1
|
Chen S, Tong X, Huo Y, Liu S, Yin Y, Tan ML, Cai K, Ji W. Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406192. [PMID: 39003609 DOI: 10.1002/adma.202406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Siying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
2
|
Sha B, Du Z. Neural repair and regeneration interfaces: a comprehensive review. Biomed Mater 2024; 19:022002. [PMID: 38232383 DOI: 10.1088/1748-605x/ad1f78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Neural interfaces play a pivotal role in neuromodulation, as they enable precise intervention into aberrant neural activity and facilitate recovery from neural injuries and resultant functional impairments by modulating local immune responses and neural circuits. This review outlines the development and applications of these interfaces and highlights the advantages of employing neural interfaces for neural stimulation and repair, including accurate targeting of specific neural populations, real-time monitoring and control of neural activity, reduced invasiveness, and personalized treatment strategies. Ongoing research aims to enhance the biocompatibility, stability, and functionality of these interfaces, ultimately augmenting their therapeutic potential for various neurological disorders. The review focuses on electrophysiological and optophysiology neural interfaces, discussing functionalization and power supply approaches. By summarizing the techniques, materials, and methods employed in this field, this review aims to provide a comprehensive understanding of the potential applications and future directions for neural repair and regeneration devices.
Collapse
Affiliation(s)
- Baoning Sha
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Zhanhong Du
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
3
|
Samanta P, Bhowmik A, Biswas S, Sarkar R, Ghosh R, Pakhira S, Mondal M, Sen S, Saha P, Hajra S. Therapeutic Effectiveness of Anticancer Agents Targeting Different Signaling Molecules Involved in Asymmetric Division of Cancer Stem Cell. Stem Cell Rev Rep 2023:10.1007/s12015-023-10523-3. [PMID: 36952080 DOI: 10.1007/s12015-023-10523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
Intra-tumoral heterogeneity is maintained by cancer stem cells (CSCs) with dysregulated self-renewal and asymmetric cell division (ACD). According to the cancer stem cell theory, by ACD a CSC can generate two daughter progenies with different fates such as one cancer stem cell and one differentiated cell. Therefore, this type of mitotic division supports vital process of the maintenance of CSC population. But this CSC pool reservation by ACD complicates the treatment of cancer patients, as CSCs give rise to aggressive clones which are prone to metastasis and drug-insensitivity. Hence, identification of therapeutic modalities which can target ACD of cancer stem cell is an intriguing part of cancer research. In this review, other than the discussion about the extrinsic inducers of ACD role of different proteins, miRNAs and lncRNAs in this type of cell division is also mentioned. Other than these, mode of action of the proven and potential drugs targeting ACD of CSC is also discussed here.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Soummadeep Sen
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
4
|
Cheng H, Huang Y, Qian J, Meng F, Fan Y. Organic photovoltaic device enhances the neural differentiation of rat bone marrow-derived mesenchymal stem cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Wang Q, Wang H, Ma Y, Cao X, Gao H. Effects of Electroactive materials on nerve cell behaviors and applications in peripheral nerve repair. Biomater Sci 2022; 10:6061-6076. [DOI: 10.1039/d2bm01216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral nerve damage can lead to loss of function or even complete disability, which bring about a huge burden on both the patient and society. Regulating nerve cell behavior and...
Collapse
|
6
|
Wei H, Chen Z, Hu Y, Cao W, Ma X, Zhang C, Gao X, Qian X, Zhao Y, Chai R. Topographically Conductive Butterfly Wing Substrates for Directed Spiral Ganglion Neuron Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102062. [PMID: 34411420 DOI: 10.1002/smll.202102062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Spiral ganglion neuron (SGN) degeneration can lead to severe hearing loss, and the directional regeneration of SGNs has shown great potential for improving the efficacy of auditory therapy. Here, a novel 3D conductive microstructure with surface topologies is presented by integrating superaligned carbon-nanotube sheets (SA-CNTs) onto Morpho Menelaus butterfly wings for SGN culture. The parallel groove-like topological structures of M. Menelaus wings induce the cultured cells to grow along the direction of its ridges. The excellent conductivity of SA-CNTs significantly improves the efficiency of cellular information conduction. When integrating the SA-CNTs with M. Menelaus wings, the SA-CNTs are aligned in parallel with the M. Menelaus ridges, which further strengthens the consistency of the surface topography in the composite substrate. The SA-CNTs integrated onto butterfly wings provide powerful physical signals and regulate the behavior of SGNs, including cell survival, adhesion, neurite outgrowth, and synapse formation. These features indicate the possibility of directed regeneration after auditory nerve injury.
Collapse
Affiliation(s)
- Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - XiaoFeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
| |
Collapse
|
7
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Casañ-Pastor N. Nanocarbon-Iridium Oxide Nanostructured Hybrids as Large Charge Capacity Electrostimulation Electrodes for Neural Repair. Molecules 2021; 26:molecules26144236. [PMID: 34299511 PMCID: PMC8303498 DOI: 10.3390/molecules26144236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Nanostructuring nanocarbons with IrOx yields to material coatings with large charge capacities for neural electrostimulation, and large reproducibility in time, that carbons do not exhibit. This work shows the contributions of carbon and the different nanostructures present, as well as the impact of functionalizing graphene with oxygen and nitrogen, and the effects of including conducting polymers within the hybrid materials. Different mammalian neural growth models differentiate the roles of the substrate material in absence and in presence of applied electric fields and address optimal electrodes for the future clinical applications.
