1
|
Hoffman DB, Raymond-Pope CJ, Pritchard EE, Bruzina AS, Lillquist TJ, Corona BT, Call JA, Greising SM. Differential evaluation of neuromuscular injuries to understand re-innervation at the neuromuscular junction. Exp Neurol 2024; 382:114996. [PMID: 39393669 PMCID: PMC11502237 DOI: 10.1016/j.expneurol.2024.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Peripheral nerve-crush injury is a well-established model of neuromuscular junction (NMJ) denervation and subsequent re-innervation. Functionally, the skeletal muscle follows a similar pattern as neural recovery, with immediate loss of force production that steadily improves in parallel with rates of re-innervation. On the other hand, traumatic injury to the muscle itself, specifically volumetric muscle loss (VML), results in an irrecoverable loss of muscle function. Recent work has indicated significant impairments to the NMJ following this injury that appear chronic in nature, alongside the lack of functional recovery. Thus, the goal of this study was to compare the effects of nerve and muscle injury on NMJ remodeling. Even numbers of adult male and female mice were used with three experimental groups: injury Naïve, nerve crush, and VML injury; and three terminal timepoints: 3-, 48-, and 112-days post-injury. Confirming the assumed recoverability of the two injury models, we found in vivo maximal torque was fully restored following nerve-crush injury but remained at a significant deficit following VML. Compared to injury Naïve and nerve-crush injury, we found VML results in aberrantly high trophic signaling (e.g., neuregulin-1) and numbers of supporting cells, including terminal Schwann cells and sub-synaptic nuclei. In some cases, sex differences were detected, including higher rates of innervation in females than males. Both nerve crush and VML injury display chronic changes to NMJ morphology, such as increased fragmentation and nerve sprouting, highlighting the potential of VML for modeling NMJ regeneration in adulthood, alongside the established nerve-injury models.
Collapse
Affiliation(s)
- Daniel B Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | - Emma E Pritchard
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Angela S Bruzina
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, NC 27101, United States of America
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, United States of America
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
2
|
Lu HH, Ege D, Salehi S, Boccaccini AR. Ionic medicine: exploiting metallic ions to stimulate skeletal muscle tissue regeneration. Acta Biomater 2024:S1742-7061(24)00625-1. [PMID: 39454933 DOI: 10.1016/j.actbio.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The regeneration of healthy and functional skeletal muscle at sites of injuries and defects remains a challenge. Mimicking the natural environment surrounding skeletal muscle cells and the application of electrical and mechanical stimuli are approaches being investigated to promote muscle tissue regeneration. Likewise, chemical stimulation with therapeutic (biologically active) ions is an emerging attractive alternative in the tissue engineering and regenerative medicine fields, specifically to trigger myoblast proliferation, myogenic differentiation, myofiber formation, and ultimately to promote new muscle tissue growth. The present review covers the specialized literature focusing on the biochemical stimulation of muscle tissue repair by applying inorganic ions (bioinorganics). Extracting information from the literature, different ions and their potential influence as chemical cues on skeletal muscle regeneration are discussed. It is revealed that different ions and their varied doses have an individual effect at different stages of muscle cellular development. The dose-dependent effects of ions, as well as applications of ions alone and in combination with biomaterials, are also summarized. Some ions, such as boron, silicon, magnesium, and zinc, are reported to exhibit a beneficial effect on skeletal muscle cells in carefully controlled doses, while the effects of other ions such as iron and copper appear to be contradictory. In addition, calcium is an essential regulatory ion for the differentiation of myoblasts. On the other hand, some ions such as phosphate have been shown to inhibit muscle cell behaviour. It is expected that this review will provide a complete overview of the application of ionic stimulation for skeletal muscle tissue engineering applications, and will highlight the importance of inorganic ions as an attractive alternative to the application of small molecules and growth factors to stimulate muscle tissue repair. STATEMENT OF SIGNIFICANCE: Ionic medicine (IM) is emerging as a promising and attractive approach in the field of tissue engineering, including muscle tissue regeneration. IM is based on the delivery of biologically active ions to injury sites, acting as stimulants for the repair process. This method offers a potentially simpler and more affordable alternative to conventional biomolecule-based regulators such as growth factors. Different biologically active ions, depending on their specific doping concentrations, can have varying effects on cellular development, which could be either beneficial or inhibitory. This literature review covers the field of IM in muscle regeneration with focus on the impact of various ions on skeletal muscle regeneration. The paper is thus a critical summary for guiding future research in ionic-related regenerative medicine, highlighting the potential and challenges of this approach for muscle regeneration.
Collapse
Affiliation(s)
- Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Duygu Ege
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli 34684, Istanbul, Turkey
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Lopez-Espejo ME, Jimena I, Gil-Belmonte MJ, Rivero JLL, Peña-Amaro J. Influence of Physical Exercise on the Rehabilitation of Volumetric Muscle Loss Injury Reconstructed with Autologous Adipose Tissue. J Funct Morphol Kinesiol 2024; 9:188. [PMID: 39449482 PMCID: PMC11503405 DOI: 10.3390/jfmk9040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND In volumetric muscle loss (VML) injuries, spontaneous muscle regeneration capacity is limited. The implantation of autologous adipose tissue in the affected area is an option to treat these lesions; however, the effectiveness of this therapy alone is insufficient for a complete recovery of the damaged muscle. This study examined the influence of treadmill exercise on the rehabilitation of VML injuries reconstructed with autologous adipose tissue, as a strategy to counteract the limitations of spontaneous regeneration observed in these injuries. METHODS Forty adult male Wistar rats were divided into eight groups of five individuals each: normal control (NC), regenerative control (RC), VML control (VML), VML injury reconstructed with fresh autologous adipose tissue (FAT), exercise-rehabilitated control (RNC), exercise-rehabilitated regenerative control (RRC), exercise-rehabilitated VML injury (RVML), and exercise-rehabilitated VML injury reconstructed with fresh autologous adipose tissue (RFAT). Histological and histochemical staining techniques were used for the analysis of structural features and histomorphometric parameters of the tibialis anterior muscle. Grip strength tests were conducted to assess muscle force. RESULTS Exercise rehabilitation decreased the proportion of disoriented fibers in RFAT vs. FAT group. The percentage of fibrosis was significantly higher in FAT and RFAT groups versus NC and RNC groups but did not vary significantly between FAT and RFAT groups. Overall, muscle grip strength and fiber size increased significantly in the exercise-rehabilitated groups compared to control groups. CONCLUSIONS To conclude, rehabilitation with physical exercise tended to normalize the process of muscle repair in a model of VML injury reconstructed with fresh autologous adipose tissue, but it did not reduce the intense fibrosis associated with these injuries.
Collapse
Affiliation(s)
- Maria E. Lopez-Espejo
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| | - Ignacio Jimena
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| | - Maria-Jesus Gil-Belmonte
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
- Department of Pathology, Torrecardenas University Hospital, 04009 Almeria, Spain
| | - Jose-Luis L. Rivero
- Muscular Biopathology Laboratory, Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Medicine, University of Cordoba, 14014 Cordoba, Spain;
| | - Jose Peña-Amaro
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| |
Collapse
|
4
|
Turner TC, Pittman FS, Zhang H, Hymel LA, Zheng T, Behara M, Anderson SE, Harrer JA, Link KA, Ahammed MA, Maner-Smith K, Liu X, Yin X, Lim HS, Spite M, Qiu P, García AJ, Mortensen LJ, Jang YC, Willett NJ, Botchwey EA. Improving Functional Muscle Regeneration in Volumetric Muscle Loss Injuries by Shifting the Balance of Inflammatory and Pro-Resolving Lipid Mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611741. [PMID: 39314313 PMCID: PMC11418947 DOI: 10.1101/2024.09.06.611741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Severe tissue loss resulting from extremity trauma, such as volumetric muscle loss (VML), poses significant clinical challenges for both general and military populations. VML disrupts the endogenous tissue repair mechanisms, resulting in acute and unresolved chronic inflammation and immune cell presence, impaired muscle healing, scar tissue formation, persistent pain, and permanent functional deficits. The aberrant healing response is preceded by acute inflammation and immune cell infiltration which does not resolve. We analyzed the biosynthesis of inflammatory and specialized pro-resolving lipid mediators (SPMs) after VML injury in two different models; muscle with critical-sized defects had a decreased capacity to biosynthesize SPMs, leading to dysregulated and persistent inflammation. We developed a modular poly(ethylene glycol)-maleimide hydrogel platform to locally release a stable isomer of Resolvin D1 (AT-RvD1) and promote endogenous pathways of inflammation resolution in the two muscle models. The local delivery of AT-RvD1 enhanced muscle regeneration, improved muscle function, and reduced pain sensitivity after VML by promoting molecular and cellular resolution of inflammation. These findings provide new insights into the pathogenesis of VML and establish a pro-resolving hydrogel therapeutic as a promising strategy for promoting functional muscle regeneration after traumatic injury.
Collapse
|
5
|
Nicholson PR, Raymond-Pope CJ, Lillquist TJ, Bruzina AS, Call JA, Greising SM. In Sequence Antifibrotic Treatment and Rehabilitation after Volumetric Muscle Loss Injury. Adv Wound Care (New Rochelle) 2024. [PMID: 39119810 DOI: 10.1089/wound.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Affiliation(s)
- Peter R Nicholson
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela S Bruzina
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Basurto IM, Boudreau RD, Bandara GC, Muhammad SA, Christ GJ, Caliari SR. Freeze-dried porous collagen scaffolds for the repair of volumetric muscle loss injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610194. [PMID: 39282357 PMCID: PMC11398406 DOI: 10.1101/2024.08.30.610194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Volumetric muscle loss (VML) injuries are characterized by the traumatic loss of skeletal muscle resulting in permanent damage to both tissue architecture and electrical excitability. To address this challenge, we previously developed a 3D aligned collagen-glycosaminoglycan (CG) scaffold platform that supported in vitro myotube alignment and maturation. In this work, we assessed the ability of CG scaffolds to facilitate functional muscle recovery in a rat tibialis anterior (TA) model of VML. Functional muscle recovery was assessed following implantation of either non-conductive CG or electrically conductive CG-polypyrrole (PPy) scaffolds at 4, 8, and 12 weeks post-injury by in vivo electrical stimulation of the peroneal nerve. After 12 weeks, scaffold-treated muscles produced maximum isometric torque that was significantly greater than non-treated tissues. Histological analysis further supported these reparative outcomes with evidence of regenerating muscle fibers at the material-tissue interface in scaffold-treated tissues that was not observed in non-repaired muscles. Scaffold-treated muscles possessed higher numbers of M1 and M2 macrophages at the injury while conductive CG-PPy scaffold-treated muscles showed significantly higher levels of neovascularization as indicated by the presence of pericytes and endothelial cells, suggesting a persistent wound repair response not observed in non-treated tissues. Finally, only tissues treated with non-conductive CG scaffolds displayed neurofilament staining similar to native muscle, further corroborating isometric contraction data. Together, these findings show that CG scaffolds can facilitate improved skeletal muscle function and endogenous cellular repair, highlighting their potential use as therapeutics for VML injuries.
