. CONCLUSIONS The presence of resident mesenchymal progenitors was evident in all 3 meniscal zones of healthy adult donors without injury. In addition, our results demonstrate the presence of vascularization in the WW zone. CLINICAL RELEVANCE The existence of progenitors and presence of microvasculature in the WW zone of the meniscus suggests the potential for repair and biologic augmentation strategies in that zone of the meniscus in young healthy adults. Further research is necessary to fully define the functionality of the meniscal blood supply and its implications for repair.
Collapse
Affiliation(s)
- Jorge Chahla
- Kerlan Jobe Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Angela Papalamprou
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Virginia Chan
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Yasaman Arabi
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Khosrawdad Salehi
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Trevor J Nelson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Orr Limpisvasti
- Kerlan Jobe Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Bert R Mandelbaum
- Kerlan Jobe Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Wafa Tawackoli
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A
| | - Dmitriy Sheyn
- Kerlan Jobe Institute, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, U.S.A..
| |
Collapse
|
14
|
Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Int J Mol Sci 2020; 21:ijms21238908. [PMID: 33255352 PMCID: PMC7727824 DOI: 10.3390/ijms21238908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
We introduce a new benchtop microgravity simulator (MGS) that is scalable and easy to use. Its working principle is similar to that of random positioning machines (RPM), commonly used in research laboratories and regarded as one of the gold standards for simulating microgravity. The improvement of the MGS concerns mainly the algorithms controlling the movements of the samples and the design that, for the first time, guarantees equal treatment of all the culture flasks undergoing simulated microgravity. Qualification and validation tests of the new device were conducted with human bone marrow stem cells (bMSC) and mouse skeletal muscle myoblasts (C2C12). bMSC were cultured for 4 days on the MGS and the RPM in parallel. In the presence of osteogenic medium, an overexpression of osteogenic markers was detected in the samples from both devices. Similarly, C2C12 cells were maintained for 4 days on the MGS and the rotating wall vessel (RWV) device, another widely used microgravity simulator. Significant downregulation of myogenesis markers was observed in gravitationally unloaded cells. Therefore, similar results can be obtained regardless of the used simulated microgravity devices, namely MGS, RPM, or RWV. The newly developed MGS device thus offers easy and reliable long-term cell culture possibilities under simulated microgravity conditions. Currently, upgrades are in progress to allow real-time monitoring of the culture media and liquids exchange while running. This is of particular interest for long-term cultivation, needed for tissue engineering applications. Tissue grown under real or simulated microgravity has specific features, such as growth in three-dimensions (3D). Growth in weightlessness conditions fosters mechanical, structural, and chemical interactions between cells and the extracellular matrix in any direction.
Collapse
|
15
|
Kremen TJ, Stefanovic T, Tawackoli W, Salehi K, Avalos P, Reichel D, Perez JM, Glaeser JD, Sheyn D. A Translational Porcine Model for Human Cell-Based Therapies in the Treatment of Posttraumatic Osteoarthritis After Anterior Cruciate Ligament Injury. Am J Sports Med 2020; 48:3002-3012. [PMID: 32924528 PMCID: PMC7945314 DOI: 10.1177/0363546520952353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is a high incidence of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) injury, and these injuries represent an enormous health care economic burden. In an effort to address this unmet clinical need, there has been increasing interest in cell-based therapies. PURPOSE To establish a translational large animal model of PTOA and demonstrate the feasibility of intra-articular human cell-based interventions. STUDY DESIGN Descriptive laboratory study. METHODS Nine Yucatan mini-pigs underwent unilateral ACL transection and were monitored for up to 12 weeks after injury. Interleukin 1 beta (IL-1β) levels and collagen breakdown were evaluated longitudinally using enzyme-linked immunosorbent assays of synovial fluid, serum, and urine. Animals were euthanized at 4 weeks (n = 3) or 12 weeks (n = 3) after injury, and injured and uninjured limbs underwent magnetic resonance imaging (MRI) and histologic analysis. At 2 days after ACL injury, an additional 3 animals received an intra-articular injection of 107 human bone marrow-derived mesenchymal stem cells (hBM-MSCs) combined with a fibrin carrier. These cells were labeled with the luciferase reporter gene (hBM-MSCs-Luc) as well as fluorescent markers and intracellular iron nanoparticles. These animals were euthanized on day 0 (n = 1) or day 14 (n = 2) after injection. hBM-MSC-Luc viability and localization were assessed using ex vivo bioluminescence imaging, fluorescence imaging, and MRI. RESULTS PTOA was detected as early as 4 weeks after injury. At 12 weeks after injury, osteoarthritis could be detected grossly as well as on histologic analysis. Synovial fluid analysis showed elevation of IL-1β shortly after ACL injury, with subsequent resolution by 2 weeks after injury. Collagen type II protein fragments were elevated in the synovial fluid and serum after injury. hBM-MSCs-Luc were detected immediately after injection and at 2 weeks after injection using fluorescence imaging, MRI, and bioluminescence imaging. CONCLUSION This study demonstrates the feasibility of reproducing the chondral changes, intra-articular cytokine alterations, and body fluid biomarker findings consistent with PTOA after ACL injury in a large animal model. Furthermore, we have demonstrated the ability of hBM-MSCs to survive and express transgene within the knee joint of porcine hosts without immunosuppression for at least 2 weeks. CLINICAL RELEVANCE This model holds great potential to significantly contribute to investigations focused on the development of cell-based therapies for human ACL injury-associated PTOA in the future (see Appendix Figure A1, available online).