Collapse
Affiliation(s)
- Nieves Casañ-Pastor
- Solid State Chemistry Department, Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
Electrical Stimulation Promotes Stem Cell Neural Differentiation in Tissue Engineering. Stem Cells Int 2021; 2021:6697574. [PMID: 33968150 PMCID: PMC8081629 DOI: 10.1155/2021/6697574] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve injuries and neurodegenerative disorders remain serious challenges, owing to the poor treatment outcomes of in situ neural stem cell regeneration. The most promising treatment for such injuries and disorders is stem cell-based therapies, but there remain obstacles in controlling the differentiation of stem cells into fully functional neuronal cells. Various biochemical and physical approaches have been explored to improve stem cell-based neural tissue engineering, among which electrical stimulation has been validated as a promising one both in vitro and in vivo. Here, we summarize the most basic waveforms of electrical stimulation and the conductive materials used for the fabrication of electroactive substrates or scaffolds in neural tissue engineering. Various intensities and patterns of electrical current result in different biological effects, such as enhancing the proliferation, migration, and differentiation of stem cells into neural cells. Moreover, conductive materials can be used in delivering electrical stimulation to manipulate the migration and differentiation of stem cells and the outgrowth of neurites on two- and three-dimensional scaffolds. Finally, we also discuss the possible mechanisms in enhancing stem cell neural differentiation using electrical stimulation. We believe that stem cell-based therapies using biocompatible conductive scaffolds under electrical stimulation and biochemical induction are promising for neural regeneration.
Collapse
|
10
|
Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:404. [PMID: 33562559 PMCID: PMC7914745 DOI: 10.3390/nano11020404] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.
Collapse
Affiliation(s)
- Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Samuel Pressi
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Mba
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| |
Collapse
|
11
|
Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends Biotechnol 2020; 38:24-49. [DOI: 10.1016/j.tibtech.2019.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
12
|
Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol 2019; 319:112963. [PMID: 31125549 DOI: 10.1016/j.expneurol.2019.112963] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
Electrical stimulation (ES) has been applied in cell culture system to enhance neural stem cell (NSC) proliferation, neuronal differentiation, migration, and integration. According to the mechanism of its function, ES can be classified into induced electrical (EFs) and electromagnetic fields (EMFs). EFs guide axonal growth and induce directional cell migration, whereas EMFs promote neurogenesis and facilitates NSCs to differentiate into functional neurons. Conductive nanomaterials have been used as functional scaffolds to provide mechanical support and biophysical cues in guiding neural cell growth and differentiation and building complex neural tissue patterns. Nanomaterials may have a combined effect of topographical and electrical cues on NSC migration and differentiation. Electrical cues may promote NSC neurogenesis via specific ion channel activation, such as SCN1α and CACNA1C. To accelerate the future application of ES in preclinical research, we summarized the specific setting, such as current frequency, intensity, and stimulation duration used in various ES devices, as well as the nanomaterials involved, in this review with the possible mechanisms elucidated. This review can be used as a checklist for ES work in stem cell research to enhance the translational process of NSCs in clinical application.
Collapse
|
13
|
Yang C, Wang L, Weng W, Wang S, Ma Y, Mao Q, Gao G, Chen R, Feng J. Steered migration and changed morphology of human astrocytes by an applied electric field. Exp Cell Res 2018; 374:282-289. [PMID: 30508512 DOI: 10.1016/j.yexcr.2018.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Direct current electric field (DC EF) plays a role in influencing the biological behaviors and functions of cells. We hypothesize that human astrocytes (HAs) could also be influenced in EF. Astrocytes, an important type of nerve cells with a high proportion quantitatively, are generally activated and largely decide the brain repair results after brain injury. So far, no electrotaxis study on HAs has been performed. We here obtained HAs derived from brain trauma patients. After purification and identification, HAs were seeded in the EF chamber and recorded in a time-lapse image system. LY294002 and U0126 were then used to probe the role of PI3K or ERK signaling pathway on cellular behaviors. The results showed that HAs could be guided to migrate to the anode in DC EFs, in a voltage-dependent manner. The HAs displayed elongated cell bodies and reoriented perpendicularly to the EF in morphology. When treated with LY294002 or U0126, alternation of parameters such as cellular verticality, track speed, displacement speed, long axis, vertical length and circularity were inhibited partly as expected, while the EF-induced directedness was not terminated even at a high drug dosage which was not consistent with previous electrotaxis studies. In conclusion, applied EFs steered the patient-derived HAs directional migration and changed morphology, in which PI3K and ERK pathways at least partially participate. The characteristics of HAs to EF stimulation may be involved in wound healing and neural regeneration, which could be utilized as a novel treatment strategy in brain injury.
Collapse
Affiliation(s)
- Chun Yang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Lei Wang
- Department of Neurosurgery, the Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Weiji Weng
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Shen Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Yuxiao Ma
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Qing Mao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Guoyi Gao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Rui Chen
- Department of Plastic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Junfeng Feng
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China.
