1
|
Zein-Sabatto A, St Angelo K, Madnick SJ, Hoffman-Kim D, Morgan JR, Lee J. Multi-assay assessment of cytotoxicity reveals multiple mechanisms of action in 3D microtissues. Sci Rep 2025; 15:3090. [PMID: 39856149 PMCID: PMC11759695 DOI: 10.1038/s41598-025-86792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cell viability assays are an integral component of toxicology and high-throughput drug screening studies; however, many assays rely on a single biomarker of cell death which provides an incomplete assessment of cell viability. Here, we introduce an innovative approach that combines data from multiple assays using a linear mixed effects regression model and principal component analysis. We explored the cytotoxic response of various assay-treatment combinations using four assays with distinct mechanisms of action and seven different treatments across three types of microtissue cultures. The multi-assay data revealed the presence of multifaceted cellular injuries which highlight the need for multimodal approaches to better understand complex disruptions to viability. By incorporating outputs from the four assays, we introduced a new lethal concentration threshold that captures changes from different cellular injuries to provide a more comprehensive evaluation of cytotoxicity. Overall, the proposed approach provides a unique opportunity to analyze data from multiple assays in a holistic manner to improve the predictive power of drug screening and toxicology studies.
Collapse
Affiliation(s)
- Ahbid Zein-Sabatto
- School of Engineering, Brown University, Providence, RI, USA
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, RI, USA
| | - Katerina St Angelo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Samantha J Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Diane Hoffman-Kim
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute of Brain Sciences, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- School of Engineering, Brown University, Providence, RI, USA
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence, RI, USA.
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, RI, USA.
- Carney Institute of Brain Sciences, Brown University, Providence, RI, USA.
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Omidi S, Fabi G, Wang X, Hwang JCM, Berdichevsky Y. Device for detection of activity-dependent changes in neural spheroids at MHz and GHz frequencies. Biosens Bioelectron 2025; 267:116816. [PMID: 39342697 DOI: 10.1016/j.bios.2024.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Intracellular processes triggered by neural activity include changes in ionic concentrations, protein release, and synaptic vesicle cycling. These processes play significant roles in neurological disorders. The beneficial effects of brain stimulation may also be mediated through intracellular changes. There is a lack of label-free techniques for monitoring activity-dependent intracellular changes. Electromagnetic (EM) waves at frequencies larger than 1 × 106 Hz (1 MHz) were previously used to probe intracellular contents of cells, as cell membrane becomes "invisible" at this frequency range. EM waves interact with membranes of intracellular organelles, proteins, and water in the MHz - GHz range. In this work, we developed a device for probing the interaction between active neurons' intracellular contents and EM waves. The device used an array of grounded coplanar waveguides (GCPWs) to deliver EM waves to a three-dimensional (3D) spheroid of rat cortical neurons. Neural activity was evoked using optogenetics, with synchronous detection of propagation of EM waves. Broadband measurements were conducted in the MHz-GHz range to track changes in transmission coefficients. Neuronal activity was found to reversibly alter EM wave transmission. Pharmacological suppression of neuronal activity abolished changes in transmission. Time constants of changes in transmission were in the seconds - tens of seconds range, suggesting the presence of relatively slow, activity-dependent intracellular processes. This study provides the first evidence that EM transmission through neuronal tissue is activity-dependent in MHz - GHz range. Device developed in this work may find future applications in studies of the mechanisms of neurological disorders and the development of new therapies.
Collapse
Affiliation(s)
- Saeed Omidi
- Department of Bioengineering, Lehigh University, Bethlehem, USA
| | - Gianluca Fabi
- Department of Material Science and Engineering, Cornell University, Ithaca, USA
| | - Xiaopeng Wang
- Department of Material Science and Engineering, Cornell University, Ithaca, USA
| | - James C M Hwang
- Department of Material Science and Engineering, Cornell University, Ithaca, USA.
| | - Yevgeny Berdichevsky
- Department of Bioengineering, Lehigh University, Bethlehem, USA; Department of Electrical and Computer Engineering, Bethlehem, USA.
| |
Collapse
|
3
|
Pang B, Wu L, Peng Y. In vitro modelling of the neurovascular unit for ischemic stroke research: Emphasis on human cell applications and 3D model design. Exp Neurol 2024; 381:114942. [PMID: 39222766 DOI: 10.1016/j.expneurol.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Wheeler EE, Leach JK. Tissue-Engineered Three-Dimensional Platforms for Disease Modeling and Therapeutic Development. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39345164 DOI: 10.1089/ten.teb.2024.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three-dimensional (3D) tissue-engineered models are under investigation to recapitulate tissue architecture and functionality, thereby overcoming limitations of traditional two-dimensional cultures and preclinical animal models. This review highlights recent developments in 3D platforms designed to model diseases in vitro that affect numerous tissues and organs, including cardiovascular, gastrointestinal, bone marrow, neural, reproductive, and pulmonary systems. We discuss current technologies for engineered tissue models, highlighting the advantages, limitations, and important considerations for modeling tissues and diseases. Lastly, we discuss future advancements necessary to enhance the reliability of 3D models of tissue development and disease.
Collapse
Affiliation(s)
- Erika E Wheeler
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California, Davis, California, USA
| |
Collapse
|
5
|
Wang L, Bai L, Wang S, Zhou J, Liu Y, Zhang C, Yao S, He J, Liu C, Li D. Biomimetic design and integrated biofabrication of an in-vitro three-dimensional multi-scale multilayer cortical model. Mater Today Bio 2024; 28:101176. [PMID: 39171099 PMCID: PMC11334787 DOI: 10.1016/j.mtbio.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The lack of accurate and reliable in vitro brain models hinders the development of brain science and research on brain diseases. Owing to the complex structure of the brain tissue and its highly nonlinear characteristics, the construction of brain-like in vitro tissue models remains one of the most challenging research fields in the construction of living tissues. This study proposes a multi-scale design of a brain-like model with a biomimetic cortical structure, which includes the macroscopic structural features of six layers of different cellular components, as well as micrometer-scale continuous fiber structures running through all layers vertically. To achieve integrated biomanufacturing of such a complex multi-scale brain-like model, a multi-material composite printing/culturing integrated bioprinting platform was developed in-house by integrating cell-laden hydrogel ink direct writing printing and electrohydrodynamic fiber 3D printing technologies. Through integrated bioprinting, multi-scale models with different cellular components and fiber structural parameters were prepared to study the effects of macroscopic and microscopic structural features on the directionality of neural cells, as well as the interaction between glial cells and neurons within the tissue model in a three-dimensional manner. The results revealed that the manufactured in vitro biomimetic cortical model achieved morphological connections between the layers of neurons, reflecting the structure and cellular morphology of the natural cortex. Micrometer-scale (10 μm) cross-layer fibers effectively guided and controlled the extension length and direction of the neurites of surrounding neural cells but had no significant effect on the migration of neurons. In contrast, glial cells significantly promoted the migration of surrounding PC12 cells towards the glial layer but did not contribute to the extension of neurites. This study provides a basis for the design and manufacture of accurate brain-like models for the functionalization of neuronal tissues.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Luge Bai
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Sen Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Jiajia Zhou
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Yingjie Liu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Chenrui Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| |
Collapse
|
6
|
González-Cruz RD, Wan Y, Burgess A, Calvao D, Renken W, Vecchio F, Franck C, Kesari H, Hoffman-Kim D. Cortical spheroids show strain-dependent cell viability loss and neurite disruption following sustained compression injury. PLoS One 2024; 19:e0295086. [PMID: 39159236 PMCID: PMC11332998 DOI: 10.1371/journal.pone.0295086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Sustained compressive injury (SCI) in the brain is observed in numerous injury and pathological scenarios, including tumors, ischemic stroke, and traumatic brain injury-related tissue swelling. Sustained compressive injury is characterized by tissue loading over time, and currently, there are few in vitro models suitable to study neural cell responses to strain-dependent sustained compressive injury. Here, we present an in vitro model of sustained compressive neural injury via centrifugation. Spheroids were made from neonatal rat cortical cells seeded at 4000 cells/spheroid and cultured for 14 days in vitro. A subset of spheroids was centrifuged at 104, 209, 313 or 419 rads/s for 2 minutes. Modeling the physical deformation of the spheroids via finite element analyses, we found that spheroids centrifuged at the aforementioned angular velocities experienced pressures of 10, 38, 84 and 149 kPa, respectively, and compressive (resp. tensile) strains of 10% (5%), 18% (9%), 27% (14%) and 35% (18%), respectively. Quantification of LIVE-DEAD assay and Hoechst 33342 nuclear staining showed that centrifuged spheroids subjected to pressures above 10 kPa exhibited significantly higher DNA damage than control spheroids at 2, 8, and 24 hours post-injury. Immunohistochemistry of β3-tubulin networks at 2, 8, and 24 hours post-centrifugation injury showed increasing degradation of microtubules over time with increasing strain. Our findings show that cellular injuries occur as a result of specific levels and timings of sustained tissue strains. This experimental SCI model provides a high throughput in vitro platform to examine cellular injury, to gain insights into brain injury that could be targeted with therapeutic strategies.