Collapse
Affiliation(s)
- Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Address correspondence to Thomas J. Kremen Jr, MD, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 1225 15th Street, Suite 2100, Santa Monica, CA 90404, USA () (Twitter: @ThomasKremenMD); or Dmitriy Sheyn, PhD, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP A8308, Los Angeles, CA 90048, USA () (Twitter: @Sheynlab)
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Derek Reichel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - J. Manual Perez
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Juliane D. Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Address correspondence to Thomas J. Kremen Jr, MD, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 1225 15th Street, Suite 2100, Santa Monica, CA 90404, USA () (Twitter: @ThomasKremenMD); or Dmitriy Sheyn, PhD, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP A8308, Los Angeles, CA 90048, USA () (Twitter: @Sheynlab)
| | | |
Collapse
|
16
|
Stem Cell Culture Under Simulated Microgravity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:105-132. [PMID: 32424490 DOI: 10.1007/5584_2020_539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Challenging environment of space causes several pivotal alterations in living systems, especially due to microgravity. The possibility of simulating microgravity by ground-based systems provides research opportunities that may lead to the understanding of in vitro biological effects of microgravity by eliminating the challenges inherent to spaceflight experiments. Stem cells are one of the most prominent cell types, due to their self-renewal and differentiation capabilities. Research on stem cells under simulated microgravity has generated many important findings, enlightening the impact of microgravity on molecular and cellular processes of stem cells with varying potencies. Simulation techniques including clinostat, random positioning machine, rotating wall vessel and magnetic levitation-based systems have improved our knowledge on the effects of microgravity on morphology, migration, proliferation and differentiation of stem cells. Clarification of the mechanisms underlying such changes offers exciting potential for various applications such as identification of putative therapeutic targets to modulate stem cell function and stem cell based regenerative medicine.
Collapse
|
17
|
Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019; 8:cells8121620. [PMID: 31842346 PMCID: PMC6953111 DOI: 10.3390/cells8121620] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Owing to the importance of stem cell culture systems in clinical applications, researchers have extensively studied them to optimize the culture conditions and increase efficiency of cell culture. A spheroid culture system provides a similar physicochemical environment in vivo by facilitating cell–cell and cell–matrix interaction to overcome the limitations of traditional monolayer cell culture. In suspension culture, aggregates of adjacent cells form a spheroid shape having wide utility in tumor and cancer research, therapeutic transplantation, drug screening, and clinical study, as well as organic culture. There are various spheroid culture methods such as hanging drop, gel embedding, magnetic levitation, and spinner culture. Lately, efforts are being made to apply the spheroid culture system to the study of drug delivery platforms and co-cultures, and to regulate differentiation and pluripotency. To study spheroid cell culture, various kinds of biomaterials are used as building forms of hydrogel, film, particle, and bead, depending upon the requirement. However, spheroid cell culture system has limitations such as hypoxia and necrosis in the spheroid core. In addition, studies should focus on methods to dissociate cells from spheroid into single cells.
Collapse
|
18
|
Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach. Sci Rep 2019; 9:18462. [PMID: 31804539 PMCID: PMC6895123 DOI: 10.1038/s41598-019-54742-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Regarding future space exploration missions and long-term exposure experiments, a detailed investigation of all factors present in the outer space environment and their effects on organisms of all life kingdoms is advantageous. Influenced by the multiple factors of outer space, the extremophilic bacterium Deinococcus radiodurans has been long-termly exposed outside the International Space Station in frames of the Tanpopo orbital mission. The study presented here aims to elucidate molecular key components in D. radiodurans, which are responsible for recognition and adaptation to simulated microgravity. D. radiodurans cultures were grown for two days on plates in a fast-rotating 2-D clinostat to minimize sedimentation, thus simulating reduced gravity conditions. Subsequently, metabolites and proteins were extracted and measured with mass spectrometry-based techniques. Our results emphasize the importance of certain signal transducer proteins, which showed higher abundances in cells grown under reduced gravity. These proteins activate a cellular signal cascade, which leads to differences in gene expressions. Proteins involved in stress response, repair mechanisms and proteins connected to the extracellular milieu and the cell envelope showed an increased abundance under simulated microgravity. Focusing on the expression of these proteins might present a strategy of cells to adapt to microgravity conditions.
Collapse
|
19
|
Lü D, Sun S, Zhang F, Luo C, Zheng L, Wu Y, Li N, Zhang C, Wang C, Chen Q, Long M. Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite. FASEB J 2018; 33:4273-4286. [PMID: 30521385 DOI: 10.1096/fj.201802075r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are able to differentiate into functional hepatocytelike cells, which are expected to serve as a potential cell source in regenerative medicine, tissue engineering, and clinical treatment of liver injury. Little is known about whether and how space microgravity is able to direct the hepatogenic differentiation of BMSCs in the actual space microenvironment. In this study, we examined the effects of space microgravity on BMSC hepatogenic differentiation on board the SJ-10 Recoverable Scientific Satellite. Rat BMSCs were cultured and induced in hepatogenic induction medium for 3 and 10 d in custom-made space cell culture hardware. Cell growth was monitored periodically in orbit, and the fixed cells and collected supernatants were retrieved back to the Earth for further analyses. Data indicated that space microgravity improves the differentiating capability of the cells by up-regulating hepatocyte-specific albumin and cytokeratin 18. The resulting cells tended to be maturated, with an in-orbit period of up to 10 d. In space, mechanosensitive molecules of β1-integrin, β-actin, α-tubulin, and Ras homolog gene family member A presented enhanced expression, whereas those of cell-surface glycoprotein CD44, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, vinculin, cell division control protein 42 homolog, and Rho-associated coiled-coil kinase yielded reduced expression. Also observed in space were the depolymerization of actin filaments and the accumulation of microtubules and vimentin through the altered expression and location of focal adhesion complexes, Rho guanosine 5'-triphosphatases, as well as the enhanced exosome-mediated mRNA transfer. This work furthers the understanding of the underlying mechanisms of space microgravity in directing hepatogenic differentiation of BMSCs.-Lü, D., Sun, S., Zhang, F., Luo, C., Zheng, L., Wu, Y., Li, N., Zhang, C., Wang, C., Chen, Q., Long, M. Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite.