| |
Collapse
|
14
|
Aghaie T, Jazayeri MH, Manian M, Khani L, Erfani M, Rezayi M, Ferns GA, Avan A. Gold nanoparticle and polyethylene glycol in neural regeneration in the treatment of neurodegenerative diseases. J Cell Biochem 2018; 120:2749-2755. [DOI: 10.1002/jcb.27415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Tayebe Aghaie
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Mir Hadi Jazayeri
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
- Immunology Research Center, Iran University of Medical Sciences Tehran Iran
| | - Mostafa Manian
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - leila Khani
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Marjan Erfani
- Department of Neurology Ghaem Hospital, Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Rezayi
- Metabolic syndrome Research center, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer Brighton UK
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
15
|
Barui A, Datta P. Biophysical factors in the regulation of asymmetric division of stem cells. Biol Rev Camb Philos Soc 2018; 94:810-827. [PMID: 30467934 DOI: 10.1111/brv.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ananya Barui
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| | - Pallab Datta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| |
Collapse
|
16
|
Faraji AH, Jaquins-Gerstl AS, Valenta AC, Weber SG. Electrokinetic infusions into hydrogels and brain tissue: Control of direction and magnitude of solute delivery. J Neurosci Methods 2018; 311:76-82. [PMID: 30308210 DOI: 10.1016/j.jneumeth.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Delivering solutes to a particular region of the brain is currently achieved by iontophoresis for very small volumes and by diffusion from a microdialysis probe for larger volumes. There is a need to deliver solutes to particular areas with more control than is possible with existing methods. NEW METHOD Electrokinetic infusions of solutes were performed into hydrogels and organotypic hippocampal slice cultures. Application of an electrical current creates electroosmotic flow and electrophoresis of a dicationic fluorescent solute through organotypic hippocampal tissue cultures or larger hydrogels. Transport was recorded with fluorescence microscopy imaging in real-time. RESULTS Electrokinetic transport in brain tissue slice cultures and hydrogels occurs along an electrical current path and allows for anisotropic delivery over distances from several hundred micrometers to millimeters. Directional transport may be controlled by altering the current path. The applied electrical current linearly affects the measured solute fluorescence in our model system following infusions. COMPARISON WITH EXISTING METHODS Localized drug delivery involves iontophoresis, with diffusion primarily occurring beyond infusion capillaries under current protocols. Pressure-driven infusions for intraparenchymal targets have also been conducted. Superfusion across a tissue surface provides modest penetration, however is unable to impact deeper targets. In general, control over intraparenchymal drug delivery has been difficult to achieve. Electrokinetic transport provides an alternative to deliver solutes along an electrical current path in tissue. CONCLUSIONS Electrokinetic transport may be applied to living systems for molecular transport. It may be used to improve upon the control of solute delivery over that of pressure-driven transport.
Collapse
Affiliation(s)
- Amir H Faraji
- Department of Chemistry, 219 Parkman Avenue, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 USA; Department of Neurological Surgery, 200 Lothrop Street, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, 15213 USA
| | - Andrea S Jaquins-Gerstl
- Department of Chemistry, 219 Parkman Avenue, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 USA
| | - Alec C Valenta
- Department of Chemistry, 219 Parkman Avenue, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 USA
| | - Stephen G Weber
- Department of Chemistry, 219 Parkman Avenue, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 USA.
| |
Collapse
|
17
|
Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB. Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen Res 2018; 13:1455-1464. [PMID: 30106059 PMCID: PMC6108196 DOI: 10.4103/1673-5374.235303] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Three dimensional (3D) bioprinting, which involves depositing bioinks (mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37°C for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10-5-1 × 10-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe EdU-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.
Collapse
Affiliation(s)
- Ya-Hong Zhao
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang-Mei Niu
- Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jia-Qi Shi
- Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Ying-Yu Wang
- Wen Zheng College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yu-Min Yang
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hong-Bo Wang
- Key Laboratory of Science and Technology of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
18
|
Levin M, Martyniuk CJ. The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems 2018; 164:76-93. [PMID: 28855098 PMCID: PMC10464596 DOI: 10.1016/j.biosystems.2017.08.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
Abstract
What determines large-scale anatomy? DNA does not directly specify geometrical arrangements of tissues and organs, and a process of encoding and decoding for morphogenesis is required. Moreover, many species can regenerate and remodel their structure despite drastic injury. The ability to obtain the correct target morphology from a diversity of initial conditions reveals that the morphogenetic code implements a rich system of pattern-homeostatic processes. Here, we describe an important mechanism by which cellular networks implement pattern regulation and plasticity: bioelectricity. All cells, not only nerves and muscles, produce and sense electrical signals; in vivo, these processes form bioelectric circuits that harness individual cell behaviors toward specific anatomical endpoints. We review emerging progress in reading and re-writing anatomical information encoded in bioelectrical states, and discuss the approaches to this problem from the perspectives of information theory, dynamical systems, and computational neuroscience. Cracking the bioelectric code will enable much-improved control over biological patterning, advancing basic evolutionary developmental biology as well as enabling numerous applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Biology Department, Tufts University, 200 Boston Avenue, Suite 4600 Medford, MA 02155, USA.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
19
|
Charoensook SN, Williams DJ, Chakraborty S, Leong KW, Vunjak-Novakovic G. Bioreactor model of neuromuscular junction with electrical stimulation for pharmacological potency testing. Integr Biol (Camb) 2017; 9:956-967. [PMID: 29168874 PMCID: PMC5725265 DOI: 10.1039/c7ib00144d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In vitro models of the neuromuscular junction (NMJ) are emerging as a valuable tool to study synaptogenesis, synaptic maintenance, and pathogenesis of neurodegenerative diseases. Many models have previously been developed using a variety of cell sources for skeletal muscle and motoneurons. These models can advanced by integrating beneficial features of the native developmental milieu of the NMJ. We created a functional in vitro model of NMJ by bioreactor cultivation of transdifferentiated myocytes and stem cell-derived motoneurons, in the presence of electrical stimulation. In conjunction with a coculture medium, electrical stimulation resulted in improved maturation and function of motoneurons and myocytes, as evidenced by mature cellular structures, increased expression of neuronal and muscular genes, clusterization of acetylcholine receptors (AChRs) in the vicinity of motoneurons, and the response to glutamate stimulation. To validate the model and demonstrate its utility for pharmacological testing, we documented the potency of drugs that affect key pathways during NMJ signal transduction: (i) acetylcholine (ACh) synthesis, (ii) ACh vesicular storage, (iii) ACh synaptic release, (iv) AChR activation, and (v) ACh inactivation in the synaptic cleft. The model properly responded to the drugs in a concentration-dependent manner. We thus propose that this in vitro model of NMJ could be used as a platform in pharmacological screening and controlled studies of neuromuscular diseases.
