1
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
2
|
Huang X, Niu X, Ma Y, Wang X, Su T, He Y, Lu F, Gao J, Chang Q. Hierarchical double-layer microneedles accomplish multicenter skin regeneration in diabetic full-thickness wounds. J Adv Res 2024; 66:237-249. [PMID: 38218581 PMCID: PMC11674785 DOI: 10.1016/j.jare.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Managing large chronic wounds presents significant challenges because of inadequate donor sites, infection, and lack of structural support from dermal substitutes. Hydrogels are extensively used in various forms to promote chronic wound healing and provide a three-dimensional spatial structure, through growth factors or cell transport. OBJECTIVES We present a novel multicenter regenerative model that is capable of regenerating and merging simultaneously to form a complete layer of skin. This method significantly reduces wound healing time compared to the traditional centripetal healing model. We believe that our model can improve clinical outcomes and pave the way for further research into regenerative medicine. METHODS We prepared a novel multi-island double-layer microneedle (MDMN) using gelatin-methacryloylchitosan (GelMA-CS). The MDMN was loaded with keratinocytes (KCs) and dermal fibroblasts (FBs). Our aim in this study was to explore the therapeutic potential of MDMN in a total skin excision model. RESULTS The MDMN model replicated the layered structure of full-thickness skin and facilitated tissue regeneration and healing via dual omni-bearing. Multi-island regeneration centres accomplished horizontal multicentric regeneration, while epidermal and dermal cells migrated synchronously from each location. This produced a healing area approximately 4.7 times greater than that of the conventional scratch tests. The MDMN model exhibited excellent antibacterial properties, attributed to the chitosan layer. During wound healing in diabetic mice, the MDMN achieved earlier epidermal coverage and faster wound healing through multi-island regeneration centres and the omnidirectional regeneration mode. The MDMN group displayed an accelerated wound healing rate upon arrival at the destination (0.96 % ± 0.58 % vs. 4.61 % ± 0.32 %). Additionally, the MDMN group exhibited superior vascularization and orderly collagen deposition. CONCLUSION The present study presents a novel skin regeneration model using microneedles as carriers of autologous keratinocytes and dermal fibroblasts, which allows for omni-directional, multi-center, and full-thickness skin regeneration.
Collapse
Affiliation(s)
| | | | | | - Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yu He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
3
|
Wang L, Liu K, Deng L, Zhou G, Qian W, Xu K. Exploration of Perturbed Liver Fibrosis-Related Factors and Collagen Type I in Animal Model of Non-Alcoholic Fatty Liver Disease. Appl Biochem Biotechnol 2024; 196:3260-3273. [PMID: 37646888 DOI: 10.1007/s12010-023-04694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
To determine their involvement in the onset of the disease, we investigated the changing levels of liver fibrosis-related proteins, namely, type-I collagen, α-smooth muscle actin (α-SMA), and transforming growth factor β1 and β3 (TGF-β1, β3). The four groups of Sprague-Dawley (SD) rats were involved in the study, namely, (i) normal control group, (ii) high-fat diet group (HFD), (iii) carbon tetrachloride (CCl4) group, and (iv) NAFLD group (animal model) which were chosen at random. The NAFLD model received HFD combined with subcutaneous injection of small doses of CCl4. Histopathological examination confirmed extent of liver fibrosis, while other immunological and molecular methods were used to evaluate expression and distribution of α-SMA, type I collagen TGF-β1 and TGF-β3, at both m-RNA and protein levels. In contrast to the normal control group, the NAFLD group showed moderately elevated expressions of TGF-β1, α-SMA, and type I collagen, which was proportional on temporal scale of NAFLD persistence in the model (P < 0.05). In the early phage of NAFLD, enhancement in the mRNA transcripts and, henceforth, protein expression of TGF-β3 was observed. However, these were found to be downregulated in case of liver fibrosis (P < 0.05). This NAFLD rat model shows the histopathologic changes of human NAFLD and is suitable for the study of NAFLD pathogenesis. These findings suggest that type I collagen and the liver fibrosis-related factors TGF- β1, TGF- β3, and α-SMA may be significant contributors to NAFLD. Although NAFLD model is previously demonstrated by other researchers, our study is novel in terms of exploration of involvement of fibrosis-related factors and in particular aforementioned proteins at the early stage of NAFLD vis-à-vis dynamics of type-I collagen distribution.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Kahua Liu
- Department of Gastroenterology, the Central Hospital of Qingdao City, Shandong Province, Qing Dao city, 266011, China
| | - Liang Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guanyu Zhou
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keshu Xu
- Department of Gastroenterology, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Yan D, Song Y, Zhang B, Cao G, Zhou H, Li H, Sun H, Deng M, Qiu Y, Yi W, Sun Y. Progress and application of adipose-derived stem cells in the treatment of diabetes and its complications. Stem Cell Res Ther 2024; 15:3. [PMID: 38167106 PMCID: PMC10763319 DOI: 10.1186/s13287-023-03620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that can lead to many serious complications, such as cardiovascular disease, retinopathy, neuropathy, and kidney disease. Once diagnosed with diabetes, patients need to take oral hypoglycemic drugs or use insulin to control blood sugar and slow down the progression of the disease. This has a significant impact on the daily life of patients, requiring constant monitoring of the side effects of medication. It also imposes a heavy financial burden on individuals, their families, and even society as a whole. Adipose-derived stem cells (ADSCs) have recently become an emerging therapeutic modality for DM and its complications. ADSCs can improve insulin sensitivity and enhance insulin secretion through various pathways, thereby alleviating diabetes and its complications. Additionally, ADSCs can promote tissue regeneration, inhibit inflammatory reactions, and reduce tissue damage and cell apoptosis. The potential mechanisms of ADSC therapy for DM and its complications are numerous, and its extensive regenerative and differentiation ability, as well as its role in regulating the immune system and metabolic function, make it a powerful tool in the treatment of DM. Although this technology is still in the early stages, many studies have already proven its safety and effectiveness, providing new treatment options for patients with DM or its complications. Although based on current research, ADSCs have achieved some results in animal experiments and clinical trials for the treatment of DM, further clinical trials are still needed before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Dongxu Yan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Haitao Zhou
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hao Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Meng Deng
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yufeng Qiu
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
5
|
Choy K, Dyamenahalli KU, Khair S, Colborn KL, Wiktor AJ, Idrovo JP, McMahan RH, Burnham EL, Kovacs EJ. Aberrant inflammatory responses in intoxicated burn-injured patients parallel impaired cognitive function. Alcohol 2023; 109:35-41. [PMID: 36690221 PMCID: PMC10175175 DOI: 10.1016/j.alcohol.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Burn-injured patients with alcohol use disorder (AUD) have increased morbidity and mortality compared to alcohol-abstaining individuals with similar injuries. It is hypothesized that this is due, in part, to alcohol-induced dysregulation of the systemic inflammatory response, leading to worsened clinical outcomes, including increased susceptibility to infection, and heightened cognitive impairment. To examine the effects of alcohol on inflammatory markers after burn injury, we used multiplex assays to measure a panel of 48 cytokines, chemokines, and growth factors in the plasma of burn patents within 24 h of admission to the University of Colorado Burn Center. Thirty patients were enrolled between July 2018 to February 2020 and were stratified based on presence of AUD and total body surface area (TBSA) burn of ≥20% into four groups: [AUD-, TBSA <20%, N = 12], [AUD+, TBSA <20%, N = 3], [AUD-, TBSA ≥20%, N = 8], [AUD+, TBSA ≥20%, N = 7]. In addition, Confusion Assessment Method (CAM) scores were collected to evaluate patient delirium during the course of hospitalization. Multivariate statistical analysis demonstrated a number of cytokines and other factors that were significantly different between the groups. For example, the anti-inflammatory cytokine interleukin 1 receptor antagonist (IL-1ra) was dampened in the AUD+, TBSA ≥20% cohort with a 75.2% decrease compared to AUD-, TBSA ≥20%, and an 83.9% decrease compared to AUD-, TBSA <20% (p = 0.008). Additionally, plasma levels of the pro-inflammatory mediator CXCL12 (C-X-C motif chemokine ligand 12, also known as stromal cell-derived factor 1, SDF-1) was higher in the AUD + groups (p = 0.03) and similarly, IL-18 levels were greater in AUD+, TBSA ≥20% (p = 0.009). Eotaxin (also known as cytokine CC motif ligand 11, CCL11) was markedly elevated in the AUD+, TBSA ≥20% cohort with a 2.4-fold increase over the AUD-, TBSA ≥20%, and a 1.7-fold rise compared to the AUD-, TBSA <20% cohorts (p = 0.04). Interestingly, there was also a marked rise in CAM + delirium scores (85.7%) among the AUD + patients with TBSA ≥20% (p = 0.02). Not surprisingly, we found that hospital stays increased with AUD+ and larger burns (p = 0.0009). Our findings reveal that burn patients who misuse alcohol have aberrant inflammatory responses that may lead to greater immune dysregulation and worse clinical outcomes.
Collapse
Affiliation(s)
- Kevin Choy
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kiran U Dyamenahalli
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shanawaj Khair
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn L Colborn
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Arek J Wiktor
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Juan-Pablo Idrovo
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel H McMahan
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Rocky Mountain Regional Veterans Administration Medical Center, Veterans Administration Eastern Colorado Health Care System Research Service, Aurora, CO, United States
| | - Ellen L Burnham
- Department of Medicine, Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J Kovacs
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Rocky Mountain Regional Veterans Administration Medical Center, Veterans Administration Eastern Colorado Health Care System Research Service, Aurora, CO, United States; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
6
|
Saadh MJ, Ramírez-Coronel AA, Saini RS, Arias-Gonzáles JL, Amin AH, Gavilán JCO, Sârbu I. Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing. Hum Cell 2023:10.1007/s13577-023-00904-8. [PMID: 37067766 DOI: 10.1007/s13577-023-00904-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Wound healing is a dynamic and complicated process containing overlapping phases. Presently, definitive therapy is not available, and the investigation into optimal wound care is influenced by the efficacy and cost-effectiveness of developing therapies. Accumulating evidence demonstrated the potential role of mesenchymal stem/stromal cell (MSC) therapy in several tissue injuries and diseases due to their high proliferation and differentiation abilities along with an easy collection procedure, low tumorigenesis, and immuno-privileged status. MSCs have also accelerated wound repair in all phases through their advantageous properties, such as accelerating wound closure, improving re-epithelialization, elevating angiogenesis, suppressing inflammation, and modulating extracellular matrix (ECM) remodeling. In addition, the beneficial therapeutic impacts of MSCs are largely associated with their paracrine functions, including extracellular vesicles (EVs). Exosomes and microvesicles are the two main subgroups of EVs. These vesicles are heterogeneous bilayer membrane structures that contain several proteins, lipids, and nucleic acids. EVs have emerged as a promising alternative to stem cell-based therapies because of their lower immunogenicity, tumorigenicity, and ease of management. MSCs from various sources have been widely investigated in skin wound healing and regeneration. Considering these features, in this review, we highlighted recent studies that the investigated therapeutic potential of various MSCs and MSC-EVs in skin damages and wounds.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, Pontifical University of Peru, San Miguel, Peru
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Ioan Sârbu
- 2nd Department of Surgery, Pediatric Surgery and Orthopedics, "Grigore T. Popa", University of Medicine and Pharmacy, 700115, Iași, Romania.