Collapse
Affiliation(s)
- Dongyuan Lü
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shujin Sun
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Luo
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and
| | - Lu Zheng
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhang
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and
| | - Chengzhi Wang
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chen
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and
| | - Mian Long
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
McNeill EP, Reese RW, Tondon A, Clough BH, Pan S, Froese J, Palmer D, Krause U, Loeb DM, Kaunas R, Gregory CA. Three-dimensional in vitro modeling of malignant bone disease recapitulates experimentally accessible mechanisms of osteoinhibition. Cell Death Dis 2018; 9:1161. [PMID: 30478297 PMCID: PMC6255770 DOI: 10.1038/s41419-018-1203-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Malignant bone disease (MBD) occurs when tumors establish in bone, causing catastrophic tissue damage as a result of accelerated bone destruction and inhibition of repair. The resultant so-called osteolytic lesions (OL) take the form of tumor-filled cavities in bone that cause pain, fractures, and associated morbidity. Furthermore, the OL microenvironment can support survival of tumor cells and resistance to chemotherapy. Therefore, a deeper understanding of OL formation and MBD progression is imperative for the development of future therapeutic strategies. Herein, we describe a novel in vitro platform to study bone-tumor interactions based on three-dimensional co-culture of osteogenically enhanced human mesenchymal stem cells (OEhMSCs) in a rotating wall vessel bioreactor (RWV) while attached to micro-carrier beads coated with extracellular matrix (ECM) composed of factors found in anabolic bone tissue. Osteoinhibition was recapitulated in this model by co-culturing the OEhMSCs with a bone-tumor cell line (MOSJ-Dkk1) that secretes the canonical Wnt (cWnt) inhibitor Dkk-1, a tumor-borne osteoinhibitory factor widely associated with several forms of MBD, or intact tumor fragments from Dkk-1 positive patient-derived xenografts (PDX). Using the model, we observed that depending on the conditions of growth, tumor cells can biochemically inhibit osteogenesis by disrupting cWnt activity in OEhMSCs, while simultaneously co-engrafting with OEhMSCs, displacing them from the niche, perturbing their activity, and promoting cell death. In the absence of detectable co-engraftment with OEhMSCs, Dkk-1 positive PDX fragments had the capacity to enhance OEhMSC proliferation while inhibiting their osteogenic differentiation. The model described has the capacity to provide new and quantifiable insights into the multiple pathological mechanisms of MBD that are not readily measured using monolayer culture or animal models.
Collapse
Affiliation(s)
- Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA
| | - Robert W Reese
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abishek Tondon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Bret H Clough
- Department of Medical Physiology, Texas A&M Health Science Center, Temple, TX, 76501, USA
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA
| | - Jeremiah Froese
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA
| | - Daniel Palmer
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, Muenster, Germany
| | - David M Loeb
- Departments of Pediatrics and Developmental and Molecular Biology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, 3411 Wayne Avenue, Bronx, NY, 10467, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA.
| |
Collapse
|
21
|
Li L, Zhang C, Chen JL, Hong FF, Chen P, Wang JF. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells. Cell Prolif 2018; 52:e12539. [PMID: 30397970 PMCID: PMC6496301 DOI: 10.1111/cpr.12539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Objectives Exposure to microgravity induces many adaptive and pathological changes in human bone marrow mesenchymal stem cells (hBMSCs). However, the underlying mechanisms of these changes are poorly understood. We revealed the gene expression patterns of hBMSCs under normal ground (NG) and simulated microgravity (SMG), which showed an interpretation for these changes by gene regulation and signal pathways analysis. Materials and methods In this study, hBMSCs were osteogenically induced for 0, 2, 7 and 14 days under normal ground gravity and simulated microgravity, followed by analysis of the differences in transcriptome expression during osteogenic differentiation by RNA sequencing and some experimental verification for these results. Results The results indicated that 837, 399 and 894 differentially expressed genes (DEGs) were identified in 2, 7 and 14 days samples, respectively, out of which 13 genes were selected for qRT‐PCR analysis to confirm the RNA‐sequencing results. After analysis, we found that proliferation was inhibited in the early stage of induction. In the middle stage, osteogenic differentiation was inhibited, whereas adipogenic differentiation benefited from SMG. Moreover, SMG resulted in the up‐regulation of genes specific for tumorigenesis in the later stage. Conclusion Our data revealed that SMG inhibits the proliferation and inhibits the differentiation towards osteoblasts but promotes adipogenesis. SMG also selects highly tumorigenic cells for survival under prolonged SMG.
Collapse
Affiliation(s)
- Liang Li
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Ling Chen
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fan-Fan Hong
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Departments of Cell Biology and Otolaryngology, Emory University School of Medicine, Atlanta, Georgia
| | - Jin-Fu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Goetzke R, Sechi A, De Laporte L, Neuss S, Wagner W. Why the impact of mechanical stimuli on stem cells remains a challenge. Cell Mol Life Sci 2018; 75:3297-3312. [PMID: 29728714 PMCID: PMC11105618 DOI: 10.1007/s00018-018-2830-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
Abstract
Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance-and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.
Collapse
Affiliation(s)
- Roman Goetzke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Institute of Pathology, RWTH Aachen University Medical School, Aachen, Germany.