Collapse
Affiliation(s)
- Ivan M. Basurto
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Ryann D. Boudreau
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Geshani C. Bandara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Samir A. Muhammad
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - George J. Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
- Department of Orthopedic Surgery, University of Virginia, Charlottesville, Virginia 22903
| | - Steven R. Caliari
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
7
|
Fujii I, Kinoshita R, Akiyama H, Nakamura A, Iwamori K, Fukada SI, Honda H, Shimizu K. Discovery of fibroblast growth factor 2-derived peptides for enhancing mice skeletal muscle satellite cell proliferation. Biotechnol J 2024; 19:e2400278. [PMID: 39212202 DOI: 10.1002/biot.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Skeletal muscle satellite cells (SCs) are essential for muscle regeneration. Their proliferation and differentiation are influenced by fibroblast growth factor (FGF)-2. In this study, we screened for FGF-2-derived peptides that promote SC proliferation. Utilizing photocleavable peptide array technology, a library of 7-residue peptides was synthesized, and its effect on SC proliferation was examined using a mixture of five peptides. The results showed that peptides 1-5 (136%), 21-25 (136%), 26-30 (141%), 31-35 (159%), 71-75 (135%), 76-80 (144%), and 126-130 (137%) significantly increased SC proliferation. Further experiments revealed that peptide 33, CKNGGFF, enhanced SC proliferation. Furthermore, its extended form, peptide 33-13, CKNGGFFLRIHPD, promoted SC proliferation and increased the percentage of Pax7-positive cells, indicating that SCs were maintained in an undifferentiated state. The addition of FGF-2 and peptide 33-13 further induced cell proliferation but did not increase the percentage of Pax7-positive cells. A proliferation assay using an FGF receptor (FGFR) inhibitor suggested that peptide 33-13 acts through the FGFR-mediated and other pathways. Although further research is necessary to explore the mechanisms of action of these peptides and their potential for in vivo and in vitro use, the high sequence conservation of peptides 33 and 33-13 in FGF-2 across multiple species suggests their broad application prospects in biomedical engineering and biotechnology.
Collapse
Affiliation(s)
- Itsuki Fujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Remi Kinoshita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hirokazu Akiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ayasa Nakamura
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Trivedi AH, Wang VZ, McClain EJ, Vyas PS, Swink IR, Snell ED, Cheng BC, DeMeo PJ. The Categorization of Perinatal Derivatives for Orthopedic Applications. Biomedicines 2024; 12:1544. [PMID: 39062117 PMCID: PMC11274709 DOI: 10.3390/biomedicines12071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Musculoskeletal (MSK) pathology encompasses an array of conditions that can cause anything from mild discomfort to permanent injury. Their prevalence and impact on disability have sparked interest in more effective treatments, particularly within orthopedics. As a result, the human placenta has come into focus within regenerative medicine as a perinatal derivative (PnD). These biologics are sourced from components of the placenta, each possessing a unique composition of collagens, proteins, and factors believed to aid in healing and regeneration. This review aims to explore the current literature on PnD biologics and their potential benefits for treating various MSK pathologies. We delve into different types of PnDs and their healing effects on muscles, tendons, bones, cartilage, ligaments, and nerves. Our discussions highlight the crucial role of immune modulation in the healing process for each condition. PnDs have been observed to influence the balance between anti- and pro-inflammatory factors and, in some cases, act as biologic scaffolds for tissue growth. Additionally, we assess the range of PnDs available, while also addressing gaps in our understanding, particularly regarding biologic processing methods. Although certain PnD biologics have varying levels of support in orthopedic literature, further clinical investigations are necessary to fully evaluate their impact on human patients.
Collapse
Affiliation(s)
- Amol H. Trivedi
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
- Drexel University College of Medicine, Drexel University, University City Campus, Philadelphia, PA 19104, USA
| | - Vicki Z. Wang
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward J. McClain
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Praveer S. Vyas
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Isaac R. Swink
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward D. Snell
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Boyle C. Cheng
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Patrick J. DeMeo
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| |
Collapse
|
9
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
10
|
Johnson D, Tobo C, Au J, Nagarapu A, Ziemkiewicz N, Chauvin H, Robinson J, Shringarpure S, Tadiwala J, Brockhouse J, Flaveny CA, Garg K. Combined regenerative rehabilitation improves recovery following volumetric muscle loss injury in a rat model. J Biomed Mater Res B Appl Biomater 2024; 112:e35438. [PMID: 38923755 PMCID: PMC11210688 DOI: 10.1002/jbm.b.35438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Volumetric muscle loss (VML) injury causes irreversible deficits in muscle mass and function, often resulting in permanent disability. The current standard of care is physical therapy, but it is limited in mitigating functional deficits. We have previously optimized a rehabilitation technique using electrically stimulated eccentric contraction training (EST) that improved muscle mass, strength, and size in VML-injured rats. A biosponge scaffold composed of extracellular matrix proteins has previously enhanced muscle function postVML. This study aimed to determine whether combining a regenerative therapy (i.e., biosponge) with a novel rehabilitation technique (i.e., EST) could enhance recovery in a rat model of VML. A VML defect was created by removing ~20% of muscle mass from the tibialis anterior muscle in adult male Lewis rats. Experimental groups included VML-injured rats treated with biosponge with EST or biosponge alone (n = 6/group). EST was implemented 2 weeks postinjury at 150 Hz and was continued for 4 weeks. A linear increase in eccentric torque over 4 weeks showed the adaptability of the VML-injured muscle to EST. Combining biosponge with EST improved peak isometric torque by ~52% compared with biosponge treatment alone at 6 weeks postinjury. Application of EST increased MyoD gene expression and the percentage of large (>2000 μm2) type 2B myofibers but reduced fibrotic tissue deposition in VML-injured muscles. Together, these changes may provide the basis for improved torque production. This study demonstrates the potential for combined regenerative and rehabilitative therapy to improve muscle recovery following VML.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Connor Tobo
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Jeffrey Au
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Aakash Nagarapu
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Hannah Chauvin
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Jessica Robinson
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Jamshid Tadiwala
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Julia Brockhouse
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Koyal Garg
- Department of Biomedical Engineering, School of Sciences and Engineering
| |
Collapse
|
11
|
Wei SY, Chen PY, Tsai MC, Hsu TL, Hsieh CC, Fan HW, Chen TH, Xie RH, Chen GY, Chen YC. Enhancing the Repair of Substantial Volumetric Muscle Loss by Creating Different Levels of Blood Vessel Networks Using Pre-Vascularized Nerve Hydrogel Implants. Adv Healthc Mater 2024; 13:e2303320. [PMID: 38354361 DOI: 10.1002/adhm.202303320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Volumetric muscle loss (VML), a severe muscle tissue loss from trauma or surgery, results in scarring, limited regeneration, and significant fibrosis, leading to lasting reductions in muscle mass and function. A promising approach for VML recovery involves restoring vascular and neural networks at the injury site, a process not extensively studied yet. Collagen hydrogels have been investigated as scaffolds for blood vessel formation due to their biocompatibility, but reconstructing blood vessels and guiding innervation at the injury site is still difficult. In this study, collagen hydrogels with varied densities of vessel-forming cells are implanted subcutaneously in mice, generating pre-vascularized hydrogels with diverse vessel densities (0-145 numbers/mm2) within a week. These hydrogels, after being transplanted into muscle injury sites, are assessed for muscle repair capabilities. Results showed that hydrogels with high microvessel densities, filling the wound area, effectively reconnected with host vasculature and neural networks, promoting neovascularization and muscle integration, and addressing about 63% of the VML.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Ting-Lun Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Hsiu-Wei Fan
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15289, USA
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
12
|
Schifino AG, Cooley MA, Zhong RX, Heo J, Hoffman DB, Warren GL, Greising SM, Call JA. Tibial bone strength is negatively affected by volumetric muscle loss injury to the adjacent muscle in male mice. J Orthop Res 2024; 42:123-133. [PMID: 37337074 PMCID: PMC10728344 DOI: 10.1002/jor.25643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
This study's objective was to investigate how contractile strength loss associated with a volumetric muscle loss (VML) injury affects the adjacent tibial bone structural and functional properties in male C57BL/6J mice. Mice were randomized into one of two experimental groups: VML-injured mice that were injured at age 12 weeks and aged to 20 weeks (8 weeks postinjury, VML) and 20-week-old age-matched uninjured mice (Uninjured-20). Tibial bone strength, mid-diaphysis cortical geometry, intrinsic material properties, and metaphyseal trabecular bone structure were assessed by three-point bending and microcomputed tomography (µCT). The plantar flexor muscle group (gastrocnemius, soleus, plantaris) was analyzed for its functional capacities, that is, peak-isometric torque and peak-isokinetic power. VML-injured limbs had 25% less peak-isometric torque and 31% less peak-isokinetic power compared to those of Uninjured-20 mice (p < 0.001). Ultimate load, but not stiffness, was significantly less (10%) in tibias of VML-injured limbs compared to those from Uninjured-20 (p = 0.014). µCT analyses showed cortical bone thickness was 6% less in tibias of VML-injured limbs compared to Uninjured-20 (p = 0.001). Importantly, tibial bone cross-section moment of inertia, the primary determinant of bone ultimate load, was 16% smaller in bones of VML-injured limbs compared to bones from Uninjured-20 (p = 0.046). Metaphyseal trabecular bone structure was also altered up to 23% in tibias of VML-injured limbs (p < 0.010). These changes in tibial bone structure and function after a VML injury occur during a natural maturation phase between the age of 12 and 20 weeks, as evidenced by Uninjured-20 mice having greater tibial bone size and strength compared to uninjured-aged 12-week mice.
Collapse
Affiliation(s)
| | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, August University, Augusta, GA USA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA USA
| | - Junwon Heo
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA USA
| | | | - Gordon L. Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA USA
| | | | - Jarrod A. Call
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA USA
| |
Collapse
|
13
|
Castor-Macias JA, Larouche JA, Wallace EC, Spence BD, Eames A, Duran P, Yang BA, Fraczek PM, Davis CA, Brooks SV, Maddipati KR, Markworth JF, Aguilar CA. Maresin 1 repletion improves muscle regeneration after volumetric muscle loss. eLife 2023; 12:e86437. [PMID: 38131691 PMCID: PMC10807862 DOI: 10.7554/elife.86437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.