| |
Collapse
|
7
|
Microcapsule-Based Dose-Dependent Regulation of the Lifespan and Behavior of Adipose-Derived MSCs as a Cell-Mediated Delivery System: In Vitro Study. Int J Mol Sci 2022; 24:ijms24010292. [PMID: 36613737 PMCID: PMC9820487 DOI: 10.3390/ijms24010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The development of “biohybrid” drug delivery systems (DDS) based on mesenchymal stem/stromal cells (MSCs) is an important focus of current biotechnology research, particularly in the areas of oncotheranostics, regenerative medicine, and tissue bioengineering. However, the behavior of MSCs at sites of inflammation and tumor growth is relevant to potential tumor transformation, immunosuppression, the inhibition or stimulation of tumor growth, metastasis, and angiogenesis. Therefore, the concept was formulated to control the lifespan of MSCs for a specific time sufficient for drug delivery to the target tissue by varying the number of internalized microcontainers. The current study addressed the time-dependent in vitro assessment of the viability, migration, and division of human adipose-derived MSCs (hAMSCs) as a function of the dose of internalized polyelectrolyte microcapsules prepared using a layer-by-layer technique. Polystyrene sulfonate (PSS)—poly(allylamine hydrochloride) (PAH)-coated spherical micrometer-sized (diameter ~2−3 µm) vaterite (CaCO3) microcapsules (PAH-PSS)6 with the capping PSS layer were prepared after dissolution of the CaCO3 core template. The Cell-IQ phase contrast imaging results showed that hAMSCs internalized all (PAH-PSS)6 microcapsules saturating the intercellular medium (5−90 particles per cell). A strong (r > 0.7) linear dose-dependent and time-dependent (up to 8 days) regression was observed between the in vitro decrease in cell viability and the number of internalized microvesicles. The approximate time-to-complete-death of hAMSCs at different concentrations of microcapsules in culture was 428 h (1:5 ratio), 339 h (1:10), 252 h (1:20), 247 h (1:45), and 170 h (1:90 ratio). By varying the number of microcontainers loaded into the cells (from 1:10 to 1:90), a dose-dependent exponential decrease in both the movement rate and division rate of hAMSCs was observed. A real-time cell analysis (RTCA) of the effect of (PAH-PSS)6 microcapsules (from 1:5 to 1:20) on hAMSCs also showed a dose- and time-dependent decrease in cell longevity after a 50h study at ratios of 1:10 and 1:20. The incorporation of microcapsules (1:5, 1:20, and 1:45) resulted in a dose-dependent increase in 24−48 h secretion of GRO-α (CXCL1), MIF, and SDF-1α (CXCL12) chemokines in hAMSC culture. In turn, the normalization or inhibition of chemokine secretion occurred after 72 h, except for MIF levels below 5−20 microcapsules, which were internalized by MSCs. Thus, the proposed concept of controlling the lifespan of MSC-based DDS using a dose of internalized PAH-PSS microcapsules could be useful for biomedical applications. (PAH-PSS)6 microcapsule ratios of 1:5 and 1:10 have little effect on the lifespan of hAMSCs for a long time (up to 14−18 days), which can be recommended for regenerative therapy and tissue bioengineering associated with low oncological risk. The microcapsule ratios of 1:20 and 1:45 did not significantly restrict the migratory activity of hAMSCs-based DDS during the time interval required for tissue delivery (up to 4−5 days), followed by cell death after 10 days. Therefore, such doses of microcapsules can be used for hAMSC-based DDS in oncotheranostics.
Collapse
|
8
|
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine Activation Reveals Tissue-Imprinted Gene Profiles of Mesenchymal Stromal Cells. Front Immunol 2022; 13:917790. [PMID: 35924240 PMCID: PMC9341285 DOI: 10.3389/fimmu.2022.917790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Development of standardized metrics to support manufacturing and regulatory approval of mesenchymal stromal cell (MSC) products is confounded by heterogeneity of MSC populations. Many reports describe fundamental differences between MSCs from various tissues and compare unstimulated and activated counterparts. However, molecular information comparing biological profiles of activated MSCs across different origins and donors is limited. To better understand common and source-specific mechanisms of action, we compared the responses of 3 donor populations each of human umbilical cord (UC) and bone marrow (BM) MSCs to TNF-α, IL-1β or IFN-γ. Transcriptome profiles were analysed by microarray and select secretome profiles were assessed by multiplex immunoassay. Unstimulated (resting) UC and BM-MSCs differentially expressed (DE) 174 genes. Signatures of TNF-α-stimulated BM and UC-MSCs included 45 and 14 new DE genes, respectively, while all but 7 of the initial 174 DE genes were expressed at comparable levels after licensing. After IL-1β activation, only 5 of the 174 DE genes remained significantly different, while 6 new DE genes were identified. IFN-γ elicited a robust transcriptome response from both cell types, yet nearly all differences (171/174) between resting populations were attenuated. Nine DE genes predominantly corresponding to immunogenic cell surface proteins emerged as a BM-MSC signature of IFN-γ activation. Changes in protein synthesis of select analytes correlated modestly with transcript levels. The dynamic responses of licensed MSCs documented herein, which attenuated heterogeneity between unstimulated populations, provide new insight into common and source-imprinted responses to cytokine activation and can inform strategic development of meaningful, standardized assays.
Collapse
Affiliation(s)
| | | | - Barry N. Ford
- Defence Research and Development Canada Suffield Research Centre, Casualty Management Section, Medicine Hat, AB, Canada
| | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ;
| |
Collapse
|
9
|
Harvey J, Mellody KT, Cullum N, Watson REB, Dumville J. Wound fluid sampling methods for proteomic studies: A scoping review. Wound Repair Regen 2022; 30:317-333. [PMID: 35381119 PMCID: PMC9322564 DOI: 10.1111/wrr.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/02/2023]
Abstract
Understanding why some wounds are hard to heal is important for improving care and developing more effective treatments. The method of sample collection used is an integral step in the research process and thus may affect the results obtained. The primary objective of this study was to summarise and map the methods currently used to sample wound fluid for protein profiling and analysis. Eligible studies were those that used a sampling method to collect wound fluid from any human wound for analysis of proteins. A search for eligible studies was performed using MEDLINE, Embase and CINAHL Plus in May 2020. All references were screened for eligibility by one reviewer, followed by discussion and consensus with a second reviewer. Quantitative data were mapped and visualised using appropriate software and summarised via a narrative summary. After screening, 280 studies were included in this review. The most commonly used group of wound fluid collection methods were vacuum, drainage or use of other external devices, with surgical wounds being the most common sample source. Other frequently used collection methods were extraction from absorbent materials, collection beneath an occlusive dressing and direct collection of wound fluid. This scoping review highlights the variety of methods used for wound fluid collection. Many studies had small sample sizes and short sample collection periods; these weaknesses have hampered the discovery and validation of novel biomarkers. Future research should aim to assess the reproducibility and feasibility of sampling and analytical methods for use in larger longitudinal studies.
Collapse
Affiliation(s)
- Joe Harvey
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kieran T Mellody
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Nicky Cullum
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Nursing, Midwifery & Social Work, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Institute for Collaborative Research on Ageing, The University of Manchester, Manchester, UK
| | - Jo Dumville
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Nursing, Midwifery & Social Work, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Litvinova LS, Shupletsova VV, Khaziakhmatova OG, Daminova AG, Kudryavtseva VL, Yurova KA, Malashchenko VV, Todosenko NM, Popova V, Litvinov RI, Korotkova EI, Sukhorukov GB, Gow AJ, Weissman D, Atochina-Vasserman EN, Khlusov IA. Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Front Bioeng Biotechnol 2022; 10:796111. [PMID: 35284410 PMCID: PMC8909129 DOI: 10.3389/fbioe.2022.796111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
A number of preclinical and clinical studies have demonstrated the efficiency of mesenchymal stromal cells to serve as an excellent base for a cell-mediated drug delivery system. Cell-based targeted drug delivery has received much attention as a system to facilitate the uptake a nd transfer of active substances to specific organs and tissues with high efficiency. Human mesenchymal stem cells (MSCs) are attracting increased interest as a promising tool for cell-based therapy due to their high proliferative capacity, multi-potency, and anti-inflammatory and immunomodulatory properties. In particular, these cells are potentially suitable for use as encapsulated drug transporters to sites of inflammation. Here, we studied the in vitro effects of incorporating synthetic polymer microcapsules at various microcapsule-to-cell ratios on the morphology, ultrastructure, cytokine profile, and migration ability of human adipose-derived MSCs at various time points post-phagocytosis. The data show that under appropriate conditions, human MSCs can be efficiently loaded with synthesized microcapsules without damaging the cell’s structural integrity with unexpressed cytokine secretion, retained motility, and ability to migrate through 8 μm pores. Thus, the strategy of using human MSCs as a delivery vehicle for transferring microcapsules, containing bioactive material, across the tissue–blood or tumor–blood barriers to facilitate the treatment of stroke, cancer, or inflammatory diseases may open a new therapeutic perspective.
Collapse
Affiliation(s)
- L. S. Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. V. Shupletsova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - O. G. Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - A. G. Daminova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC KSC of RAS, Kazan, Russia
- Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, Kazan, Russia
| | - V. L. Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - K. A. Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. V. Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - N. M. Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. Popova
- School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - R. I. Litvinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - E. I. Korotkova
- School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - G. B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A. J. Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - D. Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - E. N. Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: E. N. Atochina-Vasserman,
| | - I. A. Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Russia
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
11
|
Sharkeev YP, Komarova EG, Chebodaeva VV, Sedelnikova MB, Zakharenko AM, Golokhvast KS, Litvinova LS, Khaziakhmatova OG, Malashchenko VV, Yurova KA, Gazatova ND, Kozlov IG, Khlusova MY, Zaitsev KV, Khlusov IA. Amorphous-Crystalline Calcium Phosphate Coating Promotes In Vitro Growth of Tumor-Derived Jurkat T Cells Activated by Anti-CD2/CD3/CD28 Antibodies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3693. [PMID: 34279263 PMCID: PMC8269898 DOI: 10.3390/ma14133693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous-crystalline structure that exhibits excellent biocopatibility. The structure and physico-chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and β-Ca2P2O7 were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from -456 to -535 mV, while the zeta potential (ZP) decreased from -53 to -40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200-250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous-crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous-crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.