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University Medical School, 52074, Aachen, Germany.
| |
Collapse
|
23
|
Mayer-Wagner S, Hammerschmid F, Blum H, Krebs S, Redeker JI, Holzapfel BM, Jansson V, Müller PE. Effects of single and combined low frequency electromagnetic fields and simulated microgravity on gene expression of human mesenchymal stem cells during chondrogenesis. Arch Med Sci 2018; 14:608-616. [PMID: 29765449 PMCID: PMC5949910 DOI: 10.5114/aoms.2016.59894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/08/2016] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Low frequency electromagnetic fields (LF-EMF) and simulated microgravity (SMG) have been observed to affect chondrogenesis. A controlled bioreactor system was developed to apply LF-EMF and SMG singly or combined during chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in 3D culture. MATERIAL AND METHODS An external motor gear SMG bioreactor was combined with magnetic Helmholtz coils for EMF (5 mT; 15 Hz). Pellets of hMSCs (±TGF-β3) were cultured (P5) under SMG, LF-EMF, LF-EMF/SMG and control (1 g) conditions for 3 weeks. Sections were stained with safranin-O and collagen type II. Gene expression was evaluated by microarray and real-time polymerase chain reaction analysis. RESULTS Simulated microgravity application significantly changed gene expression; specifically, COLXA1 but also COL2A1, which represents the chondrogenic potential, were reduced (p < 0.05). Low frequency electromagnetic fields application showed no gene expression changes on a microarray basis. LF-EMF/SMG application obtained significant different expression values from cultures obtained under SMG conditions with a re-increase of COL2A1, therefore rescuing the chondrogenic potential, which had been lowered by SMG. CONCLUSIONS Simulated microgravity lowered hypertrophy but also the chondrogenic potential of hMSCs. Combined LF-EMF/SMG provided a rescue effect of the chondrogenic potential of hMSCs although no LF-EMF effect was observed under optimal conditions. The study provides new insights into how LF-EMF and SMG affect chondrogenesis of hMSCs and how they generate interdependent effects.
Collapse
Affiliation(s)
- Susanne Mayer-Wagner
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Hammerschmid
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Ludwig-Maximilians-University, Munich, Germany
| | - Helmut Blum
- LAFUGA Genomics, Gene Center Munich, Ludwig-Maximilians University, Munich, Germany
| | - Stefan Krebs
- LAFUGA Genomics, Gene Center Munich, Ludwig-Maximilians University, Munich, Germany
| | - Julia I. Redeker
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Ludwig-Maximilians-University, Munich, Germany
| | - Boris M. Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Volkmar Jansson
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Ludwig-Maximilians-University, Munich, Germany
| | - Peter E. Müller
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
24
|
Nordberg RC, Bodle JC, Loboa EG. Mechanical Stimulation of Adipose-Derived Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain. Methods Mol Biol 2018; 1773:215-230. [PMID: 29687393 DOI: 10.1007/978-1-4939-7799-4_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Josie C Bodle
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Elizabeth G Loboa
- College of Engineering, University of Missouri, W1024 Thomas & Nell Lafferre Hall, Columbia, MO, USA.
| |
Collapse
|
25
|
Bunpetch V, Zhang ZY, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 2017; 196:67-79. [PMID: 29602560 DOI: 10.1016/j.biomaterials.2017.11.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells. This review briefly introduces the features of implanted MSCs to determine the best strategies to optimize their regenerative capacity, as well as the current MSC implantation for bone diseases. Current achievements for expansion of MSCs using various culturing methods, bioreactor technologies, biomaterial platforms, as well as microtissue-based expansion strategies are also discussed, providing new insights into future large-scale MSC expansion and clinical applications.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Zongyou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ouyang Hong-Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| |
Collapse
|
26
|
Cazzaniga A, Moscheni C, Maier JA, Castiglioni S. Culture of human cells in experimental units for spaceflight impacts on their behavior. Exp Biol Med (Maywood) 2017; 242:1072-1078. [PMID: 28492348 DOI: 10.1177/1535370216684039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Because space missions produce pathophysiological alterations such as cardiovascular disorders and bone demineralization which are very common on Earth, biomedical research in space is a frontier that holds important promises not only to counterbalance space-associated disorders in astronauts but also to ameliorate the health of Earth-bound population. Experiments in space are complex to design. Cells must be cultured in closed cell culture systems (from now defined experimental units (EUs)), which are biocompatible, functional, safe to minimize any potential hazard to the crew, and with a high degree of automation. Therefore, to perform experiments in orbit, it is relevant to know how closely culture in the EUs reflects cellular behavior under normal growth conditions. We compared the performances in these units of three different human cell types, which were recently space flown, i.e. bone mesenchymal stem cells, micro- and macrovascular endothelial cells. Endothelial cells are only slightly and transiently affected by culture in the EUs, whereas these devices accelerate mesenchymal stem cell reprogramming toward osteogenic differentiation, in part by increasing the amounts of reactive oxygen species. We conclude that cell culture conditions in the EUs do not exactly mimic what happens in a culture dish and that more efforts are necessary to optimize these devices for biomedical experiments in space. Impact statement Cell cultures represent valuable preclinical models to decipher pathogenic circuitries. This is true also for biomedical research in space. A lot has been learnt about cell adaptation and reaction from the experiments performed on many different cell types flown to space. Obviously, cell culture in space has to meet specific requirements for the safety of the crew and to comply with the unique environmental challenges. For these reasons, specific devices for cell culture in space have been developed. It is important to clarify whether these alternative culture systems impact on cell performances to allow a correct interpretation of the data.
Collapse
Affiliation(s)
- Alessandra Cazzaniga
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy
| | - Jeanette Am Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy
| | - Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy
| |
Collapse
|
27
|
Bauer J, Bussen M, Wise P, Wehland M, Schneider S, Grimm D. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells. Expert Rev Proteomics 2016; 13:697-705. [DOI: 10.1080/14789450.2016.1197775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Johann Bauer
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Markus Bussen
- Lifescience, Elsevier Information System GmbH, Frankfurt am Main, Germany
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabine Schneider
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Cazzaniga A, Maier JAM, Castiglioni S. Impact of simulated microgravity on human bone stem cells: New hints for space medicine. Biochem Biophys Res Commun 2016; 473:181-186. [PMID: 27005819 DOI: 10.1016/j.bbrc.2016.03.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 01/30/2023]
Abstract
Bone loss is a well known early event in astronauts and represents one of the major obstacle to space exploration. While an imbalance between osteoblast and osteoclast activity has been described, less is known about the behavior of bone mesenchymal stem cells in microgravity. We simulated microgravity using the Random Positioning Machine and found that mesenchymal stem cells respond to gravitational unloading by upregulating HSP60, HSP70, cyclooxygenase 2 and superoxyde dismutase 2. Such an adaptive response might be involved in inducing the overexpression of some osteogenic transcripts, even though the threshold to induce the formation of bone crystal is not achieved. Indeed, only the addition of an osteogenic cocktail activates the full differentiation process both in simulated microgravity and under static 1G-conditions. We conclude that simulated microgravity alone reprograms bone mesenchymal stem cells towards an osteogenic phenotype which results in complete differentiation only after exposure to a specific stimulus.