Collapse
Affiliation(s)
- Jesus A Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Emily C Wallace
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Bonnie D Spence
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Alec Eames
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Pamela Duran
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Paula M Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Carol A Davis
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State UniversityDetroitUnited States
| | - James F Markworth
- Department of Animal Sciences, Purdue UniversityWest Lafayette, IndianaUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
14
|
Schifino AG, Raymond‐Pope CJ, Heo J, McFaline‐Figueroa J, Call JA, Greising SM. Resistance wheel running improves contractile strength, but not metabolic capacity, in a murine model of volumetric muscle loss injury. Exp Physiol 2023; 108:1282-1294. [PMID: 37526646 PMCID: PMC10543535 DOI: 10.1113/ep091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The primary objective of this study was to determine if low- or high-resistance voluntary wheel running leads to functional improvements in muscle strength (i.e., isometric and isokinetic torque) and metabolic function (i.e., permeabilized fibre bundle mitochondrial respiration) after a volumetric muscle loss (VML) injury. C57BL/6J mice were randomized into one of four experimental groups at age 12 weeks: uninjured control, VML untreated (VML), low-resistance wheel running (VML-LR) and high-resistance wheel running (VML-HR). All mice, excluding the uninjured, were subject to a unilateral VML injury to the plantar flexor muscles and wheel running began 3 days post-VML. At 8 weeks post-VML, peak isometric torque was greater in uninjured compared to all VML-injured groups, but both VML-LR and VML-HR had greater (∼32%) peak isometric torque compared to VML. All VML-injured groups had less isokinetic torque compared to uninjured, and there was no statistical difference among VML, VML-LR and VML-HR. No differences in cumulative running distance were observed between VML-LR and VML-HR groups. Because adaptations in VML-HR peak isometric torque were attributed to greater gastrocnemius muscle mass, atrophy- and hypertrophy-related protein content and post-translational modifications were explored via immunoblot; however, results were inconclusive. Permeabilized fibre bundle mitochondrial oxygen consumption was 22% greater in uninjured compared to VML, but there was no statistical difference among VML, VML-LR and VML-HR. Furthermore, neither wheel running group demonstrated a change in the relative protein content of the mitochondrial biogenesis transcription factor, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). These results indicate that resistance wheel running alone only has modest benefits in the VML-injured muscle. NEW FINDINGS: What is the central question of the study? Does initiation of a resistance wheel running regimen following volumetric muscle loss (VML) improve the functional capacity of skeletal muscle? What is the main finding and its importance? Resistance wheel running led to greater muscle mass and strength in mice with a VML injury but did not result in a full recovery. Neither low- nor high-resistance wheel running was associated with a change in permeabilized muscle fibre respiration despite runners having greater whole-body treadmill endurance capacity, suggesting resilience to metabolic adaptations in VML-injured muscle. Resistance wheel running may be a suitable adjuvant rehabilitation strategy, but alone does not fully mitigate VML pathology.
Collapse
Affiliation(s)
| | | | - Junwon Heo
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | | |
Collapse
|
15
|
Clark A, Kulwatno J, Kanovka SS, McKinley TO, Potter BK, Goldman SM, Dearth CL. In situ forming biomaterials as muscle void fillers for the provisional treatment of volumetric muscle loss injuries. Mater Today Bio 2023; 22:100781. [PMID: 37736246 PMCID: PMC10509707 DOI: 10.1016/j.mtbio.2023.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Volumetric muscle loss (VML) represents a devastating extremity injury which leads to chronic functional deficits and disability and is unrecoverable through normal healing pathways. When left untreated, the VML pathophysiology creates many challenges towards successful treatment, such as altered residual muscle architecture, excessive fibrosis, and contracture(s). As such, innovative approaches and technologies are needed to prevent or reverse these adverse sequelae. Development of a rationally designed biomaterial technology which is intended to be acutely placed within a VML defect - i.e., to serve as a muscle void filler (MVF) by maintaining the VML defect - could address this clinical unmet need by preventing these adverse sequelae as well as enabling multi-staged treatment approaches. To that end, three biomaterials were evaluated for their ability to serve as a provisional MVF treatment intended to stabilize a VML defect in a rat model for an extended period (28 days): polyvinyl alcohol (PVA), hyaluronic acid and polyethylene glycol combination (HA + PEG), and silicone, a clinically used soft tissue void filler. HA + PEG biomaterial showed signs of deformation, while both PVA and silicone did not. There were no differences between treatment groups for their effects on adjacent muscle fiber count and size distribution. Not surprisingly, silicone elicited robust fibrotic response resulting in a fibrotic barrier with a large infiltration of macrophages, a response not seen with either the PVA or HA + PEG. Taken together, PVA was found to be the best material to be used as a provisional MVF for maintaining VML defect volume while minimizing adverse effects on the surrounding muscle.
Collapse
Affiliation(s)
- Andrew Clark
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jonathan Kulwatno
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sergey S. Kanovka
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Todd O. McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benjamin K. Potter
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Stephen M. Goldman
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher L. Dearth
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
16
|
Zhu C, Karvar M, Koh DJ, Sklyar K, Endo Y, Quint J, Samandari M, Tamayol A, Sinha I. Acellular collagen-glycosaminoglycan matrix promotes functional recovery in a rat model of volumetric muscle loss. Regen Med 2023; 18:623-633. [PMID: 37491948 DOI: 10.2217/rme-2023-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Aim: Volumetric muscle loss (VML) is a composite loss of skeletal muscle, which heals with fibrosis, minimal muscle regeneration, and incomplete functional recovery. This study investigated whether collagen-glycosaminoglycan scaffolds (CGS) improve functional recovery following VML. Methods: 15 Sprague-Dawley rats underwent either sham injury or bilateral tibialis anterior (TA) VML injury, with or without CGS implantation. Results: In rats with VML injuries treated with CGS, the TA exhibited greater in vivo tetanic forces and in situ twitch and tetanic dorsiflexion forces compared with those in the non-CGS group at 4- and 6-weeks following injury, respectively. Histologically, the VML with CGS group demonstrated reduced fibrosis and increased muscle regeneration. Conclusion: Taken together, CGS implantation has potential augment muscle recovery following VML.
Collapse
Affiliation(s)
- Christina Zhu
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX 79430, USA
| | - Mehran Karvar
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Koh
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Karina Sklyar
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yori Endo
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06269, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06269, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06269, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
De Paolis F, Testa S, Guarnaccia G, Reggio A, Fornetti E, Cicciarelli F, Deodati R, Bernardini S, Peluso D, Baldi J, Biagini R, Bellisari FC, Izzo A, Sgalambro F, Arrigoni F, Rizzo F, Cannata S, Sciarra T, Fuoco C, Gargioli C. Long-term longitudinal study on swine VML model. Biol Direct 2023; 18:42. [PMID: 37518063 PMCID: PMC10388508 DOI: 10.1186/s13062-023-00399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Volumetric Muscle Loss (VML), resulting from severe trauma or surgical ablation, is a pathological condition preventing myofibers regeneration, since skeletal muscle owns the remarkable ability to restore tissue damage, but only when limited in size. The current surgical therapies employed in the treatment of this pathology, which particularly affects military personnel, do not yet provide satisfactory results. For this reason, more innovative approaches must be sought, specifically skeletal muscle tissue engineering seems to highlight promising results obtained from preclinical studies in VML mouse model. Despite the great results obtained in rodents, translation into human needs a comparable animal model in terms of size, in order to validate the efficacy of the tissue engineering approach reconstructing larger muscle mass (human-like). In this work we aim to demonstrate the validity of a porcine model, that has underwent a surgical ablation of a large muscle area, as a VML damage model. RESULTS For this purpose, morphological, ultrasound, histological and fluorescence analyses were carried out on the scar tissue formed following the surgical ablation of the peroneus tertius muscle of Sus scrofa domesticus commonly called mini-pig. In particular, the replenishment of the damaged area, the macrophage infiltration and the vascularization at different time-points were evaluated up to the harvesting of the scar upon six months. CONCLUSION Here we demonstrated that following VML damage, there is an extremely poor regenerative process in the swine muscle tissue, while the formation of fibrotic, scar tissue occurs. The analyses performed up to 180 days after the injury revealed the development of a stable, structured and cellularized tissue, provided with vessels and extracellular matrix acquiring the status of granulation tissue like in human.
Collapse
Affiliation(s)
- Francesca De Paolis
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Testa
- Marseille Medical Genetics, Aix-Marseille University, INSERM, Marseille, MMG, France
| | | | - Alessio Reggio
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Ersilia Fornetti
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Felice Cicciarelli
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Rebecca Deodati
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Sergio Bernardini
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Daniele Peluso
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Jacopo Baldi
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Antonio Izzo
- Department of Clinical Sciences and Applied Biotechnologies (DISCAB), Aquila, Italy
| | - Ferruccio Sgalambro
- Department of Clinical Sciences and Applied Biotechnologies (DISCAB), Aquila, Italy
| | - Francesco Arrigoni
- Department of Clinical Sciences and Applied Biotechnologies (DISCAB), Aquila, Italy
| | - Francesco Rizzo
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy
| | - Stefano Cannata
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy.
| | - Cesare Gargioli
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
18
|
Borisov V, Gili Sole L, Reid G, Milan G, Hutter G, Grapow M, Eckstein FS, Isu G, Marsano A. Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential. Bioengineering (Basel) 2023; 10:800. [PMID: 37508827 PMCID: PMC10376693 DOI: 10.3390/bioengineering10070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Engineering functional tissues of clinically relevant size (in mm-scale) in vitro is still a challenge in tissue engineering due to low oxygen diffusion and lack of vascularization. To address these limitations, a perfusion bioreactor was used to generate contractile engineered muscles of a 3 mm-thickness and a 8 mm-diameter. This study aimed to upscale the process to 50 mm in diameter by combining murine skeletal myoblasts (SkMbs) with human adipose-derived stromal vascular fraction (SVF) cells, providing high neuro-vascular potential in vivo. SkMbs were cultured on a type-I-collagen scaffold with (co-culture) or without (monoculture) SVF. Large-scale muscle-like tissue showed an increase in the maturation index over time (49.18 ± 1.63% and 76.63 ± 1.22%, at 9 and 11 days, respectively) and a similar force of contraction in mono- (43.4 ± 2.28 µN) or co-cultured (47.6 ± 4.7 µN) tissues. Four weeks after implantation in subcutaneous pockets of nude rats, the vessel length density within the constructs was significantly higher in SVF co-cultured tissues (5.03 ± 0.29 mm/mm2) compared to monocultured tissues (3.68 ± 0.32 mm/mm2) (p < 0.005). Although no mature neuromuscular junctions were present, nerve-like structures were predominantly observed in the engineered tissues co-cultured with SVF cells. This study demonstrates that SVF cells can support both in vivo vascularization and innervation of contractile muscle-like tissues, making significant progress towards clinical translation.
Collapse
Affiliation(s)
- Vladislav Borisov
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Laia Gili Sole
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gregory Reid
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Giulia Milan
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gregor Hutter
- Laboratory of Brain Tumor Immunotherapy, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Martin Grapow
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Friedrich Stefan Eckstein
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Giuseppe Isu
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Anna Marsano
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
19
|
Bijwadia SR, Raymond‐Pope CJ, Basten AM, Lentz MT, Lillquist TJ, Call JA, Greising SM. Exploring skeletal muscle tolerance and whole-body metabolic effects of FDA-approved drugs in a volumetric muscle loss model. Physiol Rep 2023; 11:e15756. [PMID: 37332022 PMCID: PMC10277213 DOI: 10.14814/phy2.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Volumetric muscle loss (VML) is associated with persistent functional impairment due to a lack of de novo muscle regeneration. As mechanisms driving the lack of regeneration continue to be established, adjunctive pharmaceuticals to address the pathophysiology of the remaining muscle may offer partial remediation. Studies were designed to evaluate the tolerance and efficacy of two FDA-approved pharmaceutical modalities to address the pathophysiology of the remaining muscle tissue after VML injury: (1) nintedanib (an anti-fibrotic) and (2) combined formoterol and leucine (myogenic promoters). Tolerance was first established by testing low- and high-dosage effects on uninjured skeletal muscle mass and myofiber cross-sectional area in adult male C57BL/6J mice. Next, tolerated doses of the two pharmaceutical modalities were tested in VML-injured adult male C57BL/6J mice after an 8-week treatment period for their ability to modulate muscle strength and whole-body metabolism. The most salient findings indicate that formoterol plus leucine mitigated the loss in muscle mass, myofiber number, whole-body lipid oxidation, and muscle strength, and resulted in a higher whole-body metabolic rate (p ≤ 0.016); nintedanib did not exacerbate or correct aspects of the muscle pathophysiology after VML. This supports ongoing optimization efforts, including scale-up evaluations of formoterol treatment in large animal models of VML.