Collapse
Affiliation(s)
- Yurii P Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Ekaterina G Komarova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Valentina V Chebodaeva
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Mariya B Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | | | - Kirill S Golokhvast
- School of Engineering, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Larisa S Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Olga G Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Vladimir V Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Kristina A Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Natalia D Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Ivan G Kozlov
- Department of Organization and Management in the Sphere of Circulation of Medicines, Institute of Postgraduate Education, I.M. Sechenov Federal State Autonomous Educational University of Higher Education-First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Marina Y Khlusova
- Department of Pathophysiology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Konstantin V Zaitsev
- Siberian Federal Scientific and Clinical Center of the Federal Medical-Biological Agency, 636070 Seversk, Russia
| | - Igor A Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Zhang XY, Li TT, Liu YR, Geng SS, Luo AL, Jiang MS, Liang XW, Shang JH, Lu KH, Yang XG. Transcriptome analysis revealed differences in the microenvironment of spermatogonial stem cells in seminiferous tubules between pre-pubertal and adult buffaloes. Reprod Domest Anim 2021; 56:629-641. [PMID: 33492695 DOI: 10.1111/rda.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
The microenvironment in the seminiferous tubules of buffalo changes with age, which affects the self-renewal and growth of spermatogonial stem cells (SSCs) and the process of spermatogenesis, but the mechanism remains to be elucidated. RNA-seq was performed to compare the transcript profiles of pre-pubertal buffalo (PUB) and adult buffalo (ADU) seminiferous tubules. In total, 17,299 genes from PUB and ADU seminiferous tubules identified through RNA-seq, among which 12,271 were expressed in PUB and ADU seminiferous tubules, 4,027 were expressed in only ADU seminiferous tubules, and 956 were expressed in only PUB seminiferous tubules. Of the 17,299 genes, we identified 13,714 genes that had significant differences in expression levels between PUB and ADU through GO enrichment analysis. Among these genes, 5,342 were significantly upregulated and possibly related to the formation or identity of the surface antigen on SSCs during self-renewal; 7,832 genes were significantly downregulated, indicating that genes in PUB seminiferous tubules do not participate in the biological processes of sperm differentiation or formation in this phase compared with those in ADU seminiferous tubules. Subsequently, through the combination with KEGG analysis, we detected enrichment in a number of genes related to the development of spermatogonial stem cells, providing a reference for study of the development mechanism of buffalo spermatogonial stem cells in the future. In conclusion, our data provide detailed information on the mRNA transcriptomes in PUB and ADU seminiferous tubules, revealing the crucial factors involved in maintaining the microenvironment and providing a reference for further in vitro cultivation of SSCs.
Collapse
Affiliation(s)
- Xiao-Yuan Zhang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ting-Ting Li
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China.,HeNan Provincial People's Hospital, China
| | - Ya-Ru Liu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Shuang-Shuang Geng
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ao-Lin Luo
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ming-Sheng Jiang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xing-Wei Liang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Jiang-Hua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Kim SN, Lee CJ, Nam J, Choi B, Chung E, Song SU. The Effects of Human Bone Marrow-Derived Mesenchymal Stem Cell Conditioned Media Produced with Fetal Bovine Serum or Human Platelet Lysate on Skin Rejuvenation Characteristics. Int J Stem Cells 2021; 14:94-102. [PMID: 33377452 PMCID: PMC7904527 DOI: 10.15283/ijsc20070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Objectives Human mesenchymal stem cell-conditioned medium (MSC-CM) is produced using mesenchymal stem cell culture technology and has various benefits for the skin, including wrinkle removal, skin regeneration, and increased antioxidant activity. Its popularity is thus increasing in the field of functional cosmetics. Methods and Results In this study, we analyzed the effects of fetal bovine serum-supplemented MSC-CM (FBS- MSC-CM) and human platelet lysate-supplemented MSC-CM (hPL-MSC-CM) on skin rejuvenation characteristics. We found that the concentrations of important growth factors (VEGF, TGF-β1, and HGF) and secretory proteins for skin regeneration were significantly higher in hPL-MSC-CM than in FBS-MSC-CM. Furthermore, the capacity for inducing proliferation of human dermal fibroblast (HDF) and keratinocytes, the migration ability of HDF, extracellular matrix (ECM) production such as collagen and elastin was higher in hPL-MSC-CM than that in FBS- MSC-CM. Conclusions These results support the usefulness and high economic value of hPL-MSC-CM as an alternative source of FBS-MSC-CM in the cosmetic industry for skin rejuvenation.
Collapse
Affiliation(s)
- Si-Na Kim
- Research Institute, SCM Lifesciences Co. Ltd., Incheon, Korea
| | - Chan-Ju Lee
- Research Institute, SCM Lifesciences Co. Ltd., Incheon, Korea
| | - JeeHoon Nam
- Research Institute, SCM Lifesciences Co. Ltd., Incheon, Korea
| | - Byeol Choi
- Research Institute, SCM Lifesciences Co. Ltd., Incheon, Korea
| | - Eunkyung Chung
- Research Institute, SCM Lifesciences Co. Ltd., Incheon, Korea
| | - Sun Uk Song
- Research Institute, SCM Lifesciences Co. Ltd., Incheon, Korea.,Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
14
|
Martínez-Rodríguez M, Monteagudo C. CCL27 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:113-132. [PMID: 34286445 DOI: 10.1007/978-3-030-62658-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemokines are a group of small proteins which play an important role in leukocyte migration and invasion. They are also involved in the cellular proliferation and migration of tumor cells.Chemokine CCL27 (cutaneous T cell-attracting chemokine, CTACK) is mainly expressed by keratinocytes of the normal epidermis. It is well known that this chemokine plays an important role in several inflammatory diseases of the skin, such as atopic dermatitis, contact dermatitis, and psoriasis. Moreover, several studies have shown an association between CCL27 expression and a variety of neoplasms including skin cancer.In this chapter, we address the role of chemokine CCL27 in the tumor microenvironment in the most relevant cancers of the skin and other anatomical locations. We also make a brief comment on future perspectives and the potential relation of CCL27 with different immunotherapeutic modalities.
Collapse
Affiliation(s)
| | - Carlos Monteagudo
- Department of Pathology, University Clinic Hospital-INCLIVA, University of Valencia, Valencia, Spain.
| |
Collapse
|
15
|
Litvinova L, Yurova K, Shupletsova V, Khaziakhmatova O, Malashchenko V, Shunkin E, Melashchenko E, Todosenko N, Khlusova M, Sharkeev Y, Komarova E, Sedelnikova M, Khlusov I. Gene Expression Regulation and Secretory Activity of Mesenchymal Stem Cells upon In Vitro Contact with Microarc Calcium Phosphate Coating. Int J Mol Sci 2020; 21:E7682. [PMID: 33081386 PMCID: PMC7589914 DOI: 10.3390/ijms21207682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
The manufacture of biomaterial surfaces with desired physical and chemical properties that can directly induce osteogenic differentiation without the need for biochemical additives is an excellent strategy for controlling the behavior of mesenchymal stem cells (MSCs) in vivo. We studied the cellular and molecular reactions of MSCs to samples with a double-sided calcium phosphate (CaP) coating and an average roughness index (Ra) of 2.4-4.6 µm. The study aimed to evaluate the effect of a three-dimensional matrix on the relative mRNA expression levels of genes associated with the differentiation and maturation of MSCs toward osteogenesis (RUNX2, BMP2, BMP6, BGLAP, and ALPL) under conditions of distant interaction in vitro. Correlations were revealed between the mRNA expression of some osteogenic and cytokine/chemokine genes and the secretion of cytokines and chemokines that may potentiate the differentiation of cells into osteoblasts, which indicates the formation of humoral components of the extracellular matrix and the creation of conditions supporting the establishment of hematopoietic niches.
Collapse
Affiliation(s)
- Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Valeria Shupletsova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Egor Shunkin
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Elena Melashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Marina Khlusova
- Department of Pathophysiology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Yurii Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
- Research School of High-Energy Physics, Tomsk Polytechnic University, 634055 Tomsk, Russia
| | - Ekaterina Komarova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
| | - Maria Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
16
|
Calcium Phosphate Coating Prepared by Microarc Oxidation Affects hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor-Derived Jurkat T Cells. MATERIALS 2020; 13:ma13194307. [PMID: 32992463 PMCID: PMC7579201 DOI: 10.3390/ma13194307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023]
Abstract
Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2–5 μm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150–300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3–0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and β-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5–2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2–14 days) 1.5–6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.
Collapse
|
17
|
Gray CM, O’Hagan KL, Lorenzo-Redondo R, Olivier AJ, Amu S, Chigorimbo-Murefu N, Harryparsad R, Sebaa S, Maziya L, Dietrich J, Otwombe K, Martinson N, Ferrian S, Mkhize NN, Lewis DA, Lang D, Carias AM, Jaspan HB, Wilson DPK, McGilvray M, Cianci GC, Anderson MR, Dinh MH, Williamson AL, Passmore JAS, Chiodi F, Hope TJ. Impact of chemokine C-C ligand 27, foreskin anatomy and sexually transmitted infections on HIV-1 target cell availability in adolescent South African males. Mucosal Immunol 2020; 13:118-127. [PMID: 31619762 PMCID: PMC6914668 DOI: 10.1038/s41385-019-0209-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 02/04/2023]
Abstract
We compared outer and inner foreskin tissue from adolescent males undergoing medical male circumcision to better understand signals that increase HIV target cell availability in the foreskin. We measured chemokine gene expression and the impact of sexually transmitted infections (STIs) on the density and location of T and Langerhans cells. Chemokine C-C ligand 27 (CCL27) was expressed 6.94-fold higher in the inner foreskin when compared with the outer foreskin. We show that the density of CD4+CCR5+ cells/mm2 was higher in the epithelium of the inner foreskin, regardless of STI status, in parallel with higher CCL27 gene expression. In the presence of STIs, there were higher numbers of CD4+CCR5+ cells/mm2 cells in the sub-stratum of the outer and inner foreskin with concurrently higher number of CD207+ Langerhans cells (LC) in both tissues, with the latter cells being closer to the keratin surface of the outer FS in the presence of an STI. When we tested the ability of exogenous CCL27 to induce T-cell migration in foreskin tissue, CD4 + T cells were able to relocate to the inner foreskin epithelium in response. We provide novel insight into the impact CCL27 and STIs on immune and HIV-1 target cell changes in the foreskin.