Collapse
Affiliation(s)
- Surapon N Charoensook
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
20
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Tu WZ, Jiang SH, Zhang L, Li SS, Gu PP, He R, Hu J, Gao LP, Sun QS. Electro-acupuncture at Governor Vessel improves neurological function in rats with spinal cord injury. Chin J Integr Med 2017:10.1007/s11655-017-2968-9. [PMID: 28762132 DOI: 10.1007/s11655-017-2968-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine the effects of electro-acupuncture (EA) at Governor Vessel (GV) on the locomotor function in spinal cord injury (SCI) rats and explore the underlying mechanism. METHODS Thirtytwo male Sprague-Dawley rats were randomly divided into four groups namely: the sham group (with sham operation); the untreated group (without treatment after spinal cord impact); the EA-1 group [EA applied at Baihui (GV 20) and Fengfu (GV 16) after spinal cord impact] and the EA-2 group [with EA applied at Dazhui (GV 14) and Mingmen (GV 4) after spinal cord impact]. Real-time quantitative-polymerase chain reaction (RT-PCR) and Western Blotting were used to assess changes in the mRNA and protein expression levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) at 7 weeks following EA administration. In addition, the Basso-Beattie-Bresnahan (BBB) Locomotor Rating Scale was assessed at 1 day, 1 week, 3 weeks and 7 weeks post-injury. RESULTS The results showed that EA stimulation induced neuroprotective effects after SCI correlated with the up-regulation of BDNF and NT-3 (P<0.05). Furthermore, EA stimulation at GV 14 and GV 4 could significantly promote the recovery of locomotor function and this may be linked to the up-regulation of BDNF and NT-3 (P<0.05). CONCLUSIONS EA treatment applied at GV acupoints either within the injury site or adjacent undamaged regions near the brain can improve functional recovery, which may be correlated with the upregulation of BDNF and NT-3. In addition, it would be more effective to administer EA at GV 14 and GV 4 near the injury site of the SCI rats.
Collapse
Affiliation(s)
| | - Song-He Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Li Zhang
- Department of Rehabilitation, Dongyang People's Hospital, Dongyang 322100, Zhejiang Province, China
| | - Si-Si Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Peng-Peng Gu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Rong He
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Jie Hu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Li-Ping Gao
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Qiang-San Sun
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
22
|
Dong ZY, Pei Z, Li Z, Wang YL, Khan A, Meng XT. Electric field stimulation induced neuronal differentiation of filum terminale derived neural progenitor cells. Neurosci Lett 2017; 651:109-115. [DOI: 10.1016/j.neulet.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 01/10/2023]
|
23
|
Environmental Factors That Influence Stem Cell Migration: An "Electric Field". Stem Cells Int 2017; 2017:4276927. [PMID: 28588621 PMCID: PMC5447312 DOI: 10.1155/2017/4276927] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
Environmental Stimulus of Electric Fields on Stem Cell Migration. The movement of cells in response to electric potential gradients is called galvanotaxis. In vivo galvanotaxis, powered by endogenous electric fields (EFs), plays a critical role during development and wound healing. This review aims to provide a perspective on how stem cells transduce EFs into directed migration and an understanding of the current literature relating to the mechanisms by which cells sense and transduce EFs. We will comment on potential EF-based regenerative medicine therapeutics.
Collapse
|
24
|
Lee YS, Wu S, Arinzeh TL, Bunge MB. Enhanced noradrenergic axon regeneration into schwann cell-filled PVDF-TrFE conduits after complete spinal cord transection. Biotechnol Bioeng 2016; 114:444-456. [PMID: 27570167 DOI: 10.1002/bit.26088] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Schwann cell (SC) transplantation has been utilized for spinal cord repair and demonstrated to be a promising therapeutic strategy. In this study, we investigated the feasibility of combining SC transplantation with novel conduits to bridge the completely transected adult rat spinal cord. This is the first and initial study to evaluate the potential of using a fibrous piezoelectric polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) conduit with SCs for spinal cord repair. PVDF-TrFE has been shown to enhance neurite growth in vitro and peripheral nerve repair in vivo. In this study, SCs adhered and proliferated when seeded onto PVDF-TrFE scaffolds in vitro. SCs and PVDF-TrFE conduits, consisting of random or aligned fibrous inner walls, were transplanted into transected rat spinal cords for 3 weeks to examine early repair. Glial fibrillary acidic protein (GFAP)+ astrocyte processes and GFP (green fluorescent protein)-SCs were interdigitated at both rostral and caudal spinal cord/SC transplant interfaces in both types of conduits, indicative of permissivity to axon growth. More noradrenergic/DβH+ (dopamine-beta-hydroxylase) brainstem axons regenerated across the transplant when greater numbers of GFAP+ astrocyte processes were present. Aligned conduits promoted extension of DβH+ axons and GFAP+ processes farther into the transplant than random conduits. Sensory CGRP+ (calcitonin gene-related peptide) axons were present at the caudal interface. Blood vessels formed throughout the transplant in both conduits. This study demonstrates that PVDF-TrFE conduits harboring SCs are promising for spinal cord repair and deserve further investigation. Biotechnol. Bioeng. 2017;114: 444-456. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yee-Shuan Lee
- The Miami Project to Cure Paralysis, Lois Pope LIFE Center, University of Miami Miller School of Medicine, P.O. Box 016960, Mail locator R-48, Miami, Florida 33101
| | - Siliang Wu
- Department of Material Science and Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | | | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, Lois Pope LIFE Center, University of Miami Miller School of Medicine, P.O. Box 016960, Mail locator R-48, Miami, Florida 33101.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida 33101.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33101
| |
Collapse
|
25
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
26
|
Hammerschlag R, Levin M, McCraty R, Bat N, Ives JA, Lutgendorf SK, Oschman JL. Biofield Physiology: A Framework for an Emerging Discipline. Glob Adv Health Med 2015; 4:35-41. [PMID: 26665040 PMCID: PMC4654783 DOI: 10.7453/gahmj.2015.015.suppl] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.