Collapse
Affiliation(s)
- Alessandra Cazzaniga
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy
| | - Jeanette A M Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy
| | - Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milano I-20157, Italy.
| |
Collapse
|
29
|
Filipowska J, Reilly GC, Osyczka AM. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnol Bioeng 2016; 113:1814-24. [PMID: 26806539 DOI: 10.1002/bit.25937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/02/2023]
Abstract
Perfusing culture media through porous cell-seeded scaffolds is now a common approach within many tissue engineering strategies. Human bone-marrow derived mesenchymal stem cells (hBMSC) are a clinically valuable source of osteoprogenitors that respond to mechanical stimuli. However, the optimal mechanical conditions for their osteogenic stimulation in vitro have not been defined. Whereas the effects of short durations of media fluid flow have been studied in monolayers of osteoblastic cells, in 3D culture continuous or repeated perfusion is usually applied. Here, we investigated whether a short, single perfusion session applied to hBMSCs cultured in 3D would enhance their osteogenesis in vitro. We cultured hBMSCs on gelatine-coated, porous polyurethane scaffolds with osteogenic supplements and stimulated them with a single 2-h session of unidirectional, steady, 2.5 mL/min media perfusion, at either early or late stages of culture in 3D. Some cells were pre-treated in monolayer with osteogenic supplements to advance cell differentiation, followed by 3D culture also with the osteogenic supplements. We report that this single, short session of media perfusion can markedly enhance the expression of bone-related transcription and growth factors, and matrix components, by hBMSCs but that it is more effective when cells reach the pre-osteoblast or osteoblast differentiation stage. These findings could aid in the optimization of 3D culture protocols for efficient bone tissue engineering. Biotechnol. Bioeng. 2016;113: 1814-1824. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Filipowska
- Faculty of Biology and Earth Sciences, Department of Cell Biology and Imaging, Jagiellonian University, 30-387 Kraków, Malopolska, Poland
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Anna M Osyczka
- Faculty of Biology and Earth Sciences, Department of Cell Biology and Imaging, Jagiellonian University, 30-387 Kraków, Malopolska, Poland.
| |
Collapse
|
30
|
Luna C, Yew AG, Hsieh AH. Effects of angular frequency during clinorotation on mesenchymal stem cell morphology and migration. NPJ Microgravity 2015; 1:15007. [PMID: 28725712 PMCID: PMC5515506 DOI: 10.1038/npjmgrav.2015.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/15/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
AIMS To determine the short-term effects of simulated microgravity on mesenchymal stem cell behaviors-as a function of clinorotation speed-using time-lapse microscopy. BACKGROUND Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). METHODS We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 h in a recently developed lab-on-chip-based clinostat system. Time-lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time-lapse light microscopy of cells in NGF (100 ng/ml) gradients. RESULTS Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (P<0.005), though average cell area at 30 rpm after 8 h became statistically similar to control (P=0.794). Cells at 75 rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers, clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility. CONCLUSIONS These results indicate that hMSCs respond to clinorotation by adopting more rounded, less-spread morphologies. The angular frequency-dependence suggests that a cell's ability to sense the changing gravity vector is governed by the rate of perturbation. For migration studies, cells cultured in clinorotated chemotaxis chambers were generally less motile and exhibited retraction instead of migration.
Collapse
Affiliation(s)
- Carlos Luna
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alvin G Yew
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Department of Orthopaedics, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
31
|
Nordberg RC, Loboa EG. Our Fat Future: Translating Adipose Stem Cell Therapy. Stem Cells Transl Med 2015; 4:974-9. [PMID: 26185256 DOI: 10.5966/sctm.2015-0071] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. SIGNIFICANCE This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, and University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, and University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
32
|
Crabbé A, Liu Y, Sarker SF, Bonenfant NR, Barrila J, Borg ZD, Lee JJ, Weiss DJ, Nickerson CA. Recellularization of decellularized lung scaffolds is enhanced by dynamic suspension culture. PLoS One 2015; 10:e0126846. [PMID: 25962111 PMCID: PMC4427280 DOI: 10.1371/journal.pone.0126846] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/08/2015] [Indexed: 12/20/2022] Open
Abstract
Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total RNA compared to static recellularization conditions. These results were observed with two relevant mouse cell types: bone marrow-derived mesenchymal stromal (stem) cells (MSCs) and alveolar type II cells (C10). In addition, MSCs cultured in decellularized lungs under static but not bioreactor conditions formed multilayered aggregates. Gene expression and immunohistochemical analyses suggested differentiation of MSCs into collagen I-producing fibroblast-like cells in the bioreactor, indicating enhanced potential for remodeling of the decellularized scaffold matrix. In conclusion, dynamic suspension culture is promising for enhancing repopulation of decellularized lungs, and could contribute to remodeling the extracellular matrix of the scaffolds with subsequent effects on differentiation and functionality of inoculated cells.