Collapse
Affiliation(s)
- Clive M. Gray
- 0000 0004 1937 1151grid.7836.aDivision of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa ,0000 0004 0630 4574grid.416657.7National Health Laboratory Service, Cape Town, South Africa
| | - Kyle L. O’Hagan
- 0000 0004 1937 1151grid.7836.aDivision of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ramon Lorenzo-Redondo
- 0000 0001 2299 3507grid.16753.36Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60011 USA
| | - Abraham J. Olivier
- 0000 0004 1937 1151grid.7836.aDivision of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa ,0000 0004 1937 1151grid.7836.aDivision of Virology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sylvie Amu
- 0000 0004 1937 0626grid.4714.6Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Nyaradzo Chigorimbo-Murefu
- 0000 0004 1937 1151grid.7836.aDivision of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rushil Harryparsad
- 0000 0004 1937 1151grid.7836.aDivision of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Shorok Sebaa
- 0000 0004 1937 1151grid.7836.aDivision of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lungile Maziya
- 0000 0004 0576 7753grid.414386.cDepartment of Internal Medicine, Edendale Hospital, Pietermaritzburg, South Africa
| | - Janan Dietrich
- 0000 0004 1937 1135grid.11951.3dPerinatal HIV Research Unit, SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy Otwombe
- 0000 0004 1937 1135grid.11951.3dPerinatal HIV Research Unit, SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- 0000 0004 1937 1135grid.11951.3dPerinatal HIV Research Unit, SAMRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Selena Ferrian
- 0000 0004 1937 1151grid.7836.aDivision of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla N. Mkhize
- National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - David A. Lewis
- 0000 0004 1936 834Xgrid.1013.3Westmead Clinical School, Faculty of Medicine and Health & Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Dirk Lang
- 0000 0004 1937 1151grid.7836.aDepartment of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Ann M. Carias
- 0000 0001 2299 3507grid.16753.36Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Heather B. Jaspan
- 0000 0004 1937 1151grid.7836.aDivision of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa ,0000 0000 9026 4165grid.240741.4Seattle Children’s Research Institute and University of Washington Departments of Pediatrics and Global Health, Seattle, WA USA
| | - Douglas P. K. Wilson
- 0000 0004 0576 7753grid.414386.cDepartment of Internal Medicine, Edendale Hospital, Pietermaritzburg, South Africa
| | | | - Gianguido C. Cianci
- 0000 0001 2299 3507grid.16753.36Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Meegan R. Anderson
- 0000 0001 2299 3507grid.16753.36Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Minh H. Dinh
- 0000 0001 2299 3507grid.16753.36Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Anna-Lise Williamson
- 0000 0004 1937 1151grid.7836.aDivision of Virology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S. Passmore
- 0000 0004 0630 4574grid.416657.7National Health Laboratory Service, Cape Town, South Africa ,0000 0004 1937 1151grid.7836.aDivision of Virology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Francesca Chiodi
- 0000 0004 1937 0626grid.4714.6Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Thomas J. Hope
- 0000 0001 2299 3507grid.16753.36Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
18
|
Litvinova LS, Shupletsova VV, Yurova KA, Khaziakhmatova OG, Todosenko NM, Malashchenko VV, Shunkin EO, Melashchenko ES, Khlusova MY, Komarova EG, Chebodaeva VV, Sharkeev YP, Ivanov PA, Khlusov IA. [Secretion of niche signal molecules in conditions of osteogenic differentiation of multipotent mesenchymal stromal cells induced by textured calcium phosphate coating]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:339-346. [PMID: 31436176 DOI: 10.18097/pbmc20196504339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Secretion of 21 cytokines, chemokines and growth factors (LIF, SCF, SDF-1a, SCGF-b, M-CSF, MCP-3, MIF, MIG, TRAIL, GRO-a; IL-1a, IL-2ra, IL-3, IL-12(p40), IL-16, IL-18, HGF, TNF-b, b-NGF, IFN-a2, CTACK) has been studied in vitro in the culture of human adipose-derived multipotent mesenchymal stromal cells (hAMMSCs) in conditions of its osteogenic differentiation caused by 14-day contact with calcium phosphate (CP) surface with different roughness. Bilateral X-ray amorphous CP coatings were prepared on the samples of commercially pure titanium in the anodal regime using a micro-arc method. An aqueous solution prepared from 20 wt% phosphoric acid, 6 wt% dissolved hydrohyapatite nanopowder (particle diameter 10-30 nm with single agglomerates up to 100 nm), and 9 wt% dissolved calcium carbonate was used to obtain CP coating. hAMMSCs isolated from lipoaspirate were co-cultured after 4 passages with the CP-coated samples at final concentration of 1.5´105 viable karyocytes per 1.5 mL of standard nutrition medium (without osteogenic stimulators) for 14 days (a determination of [CD45,34,14,20], CD73, CD90 и CD105 cell immunophenotype; an analysis of secretory activity) and 21 days (alizarin red S staining of culture) with medium replacement every 3-4 days. Under conditions of in vitro contact with rough CP coating hAMMSCs differentiated into osteoblasts synthesizing the mineralized bone matrix; this was accompanied by 2-3-fold increasing ratio of [CD45,34,14,20]+ hemopoietic cells. The following humoral factors of hemopoietic niches acted as the signal molecules escalating in vitro the hemopoietic base in 14 days of differentiating three-dimensional culture of hAMMSCs: either leukemia inhibitory factor (LIF) and stem cell factor (SCF) cytokines under mean index of CP roughness Ra=2.4-2.6 mm or stromal derived factor-1 (SDF-1a, CXCL12 chemokine) under Ra=3.1-4.4 mm.
Collapse
Affiliation(s)
- L S Litvinova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V V Shupletsova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - K A Yurova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | - N M Todosenko
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | - E O Shunkin
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | | | - E G Komarova
- Institute of Strength Physics and Materials Science, the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia
| | - V V Chebodaeva
- Tomsk Polytechnic University, Tomsk, Russia; Institute of Strength Physics and Materials Science, the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia
| | - Yu P Sharkeev
- Tomsk Polytechnic University, Tomsk, Russia; Institute of Strength Physics and Materials Science, the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia
| | - P A Ivanov
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - I A Khlusov
- Siberian State Medical University, Tomsk, Russia; Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
19
|
Shirkavand A, Farivar S, Mohajerani E, Ataie-Fashtami L, Ghazimoradi MH. Non-invasive Reflectance Spectroscopy for Normal and Cancerous Skin Cells Refractive Index Determination: An In Vitro Study. Lasers Surg Med 2019; 51:742-750. [PMID: 31094015 DOI: 10.1002/lsm.23095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Optical reflectance spectroscopy is a non-invasive technique for optical characterization of biological samples. Any alteration in a cell from normal or carcinogenic causes will change its refractive index. The aim of this study is to develop a computerized program for extraction of a refractive index of normal and cancerous skin cell lines, including melanoma, fibroblast, and adipose cells, using visible near-infrared reflectance spectra and the Kramers-Kronig (K-K) relations. MATERIALS AND METHOD A fiber optic reflectance spectrometer in visible near-infrared wavelength was used for spectrum acquisition in an in vitro study. Human skin cell lines for melanoma (A375), fibroblast, and adipose sample were cultured for optical spectroscopy. Following data acquisition, an analytical MATLAB code was developed to run the K-K relations. The program was validated for three biological samples using an Abbe refractometer. RESULTS The validation error (below 5%) and determination of changes in the refractive index of melanoma, normal fibroblasts, and adipose skin cells was carried out at wavelengths of 450-950 nm. The refractive index of melanoma was 1.59270 ± 0.0550 at 450 nm, the minimum amount of 1.27790 ± 0.0550 to 1.321 ± 0.0550 at 620 nm, and rose sharply to 1.44321 ± 0.0550 at 935 nm. The respective results for fibroblast and adipose tissue cells were 1.33282 ± 0.0134 and 1.28345 ± 0.0163 at 450 nm with an increasing trend to 1.30494 ± 0.0135 and 1.26716 ± 0.0163 at 935 nm. CONCLUSION Refractive index characteristics show potential for cancer screening and diagnosis. The results show that optical spectroscopy is a promising, non-invasive tool for assessment of the refractive index of living biological cells in in vitro settings. Tracking changes in the refractive index allows screening of normal and abnormal cells for probable alterations in a non-invasive label-free method. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Afshan Shirkavand
- POMP Lab, Photonics Department, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Shirin Farivar
- Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| | - Ezeddin Mohajerani
- POMP Lab, Photonics Department, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Leila Ataie-Fashtami
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Mohammad H Ghazimoradi
- Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| |
Collapse
|
20
|
Takahashi H, Sakata N, Yoshimatsu G, Hasegawa S, Kodama S. Regenerative and Transplantation Medicine: Cellular Therapy Using Adipose Tissue-Derived Mesenchymal Stromal Cells for Type 1 Diabetes Mellitus. J Clin Med 2019; 8:jcm8020249. [PMID: 30781427 PMCID: PMC6406504 DOI: 10.3390/jcm8020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the autoimmune targeting of pancreatic β-cells, and, in the advanced stage, severe hypoinsulinemia due to islet destruction. In patients with T1DM, continuous exogenous insulin therapy cannot be avoided. However, an insufficient dose of insulin easily induces extreme hyperglycemia or diabetic ketoacidosis, and intensive insulin therapy may cause hypoglycemic symptoms including hypoglycemic shock. While these insulin therapies are efficacious in most patients, some additional therapies are warranted to support the control of blood glucose levels and reduce the risk of hypoglycemia in patients who respond poorly despite receiving appropriate treatment. There has been a recent gain in the popularity of cellular therapies using mesenchymal stromal cells (MSCs) in various clinical fields, owing to their multipotentiality, capacity for self-renewal, and regenerative and immunomodulatory potential. In particular, adipose tissue-derived MSCs (ADMSCs) have become a focus in the clinical setting due to the abundance and easy isolation of these cells. In this review, we outline the possible therapeutic benefits of ADMSC for the treatment of T1DM.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Naoaki Sakata
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Suguru Hasegawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
21
|
Qin G, Song Y, Guo Y, Sun Y, Zeng W. LincRNA TINCR facilitates excessive proliferation and inflammation in post-burn skin fibroblasts by directly binding with SND1 protein and inducing SND1-mediated TGF-β1 expression. Biochem Biophys Res Commun 2019; 509:903-910. [DOI: 10.1016/j.bbrc.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
|
22
|
Cheshire P, Zhafira AS, Banakh I, Rahman MM, Carmichael I, Herson M, Cleland H, Akbarzadeh S. Xeno-free expansion of adult keratinocytes for clinical application: the use of human-derived feeder cells and serum. Cell Tissue Res 2019; 376:389-400. [PMID: 30666537 DOI: 10.1007/s00441-018-02986-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/17/2018] [Indexed: 01/25/2023]
Abstract
Cultured epithelial autograft (CEA) was the birth of skin tissue engineering and encompassed methodologies for the isolation and expansion of autologous basal keratinocytes for burn treatment that are still practiced at some specialised units around the world. One of the limitations of CEA, however, is the reliance on animal-derived material during the manufacturing process and despite all efforts to date, no xeno-free alternative with proven efficacy has been reported. Here, we investigate whether human-derived fibroblast feeder cells and human serum can sufficiently and effectively provide a suitable microenvironment for adult keratinocyte isolation and expansion. Human dermal fibroblasts and epidermal keratinocytes were isolated from discarded skin during abdominoplasty and breast reduction procedures and cultured in xeno-free conditions. We report that these xeno-free adult keratinocytes form similar numbers of colony-forming units as those cultured using the Green's methods; however, xeno-free keratinocytes express lower levels of α6 integrin (CD49f; a progenitor and stem cell marker). We identified IL-8 as a potential growth factor secreted by adult human fibroblasts that may enhance keratinocyte colony formation in human serum. Finally, we propose a step-by-step xeno-free isolation and cultivation methodology for adult keratinocytes that can be tested further in serial cultivation for clinical application.
Collapse
Affiliation(s)
- Perdita Cheshire
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Aqila S Zhafira
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Ilia Banakh
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
| | - Md Mostafizur Rahman
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
| | - Irena Carmichael
- Monash Micro Imaging, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Marisa Herson
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Heather Cleland
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Shiva Akbarzadeh
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia.