Collapse
Affiliation(s)
- Rafael D. González-Cruz
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Yang Wan
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Amina Burgess
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - Dominick Calvao
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - William Renken
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Francesca Vecchio
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| | - Christian Franck
- Center for Traumatic Brain Injury, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Haneesh Kesari
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- Institute for Biology, Engineering, and Medicine, Brown University Providence, RI, United States of America
| |
Collapse
|
7
|
Wan Y, González-Cruz RD, Hoffman-Kim D, Kesari H. A mechanics theory for the exploration of a high-throughput, sterile 3D in vitro traumatic brain injury model. Biomech Model Mechanobiol 2024; 23:1179-1196. [PMID: 38970736 DOI: 10.1007/s10237-024-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/19/2024] [Indexed: 07/08/2024]
Abstract
Brain injuries resulting from mechanical trauma represent an ongoing global public health issue. Several in vitro and in vivo models for traumatic brain injury (TBI) continue to be developed for delineating the various complex pathophysiological processes involved in its onset and progression. Developing an in vitro TBI model that is based on cortical spheroids is especially of great interest currently because they can replicate key aspects of in vivo brain tissue, including its electrophysiology, physicochemical microenvironment, and extracellular matrix composition. Being able to mechanically deform the spheroids are a key requirement in any effective in vitro TBI model. The spheroids' shape and size, however, make mechanically loading them, especially in a high-throughput, sterile, and reproducible manner, quite challenging. To address this challenge, we present an idea for a spheroid-based, in vitro TBI model in which the spheroids are mechanically loaded by being spun by a centrifuge. (An experimental demonstration of this new idea will be published shortly elsewhere.) An issue that can limit its utility and scope is that imaging techniques used in 2D and 3D in vitro TBI models cannot be readily applied in it to determine spheroid strains. In order to address this issue, we developed a continuum mechanics-based theory to estimate the spheroids' strains when they are being spun at a constant angular velocity. The mechanics theory, while applicable here to a special case of the centrifuge-based TBI model, is also of general value since it can help with the further exploration and development of TBI models.
Collapse
Affiliation(s)
- Yang Wan
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Rafael D González-Cruz
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, 02906, USA
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, 02906, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | - Haneesh Kesari
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
8
|
Czpakowska J, Kałuża M, Szpakowski P, Głąbiński A. An Overview of Multiple Sclerosis In Vitro Models. Int J Mol Sci 2024; 25:7759. [PMID: 39063001 PMCID: PMC11276743 DOI: 10.3390/ijms25147759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) still poses a challenge in terms of complex etiology, not fully effective methods of treatment, and lack of healing agents. This neurodegenerative condition considerably affects the comfort of life by causing difficulties with movement and worsening cognition. Neuron, astrocyte, microglia, and oligodendrocyte activity is engaged in multiple pathogenic processes associated with MS. These cells are also utilized in creating in vitro cellular models for investigations focusing on MS. In this article, we present and discuss a summary of different in vitro models useful for MS research and describe their development. We discuss cellular models derived from animals or humans and present in the form of primary cell lines or immortalized cell lines. In addition, we characterize cell cultures developed from induced pluripotent stem cells (iPSCs). Culture conditions (2D and 3D cultures) are also discussed.
Collapse
Affiliation(s)
| | | | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.); (M.K.)
| | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.); (M.K.)
| |
Collapse
|
9
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Liu M, Wu A, Liu J, Zhao Y, Dong X, Sun T, Shi Q, Wang H. TPP-Based Microfluidic Chip Design and Fabrication Method for Optimized Nerve Cells Directed Growth. CYBORG AND BIONIC SYSTEMS 2024; 5:0095. [PMID: 38725973 PMCID: PMC11079595 DOI: 10.34133/cbsystems.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 05/12/2024] Open
Abstract
Microfluidic chips offer high customizability and excellent biocompatibility, holding important promise for the precise control of biological growth at the microscale. However, the microfluidic chips employed in the studies of regulating cell growth are typically fabricated through 2D photolithography. This approach partially restricts the diversity of cell growth platform designs and manufacturing efficiency. This paper presents a method for designing and manufacturing neural cell culture microfluidic chips (NCMC) using two-photon polymerization (TPP), where the discrete and directional cell growth is optimized through studying the associated geometric parameters of on-chip microchannels. This study involves simulations and discussions regarding the effects of different hatching distances on the mold surface topography and printing time in the Describe print preview module, which determines the appropriate printing accuracy corresponding to the desired mold structure. With the assistance of the 3D maskless lithography system, micron-level rapid printing of target molds with different dimensions were achieved. For NCMC with different geometric parameters, COMSOL software was used to simulate the local flow velocity and shear stress characteristics within the microchannels. SH-SY5Y cells were selected for directional differentiation experiments on NCMC with different geometric parameters. The results demonstrate that the TPP-based manufacturing method efficiently constructs neural microfluidic chips with high precision, optimizing the discrete and directional cell growth. We anticipate that our method for designing and manufacturing NCMC will hold great promise in construction and application of microscale 3D drug models.