Collapse
Affiliation(s)
- Richard Hammerschlag
- The Institute for Integrative Health, Baltimore, Maryland; Consciousness and Healing Initiative, San Diego, California; Oregon College of Oriental Medicine, Portland (Dr Hammerschlag)
| | - Michael Levin
- Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts (Dr Levin)
| | - Rollin McCraty
- Institute of HeartMath, Boulder Creek, California (Dr McCraty)
| | - Namuun Bat
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Ms Bat)
| | - John A Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Dr Ives)
| | - Susan K Lutgendorf
- Departments of Psychology, Obstetrics and Gynecology, and Urology, University of Iowa, Iowa City (Dr Lutgendorf)
| | - James L Oschman
- Nature's Own Research Association, Dover, New Hampshire (Dr Oschman)
| |
Collapse
|
27
|
Kohout SC, Villalba-Galea CA. Editorial: Phosphoinositides and their phosphatases: Linking electrical and chemical signals in biological processes. Front Pharmacol 2015. [PMID: 26217228 PMCID: PMC4495603 DOI: 10.3389/fphar.2015.00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Susy C Kohout
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
28
|
Pires F, Ferreira Q, Rodrigues CA, Morgado J, Ferreira FC. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta Gen Subj 2015; 1850:1158-68. [DOI: 10.1016/j.bbagen.2015.01.020] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/24/2015] [Accepted: 01/30/2015] [Indexed: 12/23/2022]
|
29
|
Blackiston DJ, Anderson GM, Rahman N, Bieck C, Levin M. A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms. Neurotherapeutics 2015; 12:170-84. [PMID: 25449797 PMCID: PMC4322068 DOI: 10.1007/s13311-014-0317-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major goal of regenerative medicine is to restore the function of damaged or missing organs through the implantation of bioengineered or donor-derived components. It is necessary to understand the signals and cues necessary for implanted structures to innervate the host, as organs devoid of neural connections provide little benefit to the patient. While developmental studies have identified neuronal pathfinding molecules required for proper patterning during embryogenesis, strategies to initiate innervation in structures transplanted at later times or alternate locations remain limited. Recent work has identified membrane resting potential of nerves as a key regulator of growth cone extension or arrest. Here, we identify a novel role of bioelectricity in the generation of axon guidance cues, showing that neurons read the electric topography of surrounding cells, and demonstrate these cues can be leveraged to initiate sensory organ transplant innervation. Grafts of fluorescently labeled embryological eye primordia were used to produce ectopic eyes in Xenopus laevis tadpoles. Depolarization of host tissues through anion channel activation or other means led to a striking hyperinnervation of the body by these ectopic eyes. A screen of possible transduction mechanisms identified serotonergic signaling to be essential for hyperinnervation to occur, and our molecular data suggest a possible model of bioelectrical control of the distribution of neurotransmitters that guides nerve growth. Together, these results identify the molecular components of bioelectrical signaling among cells that regulates axon guidance, and suggest novel biomedical and bioengineering strategies for triggering neuronal outgrowth using ion channel drugs already approved for human use.
Collapse
Affiliation(s)
- Douglas J. Blackiston
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - George M. Anderson
- Yale Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine, 230 S. Frontage Rd., New Haven, CT 06519 USA
| | - Nikita Rahman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - Clara Bieck
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| |
Collapse
|
30
|
Tuft BW, Zhang L, Xu L, Hangartner A, Leigh B, Hansen MR, Guymon CA. Material stiffness effects on neurite alignment to photopolymerized micropatterns. Biomacromolecules 2014; 15:3717-27. [PMID: 25211120 PMCID: PMC4195519 DOI: 10.1021/bm501019s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to direct neurite growth into a close proximity of stimulating elements of a neural prosthesis, such as a retinal or cochlear implant (CI), may enhance device performance and overcome current spatial signal resolution barriers. In this work, spiral ganglion neurons (SGNs), which are the target neurons to be stimulated by CIs, were cultured on photopolymerized micropatterns with varied matrix stiffnesses to determine the effect of rigidity on neurite alignment to physical cues. Micropatterns were generated on methacrylate thin film surfaces in a simple, rapid photopolymerization step by photomasking the prepolymer formulation with parallel line-space gratings. Two methacrylate series, a nonpolar HMA-co-HDDMA series and a polar PEGDMA-co-EGDMA series, with significantly different surface wetting properties were evaluated. Equivalent pattern periodicity was maintained across each methacrylate series based on photomask band spacing, and the feature amplitude was tuned to a depth of 2 μm amplitude for all compositions using the temporal control afforded by the UV curing methodology. The surface morphology was characterized by scanning electron microscopy and white light interferometry. All micropatterned films adsorb similar amounts of laminin from solution, and no significant difference in SGN survival was observed when the substrate compositions were compared. SGN neurite alignment significantly increases with increasing material modulus for both methacrylate series. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa). The ability to understand neurite response to engineered physical cues and mechanical properties such as matrix stiffness will allow the development of advanced biomaterials that direct de novo neurite growth to address the spatial signal resolution limitations of current neural prosthetics.