Collapse
Affiliation(s)
- Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Yulong Liu
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Shameema F. Sarker
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Nicholas R. Bonenfant
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Jennifer Barrila
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Zachary D. Borg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - James J. Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States of America
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Cheryl A. Nickerson
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
33
|
Mayer-Wagner S, Hammerschmid F, Redeker JI, Schmitt B, Holzapfel BM, Jansson V, Betz OB, Müller PE. Simulated microgravity affects chondrogenesis and hypertrophy of human mesenchymal stem cells. INTERNATIONAL ORTHOPAEDICS 2014; 38:2615-21. [PMID: 25030964 DOI: 10.1007/s00264-014-2454-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/26/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE During in vitro chondrogenesis of human mesenchymal stem cells (hMSCs) hypertrophy is an inadvertent event associated with cell differentiation toward the osteogenic lineage. Up to now, there is no stringent experimental control mechanism to prevent hypertrophy of MSCs. Microgravity is known to have an impact on osteogenesis. In this study, the influence of simulated microgravity (SMG) on both chondrogenesis and hypertrophy of hMSCs was evaluated. METHODS A bioreactor using a rotating wall vessel was constructed to simulate microgravity. Pellet cultures formed from hMSCs (P5) were supplemented with human transforming growth factor-β3 (TGF-β3). The hMSC pellet cultures treated with TGF-β3 were either kept in SMG or in a control system. After three weeks of culture, the chondrogenic differentiation status and level of hypertrophy were examined by safranin-O staining, immunohistochemistry and quantitative real-time PCR. RESULTS SMG reduced the staining for safranin-O and collagen type II. The expression of collagen type X α1 chain (COL10A1) and collagen type II α1 chain (COL2A1) were both significantly reduced. There was a higher decrease in COL2A1 than in COL10A1 expression, resulting in a low COL2A1/COL10A1 ratio. CONCLUSIONS SMG reduced hypertrophy of hMSCs during chondrogenic differentiation. However, the expression of COL2A1 was likewise reduced. Even more, the COL2A1/COL10A1 ratio decreased under SMG conditions. We therefore assume that SMG has a significant impact on the chondrogenic differentiation of hMSCs. However, due to the high COL2A1 suppression under SMG, this culture system does not yet seem to be suitable for a potential application in cartilage repair.
Collapse
Affiliation(s)
- Susanne Mayer-Wagner
- Department of Orthopaedic Surgery, Ludwig-Maximilians-University, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
34
|
The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:928507. [PMID: 25110709 PMCID: PMC4119729 DOI: 10.1155/2014/928507] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 01/03/2023]
Abstract
How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning
machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.
Collapse
|
35
|
Bradamante S, Barenghi L, Maier JAM. Stem Cells toward the Future: The Space Challenge. Life (Basel) 2014; 4:267-80. [PMID: 25370198 PMCID: PMC4187162 DOI: 10.3390/life4020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Astronauts experience weightlessness-induced bone loss due to an unbalanced process of bone remodeling that involves bone mesenchymal stem cells (bMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of bone MSCs. These live in adult bone marrow niches, are characterized by their self-renewal and multipotent differentiation capacities, and the published data indicate that they may lead to interesting returns in the biomedical/bioengineering fields. This review describes the published findings concerning bMSCs exposed to simulated/real microgravity, mainly concentrating on how mechanosignaling, mechanotransduction and oxygen influence their proliferation, senescence and differentiation. A comprehensive understanding of bMSC behavior in microgravity and their role in preventing bone loss will be essential for entering the future age of long-lasting, manned space exploration.
Collapse
Affiliation(s)
- Silvia Bradamante
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Livia Barenghi
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Jeanette A M Maier
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
36
|
Sart S, Schneider YJ, Li Y, Agathos SN. Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology 2014; 66:709-22. [PMID: 24500393 DOI: 10.1007/s10616-013-9687-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022] Open
Abstract
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St, Tallahassee, FL, 32310, USA
| | | | | | | |
Collapse
|
37
|
The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Mol Biotechnol 2013; 54:331-6. [PMID: 22669584 DOI: 10.1007/s12033-012-9568-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We investigated the influence of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells (MSCs). During chondrogenic induction, MSCs combined with polyglycolic acid (PGA) were cultured by static culture or microgravity rotating culture and chondrocyte formation was confirmed by toluidine blue staining. Furthermore, the mRNA and protein expressions of a specific cartilage extracellular matrix protein (collagen type II and Aggrecan) were evaluated by real-time RT-PCR and western blot, respectively. Toluidine blue staining indicated the OD values of proteoglycans semi-determination were higher in the microgravity rotating culture group than the static culture group. Following chondrogenic induction, mRNA and proteins of collagen type II and Aggrecan were more significantly expressed in cells of the microgravity rotating culture group compared with the controls. Compared with routine three-dimensional static culture, the microgravity rotating culture system was more effective for the construction of tissue-engineered cartilage in vitro.
Collapse
|
38
|
SHANG PENG, ZHANG JIAN, QIAN AIRONG, LI JINGBAO, MENG RUI, DI SHENGMENG, HU LIFANG, GU ZHONGZE. BONE CELLS UNDER MICROGRAVITY. J MECH MED BIOL 2013. [DOI: 10.1142/s021951941340006x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Weightlessness environment (also microgravity) during the exploration of space is the major condition which must be faced by astronauts. One of the most serious adverse effects on astronauts is the weightlessness-induced bone loss due to the unbalanced bone remodeling. Bone remodeling of human beings has evolved during billions of years to make bone tissue adapt to the gravitational field of Earth (1g) and maintain skeleton structure to meet mechanical loading on Earth. However, under weightlessness environment the skeleton system no longer functions against the pull of gravity, so there is no necessity to keep bone strong enough to support the body's weight. Therefore, the balance of bone remodeling is disrupted and bone loss occurs, which is extremely deleterious to an astronaut's health during long-term spaceflight. Bone remodeling is mainly orchestrated by bone mesenchymal stem cells, osteoblasts, osteocytes, and osteoclasts. Here, we review how these bone cells respond to microgravity environment.