Collapse
Affiliation(s)
- Menghua Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Anping Wu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Jiaxin Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yanfeng Zhao
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xinyi Dong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Tao Sun
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
11
|
Öztürk S, Demir M, Koçkaya EA, Karaaslan C, Süloğlu AK. Establishment of a 3D multicellular placental microtissues for investigating the effect of antidepressant vortioxetine. Reprod Toxicol 2024; 123:108519. [PMID: 38043629 DOI: 10.1016/j.reprotox.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
The placenta is a unique organ with an active metabolism and dynamically changing physiology throughout pregnancy. It is difficult to elucidate the structure of cell-cell and cell-extracellular matrix interactions of the placenta in in vivo studies due to interspecies differences and ethical constraints. In this study, human umbilical cord vein cells (HUVEC) and human placental choriocarcinoma cells (BeWo) were co-cultured for the first time to form spheroids (microtissues) on a three-dimensional (3D) Petri Dish® mold and compared with a traditional two-dimensional (2D) system. Vortioxetine is an antidepressant with a lack of literature on its use in pregnancy in established cultures, the toxicity of vortioxetine was studied to investigate the response of spheroids representing placental tissue. Spheroids were characterised by morphology and exposed to vortioxetine. Cell viability and barrier integrity were then measured. Intercellular junctions and the localisation of serotonin transporter (SERT) proteins were demonstrated by immunofluorescence (IF) staining in BeWo cells. Human chorionic gonadotropin (beta-hCG) hormone levels were also measured. In the 3D system, cell viability and hormone production were higher than in the 2D system. It was observed that the barrier structure was impaired, the structure of intracellular skeletal elements was altered and SERT expression decreased depending on vortioxetine exposure. These results demonstrate that the multicellular microtissue placenta model can be used to obtain results that more closely resemble in vivo toxicity studies of various xenobiotics than other 2D and mono-culture spheroid models in the literature. It also describes the use of 3D models for soft tissues other than the placenta.
Collapse
Affiliation(s)
- Selen Öztürk
- Hacettepe University, Faculty of Science, Department of Biology, Zoology Section, Beytepe Campus, Ankara, Türkiye
| | - Merve Demir
- Hacettepe University, Faculty of Science, Department of Biology, Zoology Section, Beytepe Campus, Ankara, Türkiye
| | - E Arzu Koçkaya
- Gazi University, The Higher Vocational School of Health Services, Gölbaşı Campus, Ankara, Türkiye
| | - Cagatay Karaaslan
- Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Beytepe Campus, Ankara, Türkiye
| | - Aysun Kılıç Süloğlu
- Hacettepe University, Faculty of Science, Department of Biology, Zoology Section, Beytepe Campus, Ankara, Türkiye.
| |
Collapse
|
12
|
Strong CE, Zhang J, Carrasco M, Kundu S, Boutin M, Vishwasrao HD, Liu J, Medina A, Chen YC, Wilson K, Lee EM, Ferrer M. Functional brain region-specific neural spheroids for modeling neurological diseases and therapeutics screening. Commun Biol 2023; 6:1211. [PMID: 38017066 PMCID: PMC10684574 DOI: 10.1038/s42003-023-05582-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
3D spheroids have emerged as powerful drug discovery tools given their high-throughput screening (HTS) compatibility. Here, we describe a method for generating functional neural spheroids by cell-aggregation of differentiated human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes at cell type compositions mimicking specific regions of the human brain. Recordings of intracellular calcium oscillations were used as functional assays, and the utility of this spheroids system was shown through disease modeling, drug testing, and formation of assembloids to model neurocircuitry. As a proof of concept, we generated spheroids incorporating neurons with Alzheimer's disease-associated alleles, as well as opioid use disorder modeling spheroids induced by chronic treatment of a mu-opioid receptor agonist. We reversed baseline functional deficits in each pilot disease model with clinically approved treatments and showed that assembloid activity can be chemogenetically manipulated. Here, we lay the groundwork for brain region-specific neural spheroids as a robust functional assay platform for HTS studies.
Collapse
Affiliation(s)
- Caroline E Strong
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Jiajing Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Martin Carrasco
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Srikanya Kundu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Molly Boutin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angelica Medina
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Kelli Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Emily M Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
13
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Perez JE, Jan A, Villard C, Wilhelm C. Surface Tension and Neuronal Sorting in Magnetically Engineered Brain-Like Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302411. [PMID: 37544889 PMCID: PMC10520685 DOI: 10.1002/advs.202302411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Indexed: 08/08/2023]
Abstract
Engineered 3D brain-like models have advanced the understanding of neurological mechanisms and disease, yet their mechanical signature, while fundamental for brain function, remains understudied. The surface tension for instance controls brain development and is a marker of cell-cell interactions. Here, 3D magnetic brain-like tissue spheroids composed of intermixed primary glial and neuronal cells at different ratios are engineered. Remarkably, the two cell types self-assemble into a functional tissue, with the sorting of the neuronal cells toward the periphery of the spheroids, whereas the glial cells constitute the core. The magnetic fingerprint of the spheroids then allows their deformation when placed under a magnetic field gradient, at a force equivalent to a 70 g increased gravity at the spheroid level. The tissue surface tension and elasticity can be directly inferred from the resulting deformation, revealing a transitional dependence on the glia/neuron ratio, with the surface tension of neuronal tissue being much lower. The results suggest an underlying mechanical contribution to the exclusion of the neurons toward the outer spheroid region, and depict the glia/neuron organization as a sophisticated mechanism that should in turn influence tissue development and homeostasis relevant in the neuroengineering field.
Collapse
Affiliation(s)
- Jose E. Perez
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
| | - Audric Jan
- Institut Pierre‐Gilles de GennesIPGG Technology PlatformUMS 3750 CNRSParis75005France
| | - Catherine Villard
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
- Laboratoire Interdisciplinaire des Énergies de DemainUniversité Paris CitéUMR 8236 CNRSParis75013France
| | - Claire Wilhelm
- Laboratoire Physico Chimie CurieCNRS UMR168Institut CurieSorbonne UniversitéPSL UniversityParis75005France
| |
Collapse
|
15
|
Barreras P, Pamies D, Hartung T, Pardo CA. Human brain microphysiological systems in the study of neuroinfectious disorders. Exp Neurol 2023; 365:114409. [PMID: 37061175 PMCID: PMC10205672 DOI: 10.1016/j.expneurol.2023.114409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Microphysiological systems (MPS) are 2D or 3D multicellular constructs able to mimic tissue microenvironments. The latest models encompass a range of techniques, including co-culturing of various cell types, utilization of scaffolds and extracellular matrix materials, perfusion systems, 3D culture methods, 3D bioprinting, organ-on-a-chip technology, and examination of tissue structures. Several human brain 3D cultures or brain MPS (BMPS) have emerged in the last decade. These organoids or spheroids are 3D culture systems derived from induced pluripotent cells or embryonic stem cells that contain neuronal and glial populations and recapitulate structural and physiological aspects of the human brain. BMPS have been introduced recently in the study and modeling of neuroinfectious diseases and have proven to be useful in establishing neurotropism of viral infections, cell-pathogen interactions needed for infection, assessing cytopathological effects, genomic and proteomic profiles, and screening therapeutic compounds. Here we review the different methodologies of organoids used in neuroinfectious diseases including spheroids, guided and unguided protocols as well as microglia and blood-brain barrier containing models, their specific applications, and limitations. The review provides an overview of the models existing for specific infections including Zika, Dengue, JC virus, Japanese encephalitis, measles, herpes, SARS-CoV2, and influenza viruses among others, and provide useful concepts in the modeling of disease and antiviral agent screening.