Collapse
Affiliation(s)
- Bradley W Tuft
- Department of Chemical and Biochemical Engineering, University of Iowa , Iowa City, Iowa 52242, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Real-time discrimination between proliferation and neuronal and astroglial differentiation of human neural stem cells. Sci Rep 2014; 4:6319. [PMID: 25204726 PMCID: PMC4159634 DOI: 10.1038/srep06319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022] Open
Abstract
Neural stem cells (NSCs) are characterized by a capacity for self-renewal, differentiation into multiple neural lineages, all of which are considered to be promising components for neural regeneration. However, for cell-replacement therapies, it is essential to monitor the process of in vitro NSC differentiation and identify differentiated cell phenotypes. We report a real-time and label-free method that uses a capacitance sensor array to monitor the differentiation of human fetal brain-derived NSCs (hNSCs) and to identify the fates of differentiated cells. When hNSCs were placed under proliferation or differentiation conditions in five media, proliferating and differentiating hNSCs exhibited different frequency and time dependences of capacitance, indicating that the proliferation and differentiation status of hNSCs may be discriminated in real-time using our capacitance sensor. In addition, comparison between real-time capacitance and time-lapse optical images revealed that neuronal and astroglial differentiation of hNSCs may be identified in real-time without cell labeling.
Collapse
|
32
|
Tuft BW, Xu L, White SP, Seline AE, Erwood AM, Hansen MR, Guymon CA. Neural pathfinding on uni- and multidirectional photopolymerized micropatterns. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11265-76. [PMID: 24911660 PMCID: PMC4215840 DOI: 10.1021/am501622a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 05/22/2023]
Abstract
Overcoming signal resolution barriers of neural prostheses, such as the commercially available cochlear impant (CI) or the developing retinal implant, will likely require spatial control of regenerative neural elements. To rationally design materials that direct nerve growth, it is first necessary to determine pathfinding behavior of de novo neurite growth from prosthesis-relevant cells such as spiral ganglion neurons (SGNs) in the inner ear. Accordingly, in this work, repeating 90° turns were fabricated as multidirectional micropatterns to determine SGN neurite turning capability and pathfinding. Unidirectional micropatterns and unpatterned substrates are used as comparisons. Spiral ganglion Schwann cell alignment (SGSC) is also examined on each surface type. Micropatterns are fabricated using the spatial reaction control inherent to photopolymerization with photomasks that have either parallel line spacing gratings for unidirectional patterns or repeating 90° angle steps for multidirectional patterns. Feature depth is controlled by modulating UV exposure time by shuttering the light source at given time increments. Substrate topography is characterized by white light interferometry and scanning electron microscopy (SEM). Both pattern types exhibit features that are 25 μm in width and 7.4 ± 0.7 μm in depth. SGN neurites orient randomly on unpatterned photopolymer controls, align and consistently track unidirectional patterns, and are substantially influenced by, but do not consistently track, multidirectional turning cues. Neurite lengths are 20% shorter on multidirectional substrates compared to unidirectional patterns while neurite branching and microfeature crossing events are significantly higher. For both pattern types, the majority of the neurite length is located in depressed surface features. Developing methods to understand neural pathfinding and to guide de novo neurite growth to specific stimulatory elements will enable design of innovative biomaterials that improve functional outcomes of devices that interface with the nervous system.
Collapse
Affiliation(s)
- Bradley W. Tuft
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
| | - Linjing Xu
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Scott P. White
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
| | - Alison E. Seline
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Andrew M. Erwood
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Marlan R. Hansen
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - C. Allan Guymon
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
- Tel.:(319)335-5015
| |
Collapse
|
33
|
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35:6143-56. [PMID: 24818883 DOI: 10.1016/j.biomaterials.2014.04.064] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
34
|
Cohen DJ, Nelson WJ, Maharbiz MM. Galvanotactic control of collective cell migration in epithelial monolayers. NATURE MATERIALS 2014; 13:409-417. [PMID: 24608142 DOI: 10.1038/nmat3891] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
Many normal and pathological biological processes involve the migration of epithelial cell sheets. This arises from complex emergent behaviour resulting from the interplay between cellular signalling networks and the forces that physically couple the cells. Here, we demonstrate that collective migration of an epithelium can be interactively guided by applying electric fields that bias the underlying signalling networks. We show that complex, spatiotemporal cues are locally interpreted by the epithelium, resulting in rapid, coordinated responses such as a collective U-turn, divergent migration, and unchecked migration against an obstacle. We observed that the degree of external control depends on the size and shape of the cell population, and on the existence of physical coupling between cells. Together, our results offer design and engineering principles for the rational manipulation of the collective behaviour and material properties of a tissue.
Collapse
Affiliation(s)
- Daniel J Cohen
- Joint Graduate Program in Bioengineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - W James Nelson
- Department of Biology and Molelcular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Effects of electromagnetic fields on reelin and Dab1 expression in the developing cerebral cortex. Neurol Sci 2014; 35:1243-7. [PMID: 24584565 DOI: 10.1007/s10072-014-1690-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Many studies describe the biological effects of electromagnetic fields (EMF) including brain damages, neuronal migration and neurogenesis within the central nervous system. Neuronal cell produced in the neuroepithelium migrates along radial glial fibers into the cortical plate. Reelin, which is produced by Cajal-Retzius cells directs neuronal migration. It was shown that Disabled 1 (Dab1) functions downstream of reelin signal transduction pathway that directs the correct cytoarchitecture of the developing cortex. In this study, the EMF effects on total protein concentration (TPC), reelin and Dab1 expression in the developing cortex was studied. 30 pregnant Balb/c mice were separated into three groups: control (n = 10), EMF (n = 10) and SHAM groups (n = 10). The 15-day pregnant mice were placed inside the solenoid for a daily EMF exposure of 5 h for 3 consecutive days (15-17). The SHAM group was also located in the same coil with no exposure. Mice were sacrificed 24 h after the final exposure session. TPC, reelin and Dab1 expression were studied by Bio-Rad protein assay and western blot. No significant change in the TPC was seen in the EMF-treated cerebral cortex samples compared with those from the SHAM and control groups. It was also shown that the reelin and Dab1 expression increases in the EMF-treated cerebral cortex extracts as compared to controls and SHAM group. It is concluded that EMF may play important role in the neural cell migration by increasing reelin and Dab1 expression in the developing cortex.