Collapse
Affiliation(s)
| | | | - Alec M. Basten
- School of KinesiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mason T. Lentz
- School of KinesiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGeorgiaUSA
| | | |
Collapse
|
20
|
Alshoubaki YK, Lu YZ, Legrand JMD, Karami R, Fossat M, Salimova E, Julier Z, Martino MM. A superior extracellular matrix binding motif to enhance the regenerative activity and safety of therapeutic proteins. NPJ Regen Med 2023; 8:25. [PMID: 37217533 DOI: 10.1038/s41536-023-00297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Among therapeutic proteins, cytokines and growth factors have great potential for regenerative medicine applications. However, these molecules have encountered limited clinical success due to low effectiveness and major safety concerns, highlighting the need to develop better approaches that increase efficacy and safety. Promising approaches leverage how the extracellular matrix (ECM) controls the activity of these molecules during tissue healing. Using a protein motif screening strategy, we discovered that amphiregulin possesses an exceptionally strong binding motif for ECM components. We used this motif to confer the pro-regenerative therapeutics platelet-derived growth factor-BB (PDGF-BB) and interleukin-1 receptor antagonist (IL-1Ra) a very high affinity to the ECM. In mouse models, the approach considerably extended tissue retention of the engineered therapeutics and reduced leakage in the circulation. Prolonged retention and minimal systemic diffusion of engineered PDGF-BB abolished the tumour growth-promoting adverse effect that was observed with wild-type PDGF-BB. Moreover, engineered PDGF-BB was substantially more effective at promoting diabetic wound healing and regeneration after volumetric muscle loss, compared to wild-type PDGF-BB. Finally, while local or systemic delivery of wild-type IL-1Ra showed minor effects, intramyocardial delivery of engineered IL-1Ra enhanced cardiac repair after myocardial infarction by limiting cardiomyocyte death and fibrosis. This engineering strategy highlights the key importance of exploiting interactions between ECM and therapeutic proteins for developing effective and safer regenerative therapies.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Rezvan Karami
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Mathilde Fossat
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
- Victorian Heart Institute, Monash University, Clayton, VIC, 3800, Australia.
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Endo Y, Samandari M, Karvar M, Mostafavi A, Quint J, Rinoldi C, Yazdi IK, Swieszkowski W, Mauney J, Agarwal S, Tamayol A, Sinha I. Aerobic exercise and scaffolds with hierarchical porosity synergistically promote functional recovery post volumetric muscle loss. Biomaterials 2023; 296:122058. [PMID: 36841214 PMCID: PMC10085854 DOI: 10.1016/j.biomaterials.2023.122058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Volumetric muscle loss (VML), which refers to a composite skeletal muscle defect, most commonly heals by scarring and minimal muscle regeneration but substantial fibrosis. Current surgical interventions and physical therapy techniques are limited in restoring muscle function following VML. Novel tissue engineering strategies may offer an option to promote functional muscle recovery. The present study evaluates a colloidal scaffold with hierarchical porosity and controlled mechanical properties for the treatment of VML. In addition, as VML results in an acute decrease in insulin-like growth factor 1 (IGF-1), a myogenic factor, the scaffold was designed to slowly release IGF-1 following implantation. The foam-like scaffold is directly crosslinked onto remnant muscle without the need for suturing. In situ 3D printing of IGF-1-releasing porous muscle scaffold onto VML injuries resulted in robust tissue ingrowth, improved muscle repair, and increased muscle strength in a murine VML model. Histological analysis confirmed regeneration of new muscle in the engineered scaffolds. In addition, the scaffolds significantly reduced fibrosis and increased the expression of neuromuscular junctions in the newly regenerated tissue. Exercise training, when combined with the engineered scaffolds, augmented the treatment outcome in a synergistic fashion. These data suggest highly porous scaffolds and exercise therapy, in combination, may be a treatment option following VML.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA
| | - Mehran Karvar
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA
| | - Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Iman K Yazdi
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Joshua Mauney
- Department of Urology and Biomedical Engineering, University of California, Irvine, Irvine, CA, 92868, USA
| | - Shailesh Agarwal
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Roberts K, Kim JT, Huynh T, Schluns J, Dunlap G, Hestekin J, Wolchok JC. Transcriptome profiling of a synergistic volumetric muscle loss repair strategy. BMC Musculoskelet Disord 2023; 24:321. [PMID: 37095469 PMCID: PMC10124022 DOI: 10.1186/s12891-023-06401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Volumetric muscle loss overwhelms skeletal muscle's ordinarily capable regenerative machinery, resulting in severe functional deficits that have defied clinical repair strategies. In this manuscript we pair the early in vivo functional response induced by differing volumetric muscle loss tissue engineering repair strategies that are broadly representative of those explored by the field (scaffold alone, cells alone, or scaffold + cells) to the transcriptomic response induced by each intervention. We demonstrate that an implant strategy comprising allogeneic decellularized skeletal muscle scaffolds seeded with autologous minced muscle cellular paste (scaffold + cells) mediates a pattern of increased expression for several genes known to play roles in axon guidance and peripheral neuroregeneration, as well as several other key genes related to inflammation, phagocytosis, and extracellular matrix regulation. The upregulation of several key genes in the presence of both implant components suggests a unique synergy between scaffolding and cells in the early period following intervention that is not seen when either scaffolds or cells are used in isolation; a finding that invites further exploration of the interactions that could have a positive impact on the treatment of volumetric muscle loss.
Collapse
Affiliation(s)
- Kevin Roberts
- Cell & Molecular Biology Program, University of Arkansas Fayetteville, Arkansas, USA
| | - John Taehwan Kim
- Department of Biomedical Engineering, University of Arkansas Fayetteville, Arkansas, USA
| | - Tai Huynh
- Department of Biomedical Engineering, University of Arkansas Fayetteville, Arkansas, USA
| | - Jacob Schluns
- Department of Biomedical Engineering, University of Arkansas Fayetteville, Arkansas, USA
| | - Grady Dunlap
- Department of Biomedical Engineering, University of Arkansas Fayetteville, Arkansas, USA
| | - Jamie Hestekin
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas Fayetteville, Arkansas, USA
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas Fayetteville, Arkansas, USA
| |
Collapse
|
23
|
Larouche JA, Wallace EC, Spence BD, Buras E, Aguilar CA. Spatiotemporal mapping of immune and stem cell dysregulation after volumetric muscle loss. JCI Insight 2023; 8:e162835. [PMID: 36821376 PMCID: PMC10132146 DOI: 10.1172/jci.insight.162835] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Volumetric muscle loss (VML) is an acute trauma that results in persistent inflammation, supplantation of muscle tissue with fibrotic scarring, and decreased muscle function. The cell types, nature of cellular communication, and tissue locations that drive the aberrant VML response have remained elusive. Herein, we used spatial transcriptomics on a mouse model of VML and observed that VML engenders a unique spatial profibrotic pattern driven by crosstalk between fibrotic and inflammatory macrophages and mesenchymal-derived cells. The dysregulated response impinged on muscle stem cell-mediated repair, and targeting this circuit resulted in increased regeneration and reductions in inflammation and fibrosis. Collectively, these results enhance our understanding of the cellular crosstalk that drives aberrant regeneration and provides further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
| | | | | | - Eric Buras
- Biointerfaces Institute
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Carlos A. Aguilar
- Department of Biomedical Engineering
- Biointerfaces Institute
- Program in Cellular and Molecular Biology, University of Michigan (UM), Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Motherwell JM, Dolan CP, Kanovka SS, Edwards JB, Franco SR, Janakiram NB, Valerio MS, Goldman SM, Dearth CL. Effects of Adjunct Antifibrotic Treatment within a Regenerative Rehabilitation Paradigm for Volumetric Muscle Loss. Int J Mol Sci 2023; 24:3564. [PMID: 36834976 PMCID: PMC9964131 DOI: 10.3390/ijms24043564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The use of a rehabilitation approach that promotes regeneration has the potential to improve the efficacy of pro-regenerative therapies and maximize functional outcomes in the treatment of volumetric muscle loss (VML). An adjunct antifibrotic treatment could further enhance functional gains by reducing fibrotic scarring. This study aimed to evaluate the potential synergistic effects of losartan, an antifibrotic pharmaceutical, paired with a voluntary wheel running rehabilitation strategy to enhance a minced muscle graft (MMG) pro-regenerative therapy in a rodent model of VML. The animals were randomly assigned into four groups: (1) antifibrotic with rehabilitation, (2) antifibrotic without rehabilitation, (3) vehicle treatment with rehabilitation, and (4) vehicle treatment without rehabilitation. At 56 days, the neuromuscular function was assessed, and muscles were collected for histological and molecular analysis. Surprisingly, we found that the losartan treatment decreased muscle function in MMG-treated VML injuries by 56 days, while the voluntary wheel running elicited no effect. Histologic and molecular analysis revealed that losartan treatment did not reduce fibrosis. These findings suggest that losartan treatment as an adjunct therapy to a regenerative rehabilitation strategy negatively impacts muscular function and fails to promote myogenesis following VML injury. There still remains a clinical need to develop a regenerative rehabilitation treatment strategy for traumatic skeletal muscle injuries. Future studies should consider optimizing the timing and duration of adjunct antifibrotic treatments to maximize functional outcomes in VML injuries.