Collapse
Affiliation(s)
- Paula Barreras
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David Pamies
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA; CAAT-Europe, University of Konstanz, Germany
| | - Carlos A Pardo
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
16
|
McLaughlin RM, Top I, Laguna A, Hernandez C, Katz H, Livi LL, Kramer L, Zambuto SG, Hoffman-Kim D. Cortical Spheroid Model for Studying the Effects of Ischemic Brain Injury. IN VITRO MODELS 2023; 2:25-41. [PMID: 39872876 PMCID: PMC11756444 DOI: 10.1007/s44164-023-00046-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 01/30/2025]
Abstract
Purpose Ischemic brain injury occurs when there is reduced or complete disruption of blood flow to a brain region, such as in stroke or severe traumatic brain injury. Even short interruptions can lead to devastating effects including excitotoxicity and widespread cell death. Despite many decades of research, there are still very few therapeutic options for patients suffering from brain ischemia. Methods We developed an in vitro brain ischemia model using our previously established 3D spheroids derived from primary postnatal rat cortex. These spheroids provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. This model is cost-effective, highly reproducible, and can be produced in a high-throughput manner, making it an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 h. Results Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of ischemic brain injury, including a decrease in metabolism, an increase in neural dysfunction, breakdown in the neurovascular unit, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP after oxygen-glucose deprivation, was partially neuroprotective, and enhanced the expression of laminin. Conclusion This 3D cortical spheroid model provides a platform for studying ischemic injury and has the potential for screening therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00046-z.
Collapse
Affiliation(s)
- Rachel M. McLaughlin
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02912 USA
| | - Ilayda Top
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Amanda Laguna
- Division of Biology and Medicine, Brown University, Providence, RI 02912 USA
| | | | - Harrison Katz
- Division of Biology and Medicine, Brown University, Providence, RI 02912 USA
| | - Liane L. Livi
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Liana Kramer
- Division of Biology and Medicine, Brown University, Providence, RI 02912 USA
| | - Samantha G. Zambuto
- Center for Biomedical Engineering, Brown University, Providence, RI 02912 USA
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02912 USA
- Center for Biomedical Engineering, Brown University, Providence, RI 02912 USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI 02912 USA
| |
Collapse
|
17
|
Swingler M, Donadoni M, Bellizzi A, Cakir S, Sariyer IK. iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. J Neurovirol 2023; 29:121-134. [PMID: 37097597 PMCID: PMC10127962 DOI: 10.1007/s13365-023-01133-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.
Collapse
Affiliation(s)
- Michael Swingler
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Senem Cakir
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
18
|
In Vitro 3D Modeling of Neurodegenerative Diseases. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010093. [PMID: 36671665 PMCID: PMC9855033 DOI: 10.3390/bioengineering10010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
The study of neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis) is very complex due to the difficulty in investigating the cellular dynamics within nervous tissue. Despite numerous advances in the in vivo study of these diseases, the use of in vitro analyses is proving to be a valuable tool to better understand the mechanisms implicated in these diseases. Although neural cells remain difficult to obtain from patient tissues, access to induced multipotent stem cell production now makes it possible to generate virtually all neural cells involved in these diseases (from neurons to glial cells). Many original 3D culture model approaches are currently being developed (using these different cell types together) to closely mimic degenerative nervous tissue environments. The aim of these approaches is to allow an interaction between glial cells and neurons, which reproduces pathophysiological reality by co-culturing them in structures that recapitulate embryonic development or facilitate axonal migration, local molecule exchange, and myelination (to name a few). This review details the advantages and disadvantages of techniques using scaffolds, spheroids, organoids, 3D bioprinting, microfluidic systems, and organ-on-a-chip strategies to model neurodegenerative diseases.
Collapse
|
19
|
Brown S, Atherton E, Borton DA. A Three-Dimensional Primary Cortical Culture System Compatible with Transgenic Disease Models, Virally Mediated Fluorescence, and Live Microscopy. Methods Mol Biol 2023; 2683:153-167. [PMID: 37300773 DOI: 10.1007/978-1-0716-3287-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In vitro cell culture models can offer high-resolution and high-throughput experimentation of cellular behaviors. However, in vitro culture approaches often fail to fully recapitulate complex cell processes involving synergistic interactions between heterogeneous neural cell populations and the surrounding neural microenvironment. Here, we describe the formation of a three-dimensional primary cortical cell culture system compatible with live confocal microscopy.
Collapse
Affiliation(s)
- Sophie Brown
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
| | - Elaina Atherton
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - David A Borton
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.
- Department of Veteran Affairs, Providence Medical Center, Center for Neurorestoration and Neurotechnology, Providence, RI, USA.
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
20
|
High throughput 3D gel-based neural organotypic model for cellular assays using fluorescence biosensors. Commun Biol 2022; 5:1236. [PMID: 36371462 PMCID: PMC9653447 DOI: 10.1038/s42003-022-04177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) organotypic models that capture native-like physiological features of tissues are being pursued as clinically predictive assays for therapeutics development. A range of these models are being developed to mimic brain morphology, physiology, and pathology of neurological diseases. Biofabrication of 3D gel-based cellular systems is emerging as a versatile technology to produce spatially and cell-type tailored, physiologically complex and native-like tissue models. Here we produce 3D fibrin gel-based functional neural co-culture models with human-iPSC differentiated dopaminergic or glutamatergic neurons and astrocytes. We further introduce genetically encoded fluorescence biosensors and optogenetics activation for real time functional measurements of intracellular calcium and levels of dopamine and glutamate neurotransmitters, in a high-throughput compatible plate format. We use pharmacological perturbations to demonstrate that the drug responses of 3D gel-based neural models are like those expected from in-vivo data, and in some cases, in contrast to those observed in the equivalent 2D neural models. Fibrin gel-based 3D co-culture models with human-iPSC differentiated dopaminergic or glutamatergic neurons and astrocytes are shown to be functional using biosensors and can be scaled up for high-throughput assays.
Collapse
|
21
|
Endogenous Synthesis of Tetrahydroisoquinoline Derivatives from Dietary Factors: Neurotoxicity Assessment on a 3D Neurosphere Culture. Molecules 2022; 27:molecules27217443. [PMID: 36364268 PMCID: PMC9656915 DOI: 10.3390/molecules27217443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Tetrahydroisoquinoline (THIQ) alkaloids and their derivatives have a structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a well-known neurotoxin. THIQs seem to present a broad range of actions in the brain, critically dependent on their catechol moieties and metabolism. These properties make it reasonable to assume that an acute or chronic exposure to some THIQs might lead to neurodegenerative diseases including essential tremor (ET). We developed a method to search for precursor carbonyl compounds produced during the Maillard reaction in overcooked meats to study their reactivity with endogenous amines and identify the reaction products. Then, we predicted in silico their pharmacokinetic and toxicological properties toward the central nervous system. Finally, their possible neurological effects on a novel in vitro 3D neurosphere model were assessed. The obtained data indicate that meat is an alkaloid precursor, and we identified the alkaloid 1-benzyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol (1-benz-6,7-diol THIQ) as the condensation product of phenylacetaldehyde with dopamine; in silico study of 1-benz-6,7-diol-THIQ reveals modulation of dopamine receptor D1 and D2; and in vitro study of 1-benz-6,7-diol-THIQ for cytotoxicity and oxidative stress induction does not show any difference after 24 h contact for all tested concentrations. To conclude, our in vitro data do not support an eventual neurotoxic effect for 1-benz-6,7-diol-THIQ.