Collapse
|
36
|
Lekhraj R, Cynamon DE, DeLuca SE, Taub ES, Pilla AA, Casper D. Pulsed electromagnetic fields potentiate neurite outgrowth in the dopaminergic MN9D cell line. J Neurosci Res 2014; 92:761-71. [DOI: 10.1002/jnr.23361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/07/2013] [Accepted: 12/06/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Rukmani Lekhraj
- Department of Neurological Surgery; Montefiore Medical Center and the Albert Einstein College of Medicine; Bronx New York
| | - Deborah E. Cynamon
- Department of Neurological Surgery; Montefiore Medical Center and the Albert Einstein College of Medicine; Bronx New York
| | - Stephanie E. DeLuca
- Department of Neurological Surgery; Montefiore Medical Center and the Albert Einstein College of Medicine; Bronx New York
| | - Eric S. Taub
- Department of Neurological Surgery; Montefiore Medical Center and the Albert Einstein College of Medicine; Bronx New York
| | - Arthur A. Pilla
- Department of Biomedical Engineering; Columbia University; New York New York
- Department of Orthopedics; Mount Sinai School of Medicine; New York New York
| | - Diana Casper
- Department of Neurological Surgery; Montefiore Medical Center and the Albert Einstein College of Medicine; Bronx New York
| |
Collapse
|
37
|
Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:657-76. [PMID: 23897652 PMCID: PMC3841289 DOI: 10.1002/wsbm.1236] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behavior and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatiotemporal gradients of these endogenous transmembrane voltage potentials (Vmem ) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells' programs toward the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in nonneural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Tufts University, Department of Biology and Tufts Center for Regenerative and Developmental Biology, 200 Boston Ave., Suite 4600, Medford, MA 02155
| |
Collapse
|
38
|
van der Sanden B, Appaix F, Berger F, Selek L, Issartel JP, Wion D. Translation of the ecological trap concept to glioma therapy: the cancer cell trap concept. Future Oncol 2013; 9:817-24. [PMID: 23718302 DOI: 10.2217/fon.13.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Viewing tumors as ecosystems offers the opportunity to consider how ecological concepts can be translated to novel therapeutic perspectives. The ecological trap concept emerged approximately half a century ago when it was observed that animals can prefer an environment of low quality for survival over other available environments of higher quality. The presence of such a trap can drive a local population to extinction. The cancer cell trap concept is the translation of the ecological trap into glioma therapy. It exploits and diverts the invasive potential of glioma cells by guiding their migration towards specific locations where a local therapy can be delivered efficiently. This illustrates how an ecological concept can change therapeutic obstacles into therapeutic tools.
Collapse
Affiliation(s)
- Boudewijn van der Sanden
- INSERM U836, Grenoble Institut des Neurosciences, Université Joseph Fourier, CHU Michallon, Grenoble, France
| | | | | | | | | | | |
Collapse
|
39
|
Lim JH, McCullen SD, Piedrahita JA, Loboa EG, Olby NJ. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram 2013; 15:405-12. [PMID: 23961767 DOI: 10.1089/cell.2013.0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.
Collapse
Affiliation(s)
- Ji-Hey Lim
- 1 Department of Clinical Sciences, North Carolina State University , Raleigh, NC, 27607
| | | | | | | | | |
Collapse
|
40
|
Wrobel MR, Sundararaghavan HG. Directed migration in neural tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:93-105. [PMID: 23815309 DOI: 10.1089/ten.teb.2013.0233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Directed cell migration is particularly important in neural tissue engineering, where the goal is to direct neurons and support cells across injured nerve gaps. Investigation of the gradients present in the body during development provides an approach to guiding cells in peripheral and central nervous system tissue, but many different types of gradients and patterns can accomplish directed migration. The focus of this review is to describe current research paradigms in neural tissue gradients and review their effectiveness for directed migration. The review explores directed migration achieved through the use of chemical, adhesive, mechanical, topographical, and electrical types of gradients. Few studies investigate combined gradients, though it is known that a combination of therapies is necessary for reconnection of neuronal circuitry. To date, there has been no systematic review of gradient approaches to neural tissue engineering. By looking at effectiveness of various scaffold cue presentation and methods to combine these strategies, the potential for nerve repair is increased.