Collapse
Affiliation(s)
- Jessica M. Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Connor P. Dolan
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Sergey S. Kanovka
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Montgomery, MD 20817, USA
| | - Jorge B. Edwards
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Montgomery, MD 20817, USA
| | - Sarah R. Franco
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Naveena B. Janakiram
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Michael S. Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Stephen M. Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Christopher L. Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| |
Collapse
|
25
|
Raymond-Pope CJ, Basten AM, Bruzina AS, McFaline-Figueroa J, Lillquist TJ, Call JA, Greising SM. Restricted physical activity after volumetric muscle loss alters whole-body and local muscle metabolism. J Physiol 2023; 601:743-761. [PMID: 36536512 PMCID: PMC9931639 DOI: 10.1113/jp283959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is the traumatic loss of skeletal muscle, resulting in chronic functional deficits and pathological comorbidities, including altered whole-body metabolic rate and respiratory exchange ratio (RER), despite no change in physical activity in animal models. In other injury models, treatment with β2 receptor agonists (e.g. formoterol) improves metabolic and skeletal muscle function. We aimed first to examine if restricting physical activity following injury affects metabolic and skeletal muscle function, and second, to enhance the metabolic and contractile function of the muscle remaining following VML injury through treatment with formoterol. Adult male C57Bl/6J mice (n = 32) underwent VML injury to the posterior hindlimb compartment and were randomly assigned to unrestricted or restricted activity and formoterol treatment or no treatment; age-matched injury naïve mice (n = 4) were controls for biochemical analyses. Longitudinal 24 h evaluations of physical activity and whole-body metabolism were conducted following VML. In vivo muscle function was assessed terminally, and muscles were biochemically evaluated for protein expression, mitochondrial enzyme activity and untargeted metabolomics. Restricting activity chronically after VML had the greatest effect on physical activity and RER, reflected in reduced lipid oxidation, although changes were attenuated by formoterol treatment. Formoterol enhanced injured muscle mass, while mitigating functional deficits. These novel findings indicate physical activity restriction may recapitulate following VML clinically, and adjunctive oxidative treatment may create a metabolically beneficial intramuscular environment while enhancing the injured muscle's mass and force-producing capacity. Further investigation is needed to evaluate adjunctive oxidative treatment with rehabilitation, which may augment the muscle's regenerative and functional capacity following VML. KEY POINTS: The natural ability of skeletal muscle to regenerate and recover function is lost following complex traumatic musculoskeletal injury, such as volumetric muscle loss (VML), and physical inactivity following VML may incur additional deleterious consequences for muscle and metabolic health. Modelling VML injury-induced physical activity restriction altered whole-body metabolism, primarily by decreasing lipid oxidation, while preserving local skeletal muscle metabolic activity. The β2 adrenergic receptor agonist formoterol has shown promise in other severe injury models to improve regeneration, recover function and enhance metabolism. Treatment with formoterol enhanced mass of the injured muscle and whole-body metabolism while mitigating functional deficits resulting from injury. Understanding of chronic effects of the clinically available and FDA-approved pharmaceutical formoterol could be a translational option to support muscle function after VML injury.
Collapse
Affiliation(s)
| | - Alec M. Basten
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | - Angela S. Bruzina
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| |
Collapse
|
26
|
Basten AM, Raymond-Pope CJ, Hoffman DB, Call JA, Greising SM. Early initiation of electrical stimulation paired with range of motion after a volumetric muscle loss injury does not benefit muscle function. Exp Physiol 2023; 108:76-89. [PMID: 36116106 PMCID: PMC9805496 DOI: 10.1113/ep090630] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/15/2022] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? First, how does physical rehabilitation influence recovery from traumatic muscle injury? Second, how does physical activity impact the rehabilitation response for skeletal muscle function and whole-body metabolism? What is the main finding and its importance? The most salient findings were that rehabilitation impaired muscle function and range of motion, while restricting activity mitigated some negative effects but also impacted whole-body metabolism. These data suggest that first, work must continue to explore treatment parameters, including modality, time, type, duration and intensity, to find the best rehabilitation approaches for volumetric muscle loss injuries; and second, restricting activity acutely might enhance rehabilitation response, but whole-body co-morbidities should continue to be considered. ABSTRACT Volumetric muscle loss (VML) injury occurs when a substantial volume of muscle is lost by surgical removal or trauma, resulting in an irrecoverable deficit in muscle function. Recently, it was suggested that VML impacts whole-body and muscle-specific metabolism, which might contribute to the inability of the muscle to respond to treatments such as physical rehabilitation. The aim of this work was to understand the complex relationship between physical activity and the response to rehabilitation after VML in an animal model, evaluating the rehabilitation response by measurement of muscle function and whole-body metabolism. Adult male mice (n = 24) underwent a multi-muscle, full-thickness VML injury to the gastrocnemius, soleus and plantaris muscles and were randomized into one of three groups: (1) untreated; (2) rehabilitation (i.e., combined electrical stimulation and range of motion, twice per week, beginning 72 h post-injury, for ∼8 weeks); or (3) rehabilitation and restriction of physical activity. There was a lack of positive adaption associated with electrical stimulation and range of motion intervention alone; however, maximal isometric torque of the posterior muscle group was greater in mice receiving treatment with activity restriction (P = 0.008). Physical activity and whole-body metabolism were measured ∼6 weeks post-injury; metabolic rate decreased (P = 0.001) and respiratory exchange ratio increased (P = 0.022) with activity restriction. Therefore, restricting physical activity might enhance an intervention delivered to the injured muscle group but impair whole-body metabolism. It is possible that restricting activity is important initially post-injury to protect the muscle from excess demand. A gradual increase in activity throughout the course of treatment might optimize muscle function and whole-body metabolism.
Collapse
Affiliation(s)
- Alec M. Basten
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | | | - Daniel B. Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA,Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA,Corresponding Author: Sarah M. Greising, Ph.D., 1900 University Ave SE, Minneapolis MN, 55455, , Phone: 612-626-7890, Fax: 612-626-7700
| |
Collapse
|
27
|
Sonaye SY, Ertugral EG, Kothapalli CR, Sikder P. Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15227945. [PMID: 36431432 PMCID: PMC9695625 DOI: 10.3390/ma15227945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 05/13/2023]
Abstract
Volumetric muscle loss (VML), which involves the loss of a substantial portion of muscle tissue, is one of the most serious acute skeletal muscle injuries in the military and civilian communities. The injured area in VML may be so severely affected that the body loses its innate capacity to regenerate new functional muscles. State-of-the-art biofabrication methods such as bioprinting provide the ability to develop cell-laden scaffolds that could significantly expedite tissue regeneration. Bioprinted cell-laden scaffolds can mimic the extracellular matrix and provide a bioactive environment wherein cells can spread, proliferate, and differentiate, leading to new skeletal muscle tissue regeneration at the defect site. In this study, we engineered alginate−gelatin composite inks that could be used as bioinks. Then, we used the inks in an extrusion printing method to develop design-specific scaffolds for potential VML treatment. Alginate concentration was varied between 4−12% w/v, while the gelatin concentration was maintained at 6% w/v. Rheological analysis indicated that the alginate−gelatin inks containing 12% w/v alginate and 6% w/v gelatin were most suitable for developing high-resolution scaffolds with good structural fidelity. The printing pressure and speed appeared to influence the printing accuracy of the resulting scaffolds significantly. All the hydrogel inks exhibited shear thinning properties and acceptable viscosities, though 8−12% w/v alginate inks displayed properties ideal for printing and cell proliferation. Alginate content, crosslinking concentration, and duration played significant roles (p < 0.05) in influencing the scaffolds’ stiffness. Alginate scaffolds (12% w/v) crosslinked with 300, 400, or 500 mM calcium chloride (CaCl2) for 15 min yielded stiffness values in the range of 45−50 kPa, i.e., similar to skeletal muscle. The ionic strength of the crosslinking concentration and the alginate content significantly (p < 0.05) affected the swelling and degradation behavior of the scaffolds. Higher crosslinking concentration and alginate loading enhanced the swelling capacity and decreased the degradation kinetics of the printed scaffolds. Optimal CaCl2 crosslinking concentration (500 mM) and alginate content (12% w/v) led to high swelling (70%) and low degradation rates (28%) of the scaffolds. Overall, the results indicate that 12% w/v alginate and 6% w/v gelatin hydrogel inks are suitable as bioinks, and the printed scaffolds hold good potential for treating skeletal muscle defects such as VML.
Collapse
Affiliation(s)
| | - Elif G. Ertugral
- Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Prabaha Sikder
- Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, USA
- Correspondence:
| |
Collapse
|
28
|
McFaline-Figueroa J, Schifino AG, Nichenko AS, Lord MN, Hunda ET, Winders EA, Noble EE, Greising SM, Call JA. Pharmaceutical Agents for Contractile-Metabolic Dysfunction After Volumetric Muscle Loss. Tissue Eng Part A 2022; 28:795-806. [PMID: 35620911 PMCID: PMC9634984 DOI: 10.1089/ten.tea.2022.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Volumetric muscle loss (VML) injuries represent a majority of military service member casualties and are common in civilian populations following blunt and/or penetrating traumas. Characterized as a skeletal muscle injury with permanent functional impairments, there is currently no standard for rehabilitation, leading to lifelong disability. Toward developing rehabilitative strategies, previous research demonstrates that the remaining muscle after a VML injury lacks similar levels of plasticity or adaptability as healthy, uninjured skeletal muscle. This may be due, in part, to impaired innervation and vascularization of the remaining muscle, as well as disrupted molecular signaling cascades commonly associated with muscle adaptation. The primary objective of this study was to assess the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury. Male C57BL/6 mice underwent a 15% multimuscle VML injury of the posterior hindlimb and were randomized into drug treatment groups (formoterol [FOR], 5-aminoimidazole-4-carboxamide riboside [AICAR], pioglitazone [PIO], or sildenafil [SIL]) or untreated VML group. At the end of 60 days, the injury model was first validated by comparison to age-matched injury-naive mice. Untreated VML mice had 22% less gastrocnemius muscle mass, 36% less peak-isometric torque, and 27% less maximal mitochondrial oxygen consumption rate compared to uninjured mice (p < 0.01). Experimental drug groups were, then, compared to VML untreated, and there was minimal evidence of efficacy for AICAR, PIO, or SIL in improving contractile and metabolic functional outcomes. However, FOR-treated VML mice had 18% greater peak isometric torque (p < 0.01) and permeabilized muscle fibers had 36% greater State III mitochondrial oxygen consumption rate (p < 0.01) compared to VML untreated mice, suggesting an overall improvement in muscle condition. There was minimal evidence that these benefits came from greater mitochondrial biogenesis and/or mitochondrial complex protein content, but could be due to greater enzyme activity levels for complex I and complex II. These findings suggest that FOR treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle. Impact statement Volumetric muscle loss (VML) injuries result in deficiencies in strength and mobility, which have a severe impact on patient quality of life. Despite breakthroughs in tissue engineering, there are currently no treatments available that can restore function to the affected limb. Our data show that treatment of VML injuries with clinically available and FDA-approved formoterol (FOR), a beta-agonist, significantly improves strength and metabolism of VML-injured muscle. FOR is therefore a promising candidate for combined therapeutic approaches (i.e., regenerative rehabilitation) such as pairing FOR with structured rehabilitation or cell-seeded biomaterials as it may provide greater functional improvements than either strategy alone.
Collapse
Affiliation(s)
- Jennifer McFaline-Figueroa
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Albino G. Schifino
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Anna S. Nichenko
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Magen N. Lord
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Edward T. Hunda
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | | | - Emily E. Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jarrod A. Call
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
29
|
Retrospective characterization of a rat model of volumetric muscle loss. BMC Musculoskelet Disord 2022; 23:814. [PMID: 36008828 PMCID: PMC9414143 DOI: 10.1186/s12891-022-05760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Volumetric muscle loss (VML) is a pervasive injury within contemporary combat and a primary driver of disability among injured Service members. As such, VML has been a topic of investigation over the past decade as the field has sought to understand the pathology of these injuries and to develop treatment strategies which restore the form and function of the involved musculature. To date, much of this work has been performed in disparate animal models that vary significantly in terms of the species utilized, the muscle (or muscle group) affected, and the volume of muscle lost. Moreover, variation exists in the reporting of anatomical and functional outcomes within these models. When taken together, the ability to successfully assess comparative efficacy of promising therapies is currently limited. As such, greater scrutiny on the characterization of these VML models is needed to better assess the quality of evidence supporting further translation of putative therapies. Thus, the objective of this study was to retrospectively characterize anatomical and functional outcomes associated with one such VML model – the 6 mm biopsy punch model of the rat tibialis anterior muscle. Through these efforts, it was shown that this model is highly reproducible and consistent across a large number of experiments. As such, the data presented herein represent a reasonable benchmark for the expected performance of this model with utility for drawing inferences across studies and identifying therapies which have shown promise within the preclinical domain, and thus are ready for further translation towards the clinic.