Collapse
Affiliation(s)
- PENG SHANG
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
- The State Key Laboratory of Bioelectonics, Southeast University, 210096, P. R. China
| | - JIAN ZHANG
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - AIRONG QIAN
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - JINGBAO LI
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - RUI MENG
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - SHENGMENG DI
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - LIFANG HU
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - ZHONGZE GU
- The State Key Laboratory of Bioelectonics, Southeast University, 210096, P. R. China
| |
Collapse
|
39
|
Gershovich PM, Gershovich YG, Buravkova LB. Molecular genetic features of human mesenchymal stem cells after their osteogenic differentiation under the conditions of microgravity. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s036211971305006x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under simulated microgravity. PLoS One 2013; 8:e73914. [PMID: 24069248 PMCID: PMC3772078 DOI: 10.1371/journal.pone.0073914] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
Adult stem cells can differentiate into multiple lineages depending on their exposure to differing biochemical and biomechanical inductive factors. Lack of mechanical signals due to disuse can inhibit osteogenesis and induce adipogenesis of mesenchymal stem cells (MSCs). Long-term bed rest due to both brain/spinal cord injury and space travel can lead to disuse osteoporosis that is in part caused by a reduced number of osteoblasts. Thus, it is essential to provide proper mechanical stimulation for cellular viability and osteogenesis, particularly under disuse conditions. The objective of this study was to examine the effects of low intensity pulsed ultrasound (LIPUS) on the osteogenic differentiation of adipose-derived human stem cells (Ad-hMSC) in simulated microgravity conditions. Cells were cultured in a 1D clinostat to simulate microgravity (SMG) and treated with LIPUS at 30mW/cm2 for 20 min/day. It was hypothesized that the application of LIPUS to SMG cultures would restore osteogenesis in Ad-hMSCs. The results showed significant increases in ALP, OSX, RANKL, RUNX2, and decreases in OPG in LIPUS treated SMG cultures of Ad-MSC compared to non-treated cultures. LIPUS also restored OSX, RUNX2 and RANKL expression in osteoblast cells. SMG significantly reduced ALP positive cells by 70% (p<0.01) and ALP activity by 22% (p<0.01), while LIPUS treatment restored ALP positive cell number and activity to equivalence with normal gravity controls. Extracellular matrix collagen and mineralization was assessed by Sirius red and Alizarin red staining, respectively. SMG cultures showed little or no collagen or mineralization, but LIPUS treatment restored collagen content to 50% (p<0.001) and mineralization by 45% (p<0.001) in LIPUS treated-SMG cultures relative to SMG-only cultures. The data suggest that LIPUS treatment can restore normal osteogenic differentiation of MSCs from disuse by daily short duration stimulation.
Collapse
|
41
|
Zia Uddin SM, Hadjiargyrou M, Cheng J, Zhang S, Hu M, Qin YX. Reversal of the detrimental effects of simulated microgravity on human osteoblasts by modified low intensity pulsed ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:804-812. [PMID: 23453382 PMCID: PMC3717331 DOI: 10.1016/j.ultrasmedbio.2012.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 11/13/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Microgravity (MG) is known to induce bone loss in astronauts during long-duration space mission because of a lack of sufficient mechanical stimulation under MG. It has been demonstrated that mechanical signals are essential for maintaining cell viability and motility, and they possibly serve as a countermeasure to the catabolic effects of MG. The objective of this study was to examine the effects of high-frequency acoustic wave signals on osteoblasts in a simulated microgravity (SMG) environment (created using 1-D clinostat bioreactor) using a modified low-intensity pulsed ultrasound (mLIPUS). Specifically, we evaluated the hypothesis that osteoblasts (human fetal osteoblastic cell line) exposure to mLIPUS for 20 min/d at 30 mW/cm(2) will significantly reduce the detrimental effects of SMG. Effects of SMG with mLIPUS were analyzed using the MTS proliferation assay for proliferation, phalloidin for F-actin staining, Sirius red stain for collagen, and Alizarin red for mineralization. Our data showed that osteoblast exposure to SMG results in significant decreases in proliferation (∼ -38% and ∼ -44% on days 4 and 6, respectively; p < 0.01), collagen content (∼ -22%; p < 0.05) and mineralization (∼ -37%; p < 0.05) and actin stress fibers. In contrast, mLIPUS stimulation in SMG condition significantly increases the rate of proliferation (∼24% by day 6; p < 0.05), collagen content (∼52%; p < 0.05) and matrix mineralization (∼25%; p < 0.001) along with restoring formation of actin stress fibers in the SMG-exposed osteoblasts. These data suggest that the acoustic wave can potentially be used as a countermeasure for disuse osteopenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi-Xian Qin
- Corresponding Author: Yi-Xian Qin, Ph.D., Department of Biomedical Engineering, Stony Brook University, 215 Bioengineering Bldg, Stony Brook, NY 11794-5281, Tel: 631-632-1481, Fax: (631) 632-8577,
| |
Collapse
|
42
|
Bakhshandeh B, Soleimani M, Hafizi M, Paylakhi SH, Ghaemi N. MicroRNA signature associated with osteogenic lineage commitment. Mol Biol Rep 2012; 39:7569-81. [PMID: 22350160 DOI: 10.1007/s11033-012-1591-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/31/2012] [Indexed: 01/22/2023]
Abstract
Cell-based approaches offer a potential therapeutic strategy for appropriate bone manufacturing. Capable of differentiating into multiple cell types especially osteoblasts spontaneously, unrestricted somatic stem cell (USSC) seems to be a suitable candidate. Recent studies have shown the involvement of microRNAs in several biological processes. miRNA microarray profiling was applied in order to identify the osteo-specific miRNA signature. Prior to this analysis, osteogenic commitment of osteoblasts was evaluated by measuring ALPase activity, biomineralization, specific staining and evaluation of some main osteogenic marker genes. To support our findings, various in silico explorations (for both putative targets and signaling pathways) and empirical analyses (miRNA transfections followed by qPCR of osteogenic indicators and ALPase activity measurement) were carried out. The function of GSK-3b inhibitor was also studied to investigate the role of WNT in osteogenesis. Transient modulation of multiple osteo-miRs (such as mir-199b, 1274a, 30b) with common targets (such as BMPR, TCFs, SMADs) as mediators of osteogenic pathways including cell-cell interactions, WNT and TGF-beta pathways, suggests a mechanism for rapid induction of the osteogenesis as an anti-miRNA therapy. The results of this research have identified the miRNA signature which regulates the osteogenesis mechanism in USSC. To conclude, our study reveals more details about the allocation of USSCs into osteogenic lineage through modulatory effect of miRNAs on targets and pathways required for creating a tissue-specific phenotype and may aid in future clinical interventions.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
43
|
Lavrentieva A, Hatlapatka T, Neumann A, Weyand B, Kasper C. Potential for osteogenic and chondrogenic differentiation of MSC. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 129:73-88. [PMID: 22457052 DOI: 10.1007/10_2012_133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of mesenchymal stem cells (MSC) into the field of tissue engineering for bone and cartilage repair is a promising development, since these cells can be expanded ex vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into different cell lineages. Mesenchymal stem cells isolated from various tissues have been intensively studied and characterized by many research groups. To obtain functionally active differentiated tissue, tissue engineered constructs are cultivated in vitro statically or dynamically in bioreactors under controlled conditions. These conditions include special cell culture media, addition of signalling molecules, various physical and chemical factors and the application of different mechanical stimuli. Oxygen concentration in the culture environment is also a significant factor which influences MSC proliferation, stemness and differentiation capacity. Knowledge of the different aspects which affect MSC differentiation in vivo and in vitro will help researchers to achieve directed cell fate without the addition of differentiation agents in concentrations above the physiological range.