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Reconstructed human keloid models show heterogeneity within keloid scars. Arch Dermatol Res 2018; 310:815-826. [PMID: 30370495 PMCID: PMC6244653 DOI: 10.1007/s00403-018-1873-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/03/2018] [Accepted: 10/21/2018] [Indexed: 11/17/2022]
Abstract
Keloid scars are often described as having an actively growing peripheral margin with a regressing centre. The aim of this study was to examine the possible heterogeneity within keloids and the involvement of different regions within and around keloid scars in the pathogenesis, using an in vitro keloid scar model. In vitro skin models were constructed from keratinocytes and fibroblasts from normal skin and different regions within and around keloid scars: periphery, centre, and (adjacent) surrounding-normal-skin regions. Additionally, fibroblasts were isolated from the superficial-central and deep-central regions of the keloid and combined with central keratinocytes. All keloid regions showed increased contraction compared to normal skin models, particularly in central regions. Myofibroblasts were present in all keloid regions but were more abundant in models containing central-deep keloid fibroblasts. Secretion of anti-fibrotic HGF and extracellular matrix collagen IV gene expression was reduced in the central deep keloid compared to normal skin. No significant differences between peripheral and central regions within keloids were observed for inflammatory cytokine CCL20, CCL27, CXCL8, IL-6 and IL-18 secretion. Parameters for surrounding-normal-skin showed similarities to both non-lesional normal skin and keloids. In conclusion, a simple but elegant method of culturing keloid-derived keratinocytes and fibroblasts in an organotypic 3D scar model was developed, for the dual purpose of studying the underlying pathology and ultimately testing new therapeutics. In this study, these tissue engineered scar models show that the central keloid region shows a more aggressive keloid scar phenotype than the periphery and that the surrounding-normal-skin also shares certain abnormalities characteristic for keloids.
Collapse
|
24
|
Versteeg B, van den Broek LJ, Bruisten SM, Mullender M, de Vries HJC, Gibbs S. An Organotypic Reconstructed Human Urethra to Study Chlamydia trachomatis Infection. Tissue Eng Part A 2018; 24:1663-1671. [PMID: 29792385 DOI: 10.1089/ten.tea.2017.0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Organotypic models to investigate host-microbiome interactions are still a challenge for the field of tissue engineering. This is particularly the case for organs such as the urethra. Several cell line, animal, and tissue models are available to study Chlamydia trachomatis infections, but none fully reflects natural infection in native human tissue. Therefore, we developed an organotypic reconstructed human urethral model (RhU) to study invasive and noninvasive strains of C. trachomatis. Primary urethra cells were used to reconstruct epithelium on a fibroblast populated collagen-fibrin hydrogel, yielding a RhU. Immunohistochemistry was used to compare RhU with native urethral tissue and to visualize the location of C. trachomatis bacteria in RhU after 10-day exposure. RhU closely resembled native urethral tissue with respect to proliferation and differentiation markers (keratins 6, 10, 13, 17, involucrin, SKALP [skin-derived antileucoproteinase], vimentin, and CD31). Exposure of RhU to noninvasive and invasive C. trachomatis strains revealed relevant differences in infection ability because inclusions were observed (indicating active infection) in the epithelial layer after 10 days exposure only to the invasive strain. The noninvasive strain remained localized on the surface of the epithelial layer. Human primary urethral fibroblasts and keratinocytes can be used to construct RhU that closely resembles native tissue and can be used to investigate active C. trachomatis infections. RhU provides a promising model to investigate host-microbiome interactions such as, but not limited to, the human pathogenesis of C. trachomatis.
Collapse
Affiliation(s)
- Bart Versteeg
- 1 Department of Infectious Diseases, Public Health Service Amsterdam , Amsterdam, The Netherlands
| | - Lenie J van den Broek
- 2 Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUMC) , Amsterdam, The Netherlands
| | - Sylvia M Bruisten
- 1 Department of Infectious Diseases, Public Health Service Amsterdam , Amsterdam, The Netherlands .,3 Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Margriet Mullender
- 4 Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center (VUMC) , Amsterdam, The Netherlands
| | - Henry J C de Vries
- 1 Department of Infectious Diseases, Public Health Service Amsterdam , Amsterdam, The Netherlands .,3 Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,5 Department of Dermatology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Susan Gibbs
- 2 Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUMC) , Amsterdam, The Netherlands .,6 Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University , Amsterdam, The Netherlands
| |
Collapse
|
25
|
Wang F, Ye Y, Luo ZY, Gao Q, Luo DQ, Zhang X. Diverse expression of TNF-α and CCL27 in serum and blister of Stevens-Johnson syndrome/toxic epidermal necrolysis. Clin Transl Allergy 2018; 8:12. [PMID: 29713456 PMCID: PMC5909236 DOI: 10.1186/s13601-018-0199-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/14/2018] [Indexed: 01/13/2023] Open
Abstract
Background The pathogenesis of Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is not fully understood. Our previous study reported that chemokine CCL27 was overexpressed in serum of SJS/TEN patients. The objective of this study was to investigate the levels of CCL27 and TNF-α in serum and blister fluid from patients with SJS/TEN during the acute stage or resolution phase. Methods A total of 27 patients with SJS/TEN and 39 healthy donors were recruited to the study. Serum and vesicular levels of CCL27 and TNF-α were determined by enzyme-linked immunosorbent assays. Results Serum levels of CCL27 and TNF-α were significantly elevated in patients with SJS/TEN during the acute stage as compared to the resolution phase and also compared with levels observed in normal controls (P = 0.001/< 0.001; P = 0.012/< 0.001). Serum TNF-α levels were significantly higher in patients with SJS/TEN during the resolution phase compared with normal controls (P < 0.001). Serum CCL27 levels were positively correlated with TNF-α levels during the acute stage (rs = 0.660; P < 0.001). Blister fluid exhibited much lower CCL27 levels than serum did during the acute stage (P = 0.008). TNF-α levels were much higher in vesicles in contrast to serum from acute stage (P = 0.040) as well as serum from resolution phase (P = 0.029). Conclusions Our study demonstrated roles of CCL27 and TNF-α in promoting the course of SJS/TEN. CCL27 may act early in the course of disease, via the circulation, whereas TNF-α acts throughout the course of disease, in skin lesions.
Collapse
Affiliation(s)
- Fang Wang
- 1Department of Dermatology, First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080 China
| | - Yanting Ye
- 1Department of Dermatology, First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080 China
| | - Ze-Yu Luo
- 1Department of Dermatology, First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080 China
| | - Qian Gao
- 1Department of Dermatology, First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080 China
| | - Di-Qing Luo
- 2Department of Dermatology, Eastern Hospital of First Affiliated Hospital, Sun Yat-sen University, 183 Huangpu Rd. E, Guangzhou, 510700 China
| | - Xingqi Zhang
- 1Department of Dermatology, First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080 China
| |
Collapse
|
26
|
Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0125-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Limandjaja GC, van den Broek LJ, Breetveld M, Waaijman T, Monstrey S, de Boer EM, Scheper RJ, Niessen FB, Gibbs S. Characterization of In Vitro Reconstructed Human Normotrophic, Hypertrophic, and Keloid Scar Models. Tissue Eng Part C Methods 2018; 24:242-253. [PMID: 29490604 DOI: 10.1089/ten.tec.2017.0464] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To understand scar pathology, develop new drugs, and provide a platform for personalized medicine, physiologically relevant human scar models are required, which are characteristic of different scar pathologies. Hypertrophic scars and keloids are two types of abnormal scar resulting from unknown abnormalities in the wound healing process. While they display different clinical behavior, differentiation between the two can be difficult-which in turn means that it is difficult to develop optimal therapeutic strategies. The aim of this study was to develop in vitro reconstructed human hypertrophic and keloid scar models and compare these to normotrophic scar and normal skin models to identify distinguishing biomarkers. Keratinocytes and fibroblasts from normal skin and scar types (normotrophic, hypertrophic, keloid) were used to reconstruct skin models. All skin models showed a reconstructed differentiated epidermis on a fibroblast populated collagen-elastin matrix. Both abnormal scar types showed increased contraction, dermal thickness, and myofibroblast staining compared to normal skin and normotrophic scar. Notably, the expression of extracellular matrix associated genes showed distinguishing profiles between all scar types and normal skin (hyaluronan synthase-1, matrix-metalloprotease-3), between keloid and normal skin (collagen type IV), between normal scar and keloid (laminin α1), and between keloid and hypertrophic scar (matrix-metalloprotease-1, integrin α5). Also, inflammatory cytokine and growth factor secretion (CCL5, CXCL1, CXCL8, CCL27, IL-6, HGF) showed differential secretion between scar types. Our results strongly suggest that abnormal scars arise from different pathologies rather than simply being on different ends of the scarring spectrum. Furthermore, such normal skin and scar models together with biomarkers, which distinguish the different scar types, would provide an animal free, physiologically relevant scar diagnostic and drug testing platform for the future.
Collapse
Affiliation(s)
- Grace C Limandjaja
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | | | - Melanie Breetveld
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Taco Waaijman
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Stan Monstrey
- 2 Department of Plastic Surgery, University of Ghent , Ghent, Belgium
| | - Edith M de Boer
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Rik J Scheper
- 3 Department of Pathology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Frank B Niessen
- 4 Department of Plastic Surgery, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Susan Gibbs
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands .,5 Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA) , Amsterdam, The Netherlands
| |
Collapse
|
28
|
Buskermolen JK, Reijnders CMA, Spiekstra SW, Steinberg T, Kleverlaan CJ, Feilzer AJ, Bakker AD, Gibbs S. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Eng Part C Methods 2017; 22:781-91. [PMID: 27406216 PMCID: PMC4991602 DOI: 10.1089/ten.tec.2016.0066] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and CXCL8) was observed followed by complete reepithelialization. Seven days after wounding, tissue integrity, metabolic activity, and cytokine levels had returned to the prewounded state. In conclusion, immortalized human gingiva KC and fibroblasts can be used to make physiologically relevant GE, which resemble either the healthy gingiva or a neoplastic disease model. These organotypic models will provide valuable tools to investigate oral mucosa biology and can also be used as an animal alternative for drug targeting, vaccination studies, microbial biofilm studies, and testing new therapeutics.
Collapse
Affiliation(s)
- Jeroen K Buskermolen
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands .,2 Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | | | - Sander W Spiekstra
- 3 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Thorsten Steinberg
- 4 Department of Oral Biotechnology, University Medical Center Freiburg , Freiburg, Germany
| | - Cornelis J Kleverlaan
- 2 Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Albert J Feilzer
- 2 Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands .,3 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| |
Collapse
|
29
|
Buskermolen JK, Roffel S, Gibbs S. Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets. J Cell Physiol 2017; 232:2996-3005. [PMID: 28387445 PMCID: PMC5575500 DOI: 10.1002/jcp.25946] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/05/2017] [Indexed: 02/02/2023]
Abstract
The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL-6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP-1 secretion was reduced by CCL15/CCR3. In conclusion, this in-vitro study identifies chemokine receptor-ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL-6 and HGF and reducing the secretion of TIMP-1.