Collapse
Affiliation(s)
- Melissa R Wrobel
- Department of Biomedical Engineering, Wayne State University , Detroit, Michigan
| | | |
Collapse
|
41
|
Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK. PLoS One 2013; 8:e61195. [PMID: 23613809 PMCID: PMC3629049 DOI: 10.1371/journal.pone.0061195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 03/08/2013] [Indexed: 12/28/2022] Open
Abstract
Direct current electric fields (DCEFs) can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we found that a DCEF can induce the directional migration of U87, C6 and U251 glioma cells to the cathode and stimulate the production of hydrogen peroxide and superoxide. Subsequent studies demonstrated that the electrotaxis of glioma cells were abolished by the superoxide inhibitor N-acetyl-l-cysteine (NAC) or overexpression of mitochondrial superoxide dismutase (MnSOD), but was not affected by inhibition of hydrogen peroxide through the overexpression of catalase. Furthermore, we found that the presence of NAC, as well as the overexpression of MnSOD, could almost completely abolish the activation of Akt, extracellular-signal-regulated kinase (Erk)1/2, c-Jun N-terminal kinase (JNK), and p38, although only JNK and p38 were affected by overexpression of catalase. The presenting of specific inhibitors can decrease the activation of Erk1/2 or Akt as well as the directional migration of glioma cells. Collectively, our data demonstrate that superoxide may play a critical role in DCEF-induced directional migration of glioma cells through the regulation of Akt and Erk1/2 activation. This study provides novel evidence that the superoxide is at least one of the “bridges” coupling the extracellular electric stimulation to the intracellular signals during DCEF-mediated cell directional migration.
Collapse
|
42
|
Adams DS, Levin M. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 2013; 352:95-122. [PMID: 22350846 PMCID: PMC3869965 DOI: 10.1007/s00441-012-1329-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023]
Abstract
Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions.
Collapse
Affiliation(s)
- Dany S Adams
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
43
|
Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth. Biomaterials 2012; 34:42-54. [PMID: 23069708 DOI: 10.1016/j.biomaterials.2012.09.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/23/2012] [Indexed: 12/15/2022]
Abstract
Cochlear implants (CIs) provide auditory perception to individuals with severe hearing impairment. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by electrical current spread in the inner ear. Directing nerve cell processes towards target electrodes may reduce the problematic current spread and improve stimulatory specificity. In this work, photopolymerization was used to fabricate micro- and nano-patterned methacrylate polymers to probe the extent of spiral ganglion neuron (SGN) neurite and Schwann cell (SGSC) contact guidance based on variations in substrate topographical cues. Micropatterned substrates are formed in a rapid, single-step reaction by selectively blocking light with photomasks which have parallel line-space gratings with periodicities of 10-100 μm. Channel amplitudes of 250 nm-10 μm are generated by modulating UV exposure time, light intensity, and photoinitiator concentration. Gradual transitions are observed between ridges and grooves using scanning electron and atomic force microscopy. The transitions stand in contrast to vertical features generated via etching lithographic techniques. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly correlates (r = 0.93) with maximum feature slope. Multiple neuronal and glial types orient to the patterns with varying degrees of alignment. This work presents a method to fabricate gradually-sloping micropatterns for cellular contact guidance studies and demonstrates spatial control of inner ear neural elements in response to micro- and nano-scale surface topography.
Collapse
|
44
|
Levin M. Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems 2012; 109:243-61. [PMID: 22542702 DOI: 10.1016/j.biosystems.2012.04.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
Abstract
Establishment of shape during embryonic development, and the maintenance of shape against injury or tumorigenesis, requires constant coordination of cell behaviors toward the patterning needs of the host organism. Molecular cell biology and genetics have made great strides in understanding the mechanisms that regulate cell function. However, generalized rational control of shape is still largely beyond our current capabilities. Significant instructive signals function at long range to provide positional information and other cues to regulate organism-wide systems properties like anatomical polarity and size control. Is complex morphogenesis best understood as the emergent property of local cell interactions, or as the outcome of a computational process that is guided by a physically encoded map or template of the final goal state? Here I review recent data and molecular mechanisms relevant to morphogenetic fields: large-scale systems of physical properties that have been proposed to store patterning information during embryogenesis, regenerative repair, and cancer suppression that ultimately controls anatomy. Placing special emphasis on the role of endogenous bioelectric signals as an important component of the morphogenetic field, I speculate on novel approaches for the computational modeling and control of these fields with applications to synthetic biology, regenerative medicine, and evolutionary developmental biology.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
45
|
Tsai HF, Peng SW, Wu CY, Chang HF, Cheng JY. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field. BIOMICROFLUIDICS 2012; 6:34116. [PMID: 24009650 PMCID: PMC3448594 DOI: 10.1063/1.4749826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/20/2012] [Indexed: 05/21/2023]
Abstract
We report a new design of microfluidic chip (Multiple electric Field with Uniform Flow chip, MFUF chip) to create multiple electric field strengths (EFSs) while providing a uniform flow field simultaneously. MFUF chip was fabricated from poly-methyl methacrylates (PMMA) substrates by using CO2 laser micromachining. A microfluidic network with interconnecting segments was utilized to de-couple the flow field and the electric field (EF). Using our special design, different EFSs were obtained in channel segments that had an identical cross-section and therefore a uniform flow field. Four electric fields with EFS ratio of 7.9:2.8:1:0 were obtained with flow velocity variation of only 7.8% CV (coefficient of variation). Possible biological effect of shear force can therefore be avoided. Cell behavior under three EFSs and the control condition, where there is no EF, was observed in a single experiment. We validated MFUF chip performance using lung adenocarcinoma cell lines and then used the chip to study the electrotaxis of HSC-3, an oral squamous cell carcinoma cell line. The MFUF chip has high throughput capability for studying the EF-induced cell behavior under various EFSs, including the control condition (EFS = 0).
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan ; Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan ; Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | |
Collapse
|
46
|
Babona-Pilipos R, Droujinine IA, Popovic MR, Morshead CM. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields. PLoS One 2011; 6:e23808. [PMID: 21909360 PMCID: PMC3166127 DOI: 10.1371/journal.pone.0023808] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/25/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.
Collapse
Affiliation(s)
- Robart Babona-Pilipos
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Ilia A. Droujinine
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Milos R. Popovic
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lyndhurst Centre, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Cindi M. Morshead
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|