Collapse
Affiliation(s)
- Antonina Lavrentieva
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstrasse 5, 30167, Hannover, Germany,
| | | | | | | | | |
Collapse
|
44
|
Sheyn D, Kallai I, Tawackoli W, Cohn Yakubovich D, Oh A, Su S, Da X, Lavi A, Kimelman-Bleich N, Zilberman Y, Li N, Bae H, Gazit Z, Pelled G, Gazit D. Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol Pharm 2011; 8:1592-601. [PMID: 21834548 DOI: 10.1021/mp200226c] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vertebral compression fractures (VCFs), the most common fragility fractures, account for approximately 700,000 injuries per year. Since open surgery involves morbidity and implant failure in the osteoporotic patient population, a new minimally invasive biological solution to vertebral bone repair is needed. Previously, we showed that adipose-derived stem cells (ASCs) overexpressing a BMP gene are capable of inducing spinal fusion in vivo. We hypothesized that a direct injection of ASCs, designed to transiently overexpress rhBMP6, into a vertebral bone void defect would accelerate bone regeneration. Porcine ASCs were isolated and labeled with lentiviral vectors that encode for the reporter gene luciferase (Luc) under constitutive (ubiquitin) or inductive (osteocalcin) promoters. The ASCs were first labeled with reporter genes and then nucleofected with an rhBMP6-encoding plasmid. Twenty-four hours later, bone void defects were created in the coccygeal vertebrae of nude rats. The ASC-BMP6 cells were suspended in fibrin gel (FG) and injected into the bone void. A control group was injected with FG alone. The regenerative process was monitored in vivo using microCT, and cell survival and differentiation were monitored using tissue specific reporter genes and bioluminescence imaging (BLI). The surgically treated vertebrae were harvested after 12 weeks and subjected to histological and immunohistochemical (against porcine vimentin) analyses. In vivo BLI detected Luc-expressing cells at the implantation site over a 12-week period. Beginning 2 weeks postoperatively, considerable defect repair was observed in the group treated with ASC-BMP6 cells. The rate of bone formation in the stem cell-treated group was two times faster than that in the FG-treated group, and bone volume at the end point was 2-fold compared to the control group. Twelve weeks after cell injection the bone volume within the void reached the volume measured in native vertebrae. Immunostaining against porcine vimentin indicated that the ASC-BMP6 cells contributed to new bone formation. Here we show the potential of injections of BMP-modified ASCs to repair vertebral bone defects in a rat model. Our results could pave the way to a novel approach for the biological treatment of traumatic and osteoporosis-related vertebral bone injuries.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Department of Surgery and Cedars-Sinai Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li P, Zhang Y, Wang YM, Duan CM, Hao T, Wu BL, Wang CY. RCCS enhances EOE cell proliferation and their differentiation into ameloblasts. Mol Biol Rep 2011; 39:309-17. [PMID: 21667111 DOI: 10.1007/s11033-011-0740-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
In this article we report on the culturing of dental enamel organ epithelia (EOE) using a rotary cell culture system (RCCS) bioreactor associated with a cytodex-3 microcarrier. This culture system enhanced the proliferation and differentiation of the EOE into ameloblasts. Primary dental EOE trypsinized from 4-day old post-natal rat pups were cultured in the RCCS associated with Cytodex-3. The results were analyzed in comparison to a conventional plate system (control). Cells grown in RCCS have shown higher viabilities (above 90%) and final cell densities in terms of cells/ml than in the control system. In the case of RCCS, 46±2 manifold increases were obtained, while significantly lower yields of 10.8±2.5 manifod were obtained for control plates. Throughout the experiments, glucose levels were maintained within the accepted physiological range. In this case, LDH levels are kept low (below 150 mmol/ml), which is in accordance with the low cell death observed in the RCCS. Scanning electron microscopy revealed cells that were spread and forming three dimensional aggregates on the surface of cytodex-3. Cells cultured in the RCCS exhibited a stronger positive immunofluorescence staining for ameloblastin than those in control plates. RT-PCR results revealed that cells cultured in RCCS have higher amelogenin mRNA levels compared to controls. We have done an exploratory study on biological characteristics and self-assembling of epithelium cellula intersitialis, which demonstrated that the special 3D environment enhanced the rat dental EOE cell proliferation and differentiation into ameloblasts. The study has revealed that RCCS could be used to study the reaction of the EOE cells, tooth enamel organ cells and mesenchymal cells under the spacial 3D culture system, which will also provide a novel hypothesis for dental regeneration.
Collapse
Affiliation(s)
- Ping Li
- Department of Endodontics, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|