Collapse
Affiliation(s)
- Jeroen K. Buskermolen
- Department of Oral Cell BiologyAcademic Centre for Dentistry (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Roffel
- Department of Oral Cell BiologyAcademic Centre for Dentistry (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Susan Gibbs
- Department of Oral Cell BiologyAcademic Centre for Dentistry (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of DermatologyVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
30
|
Burn Eschar Stimulates Fibroblast and Adipose Mesenchymal Stromal Cell Proliferation and Migration but Inhibits Endothelial Cell Sprouting. Int J Mol Sci 2017; 18:ijms18081790. [PMID: 28820426 PMCID: PMC5578178 DOI: 10.3390/ijms18081790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 12/03/2022] Open
Abstract
The majority of full-thickness burn wounds heal with hypertrophic scar formation. Burn eschar most probably influences early burn wound healing, since granulation tissue only forms after escharotomy. In order to investigate the effect of burn eschar on delayed granulation tissue formation, burn wound extract (BWE) was isolated from the interface between non-viable eschar and viable tissue. The influence of BWE on the activity of endothelial cells derived from dermis and adipose tissue, dermal fibroblasts and adipose tissue-derived mesenchymal stromal cells (ASC) was determined. It was found that BWE stimulated endothelial cell inflammatory cytokine (CXCL8, IL-6 and CCL2) secretion and migration. However, BWE had no effect on endothelial cell proliferation or angiogenic sprouting. Indeed, BWE inhibited basic Fibroblast Growth Factor (bFGF) induced endothelial cell proliferation and sprouting. In contrast, BWE stimulated fibroblast and ASC proliferation and migration. No difference was observed between cells isolated from dermis or adipose tissue. The inhibitory effect of BWE on bFGF-induced endothelial proliferation and sprouting would explain why excessive granulation tissue formation is prevented in full-thickness burn wounds as long as the eschar is still present. Identifying the eschar factors responsible for this might give indications for therapeutic targets aimed at reducing hypertrophic scar formation which is initiated by excessive granulation tissue formation once eschar is removed.
Collapse
|
31
|
Alexeev V, Salas-Alanis JC, Palisson F, Mukhtarzada L, Fortuna G, Uitto J, South A, Igoucheva O. Pro-Inflammatory Chemokines and Cytokines Dominate the Blister Fluid Molecular Signature in Patients with Epidermolysis Bullosa and Affect Leukocyte and Stem Cell Migration. J Invest Dermatol 2017; 137:2298-2308. [PMID: 28736230 DOI: 10.1016/j.jid.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
Hereditary epidermolysis bullosa (EB) is associated with skin blistering and the development of chronic nonhealing wounds. Although clinical studies have shown that cell-based therapies improve wound healing, the recruitment of therapeutic cells to blistering skin and to more advanced skin lesions remains a challenge. Here, we analyzed cytokines and chemokines in blister fluids of patients affected by dystrophic, junctional, and simplex EB. Our analysis revealed high levels of CXCR1, CXCR2, CCR2, and CCR4 ligands, particularly dominant in dystrophic and junctional EB. In vitro migration assays demonstrated the preferential recruitment of CCR4+ lymphocytes and CXCR1+, CXCR2+, and CCR2+ myeloid cells toward EB-derived blister fluids. Immunophenotyping of skin-infiltrating leukocytes confirmed substantial infiltration of EB-affected skin with resting (CD45RA+) and activated (CD45RO+) T cells and CXCR2+ CD11b+ cells, many of which were identified as CD16b+ neutrophils. Our studies also showed that abundance of CXCR2 ligand in blister fluids also creates a favorable milieu for the recruitment of the CXCR2+ stem cells, as validated by in vitro and in-matrix migration assays. Collectively, this study identified several chemotactic pathways that control the recruitment of leukocytes to the EB-associated skin lesions. These chemotactic axes could be explored for the refinement of the cutaneous homing of the therapeutic stem cells.
Collapse
Affiliation(s)
- Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julio Cesar Salas-Alanis
- Department of Basic Sciences, Health Sciences Division, University of Monterrey, Monterrey, Mexico
| | - Francis Palisson
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Lila Mukhtarzada
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Giulio Fortuna
- Department of Diagnostic Science, Louisiana State University School of Dentistry, New Orleans, Louisiana, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew South
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
32
|
Song WJ, Li Q, Ryu MO, Ahn JO, Ha Bhang D, Chan Jung Y, Youn HY. TSG-6 Secreted by Human Adipose Tissue-derived Mesenchymal Stem Cells Ameliorates DSS-induced colitis by Inducing M2 Macrophage Polarization in Mice. Sci Rep 2017; 7:5187. [PMID: 28701721 PMCID: PMC5507867 DOI: 10.1038/s41598-017-04766-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
Previous studies have revealed that mesenchymal stem cells (MSCs) alleviate inflammatory bowel disease (IBD) by modulating inflammatory cytokines in the inflamed intestine. However, the mechanisms underlying these effects are not completely understood. We sought to investigate the therapeutic effects of human adipose tissue-derived (hAT)-MSCs in an IBD mouse model and to explore the mechanisms of the regulation of inflammation. Dextran sulfate sodium-induced colitis mice were infused with hAT-MSCs intraperitoneally and colon tissues were collected on day 10. hAT-MSCs were shown to induce the expression of M2 macrophage markers and to regulate the expression of pro- and anti-inflammatory cytokines in the colon. Quantitative real time-PCR analyses demonstrated that less than 20 hAT-MSCs, 0.001% of all intraperitoneally injected hAT-MSCs, were detected in the inflamed colon. To investigate the effects of hAT-MSC-secreted factors in vitro, transwell co-culture system was used, demonstrating that tumour necrosis factor-α-induced gene/protein 6 (TSG-6) released by hAT-MSCs induces M2 macrophages. In vivo, hAT-MSCs transfected with TSG-6 small interfering RNA, administered intraperitoneally, were not able to induce M2 macrophage phenotype switch in the inflamed colon and had no significant effects on IBD severity. In conclusion, hAT-MSC-produced TSG-6 can ameliorate IBD by inducing M2 macrophage switch in mice.
Collapse
Affiliation(s)
- Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiang Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ok Ryu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yun Chan Jung
- KPC Corporation, Gwangju, Gyeonggi, 12773, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Cai SJ, Li CW, Weihs D, Wang GJ. Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:987-996. [PMID: 29230255 PMCID: PMC5717718 DOI: 10.1080/14686996.2017.1406287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 05/19/2023]
Abstract
The aim of this study was to develop a porous chitosan scaffold with long-acting drug release as an artificial dressing to promote skin wound healing. The dressing was fabricated by pre-freezing at different temperatures (-20 and -80 °C) for different periods of time, followed by freeze-drying to form porous chitosan scaffolds with different pore sizes. The chitosan scaffolds were then used to investigate the effect of the controlled release of fibroblast growth factor-basic (bFGF) and transforming growth factor-β1 (TGFβ1) on mouse fibroblast cells (L929) and bovine carotid endothelial cells (BEC). The biocompatibility of the prepared chitosan scaffold was confirmed with WST-1 proliferation and viability assay, which demonstrated that the material is suitable for cell growth. The results of this study show that the pore sizes of the porous scaffolds prepared by freeze-drying can change depending on the pre-freezing temperature and time via the formation of ice crystals. In this study, the scaffolds with the largest pore size were found to be 153 ± 32 μm and scaffolds with the smallest pores to be 34 ± 9 μm. Through cell culture analysis, it was found that the concentration that increased proliferation of L929 cells for bFGF was 0.005 to 0.1 ng/mL, and the concentration for TGFβ1 was 0.005 to 1 ng/mL. The cell culture of the chitosan scaffold and growth factors shows that 3.75 ng of bFGF in scaffolds with pore sizes of 153 ± 32 μm can promote L929 cell proliferation, while 400 pg of TGFβ1 in scaffolds with pore size of 34 ± 9 μm can enhance the proliferation of L929 cells, but also inhibit BEC proliferation. It is proposed that the prepared chitosan scaffolds can form a multi-drug (bFGF and TGFβ1) release dressing that has the ability to control wound healing via regulating the proliferation of different cell types.
Collapse
Affiliation(s)
- Shu-Jyun Cai
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Ching-Wen Li
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gou-Jen Wang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
- Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan
- Corresponding authors:
| |
Collapse
|
34
|
Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS One 2016; 11:e0167056. [PMID: 27902740 PMCID: PMC5130240 DOI: 10.1371/journal.pone.0167056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023] Open
Abstract
Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells as adipose tissue can easily be obtained by liposuction. Since adipose-EC are now gaining more interest in tissue engineering, we aimed to extensively characterize endothelial cells from adipose tissue (adipose-EC) and compare them with endothelial cells from dermis (dermal-EC). The amount of endothelial cells before purification varied between 4–16% of the total stromal population. After MACS selection for CD31 positive cells, a >99% pure population of endothelial cells was obtained within two weeks of culture. Adipose- and dermal-EC expressed the typical endothelial markers PECAM-1, ICAM-1, Endoglin, VE-cadherin and VEGFR2 to a similar extent, with 80–99% of the cell population staining positive. With the exception of CXCR4, which was expressed on 29% of endothelial cells, all other chemokine receptors (CXCR1, 2, 3, and CCR2) were expressed on less than 5% of the endothelial cell populations. Adipose-EC proliferated similar to dermal-EC, but responded less to the mitogens bFGF and VEGF. A similar migration rate was found for both adipose-EC and dermal-EC in response to bFGF. Sprouting of adipose-EC and dermal-EC was induced by bFGF and VEGF in a 3D fibrin matrix. After stimulation of adipose-EC and dermal-EC with TNF-α an increased secretion was seen for PDGF-BB, but not uPA, PAI-1 or Angiopoietin-2. Furthermore, secretion of cytokines and chemokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8 and CXCL10) was also upregulated by both adipose- and dermal-EC. The similar characteristics of adipose-EC compared to their dermal-derived counterpart make them particularly interesting for skin tissue engineering. In conclusion, we show here that adipose tissue provides for an excellent source of endothelial cells for tissue engineering purposes, since they are readily available, and easily isolated and amplified.
Collapse
|
35
|
Sharma P, Wimalawansa SM, Gould GC, Johnson RM, Excoffon KJDA. Adeno-Associated Virus 5 Transduces Adipose-Derived Stem Cells with Greater Efficacy Than Other Adeno-Associated Viral Serotypes. Hum Gene Ther Methods 2016; 27:219-227. [PMID: 27820963 DOI: 10.1089/hgtb.2016.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have shown potential in the treatment of a myriad of diseases; however, infusion of cells alone is unlikely to provide the full range of potential therapeutic applications. Transient genetic manipulation of ASCs could increase their repair and regeneration characteristics in a disease-specific context, essentially transforming them into drug-eluting depots. The goal of this study was to determine the optimal parameters necessary to transduce ASCs with recombinant adeno-associated virus (rAAV), an approved gene therapy vector that has never been associated with disease. Transduction and duration of gene expression of the most common recombinant AAV vectors were tested in this study. Among all tested serotypes, rAAV5 resulted in both the highest and longest term expression. Furthermore, we determined the glycosylation profile of ASCs before and after neuraminidase treatment and demonstrate that rAAV5 transduction requires plasma membrane-associated sialic acid. Future studies will focus on the optimization of gene delivery to ASCs, using rAAV5 as the vector of choice, to drive biological drug delivery, engraftment, and disease correction.