Collapse
|
30
|
Zhang Z, Zhao X, Wang C, Huang Y, Han Y, Guo B. Injectable conductive micro-cryogel as a muscle stem cell carrier improves myogenic proliferation, differentiation and in situ skeletal muscle regeneration. Acta Biomater 2022; 151:197-209. [PMID: 36002125 DOI: 10.1016/j.actbio.2022.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Volumetric muscle loss (VML) results in the impediment of skeletal muscle function, and there were still great challenges in cell delivery approach with the minimally invasive operation to repair muscle defects. To deliver cells to the VML defects site efficiently, the injectable conductive porous nanocomposite microcryogels based on gelatin (GT) and reduced graphene oxide (rGO) were designed and prepared. The microcryogels were loaded with myoblasts to form an injectable cell delivery system and show the ability to protect cells during injection. Conductive microcryogel with 4 mg/mL rGO (GT/rGO4) enhanced C2C12 cell proliferation and myogenic differentiation during 3D culture compared with pure gelatin microcryogel. In a mice VML model, injection of microcryogel loaded with muscle-derived stem cells into the injury site significantly improved the generation of new muscle fibers and blood vessels, and anti-inflammatory properties. The results show that injectable biodegradable conductive microcryogel can be used as myoblast cell carriers with the potential to maintain cell activity and deliver cells to defective sites, thereby in situ enhancing skeletal muscle regeneration. STATEMENT OF SIGNIFICANCE: Volumetric muscle loss overwhelms the regenerative capacity of skeletal muscle, which results in severe damage to muscle tissues. In the treatment of volumetric muscle loss, conductive niche and muscle stem cells are needed to alleviate excessive scar formation and inflammation to improve muscle regeneration. Injectable gelatin/reduced graphene oxide based nanocomposite microcryogel can enhance the differentiation of seeded muscle stem cells. The improved repair of volumetric muscle loss was achieved via reducing collagen deposition and inflammation in the injected region through the microcryogel cell-delivery therapy, suggesting great potential of the injectable microcryogel as a cell carrier in soft tissue repair.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunbo Wang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
31
|
Greising SM, Weiner JI, Garry DJ, Sachs DH, Garry MG. Human muscle in gene edited pigs for treatment of volumetric muscle loss. Front Genet 2022; 13:948496. [PMID: 35957684 PMCID: PMC9358139 DOI: 10.3389/fgene.2022.948496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Focusing on complex extremity trauma and volumetric muscle loss (VML) injuries, this review highlights: 1) the current pathophysiologic limitations of the injury sequela; 2) the gene editing strategy of the pig as a model that provides a novel treatment approach; 3) the notion that human skeletal muscle derived from gene edited, humanized pigs provides a groundbreaking treatment option; and 4) the impact of this technologic platform and how it will advance to far more multifaceted applications. This review seeks to shed insights on a novel treatment option using gene edited pigs as a platform which is necessary to overcome the clinical challenges and limitations in the field.
Collapse
Affiliation(s)
- Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Sarah M. Greising, ; Mary G. Garry,
| | - Joshua I. Weiner
- Departments of Surgery, Columbia Center for Translations Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- NorthStar Genomics, Eagan, MN, United States
| | - David H. Sachs
- Departments of Surgery, Columbia Center for Translations Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Mary G. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- NorthStar Genomics, Eagan, MN, United States
- *Correspondence: Sarah M. Greising, ; Mary G. Garry,
| |
Collapse
|
32
|
Larouche JA, Fraczek PM, Kurpiers SJ, Yang BA, Davis C, Castor-Macias JA, Sabin K, Anderson S, Harrer J, Hall M, Brooks SV, Jang YC, Willett N, Shea LD, Aguilar CA. Neutrophil and natural killer cell imbalances prevent muscle stem cell-mediated regeneration following murine volumetric muscle loss. Proc Natl Acad Sci U S A 2022; 119:e2111445119. [PMID: 35377804 PMCID: PMC9169656 DOI: 10.1073/pnas.2111445119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell– and progenitor-mediated myogenic repair. However, how immune cell infiltration and intercellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored. Herein, we contrast the cellular and molecular mechanisms of VML injuries that result in the fibrotic degeneration or regeneration of SkM. Following degenerative VML injuries, we observed the heightened infiltration of natural killer (NK) cells as well as the persistence of neutrophils beyond 2 wk postinjury. Functional validation of NK cells revealed an antagonistic role in neutrophil accumulation in part via inducing apoptosis and CCR1-mediated chemotaxis. The persistent infiltration of neutrophils in degenerative VML injuries was found to contribute to impairments in muscle stem cell regenerative function, which was also attenuated by transforming growth factor beta 1 (TGFβ1). Blocking TGFβ signaling reduced neutrophil accumulation and fibrosis and improved muscle-specific force. Collectively, these results enhance our understanding of immune cell–stem cell cross talk that drives regenerative dysfunction and provide further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
- Jacqueline A. Larouche
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Paula M. Fraczek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sarah J. Kurpiers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin A. Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Jesus A. Castor-Macias
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Shannon Anderson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Julia Harrer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Matthew Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Susan V. Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Young C. Jang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nick Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Carlos A. Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
33
|
Hermenegildo B, Meira RM, Correia D, Díez A, Ribeiro S, Serra J, Ribeiro C, Pérez-Álvarez L, Vilas-Vilela JL, Lanceros-Méndez S. Poly(lactic-co-glycolide) based biodegradable electrically and magnetically active microenvironments for tissue regeneration applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Hermenegildo B, Meira R, Díez A, Correia D, Ribeiro S, Serra J, Ribeiro C, Pérez-Álvarez L, Vilas-Vilela JL, Lanceros-Méndez S. Ionic liquid modified electroactive polymer-based microenvironments for tissue engineering. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Preclinical Development of Bioengineered Allografts Derived from Decellularized Human Diaphragm. Biomedicines 2022; 10:biomedicines10040739. [PMID: 35453490 PMCID: PMC9031975 DOI: 10.3390/biomedicines10040739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Volumetric muscle loss (VML) is the traumatic/surgical loss of skeletal muscle, causing aesthetic damage and functional impairment. Suboptimal current surgical treatments are driving research towards the development of optimised regenerative therapies. The grafting of bioengineered scaffolds derived from decellularized skeletal muscle may be a valid option to promote structural and functional healing. In this work, a cellular human diaphragm was considered as a scaffold material for VML treatment. Decellularization occurred through four detergent-enzymatic protocols involving (1) sodium dodecyl sulfate (SDS), (2) SDS + TergitolTM, (3) sodium deoxycholate, and (4) TergitolTM. After decellularization, cells, DNA (≤50 ng/mg of tissue), and muscle fibres were efficiently removed, with the preservation of collagen/elastin and 60%–70% of the glycosaminoglycan component. The detergent-enzymatic treatments did not affect the expression of specific extracellular matrix markers (Collagen I and IV, Laminin), while causing the loss of HLA-DR expression to produce non-immunogenic grafts. Adipose-derived stem cells grown by indirect co-culture with decellularized samples maintained 80%–90% viability, demonstrating the biosafety of the scaffolds. Overall, the tested protocols were quite equivalent, with the patches treated by SDS + TergitolTM showing better collagen preservation. After subcutaneous implant in Balb/c mice, these acellular diaphragmatic grafts did not elicit a severe immune reaction, integrating with the host tissue.
Collapse
|
36
|
Hoffman DB, Raymond-Pope CJ, Sorensen JR, Corona BT, Greising SM. Temporal changes in the muscle extracellular matrix due to volumetric muscle loss injury. Connect Tissue Res 2022; 63:124-137. [PMID: 33535825 PMCID: PMC8364566 DOI: 10.1080/03008207.2021.1886285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Volumetric muscle loss (VML) is a devastating orthopedic injury resulting in chronic persistent functional deficits, loss of joint range of motion, pathologic fibrotic deposition and lifelong disability. However, there is only limited mechanistic understanding of VML-induced fibrosis. Herein we examined the temporal changes in the fibrotic deposition at 3, 7, 14, 28, and 48 days post-VML injury. MATERIALS AND METHODS Adult male Lewis rats (n = 39) underwent a full thickness ~20% (~85 mg) VML injury to the tibialis anterior (TA) muscle unilaterally, the contralateral TA muscle served as the control group. All TA muscles were harvested for biochemical and histologic evaluation. RESULTS The ratio of collagen I/III was decreased at 3, 7, and 14 days post-VML, but significantly increased at 48 days. Decorin content followed an opposite trend, significantly increasing by day 3 before dropping to below control levels by 48 days. Histological evaluation of the defect area indicates a shift from loosely packed collagen at early time points post-VML, to a densely packed fibrotic scar by 48 days. CONCLUSIONS The shift from early wound healing efforts to a fibrotic scar with densely packed collagen within the skeletal muscle occurs around 21 days after VML injury through dogmatic synchronous reduction of collagen III and increase in collagen I. Thus, there appears to be an early window for therapeutic intervention to prevent pathologic fibrous tissue formation, potentially by targeting CCN2/CTGF or using decorin as a therapeutic.
Collapse
Affiliation(s)
- Daniel B. Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455
| | | | - Jacob R. Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455
| | | | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455;,For reprints contact: Sarah M. Greising, Ph.D., 1900 University Ave SE, 220A Cooke Hall, Minneapolis MN, 55455, , Phone: 612-626-7890, Fax: 612-626-7700
| |
Collapse
|
37
|
Dolan CP, Motherwell JM, Franco SR, Janakiram NB, Valerio MS, Goldman SM, Dearth CL. Evaluating the potential use of functional fibrosis to facilitate improved outcomes following volumetric muscle loss injury. Acta Biomater 2022; 140:379-388. [PMID: 34843950 DOI: 10.1016/j.actbio.2021.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/01/2022]
Abstract
Volumetric muscle loss (VML) was defined as the frank loss of skeletal muscle tissue with associated chronic functional deficits. Significant effort has been dedicated to developing approaches for treating VML injuries, most of which have focused on stimulating regeneration of the affected musculature via a variety of approaches (e.g., biomaterials). VML injury induces a prolonged inflammatory response which causes fibrotic tissue deposition and is thought to inhibit de novo myofiber regeneration despite observed improvements in functional outcomes (i.e., functional fibrosis; FF). Recent approaches have sought to attenuate inflammation and/or fibrosis as a means to create a permissive environment for regenerative therapies. However, there are currently no clinically available interventions capable of facilitating full restoration of form and function following VML injury; thus, an unmet clinical need exists for a near-term interventional strategy to treat affected patients. FF could serve as an alternative approach to facilitate improved functional outcomes following VML injuries. We sought to investigate whether intentionally exploiting the concept of FF (i.e., induction of a supraphysiological fibrotic response via the delivery of a polypropylene mesh combined with TGFβ) would enhance the function of the VML affected musculature. We found that FF treatment induces enhanced fibrotic tissue deposition within the VML defect as evidenced by histological and molecular analysis. FF-treated animals exhibit improved in vivo muscle function compared to untreated control animals at 8 weeks post-injury, thus substantiating the concept that FF could serve as an efficacious approach for facilitating improved functional outcomes following VML injury. STATEMENT OF SIGNIFICANCE: VML injuries result in long-term functional impairments and reduced quality of life for affected individuals, namely combat injured US Service members, and no clinical interventions can restore the form and function of the injured limb. Extensive efforts have been aimed at developing therapeutics to address this critical gap; unfortunately, most interventions facilitate only modest regeneration. Interestingly, improved muscle function has been observed in VML studies following treatment with a therapeutic, despite a lack of myogenic tissue formation; a phenomenon termed Functional Fibrosis (FF). Herein we exploited the concept of FF to enhance the function of VML affected musculature. This finding is significant in that the commercially available interventions used to induce FF can be translated into the clinic near-term, thus improving the standard of care for VML injuries.