Collapse
|
22
|
Amado B, Melo L, Pinto R, Lobo A, Barros P, Gomes JR. Ischemic Stroke, Lessons from the Past towards Effective Preclinical Models. Biomedicines 2022; 10:2561. [PMID: 36289822 PMCID: PMC9599148 DOI: 10.3390/biomedicines10102561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke is a leading cause of death worldwide, mainly in western countries. So far, approved therapies rely on reperfusion of the affected brain area, by intravenous thrombolysis or mechanical thrombectomy. The last approach constitutes a breakthrough in the field, by extending the therapeutic window to 16-24 h after stroke onset and reducing stroke mortality. The combination of pharmacological brain-protective strategies with reperfusion is the future of stroke therapy, aiming to reduce brain cell death and decrease patients' disabilities. Recently, a brain-protective drug-nerinetide-reduced brain infarct and stroke mortality, and improved patients' functional outcomes in clinical trials. The success of new therapies relies on bringing preclinical studies and clinical practice close together, by including a functional outcome assessment similar to clinical reality. In this review, we focused on recent upgrades of in vitro and in vivo stroke models for more accurate and effective evaluation of therapeutic strategies: from spheroids to organoids, in vitro models that include all brain cell types and allow high throughput drug screening, to advancements in in vivo preclinical mouse stroke models to mimic the clinical reality in surgical procedures, postsurgical care, and functional assessment.
Collapse
Affiliation(s)
- Beatriz Amado
- Molecular Neurobiology Group, IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Lúcia Melo
- Molecular Neurobiology Group, IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Raquel Pinto
- Molecular Neurobiology Group, IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | | | - Pedro Barros
- Neurology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Stroke Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
| | - João R. Gomes
- Molecular Neurobiology Group, IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
23
|
Atherton E, Hu Y, Brown S, Papiez E, Ling V, Colvin V, Borton D. A 3D in vitro model of the device-tissue interface: Functional and structural symptoms of innate neuroinflammation are mitigated by antioxidant ceria nanoparticles. J Neural Eng 2022; 19. [PMID: 35447619 DOI: 10.1088/1741-2552/ac6908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The recording instability of neural implants due to neuroinflammation at the device-tissue interface is a primary roadblock to broad adoption of brain-machine interfaces. While a multiphasic immune response, marked by glial scaring, oxidative stress (OS), and neurodegeneration, is well-characterized, the independent contributions of systemic and local "innate" immune responses are not well-understood. We aimed to understand and mitigate the isolated the innate neuroinflammatory response to devices. APPROACH Three-dimensional primary neural cultures provide a unique environment for studying the drivers of neuroinflammation by decoupling the innate and systemic immune systems, while conserving an endogenous extracellular matrix and structural and functional network complexity. We created a three-dimensional in vitro model of the DTI by seeding primary cortical cells around microwires. Live imaging of both dye and AAV-mediated functional, structural, and lipid peroxidation fluorescence was employed to characterize the neuroinflammatory response. MAIN RESULTS Live imaging of microtissues over time revealed independent innate neuroinflammation, marked by increased OS, decreased neuronal density, and increased functional connectivity. We demonstrated the use of this model for therapeutic screening by directly applying drugs to neural tissue, bypassing low bioavailability through the in vivo blood brain barrier. As there is growing interest in long-acting antioxidant therapies, we tested efficacy of "perpetual" antioxidant ceria nanoparticles, which reduced OS, increased neuronal density, and protected functional connectivity. SIGNIFICANCE Our 3D in vitro model of the device-tissue interface exhibited symptoms of OS-mediated innate neuroinflammation, indicating a significant local immune response to devices. The dysregulation of functional connectivity of microcircuits surround implants suggests the presence of an observer effect, in which the process of recording neural activity may fundamentally change the neural signal. Finally, the demonstration of antioxidant ceria nanoparticle treatment exhibited substantial promise as a neuroprotective and anti-inflammatory treatment strategy.
Collapse
Affiliation(s)
- Elaina Atherton
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Yue Hu
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Sophie Brown
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Emily Papiez
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Vivian Ling
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - Vicki Colvin
- Department of Chemistry, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| | - David Borton
- School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA, Providence, Rhode Island, 02912, UNITED STATES
| |
Collapse
|
24
|
Rathore RS, R Ayyannan S, Mahto SK. Emerging three-dimensional neuronal culture assays for neurotherapeutics drug discovery. Expert Opin Drug Discov 2022; 17:619-628. [DOI: 10.1080/17460441.2022.2061458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rahul S Rathore
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| | - Sanjeev K Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| |
Collapse
|
25
|
Herr DW. The Future of Neurotoxicology: A Neuroelectrophysiological Viewpoint. FRONTIERS IN TOXICOLOGY 2021; 3:1. [PMID: 34966904 PMCID: PMC8711081 DOI: 10.3389/ftox.2021.729788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroelectrophysiology is an old science, dating to the 18th century when electrical activity in nerves was discovered. Such discoveries have led to a variety of neurophysiological techniques, ranging from basic neuroscience to clinical applications. These clinical applications allow assessment of complex neurological functions such as (but not limited to) sensory perception (vision, hearing, somatosensory function), and muscle function. The ability to use similar techniques in both humans and animal models increases the ability to perform mechanistic research to investigate neurological problems. Good animal to human homology of many neurophysiological systems facilitates interpretation of data to provide cause-effect linkages to epidemiological findings. Mechanistic cellular research to screen for toxicity often includes gaps between cellular and whole animal/person neurophysiological changes, preventing understanding of the complete function of the nervous system. Building Adverse Outcome Pathways (AOPs) will allow us to begin to identify brain regions, timelines, neurotransmitters, etc. that may be Key Events (KE) in the Adverse Outcomes (AO). This requires an integrated strategy, from in vitro to in vivo (and hypothesis generation, testing, revision). Scientists need to determine intermediate levels of nervous system organization that are related to an AO and work both upstream and downstream using mechanistic approaches. Possibly more than any other organ, the brain will require networks of pathways/AOPs to allow sufficient predictive accuracy. Advancements in neurobiological techniques should be incorporated into these AOP-base neurotoxicological assessments, including interactions between many regions of the brain simultaneously. Coupled with advancements in optogenetic manipulation, complex functions of the nervous system (such as acquisition, attention, sensory perception, etc.) can be examined in real time. The integration of neurophysiological changes with changes in gene/protein expression can begin to provide the mechanistic underpinnings for biological changes. Establishment of linkages between changes in cellular physiology and those at the level of the AO will allow construction of biological pathways (AOPs) and allow development of higher throughput assays to test for changes to critical physiological circuits. To allow mechanistic/predictive toxicology of the nervous system to be protective of human populations, neuroelectrophysiology has a critical role in our future.