Collapse
Affiliation(s)
- Priyanka Sharma
- 1 Department of Biological Sciences, Wright State University
| | - Sunishka M Wimalawansa
- 2 Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Boonshoft School of Medicine, Wright State University.,3 Wright State Physicians Plastic Surgery, Miami Valley Hospital, Dayton, Ohio
| | - Gregory C Gould
- 2 Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Boonshoft School of Medicine, Wright State University
| | - R Michael Johnson
- 2 Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Boonshoft School of Medicine, Wright State University.,3 Wright State Physicians Plastic Surgery, Miami Valley Hospital, Dayton, Ohio
| | - Katherine J D A Excoffon
- 1 Department of Biological Sciences, Wright State University.,2 Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Boonshoft School of Medicine, Wright State University
| |
Collapse
|
36
|
Chung E, Rybalko VY, Hsieh P, Leal SL, Samano MA, Willauer AN, Stowers RS, Natesan S, Zamora DO, Christy RJ, Suggs LJ. Fibrin‐based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen 2016; 24:810-819. [DOI: 10.1111/wrr.12459] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Eunna Chung
- The University of Texas at AustinAustin Texas
- NCRICENYonsei UniversitySeoul South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chiang RS, Borovikova AA, King K, Banyard DA, Lalezari S, Toranto JD, Paydar KZ, Wirth GA, Evans GRD, Widgerow AD. Current concepts related to hypertrophic scarring in burn injuries. Wound Repair Regen 2016; 24:466-77. [PMID: 27027596 DOI: 10.1111/wrr.12432] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/18/2016] [Indexed: 12/20/2022]
Abstract
Scarring following burn injury and its accompanying aesthetic and functional sequelae still pose major challenges. Hypertrophic scarring (HTS) can greatly impact patients' quality of life related to appearance, pain, pruritus and even loss of function of the injured body region. The identification of molecular events occurring in the evolution of the burn scar has increased our knowledge; however, this information has not yet translated into effective treatment modalities. Although many of the pathophysiologic pathways that bring about exaggerated scarring have been identified, certain nuances in burn scar formation are starting to be recognized. These include the effects of neurogenic inflammation, mechanotransduction, and the unique interactions of burn wound fluid with fat tissue in the deeper dermal layers, all of which may influence scarring outcome. Tension on the healing scar, pruritus, and pain all induce signaling pathways that ultimately result in increased collagen formation and myofibroblast phenotypic changes. Exposure of the fat domes in the deep dermis is associated with increased HTS, possibly on the basis of altered interaction of adipose-derived stem cells and the deep burn exudate. These pathophysiologic patterns related to stem cell-cytokine interactions, mechanotransduction, and neurogenic inflammation can provide new avenues of exploration for possible therapeutic interventions.
Collapse
Affiliation(s)
- Ryan S Chiang
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Anna A Borovikova
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Kassandra King
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Derek A Banyard
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Shadi Lalezari
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Jason D Toranto
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Keyianoosh Z Paydar
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Garrett A Wirth
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Gregory R D Evans
- Chairman Plastic Surgery Department, University of California, Irvine, California, USA
| | - Alan D Widgerow
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA.,Director Center for Tissue Engineering, University of California, Irvine, California, USA
| |
Collapse
|
38
|
Methods to study differences in cell mobility during skin wound healing in vitro. J Biomech 2016; 49:1381-1387. [DOI: 10.1016/j.jbiomech.2016.01.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 01/19/2023]
|
39
|
Fan YP, Hsia CC, Tseng KW, Liao CK, Fu TW, Ko TL, Chiu MM, Shih YH, Huang PY, Chiang YC, Yang CC, Fu YS. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Stem Cells Transl Med 2015; 5:235-47. [PMID: 26718649 DOI: 10.5966/sctm.2015-0001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022] Open
Abstract
A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton's jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco's modified Eagle's medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance: This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively prevented peritoneal dialysis/methylglyoxal-induced abdominal cocoon formation, ultrafiltration failure, and peritoneal membrane alterations such as peritoneal thickening, fibrosis, and inflammation. These findings provide a basis for a novel approach for therapeutic benefits in the treatment of encapsulating peritoneal sclerosis.
Collapse
Affiliation(s)
- Yu-Pei Fan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ching-Chih Hsia
- Division of Nephrology, Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan, Republic of China
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Chih-Kai Liao
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan, Republic of China
| | - Tz-Win Fu
- Laboratory Medicine Department, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Tsui-Ling Ko
- Department of Optometry, Shu-Zen College of Medicine and Management, Kaohsiung City, Taiwan, Republic of China
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Yu Huang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yi-Chia Chiang
- Taipei Municipal Zhong Shan Girls High School, Taipei, Taiwan, Republic of China
| | - Chih-Ching Yang
- Department of Planning, Ministry of Health and Welfare, Executive Yuan, Taipei, Taiwan, Republic of China Department of Internal Medicine
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
40
|
Hocking AM. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wounds. Adv Wound Care (New Rochelle) 2015; 4:623-630. [PMID: 26543676 DOI: 10.1089/wound.2014.0579] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Significance: Mesenchymal stem cells (MSCs) are being administered to cutaneous wounds with the goal of accelerating wound closure and promoting regeneration instead of scar formation. An ongoing challenge for cell-based therapies is achieving effective and optimal targeted delivery and engraftment at the site of injury. Contributing to this challenge is our incomplete understanding of endogenous MSC homing to sites of injury. Recent Advances: Chemokines and their receptors are now recognized as important mediators of stem cell homing. To date, the most studied chemokine-chemokine receptor axis in MSC homing to wounds is CXCL12-CXCR4 but recent work suggests that CCL27-CCR10 and CCL21-CCR7 may also be involved. Critical Issues: Strategies to enhance chemokine-mediated MSC homing to wounds are using a variety of approaches to amplify the chemokine signal at the wound site and/or overexpress specific chemokine receptors on the surface of the MSC. Future Directions: Harnessing chemokine signaling may enhance the therapeutic effects of stem cell therapy by increasing the number of both exogenous and endogenous stem cells recruited to the site of injury. Alternatively, chemokine-based therapies directly targeting endogenous stem cells may circumvent the need for the time-consuming and costly isolation and expansion of autologous stem cells prior to therapeutic administration.
Collapse
Affiliation(s)
- Anne M. Hocking
- Department of Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
41
|
Gingiva Equivalents Secrete Negligible Amounts of Key Chemokines Involved in Langerhans Cell Migration Compared to Skin Equivalents. J Immunol Res 2015; 2015:627125. [PMID: 26539556 PMCID: PMC4619927 DOI: 10.1155/2015/627125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/05/2015] [Indexed: 11/18/2022] Open
Abstract
Both oral mucosa and skin have the capacity to maintain immune homeostasis or regulate immune responses upon environmental assault. Whereas much is known about key innate immune events in skin, little is known about oral mucosa. Comparative studies are limited due to the scarce supply of oral mucosa for ex vivo studies. Therefore, we used organotypic tissue equivalents (reconstructed epithelium on fibroblast-populated collagen hydrogel) to study cross talk between cells. Oral mucosa and skin equivalents were compared regarding secretion of cytokines and chemokines involved in LC migration and general inflammation. Basal secretion, representative of homeostasis, and also secretion after stimulation with TNFα, an allergen (cinnamaldehyde), or an irritant (SDS) were assessed. We found that proinflammatory IL-18 and chemokines CCL2, CCL20, and CXCL12, all involved in LC migration, were predominantly secreted by skin as compared to gingiva. Furthermore, CCL27 was predominantly secreted by skin whereas CCL28 was predominantly secreted by gingiva. In contrast, general inflammatory cytokines IL-6 and CXCL8 were secreted similarly by skin and gingiva. These results indicate that the cytokines and chemokines triggering innate immunity and LC migration are different in skin and gingiva. This differential regulation should be figured into novel therapy or vaccination strategies in the context of skin versus mucosa.
Collapse
|
42
|
Electrical Stimulation Modulates the Expression of Multiple Wound Healing Genes in Primary Human Dermal Fibroblasts. Tissue Eng Part A 2015; 21:1982-90. [DOI: 10.1089/ten.tea.2014.0687] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
43
|
van den Broek LJ, van der Veer WM, de Jong EH, Gibbs S, Niessen FB. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation. Exp Dermatol 2015; 24:623-9. [DOI: 10.1111/exd.12739] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Lenie J. van den Broek
- Department of Dermatology; VU University Medical Center; Amsterdam The Netherlands
- Research Institute MOVE; Amsterdam The Netherlands
- A-SKIN Nederland BV; Amsterdam The Netherlands
| | - Willem M. van der Veer
- Department of Plastic Reconstructive and Hand Surgery; VU University Medical Center; Amsterdam The Netherlands
| | - Etty H. de Jong
- Department of Plastic and Reconstructive Surgery; University Medical Center Groningen; Groningen The Netherland
| | - Susan Gibbs
- Department of Dermatology; VU University Medical Center; Amsterdam The Netherlands
- Research Institute MOVE; Amsterdam The Netherlands
- Department of Oral Cell Biology; Academic Center for Dentistry Amsterdam (ACTA); Amsterdam The Netherlands
| | - Frank B. Niessen
- Research Institute MOVE; Amsterdam The Netherlands
- Department of Plastic Reconstructive and Hand Surgery; VU University Medical Center; Amsterdam The Netherlands
| |
Collapse
|
44
|
Benson KF, Newman RA, Jensen GS. Antioxidant, anti-inflammatory, anti-apoptotic, and skin regenerative properties of an Aloe vera-based extract of Nerium oleander leaves (nae-8(®)). Clin Cosmet Investig Dermatol 2015; 8:239-48. [PMID: 26005354 PMCID: PMC4427598 DOI: 10.2147/ccid.s79871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Objective The goal for this study was to evaluate the effects of an Aloe vera-based Nerium oleander extract (NAE-8®), compared to an extract of A. vera gel alone (ALOE), and to an aqueous extract of N. oleander (AQ-NOE) in bioassays pertaining to dermatologic potential with respect to antioxidant protection, anti-inflammatory effects, and cytokine profiles in vitro. Methods Cellular antioxidant protection was evaluated in three separate bioassays: The cellular antioxidant protection of erythrocytes (CAP-e) assay, protection of cellular viability and prevention of apoptosis, and protection of intracellular reduced glutathione levels, where the last two assays were performed using human primary dermal fibroblasts. Reduction of intracellular formation of reactive oxygen species (ROS) was tested using polymorphonuclear cells in the absence and presence of oxidative stress. Changes to cytokine and chemokine profiles when whole blood cells and human primary dermal fibroblasts were exposed to test products were determined using a 40-plex Luminex array as a method for exploring the potential cross-talk between circulating and skin-resident cells. Results The NAE-8® provided significantly better antioxidant protection in the CAP-e bioassay than AQ-NOE. NAE-8® and AQ-NOE both protected cellular viability and intracellular reduced glutathione, and reduced the ROS formation significantly when compared to control cells, both under inflamed and neutral culture conditions. ALOE showed minimal effect in these bioassays. In contrast to the NAE-8®, the AQ-NOE showed induction of inflammation in the whole blood cultures, as evidenced by the high induction of CD69 expression and secretion of a number of inflammatory cytokines. The treatment of dermal fibroblasts with NAE-8® resulted in selective secretion of cytokines involved in collagen and hyaluronan production as well as re-epithelialization during wound healing. Conclusion NAE-8®, a novel component of a commercial cosmetic product, showed beneficial antioxidant protection in several cellular models, without the induction of leukocyte activation and secretion of inflammatory cytokines. The biological efficacy of NAE-8® was unique from both ALOE and AQ-NOE.