Collapse
|
38
|
Kim JT, Roberts K, Dunlap G, Perry R, Washington T, Wolchok JC. Nandrolone supplementation does not improve functional recovery in an aged animal model of volumetric muscle loss injury. J Tissue Eng Regen Med 2022; 16:367-379. [PMID: 35113494 DOI: 10.1002/term.3286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022]
Abstract
Aging hinders the effectiveness of regenerative medicine strategies targeting the repair of volumetric muscle loss (VML) injury. Anabolic steroids have been shown to improve several factors which contribute to the age-related decline in muscle's regenerative capacity. In this study, the impact of exogenous nandrolone decanoate (ND) administration on the effectiveness of a VML regenerative repair strategy was explored using an aged animal model. Unilateral tibialis anterior VML injuries were repaired in 18-month-aged animal models (male Fischer 344 rat) using decellularized human skeletal muscle scaffolds supplemented with autologous minced muscle. The contralateral limb was left untreated/uninjured. Following repair, ND(+) or a carrier control (ND-) was delivered via weekly injection for a period of 8 weeks. At 8 weeks, muscle isometric torque, gene expression, and tissue structure were assessed. ND(+) treatment did not improve contractile torque recovery following VML repair when compared to carrier only ND(-) injection controls. Peak isometric torque in the ND(+) VML repair group remained significantly below contralateral uninjured control values (4.69 ± 1.18vs. 7.46 ± 1.53 N mm/kg) and was statistically indistinguishable from carrier only ND(-) VML repair controls (4.47 ± 1.18 N mm/kg). Gene expression for key myogenic genes (Pax7, MyoD, MyoG, IGF-1) were not significantly elevated in response to ND injection, suggesting continued age related myogenic impairment even in the presence of ND(+) treatment. ND injection did reduce the histological appearance of fibrosis at the site of VML repair, and increased expression of the collagen III gene, suggesting some positive effects on repair site matrix regulation. Overall, the results presented in this study suggest that a decline in regenerative capacity with aging may present an obstacle to regenerative medicine strategies targeting VML injury and that the delivery of anabolic stimuli via ND administration was unable to overcome this decline.
Collapse
Affiliation(s)
- John T Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Roberts
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Grady Dunlap
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Richard Perry
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
39
|
Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol 2022; 96:691-710. [PMID: 35006284 PMCID: PMC8850226 DOI: 10.1007/s00204-021-03212-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The pharmacology and toxicology of a broad variety of therapies and chemicals have significantly improved with the aid of the increasing in vitro models of complex human tissues. Offering versatile and precise control over the cell population, extracellular matrix (ECM) deposition, dynamic microenvironment, and sophisticated microarchitecture, which is desired for the in vitro modeling of complex tissues, 3D bio-printing is a rapidly growing technology to be employed in the field. In this review, we will discuss the recent advancement of printing techniques and bio-ink sources, which have been spurred on by the increasing demand for modeling tactics and have facilitated the development of the refined tissue models as well as the modeling strategies, followed by a state-of-the-art update on the specialized work on cancer, heart, muscle and liver. In the end, the toxicological modeling strategies, substantial challenges, and future perspectives for 3D printed tissue models were explored.
Collapse
Affiliation(s)
- Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Kathleen Miller
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA
| | | | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA.
| |
Collapse
|
40
|
Hermenegildo B, Correia DM, Ribeiro C, Serra JP, Pérez L, Vilas‐Vilela JL, Lanceros‐Méndez S. Tuning magnetic response and ionic conductivity of electrospun hybrid membranes for tissue regeneration strategies. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bruno Hermenegildo
- BC Materials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
| | - Daniela M. Correia
- Centre of Physics University of Minho Braga Portugal
- Centre of Chemistry University of Trás‐os‐Montes e Alto Douro Vila Real Portugal
| | - Clarisse Ribeiro
- Centre of Physics University of Minho Braga Portugal
- CEB—Centre of Biological Engineering University of Minho Braga Portugal
| | - João P. Serra
- Centre of Physics University of Minho Braga Portugal
| | - Leyre Pérez
- BC Materials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
- Macromolecular Chemistry Research Group (Labquimac), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - José L. Vilas‐Vilela
- BC Materials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
- Macromolecular Chemistry Research Group (Labquimac), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - Senentxu Lanceros‐Méndez
- BC Materials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
| |
Collapse
|
41
|
Takahashi H, Nakamura A, Shimizu T. Simulated microgravity accelerates aging of human skeletal muscle myoblasts at the single cell level. Biochem Biophys Res Commun 2021; 578:115-121. [PMID: 34562651 DOI: 10.1016/j.bbrc.2021.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022]
Abstract
Earth's gravity is essential for maintaining skeletal muscle mass and function in the body. The role of gravity in the myogenic mechanism has been studied with animal experiments in the International Space Station. Recently, gravity-control devices allow to study the effects of gravity on cultured cells on the ground. This study demonstrated that simulated microgravity accelerated aging of human skeletal muscle myoblasts in an in-vitro culture. The microgravity culture induced a significant decrease in cell proliferation and an enlargement of the cytoskeleton and nucleus of cells. Similar changes are often observed in aged myoblasts following several passages. In fact, by the microgravity culture the expression of senescence associated β-Gal was significantly enhanced, and some muscle-specific proteins decreased in the enlarged cells. Importantly, these microgravity effects remained with the cells even after a return to normal gravity conditions. Consequently, the microgravity-affected myoblasts demonstrated a reduced capability of differentiation into myotubes. In the body, it is difficult to interpret the disability of microgravity-affected myoblasts, since muscle regeneration is linked to the supply of new myogenic cells. Therefore, our in-vitro cell culture study will be advantageous to better understand the role of each type of myogenic cell in human muscle without gravitational stress at the single cell level.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Asuka Nakamura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
42
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
43
|
Basurto IM, Passipieri JA, Gardner GM, Smith KK, Amacher AR, Hansrisuk AI, Christ GJ, Caliari SR. Photoreactive hydrogel stiffness influences volumetric muscle loss repair. Tissue Eng Part A 2021; 28:312-329. [PMID: 34409861 DOI: 10.1089/ten.tea.2021.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volumetric muscle loss (VML) injuries are characterized by permanent loss of muscle mass, structure, and function. Hydrogel biomaterials provide an attractive platform for skeletal muscle tissue engineering due to the ability to easily modulate their biophysical and biochemical properties to match a range of tissue characteristics. In this work we successfully developed a mechanically tunable hyaluronic acid (HA) hydrogel system to investigate the influence of hydrogel stiffness on VML repair. HA was functionalized with photoreactive norbornene groups to create hydrogel networks that rapidly crosslink via thiol-ene click chemistry with tailored mechanics. Mechanical properties were controlled by modulating the amount of matrix metalloproteinase (MMP)-degradable peptide crosslinker to produce hydrogels with increasing elastic moduli of 1.1 ± 0.002, 3.0 ± 0.002, and 10.6 ± 0.006 kPa mimicking a relevant range of developing and mature muscle stiffnesses. Functional muscle recovery was assessed following implantation of the HA hydrogels by in situ photopolymerization into rat latissimus dorsi (LD) VML defects at 12 and 24 weeks post-injury. After 12 weeks, muscles treated with medium stiffness (3.0 kPa) hydrogels produced maximum isometric forces most similar to contralateral healthy LD muscles. This trend persisted at 24 weeks post-injury, suggestive of sustained functional recovery. Histological analysis revealed a significantly larger zone of regeneration with more de novo muscle fibers following implantation of medium stiffness hydrogels in VML-injured muscles compared to other experimental groups. Lower (low and medium) stiffness hydrogels also appeared to attenuate the chronic inflammatory response characteristic of VML injuries, displaying similar levels of macrophage infiltration and polarization to healthy muscle. Together these findings illustrate the importance of hydrogel mechanical properties in supporting functional repair of VML injuries.
Collapse
Affiliation(s)
- Ivan M Basurto
- University of Virginia, 2358, Biomedical Engineering, Charlottesville, Virginia, United States;
| | - Juliana A Passipieri
- University of Virginia, 2358, Biomedical Engineering, Orthopaedic Surgery, Charlottesville, Virginia, United States;
| | - Gregg M Gardner
- University of Virginia, 2358, Chemical Engineering, Charlottesville, Virginia, United States;
| | - Kathryn K Smith
- University of Virginia, 2358, Chemical Engineering, Charlottesville, Virginia, United States;
| | - Austin R Amacher
- University of Virginia, 2358, Biomedical Engineering, Charlottesville, Virginia, United States;
| | - Audrey I Hansrisuk
- University of Virginia, 2358, Chemistry, Charlottesville, Virginia, United States;
| | - George J Christ
- University of Virginia, 2358, Biomedical Engineering, Orthopaedic Surgery, Charlottesville, Virginia, United States;
| | - Steven R Caliari
- University of Virginia, 2358, Chemical Engineering, Biomedical Engineering, Charlottesville, Virginia, United States;
| |
Collapse
|
44
|
Towards bioengineered skeletal muscle: recent developments in vitro and in vivo. Essays Biochem 2021; 65:555-567. [PMID: 34342361 DOI: 10.1042/ebc20200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a functional tissue that accounts for approximately 40% of the human body mass. It has remarkable regenerative potential, however, trauma and volumetric muscle loss, progressive disease and aging can lead to significant muscle loss that the body cannot recover from. Clinical approaches to address this range from free-flap transfer for traumatic events involving volumetric muscle loss, to myoblast transplantation and gene therapy to replace muscle loss due to sarcopenia and hereditary neuromuscular disorders, however, these interventions are often inadequate. The adoption of engineering paradigms, in particular materials engineering and materials/tissue interfacing in biology and medicine, has given rise to the rapidly growing, multidisciplinary field of bioengineering. These methods have facilitated the development of new biomaterials that sustain cell growth and differentiation based on bionic biomimicry in naturally occurring and synthetic hydrogels and polymers, as well as additive fabrication methods to generate scaffolds that go some way to replicate the structural features of skeletal muscle. Recent advances in biofabrication techniques have resulted in significant improvements to some of these techniques and have also offered promising alternatives for the engineering of living muscle constructs ex vivo to address the loss of significant areas of muscle. This review highlights current research in this area and discusses the next steps required towards making muscle biofabrication a clinical reality.