Collapse
Affiliation(s)
- David W. Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Washington, NC, United States
| |
Collapse
|
26
|
Sevetson JL, Theyel B, Hoffman-Kim D. Cortical spheroids display oscillatory network dynamics. LAB ON A CHIP 2021; 21:4586-4595. [PMID: 34734621 DOI: 10.1039/d1lc00737h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional brain cultures can facilitate the study of central nervous system function and disease, and one of the most important components that they present is neuronal activity on a network level. Here we demonstrate network activity in rodent cortical spheroids while maintaining the networks intact in their 3D state. Networks developed by nine days in culture and became more complex over time. To measure network activity, we imaged neurons in rat and mouse spheroids labelled with a calcium indicator dye, and in mouse spheroids expressing GCaMP. Network activity was evident when we electrically stimulated spheroids, was abolished with glutamatergic blockade, and was altered by GABAergic blockade or partial glutamatergic blockade. We quantified correlations and distances between somas with micron-scale spatial resolution. Spheroids seeded at as few as 4000 cells gave rise to emergent network events, including oscillations. These results are the first demonstration that self-assembled rat and mouse spheroids exhibit network activity consistent with in vivo network events. These results open the door to experiments on neuronal networks that require fewer animals and enable high throughput experiments on network-perturbing alterations in neurons and glia.
Collapse
Affiliation(s)
- Jessica L Sevetson
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Center for the Alternatives to Animals in Testing, Brown University, Providence, RI 02906, USA
| | - Brian Theyel
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Department of Psychiatry, Brown University, Providence, RI 02906, USA
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Center for the Alternatives to Animals in Testing, Brown University, Providence, RI 02906, USA
- Center for Biomedical Engineering, Brown University, Providence, RI 02906, USA
| |
Collapse
|
27
|
Lipopolysaccharide-induced neuroinflammation disrupts functional connectivity and community structure in primary cortical microtissues. Sci Rep 2021; 11:22303. [PMID: 34785714 PMCID: PMC8595892 DOI: 10.1038/s41598-021-01616-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) neural microtissues are a powerful in vitro paradigm for studying brain development and disease under controlled conditions, while maintaining many key attributes of the in vivo environment. Here, we used primary cortical microtissues to study the effects of neuroinflammation on neural microcircuits. We demonstrated the use of a genetically encoded calcium indicator combined with a novel live-imaging platform to record spontaneous calcium transients in microtissues from day 14-34 in vitro. We implemented graph theory analysis of calcium activity to characterize underlying functional connectivity and community structure of microcircuits, which are capable of capturing subtle changes in network dynamics during early disease states. We found that microtissues cultured for 34 days displayed functional remodeling of microcircuits and that community structure strengthened over time. Lipopolysaccharide, a neuroinflammatory agent, significantly increased functional connectivity and disrupted community structure 5-9 days after exposure. These microcircuit-level changes have broad implications for the role of neuroinflammation in functional dysregulation of neural networks.
Collapse
|
28
|
Lee AJ, Yoon D, Han S, Hugonnet H, Park W, Park JK, Nam Y, Park Y. Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:6928-6939. [PMID: 34858689 PMCID: PMC8606138 DOI: 10.1364/boe.439404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/10/2023]
Abstract
The highly complex central nervous systems of mammals are often studied using three-dimensional (3D) in vitro primary neuronal cultures. A coupled confocal microscopy and immunofluorescence labeling are widely utilized for visualizing the 3D structures of neurons. However, this requires fixation of the neurons and is not suitable for monitoring an identical sample at multiple time points. Thus, we propose a label-free monitoring method for 3D neuronal growth based on refractive index tomograms obtained by optical diffraction tomography. The 3D morphology of the neurons was clearly visualized, and the developmental processes of neurite outgrowth in 3D spaces were analyzed for individual neurons.
Collapse
Affiliation(s)
- Ariel J Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
- Current Affiliation: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Contributed equally
| | - DongJo Yoon
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
- Contributed equally
| | - SeungYun Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
- Current Affiliation: Department of Applied Physics, Yale University, New Haven, CT 06520, USA
- Contributed equally
| | - Herve Hugonnet
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - WeiSun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - YoonKey Nam
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
- Tomocube Inc., Daejeon, Republic of Korea
| |
Collapse
|
29
|
Miller DR, McClain ES, Dodds JN, Balinski A, May JC, McLean JA, Cliffel DE. Chlorpyrifos Disrupts Acetylcholine Metabolism Across Model Blood-Brain Barrier. Front Bioeng Biotechnol 2021; 9:622175. [PMID: 34513802 PMCID: PMC8431803 DOI: 10.3389/fbioe.2021.622175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/16/2021] [Indexed: 01/25/2023] Open
Abstract
Despite the significant progress in both scientific understanding and regulations, the safety of agricultural pesticides continues to be called into question. The need for complementary analytics to identify dysregulation events associated with chemical exposure and leverage this information to predict biological responses remains. Here, we present a platform that combines a model organ-on-chip neurovascular unit (NVU) with targeted mass spectrometry (MS) and electrochemical analysis to assess the impact of organophosphate (OP) exposure on blood-brain barrier (BBB) function. Using the NVU to simulate exposure, an escalating dose of the organophosphate chlorpyrifos (CPF) was administered. With up to 10 μM, neither CPF nor its metabolites were detected across the BBB (limit of quantitation 0.1 µM). At 30 µM CPF and above, targeted MS detected the main urinary metabolite, trichloropyridinol (TCP), across the BBB (0.025 µM) and no other metabolites. In the vascular chamber where CPF was directly applied, two primary metabolites of CPF, TCP and diethylthiophosphate (DETP), were both detected (0.1–5.7 µM). In a second experiment, a constant dose of 10 µM CPF was administered to the NVU, and though neither CPF nor its metabolites were detected across the BBB after 24 h, electrochemical analysis detected increases in acetylcholine levels on both sides of the BBB (up to 24.8 ± 3.4 µM) and these levels remained high over the course of treatment. In the vascular chamber where CPF was directly applied, only TCP was detected (ranging from 0.06 μM at 2 h to 0.19 μM at 24 h). These results provide chemical evidence of the substantial disruption induced by this widely used commercial pesticide. This work reinforces previously observed OP metabolism and mechanisms of impact, validates the use of the NVU for OP toxicology testing, and provides a model platform for analyzing these organotypic systems.
Collapse
Affiliation(s)
- Dusty R Miller
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Ethan S McClain
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - James N Dodds
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| | - Andrzej Balinski
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
30
|
Kim JJ, Jorfi M, Tanzi RE, Kim DY, Doyle PS, Irimia D. Patterning of interconnected human brain spheroids. LAB ON A CHIP 2021; 21:3532-3540. [PMID: 34286713 PMCID: PMC9142085 DOI: 10.1039/d0lc01112f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Brain spheroids are emerging as valuable in vitro models that are accelerating the pace of research in various diseases. For Alzheimer's disease (AD) research, these models are enhanced using genetically engineered human neural progenitor cells and novel cell culture methods. However, despite these advances, it remains challenging to study the progression of AD in vitro as well as the propagation of pathogenic amyloid-β (Aβ) and tau tangles between diseased and healthy neurons using the brain spheroids model. To address this need, we designed a microfluidic system of connected microwells for arranging two types of brain spheroids in complex patterns and enabling the formation of thick bundles of neurites between the brain spheroids and the accumulation of pathogenic Aβ within the spheroids.