Collapse
Affiliation(s)
| | - Robert A Newman
- University of Texas MD Anderson Cancer Center, Houston, TX, USA ; Nerium Biotechnology, Inc, San Antonio, TX, USA
| | | |
Collapse
|
45
|
Ward CL, Sanchez CJ, Pollot BE, Romano DR, Hardy SK, Becerra SC, Rathbone CR, Wenke JC. Soluble factors from biofilms of wound pathogens modulate human bone marrow-derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol 2015; 15:75. [PMID: 25886581 PMCID: PMC4381664 DOI: 10.1186/s12866-015-0412-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Background Chronic, non-healing wounds are often characterized by the persistence of bacteria within biofilms - aggregations of cells encased within a self-produced polysaccharide matrix. Biofilm bacteria exhibit unique characteristics from planktonic, or culture-grown, bacterial phenotype, including diminished responses to antimicrobial therapy and persistence against host immune responses. Mesenchymal stromal cells (MSCs) are host cells characterized by their multifunctional ability to undergo differentiation into multiple cell types and modulation of host-immune responses by secreting factors that promote wound healing. While these characteristics make MSCs an attractive therapeutic for wounds, these pro-healing activities may be differentially influenced in the context of an infection (i.e., biofilm related infections) within chronic wounds. Herein, we evaluated the effect of soluble factors derived from biofilms of clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa on the viability, differentiation, and paracrine activity of human MSCs to evaluate the influence of biofilms on MSC activity in vitro. Results Exposure of MSCs to biofilm-conditioned medias of S. aureus and P. aeruginosa resulted in reductions in cell viability, in part due to activation of apoptosis. Similarly, exposure to soluble factors from biofilms was also observed to diminish the migration ability of cells and to hinder multi-lineage differentiation of MSCs. In contrast to these findings, exposure of MSCs to soluble factors from biofilms resulted in significant increases in the release of paracrine factors involved in inflammation and wound healing. Conclusions Collectively, these findings demonstrate that factors produced by biofilms can negatively impact the intrinsic properties of MSCs, in particular limiting the migratory and differentiation capacity of MSCs. Consequently, these studies suggest use/application of stem-cell therapies in the context of infection may have a limited therapeutic effect. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0412-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine L Ward
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Carlos J Sanchez
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Beth E Pollot
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Desiree R Romano
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Sharanda K Hardy
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Sandra C Becerra
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Christopher R Rathbone
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Joseph C Wenke
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| |
Collapse
|
46
|
Lin HP, Chan TM, Fu RH, Chuu CP, Chiu SC, Tseng YH, Liu SP, Lai KC, Shih MC, Lin ZS, Chen HS, Yeh DC, Lin SZ. Applicability of Adipose-Derived Stem Cells in Type 1 Diabetes Mellitus. Cell Transplant 2015; 24:521-32. [PMID: 25621468 DOI: 10.3727/096368915x686977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a form of early onset diabetes mellitus characterized by the autoimmune destruction of insulin-producing cells (IPCs), resulting in hyperglycemia and abnormal glucose metabolism. There are currently no treatments available capable of completely curing the symptoms associated with the loss or functional defects of IPCs. Nonetheless, stem cell therapy has demonstrated considerable promise in the replacement of IPCs with immunomodulatory functions to overcome the defects caused by T1DM. Adipose-derived stem cells (ADSCs) are particularly suitable for use in cell transplantation therapy, especially when seeking to avoid the ethical issues and tumorigenic complications commonly associated with embryos or induced pluripotent stem cells. Cell-based treatments have demonstrated therapeutic advantages and clinical applicability of ADSCs in T1DM, ensuring their suitability for transplantation therapy. This manuscript focuses on the benefits and possible mechanisms in a T1DM-relevant model and displays positive results from finished or ongoing human clinical trials. We also discuss and hypothesize potential methods to further enhance the therapeutic efficacy of these efforts, such as a humanized rodent model and gene therapies for IPC clusters, to meet the clinical applicability of the standard.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Tzu-Min Chan
- Department of Medical Education and Research, China Medical University Beigan Hospital, Yunlin, Taiwan
- Department of Medical Education and Research, China Medical University-An-Nan Hospital, Tainan, Taiwan
| | - Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shao-Chih Chiu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yu-Hsiung Tseng
- Department of Nephrology, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Social Work, Asia University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, China Medical University Beigan Hospital, Yunlin, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Mu-Chin Shih
- Department of Clinical Laboratory, China Medical University-An-Nan Hospital, Tainan, Taiwan
| | - Zung-Sheng Lin
- Department of Surgery, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Hsin-Shui Chen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Physical Medicine and Rehabilitation, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Da-Chuan Yeh
- Department of Internal Medicine, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Beigan Hospital, Yunlin, Taiwan
- Department of Neurosurgery, China Medical University-An-Nan Hospital, Tainan, Taiwan
| |
Collapse
|
47
|
Gugerell A, Neumann A, Kober J, Tammaro L, Hoch E, Schnabelrauch M, Kamolz L, Kasper C, Keck M. Adipose-derived stem cells cultivated on electrospun l-lactide/glycolide copolymer fleece and gelatin hydrogels under flow conditions – aiming physiological reality in hypodermis tissue engineering. Burns 2015; 41:163-71. [DOI: 10.1016/j.burns.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/03/2014] [Accepted: 06/09/2014] [Indexed: 11/30/2022]
|
48
|
Widgerow AD, King K, Tocco-Tussardi I, Banyard DA, Chiang R, Awad A, Afzel H, Bhatnager S, Melkumyan S, Wirth G, Evans GRD. The burn wound exudate-an under-utilized resource. Burns 2014; 41:11-7. [PMID: 24986597 DOI: 10.1016/j.burns.2014.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/11/2014] [Accepted: 06/04/2014] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The burn wound exudate represents the burn tissue microenvironment. Extracting information from the exudate relating to cellular components, signaling mediators and protein content can provide much needed data relating to the local tissue damage, depth of the wound and probable systemic complications. This review examines the scientific data extracted from burn wound exudates over the years and proposes new investigations that will provide useful information from this underutilized resource. METHOD A literature review was conducted using the electronic database PubMed to search for literature pertaining to burn wound or blister fluid analysis. Key words included burn exudate, blister fluid, wound exudate, cytokine burn fluid, subeschar fluid, cytokine burns, serum cytokines. 32 relevant articles were examined and 29 selected as relevant to the review. 3 papers were discarded due to questionable methodology or conclusions. The reports were assessed for their affect on management decisions and diagnostics. Furthermore, traditional blood level analysis of these mediators was made to compare the accuracy of blood versus exudate in burn wound management. Extrapolations are made for new possibilities of burn wound exudate analysis. RESULTS Studies pertaining to burn wound exudate, subeschar fluid and blister fluid analyses may have contributed to burn wound management decisions particularly related to escharectomies and early burn wound excision. In addition, information from these studies has the potential to impact on areas such as healing, scarring, burn wound conversion and burn wound depth analysis. CONCLUSION Burn wound exudate analysis has proven useful in burn wound management decisions. It appears to offer a far more accurate reflection of the burn wound pathophysiology than the traditional blood/serum investigations undertaken in the past. New approaches to diagnostics and treatment efficacy assessment are possible utilizing data from this fluid. Burn wound exudate is a useful, currently under-utilized resource that is likely to take a more prominent role in burn wound management.
Collapse
Affiliation(s)
- Alan D Widgerow
- Director Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States.
| | - Kassandra King
- Researcher Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States
| | - Ilaria Tocco-Tussardi
- Researcher Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States
| | - Derek A Banyard
- Research Fellow Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States
| | - Ryan Chiang
- Researcher Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States
| | - Antony Awad
- Researcher Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States
| | - Hassan Afzel
- Researcher Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States
| | - Shweta Bhatnager
- Researcher Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States
| | - Satenik Melkumyan
- Researcher Center for Tissue Engineering, Plastic Surgery Dept, University of California, Irvine, United States
| | - Garrett Wirth
- Plastic Surgery Dept, University of California, Irvine, United States
| | - Gregory R D Evans
- Plastic Surgery Dept, University of California, Irvine, United States
| |
Collapse
|
49
|
Kamolz LP, Keck M, Kasper C. Wharton's jelly mesenchymal stem cells promote wound healing and tissue regeneration. Stem Cell Res Ther 2014; 5:62. [PMID: 25157597 PMCID: PMC4055121 DOI: 10.1186/scrt451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/11/2014] [Indexed: 12/20/2022] Open
Abstract
Wound healing requires an orchestrated integration of complex biological and molecular events, which include inflammation, proliferation and remodeling. Wharton’s jelly mesenchymal stem cells seem to promote wound healing and tissue repair. Wharton’s jelly stem cells promote fibroblast proliferation and migration, accelerate re-epithelialization and promote overall wound repair by pcrine signaling. Wharton’s jelly is an advantageous mesenchymal stem cell source because the harvest of this type of stem cells is not painful or invasive and because, beside their effect on wound healing, they seem to have a significant impact on the treatment of keloids. Furthermore, they led to better nerve regeneration, better neuroprotection and less inflammation.
Collapse
|
50
|
Gao J, Chen Y, Liao N, Zhao W, Zeng W, Li Y, Wang S, Lu F. Relationship between p53 gene codon-72 polymorphisms and hypertrophic scar formation following caesarean section. Exp Ther Med 2014; 7:1243-1246. [PMID: 24940419 PMCID: PMC3991505 DOI: 10.3892/etm.2014.1605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/06/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to determine the relationship between p53 gene codon-72 polymorphisms and hypertrophic scar formation following caesarean section (CS). Blood samples from 260 female patients were collected one week following a CS for the detection of p53 gene polymorphisms using a molecular beacon-coupled quantitative polymerase chain reaction technique. Patients had follow-ups for 12–18 months to observe the scar formation. From these observations, the relationship between the p53 codon-72 polymorphisms and hypertrophic scar formation occurrence was investigated. Among the patients with the CCC/CCC genotype, nine patients had hypertrophic scars and 46 patients showed normal healing, which is a ratio of 0.19. However, the follow-up investigations indicated that the presence of a homozygous or heterozygous C-to-G alteration at the codon-72 site in gene p53 resulted in 13 patients with hypertrophic scars and 192 patients with normal healing, which is a ratio of 0.07. Therefore, these results indicate that patients with the CCC/CCC genotype had a higher risk of developing hypertrophic scars compared with that for patients with the CCC/CGC or CGC/CGC genotypes.
Collapse
Affiliation(s)
- Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Chen
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China ; Department of Breast Surgery, Guandong Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Nong Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China ; Department of Plastic Surgery, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510150, P.R. China
| | - Wei Zhao
- Department of Plastic Surgery, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510150, P.R. China
| | - Weisen Zeng
- Department of Cell Biology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yingtao Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510150, P.R. China
| | - Shaojing Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510150, P.R. China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|