Collapse
|
45
|
Ledford B, Barron C, Van Dyke M, He JQ. Keratose hydrogel for tissue regeneration and drug delivery. Semin Cell Dev Biol 2021; 128:145-153. [PMID: 34219034 DOI: 10.1016/j.semcdb.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
Keratin (KRT), a natural fibrous structural protein, can be classified into two categories: "soft" cytosolic KRT that is primarily found in the epithelia tissues (e.g., skin, the inner lining of digestive tract) and "hard" KRT that is mainly found in the protective tissues (e.g., hair, horn). The latter is the predominant form of KRT widely used in biomedical research. The oxidized form of extracted KRT is exclusively denoted as keratose (KOS) while the reduced form of KRT is termed as kerateine (KRTN). KOS can be processed into various forms (e.g., hydrogel, films, fibers, and coatings) for different biomedical applications. KRT/KOS offers numerous advantages over other types of biomaterials, such as bioactivity, biocompatibility, degradability, immune/inflammatory privileges, mechanical resilience, chemical manipulability, and easy accessibility. As a result, KRT/KOS has attracted considerable attention and led to a large number of publications associated with this biomaterial over the past few decades; however, most (if not all) of the published review articles focus on KRT regarding its molecular structure, biochemical/biophysical properties, bioactivity, biocompatibility, drug/cell delivery, and in vivo transplantation, as well as its applications in biotechnical products and medical devices. Current progress that is directly associated with KOS applications in tissue regeneration and drug delivery appears an important topic that merits a commentary. To this end, the present review aims to summarize the current progress of KOS-associated biomedical applications, especially focusing on the in vitro and in vivo effects of KOS hydrogel on cultured cells and tissue regeneration following skin injury, skeletal muscle loss, peripheral nerve injury, and cardiac infarction.
Collapse
Affiliation(s)
- Benjamin Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, 1209 E. 2nd Street, Tucson, AZ 85721, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
46
|
Dalske KA, Raymond-Pope CJ, McFaline-Figueroa J, Basten AM, Call JA, Greising SM. Independent of physical activity, volumetric muscle loss injury in a murine model impairs whole-body metabolism. PLoS One 2021; 16:e0253629. [PMID: 34170933 PMCID: PMC8232406 DOI: 10.1371/journal.pone.0253629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Volumetric muscle loss (VML) injuries result in a non-recoverable loss of muscle tissue and function due to trauma or surgery. Reductions in physical activity increase the risk of metabolic comorbidities over time, and it is likely that VML may reduce whole-body activity. However, these aspects remain uncharacterized following injury. Our goal was to characterize the impact of VML on whole-body physical activity and metabolism, and to further investigate possible muscle-specific metabolic changes. Adult male C57Bl/6J (n = 28) mice underwent a standardized VML injury to the posterior compartment of the hind limb, or served as injury naïve controls. Mice underwent longitudinal evaluation of whole-body physical activity and metabolism in specialized cages up to three times over the course of 8 weeks. At terminal time points of 4- and 8-weeks post-VML in vivo muscle function of the posterior compartment was evaluated. Additionally, the gastrocnemius muscle was collected to understand histological and biochemical changes in the muscle remaining after VML. The VML injury did not alter the physical activity of mice. However, there was a noted reduction in whole-body metabolism and diurnal fluctuations between lipid and carbohydrate oxidation were also reduced, largely driven by lower carbohydrate utilization during active hours. Following VML, muscle-specific changes indicate a decreased proportion of fast (i.e., type IIb and IIx) and a greater proportion of slow (i.e., type I and IIa) fibers. However, there were minimal changes in the capillarity and metabolic biochemical activity properties of the gastrocnemius muscle, suggesting a miss-match in capacity to support the physiologic needs of the fibers. These novel findings indicate that following VML, independent of changes in physical activity, there is whole-body diurnal metabolic inflexibility. Supporting future investigations into the chronic and overlooked co-morbidities of VML injury.
Collapse
Affiliation(s)
- Kyle A. Dalske
- School of Kinesiology, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Jennifer McFaline-Figueroa
- Department of Kinesiology, University of Georgia, Athens, GA, United States of America
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
| | - Alec M. Basten
- School of Kinesiology, University of Minnesota, Minneapolis, MN, United States of America
| | - Jarrod A. Call
- Department of Kinesiology, University of Georgia, Athens, GA, United States of America
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States of America
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
47
|
Leiva-Cepas F, Benito-Ysamat A, Jimena I, Jimenez-Diaz F, Gil-Belmonte MJ, Ruz-Caracuel I, Villalba R, Peña-Amaro J. Ultrasonographic and Histological Correlation after Experimental Reconstruction of a Volumetric Muscle Loss Injury with Adipose Tissue. Int J Mol Sci 2021; 22:ijms22136689. [PMID: 34206557 PMCID: PMC8268690 DOI: 10.3390/ijms22136689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/05/2023] Open
Abstract
Different types of scaffolds are used to reconstruct muscle volume loss injuries. In this experimental study, we correlated ultrasound observations with histological findings in a muscle volume loss injury reconstructed with autologous adipose tissue. The outcome is compared with decellularized and porous matrix implants. Autologous adipose tissue, decellularized matrix, and a porous collagen matrix were implanted in volumetric muscle loss (VML) injuries generated on the anterior tibial muscles of Wistar rats. Sixty days after implantation, ultrasound findings were compared with histological and histomorphometric analysis. The muscles with an autologous adipose tissue implant exhibited an ultrasound pattern that was quite similar to that of the regenerative control muscles. From a histological point of view, the defects had been occupied by newly formed muscle tissue with certain structural abnormalities that would explain the differences between the ultrasound patterns of the normal control muscles and the regenerated ones. While the decellularized muscle matrix implant resulted in fibrosis and an inflammatory response, the porous collagen matrix implant was replaced by regenerative muscle fibers with neurogenic atrophy and fibrosis. In both cases, the ultrasound images reflected echogenic, echotextural, and vascular changes compatible with the histological findings of failed muscle regeneration. The ultrasound analysis confirmed the histological findings observed in the VML injuries reconstructed by autologous adipose tissue implantation. Ultrasound can be a useful tool for evaluating the structure of muscles reconstructed through tissue engineering.
Collapse
Affiliation(s)
- Fernando Leiva-Cepas
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Department of Pathology, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Alberto Benito-Ysamat
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Radiology Department, Musculoskeletal Section, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Ignacio Jimena
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Fernando Jimenez-Diaz
- Sport Sciences Faculty, Castilla La Mancha University, 45071 Toledo, Spain;
- Department of Health Sciences, Faculty of Medicine, Campus de los Jerónimos, San Antonio Catholic University (UCAM), 30107 Murcia, Spain
| | - Maria Jesus Gil-Belmonte
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
| | - Ignacio Ruz-Caracuel
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Department of Pathology, Ramon y Cajal University Hospital, IRYCIS, 28034 Madrid, Spain
| | - Rafael Villalba
- Tissue of Establishment of the Center for Transfusion, Tissues and Cells, 14004 Cordoba, Spain;
| | - Jose Peña-Amaro
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Correspondence:
| |
Collapse
|
48
|
The War after War: Volumetric Muscle Loss Incidence, Implication, Current Therapies and Emerging Reconstructive Strategies, a Comprehensive Review. Biomedicines 2021; 9:biomedicines9050564. [PMID: 34069964 PMCID: PMC8157822 DOI: 10.3390/biomedicines9050564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
Volumetric muscle loss (VML) is the massive wasting of skeletal muscle tissue due to traumatic events or surgical ablation. This pathological condition exceeds the physiological healing process carried out by the muscle itself, which owns remarkable capacity to restore damages but only when limited in dimensions. Upon VML occurring, the affected area is severely compromised, heavily influencing the affected a person’s quality of life. Overall, this condition is often associated with chronic disability, which makes the return to duty of highly specialized professional figures (e.g., military personnel or athletes) almost impossible. The actual treatment for VML is based on surgical conservative treatment followed by physical exercise; nevertheless, the results, in terms of either lost mass and/or functionality recovery, are still poor. On the other hand, the efforts of the scientific community are focusing on reconstructive therapy aiming at muscular tissue void volume replenishment by exploiting biomimetic matrix or artificial tissue implantation. Reconstructing strategies represent a valid option to build new muscular tissue not only to recover damaged muscles, but also to better socket prosthesis in terms of anchorage surfaces and reinnervation substrates for reconstructed mass.
Collapse
|
49
|
Goldman SM, Janakiram NB, Valerio MS, Dearth CL. Evaluation of licofelone as an adjunct anti-inflammatory therapy to biologic scaffolds in the treatment of volumetric muscle loss. Cell Tissue Res 2021; 385:149-159. [PMID: 33852076 DOI: 10.1007/s00441-021-03449-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Biologic scaffolds (BS) are the most widely studied therapeutics for the treatment of volumetric muscle loss (VML) owing to their purported effects on cell proliferation, chemotaxis, migration, and differentiation. Despite these claims, variability in reports on the nature of the immune response to their implantation suggests that BS-associated inflammation may be limiting their regenerative efficacy. To address this shortcoming, this study sought to evaluate licofelone (ML3000), a dual 5-LOX/COX inhibitor, as an anti-inflammatory adjunct therapy to a BS in the treatment of VML. Utilizing a well-established rat VML model, a micronized BS was used to treat the VML injury, with or without administration of licofelone. Functional, molecular, and histological outcomes were assessed at both 7- and 28-day post-injury time points. While the BS + licofelone group exhibited decreased transcription of pro-inflammatory markers (Tnf, Ccl5, Nos2) relative to the BS only control group, no differences in expression profile of a panel of inflammatory-related soluble factors were observed between groups. A modest reduction in type I collagen was observed in the licofelone-treated group, but no meaningful differences in histologic presentation of repaired tissue were observed between groups. Furthermore, no differences in end organ functional capacity were observed between groups. Moving forward, efforts related to modulating the wound healing environment of VML should focus on polypharmaceutical strategies that target multiple aspects of the early pathophysiology of VML so as to provide an environment that is sufficiently permissive for local regenerative therapies to promote restoration of myofiber number.
Collapse
Affiliation(s)
- Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Naveena Basa Janakiram
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Michael S Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA. .,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.
| |
Collapse
|
50
|
Targeting intramuscular adipose tissue expansion to preserve contractile function in volumetric muscle loss: A potentially novel therapy? Curr Opin Pharmacol 2021; 58:21-26. [PMID: 33848932 DOI: 10.1016/j.coph.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 11/20/2022]
Abstract
In volumetric muscle loss (VML), the severity of trauma exceeds a muscle's regenerative capacity. VML causes permanent functional impairments for which there are no rehabilitative, pharmacological, or regenerative medicine interventions. Driving failed regeneration in VML is a hostile microenvironment characterized by heightened inflammation, fibrosis, and denervation, which may reduce the remaining muscle tissue's quality, and stimulate intramuscular adipose tissue (IMAT) expansion. IMAT is increased in various muscle disease states, and has known lipotoxic effects on regeneration and contractile function. The contribution of ectopic fat deposition to the hostile VML microenvironment at the injury site and in the remaining tissue warrants further investigation. Targeting IMAT may lead to novel therapeutic strategies for improving functional outcomes in VML.
Collapse
|