Collapse
Affiliation(s)
- Jae Jung Kim
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Mehdi Jorfi
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
- Shriners Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Ko E, Poon MLS, Park E, Cho Y, Shin JH. Engineering 3D Cortical Spheroids for an In Vitro Ischemic Stroke Model. ACS Biomater Sci Eng 2021; 7:3845-3860. [PMID: 34275269 DOI: 10.1021/acsbiomaterials.1c00406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) spheroids composed of brain cells have shown great potential to mimic the pathophysiology of the brain. However, a 3D spheroidal brain-disease model for cerebral ischemia has not been reported. This study investigated an ultralow attachment (ULA) surface-mediated formation of 3D cortical spheroids using primary rat cortical cells to recapitulate the cerebral ischemic responses in stroke by oxygen-glucose deprivation-reoxygenation (OGD-R) treatment. Comparison between two-dimensional (2D) and 3D cell culture models confirmed the better performance of the 3D cortical spheroids as normal brain models. The cortical cells cultured in 3D maintained their healthy physiological morphology of a less activated state and suppressed mRNA expressions of pathological stroke markers, S100B, IL-1β, and MBP, selected based on in vivo stroke model. Interestingly, the spheroids formed on the ULA surface exhibited striking aggregation dynamics involving active cell-substrate interactions, whereas those formed on the agarose surface aggregated passively by the convective flow of the media. Accordingly, ULA spheroids manifested a layered arrangement of neurons and astrocytes with higher expressions of integrin β1, integrin α5, N-cadherin, and fibronectin than the agarose spheroids. OGD-R-induced stroke model of the ULA spheroids successfully mimicked the ischemic response as evidenced by the upregulated mRNA expressions of the key markers for stroke, S100B, IL-1β, and MBP. Our study suggested that structurally and functionally distinct cortical spheroids could be generated by simply tuning the cell-substrate binding activities during dynamic spheroidal formation, which should be an essential factor to consider in establishing a brain-disease model.
Collapse
Affiliation(s)
- Eunmin Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Mong Lung Steve Poon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
32
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
33
|
Neuron and astrocyte aggregation and sorting in three-dimensional neuronal constructs. Commun Biol 2021; 4:587. [PMID: 34002005 PMCID: PMC8129100 DOI: 10.1038/s42003-021-02104-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Aggregation and self-sorting of cells in three dimensional cultures have been described for non-neuronal cells. Despite increased interest in engineered neural tissues for treating brain injury or for modeling neurological disorders in vitro, little data is available on collective cell movements in neuronal aggregates. Migration and sorting of cells may alter these constructs' morphology and, therefore, the function of their neural circuitry. In this work, linear, adhered rat and human 3D neuronal-astrocyte cultures were developed to enable the study of aggregation and sorting of these cells. An in silico model of the contraction, clustering, and cell sorting in the 3D cultures was also developed. Experiments and computational modeling showed that aggregation was mainly a neuron mediated process, and formation of astrocyte-rich sheaths in 3D cultures depended on differential attraction between neurons and astrocytes. In silico model predicted formation of self-assembled neuronal layers in disk-shaped 3D cultures. Neuronal activity patterns were found to correlate with local morphological differences. This model of neuronal and astrocyte aggregation and sorting may benefit future design of neuronal constructs.
Collapse
|
34
|
Peng Y, Chu S, Yang Y, Zhang Z, Pang Z, Chen N. Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders. Front Pharmacol 2021; 12:671734. [PMID: 33967814 PMCID: PMC8103160 DOI: 10.3389/fphar.2021.671734] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Cell cultures are used in pharmaceutical, medical and biological sciences. Due to the ethical and cost limitations of in vivo models, the replaceable cell model that is more closely related to the characteristics of organisms, which has broad prospects and can be used for high-throughput drug screening is urgent. Neuronal and glial cell models have been widely used in the researches of neurological disorders. And the current researches on neuroinflammation contributes to blood-brain barrier (BBB) damage. In this review, we describe the features of healthy and inflamed BBB and summarize the main immortalized cell lines of the central nervous system (PC12, SH-SY5Y, BV2, HA, and HBMEC et al.) and their use in the anti-inflammatory potential of neurological disorders. Especially, different co-culture models of neuroinflammatory, in association with immune cells in both 2D and 3D models are discussed in this review. In summary, 2D co-culture is easily practicable and economical but cannot fully reproduce the microenvironment in vivo. While 3D models called organs-on-chips or biochips are the most recent and very promising approach, which made possible by bioengineering and biotechnological improvements and more accurately mimic the BBB microenvironment.
Collapse
Affiliation(s)
- Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Naihong Chen
- School of Pharmacy, Minzu University of China, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
35
|
Kalmykov A, Reddy JW, Bedoyan E, Wang Y, Garg R, Rastogi SK, Cohen-Karni D, Chamanzar M, Cohen-Karni T. Bioelectrical interfaces with cortical spheroids in three-dimensions. J Neural Eng 2021; 18. [PMID: 33770775 DOI: 10.1088/1741-2552/abf290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/26/2021] [Indexed: 11/12/2022]
Abstract
Objective.Three-dimensional (3D) neuronal spheroid culture serves as a powerful model system for the investigation of neurological disorders and drug discovery. The success of such a model system requires techniques that enable high-resolution functional readout across the entire spheroid. Conventional microelectrode arrays and implantable neural probes cannot monitor the electrophysiology (ephys) activity across the entire native 3D geometry of the cellular construct.Approach.Here, we demonstrate a 3D self-rolled biosensor array (3D-SR-BA) integrated with a 3D cortical spheroid culture for simultaneousin vitroephys recording, functional Ca2+imaging, while monitoring the effect of drugs. We have also developed a signal processing pipeline to detect neural firings with high spatiotemporal resolution from the ephys recordings based on established spike sorting methods.Main results.The 3D-SR-BAs cortical spheroid interface provides a stable, high sensitivity recording of neural action potentials (<50µV peak-to-peak amplitude). The 3D-SR-BA is demonstrated as a potential drug screening platform through the investigation of the neural response to the excitatory neurotransmitter glutamate. Upon addition of glutamate, the neural firing rates increased notably corresponding well with the functional Ca2+imaging.Significance.Our entire system, including the 3D-SR-BA integrated with neuronal spheroid culture, enables simultaneous ephys recording and functional Ca2+imaging with high spatiotemporal resolution in conjunction with chemical stimulation. We demonstrate a powerful toolset for future studies of tissue development, disease progression, and drug testing and screening, especially when combined with native spheroid cultures directly extracted from humans.
Collapse
Affiliation(s)
- Anna Kalmykov
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Jay W Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Esther Bedoyan
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Devora Cohen-Karni
- Preclinical education, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, United States of America
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Tzahi Cohen-Karni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America.,Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
36
|
Rouleau N, Murugan NJ, Kaplan DL. Toward Studying Cognition in a Dish. Trends Cogn Sci 2021; 25:294-304. [PMID: 33546973 PMCID: PMC7946736 DOI: 10.1016/j.tics.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Bioengineered neural tissues help advance our understanding of neurodevelopment, regeneration, and neural disease; however, it remains unclear whether they can replicate higher-order functions including cognition. Building upon technical achievements in the fields of biomaterials, tissue engineering, and cell biology, investigators have generated an assortment of artificial brain structures and cocultured circuits. Though they have displayed basic electrochemical signaling, their capacities to generate minimal patterns of information processing suggestive of high-order cognitive analogues have not yet been explored. Here, we review the current state of neural tissue engineering and consider the possibility of a study of cognition in vitro. We adopt a practical definition of minimal cognition, anticipate problems of measurement, and discuss solutions toward a study of cognition in a dish.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Psychology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, Canada, P6A 2G4; Department of Biomedical Engineering, Tufts University, Science and Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Nirosha J Murugan
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, Canada, P6A 2G4
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science and Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
37
|
Weber CM, Clyne AM. Sex differences in the blood-brain barrier and neurodegenerative diseases. APL Bioeng 2021; 5:011509. [PMID: 33758788 PMCID: PMC7968933 DOI: 10.1063/5.0035610] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
The number of people diagnosed with neurodegenerative diseases is on the rise. Many of these diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and motor neuron disease, demonstrate clear sexual dimorphisms. While sex as a biological variable must now be included in animal studies, sex is rarely included in in vitro models of human neurodegenerative disease. In this Review, we describe these sex-related differences in neurodegenerative diseases and the blood-brain barrier (BBB), whose dysfunction is linked to neurodegenerative disease development and progression. We explain potential mechanisms by which sex and sex hormones affect BBB integrity. Finally, we summarize current in vitro BBB bioengineered models and highlight their potential to study sex differences in BBB integrity and neurodegenerative disease.
Collapse
Affiliation(s)
- Callie M. Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
38
|
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. MICROMACHINES 2021; 12:124. [PMID: 33498905 PMCID: PMC7912435 DOI: 10.3390/mi12020124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC-electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.
Collapse
Affiliation(s)
- Csaba Forro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Davide Caron
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Vincenzo Gallo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Francesca Santoro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| |
Collapse
|
39
|
Bozhko DV, Galumov GK, Polovian AI, Kolchanova SM, Myrov VO, Stelmakh VA, Schiöth HB. BCNNM: A Framework for in silico Neural Tissue Development Modeling. Front Comput Neurosci 2021; 14:588224. [PMID: 33551782 PMCID: PMC7855713 DOI: 10.3389/fncom.2020.588224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/18/2020] [Indexed: 12/02/2022] Open
Abstract
Cerebral (“brain”) organoids are high-fidelity in vitro cellular models of the developing brain, which makes them one of the go-to methods to study isolated processes of tissue organization and its electrophysiological properties, allowing to collect invaluable data for in silico modeling neurodevelopmental processes. Complex computer models of biological systems supplement in vivo and in vitro experimentation and allow researchers to look at things that no laboratory study has access to, due to either technological or ethical limitations. In this paper, we present the Biological Cellular Neural Network Modeling (BCNNM) framework designed for building dynamic spatial models of neural tissue organization and basic stimulus dynamics. The BCNNM uses a convenient predicate description of sequences of biochemical reactions and can be used to run complex models of multi-layer neural network formation from a single initial stem cell. It involves processes such as proliferation of precursor cells and their differentiation into mature cell types, cell migration, axon and dendritic tree formation, axon pathfinding and synaptogenesis. The experiment described in this article demonstrates a creation of an in silico cerebral organoid-like structure, constituted of up to 1 million cells, which differentiate and self-organize into an interconnected system with four layers, where the spatial arrangement of layers and cells are consistent with the values of analogous parameters obtained from research on living tissues. Our in silico organoid contains axons and millions of synapses within and between the layers, and it comprises neurons with high density of connections (more than 10). In sum, the BCNNM is an easy-to-use and powerful framework for simulations of neural tissue development that provides a convenient way to design a variety of tractable in silico experiments.
Collapse
Affiliation(s)
- Dmitrii V Bozhko
- JetBrains Research Department, Space Office Center, Saint Petersburg, Russia
| | - Georgii K Galumov
- JetBrains Research Department, Space Office Center, Saint Petersburg, Russia
| | | | - Sofiia M Kolchanova
- JetBrains Research Department, Space Office Center, Saint Petersburg, Russia.,Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR, United States.,Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Saint Petersburg, Russia
| | - Vladislav O Myrov
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Viktoriia A Stelmakh
- JetBrains Research Department, Space Office Center, Saint Petersburg, Russia.,Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
40
|
Yeo M, Chae S, Kim G. An in vitro model using spheroids-laden nanofibrous structures for attaining high degree of myoblast alignment and differentiation. Am J Cancer Res 2021; 11:3331-3347. [PMID: 33537090 PMCID: PMC7847672 DOI: 10.7150/thno.53928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
A spheroid is an aggregation of single cells with structural and functional characteristics similar to those of 3D native tissues, and it has been utilized as one of the typical in vitro three-dimensional (3D) cell models. Scaffold-free spheroids provide outstanding reflection of tissue complexity in a 3D in vivo-like environment, but they can neither fabricate realistic macroscale 3D complex structures without avoiding necrosis nor receive direct external stimuli (i.e., stimuli from mechanical or topographical cues). Here, we propose a spheroid-laden electrospinning process to obtain in vitro model achieved using the synergistic effect of the unique bioactive components provided by the spheroids and stimulating effects provided by the aligned nanofibers. Methods: To show the functional activity of the spheroid-laden structures, we used myoblast-spheroids to obtain skeletal muscle, comprising highly aligned myotubes, utilizing an uniaxially arranged topographical cue. The spheroid-electrospinning was used to align spheroids directly by embedding them in aligned alginate nanofibers, which were controlled with various materials and processing parameters. Results: The spheroids laden in the alginate nanofibers showed high cell viability (>90%) and was compared with that of a cell-laden alginate nanofiber that was electrospun with single cells. Consequently, the spheroids laden in the aligned nanofibers showed a significantly higher degree of myotube formation and maturation. Conclusion: Results suggested that the in vitro model using electrospun spheroids could potentially be employed to understand myogenic responses for various in vitro drug tests.
Collapse
|
41
|
Dufau J, Shen JX, Couchet M, De Castro Barbosa T, Mejhert N, Massier L, Griseti E, Mouisel E, Amri EZ, Lauschke VM, Rydén M, Langin D. In vitro and ex vivo models of adipocytes. Am J Physiol Cell Physiol 2021; 320:C822-C841. [PMID: 33439778 DOI: 10.1152/ajpcell.00519.2020] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology. Moreover, adipocytes release lipids and proteins with paracrine and endocrine functions. The intrinsic properties of adipocytes pose specific challenges in culture. Mature adipocytes float in suspension culture due to high triacylglycerol content and are fragile. Moreover, a fully differentiated state, notably acquirement of the unilocular lipid droplet of white adipocyte, has so far not been reached in two-dimensional culture. Cultures of mouse and human-differentiated preadipocyte cell lines and primary cells have been established to mimic white, beige, and brown adipocytes. Here, we survey various models of differentiated preadipocyte cells and primary mature adipocyte survival describing main characteristics, culture conditions, advantages, and limitations. An important development is the advent of three-dimensional culture, notably of adipose spheroids that recapitulate in vivo adipocyte function and morphology in fat depots. Challenges for the future include isolation and culture of adipose-derived stem cells from different anatomic location in animal models and humans differing in sex, age, fat mass, and pathophysiological conditions. Further understanding of fat cell physiology and dysfunction will be achieved through genetic manipulation, notably CRISPR-mediated gene editing. Capturing adipocyte heterogeneity at the single-cell level within a single fat depot will be key to understanding diversities in cardiometabolic parameters among lean and obese individuals.
Collapse
Affiliation(s)
- Jérémy Dufau
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Joanne X Shen
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Morgane Couchet
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | | | - Niklas Mejhert
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Lucas Massier
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Elena Griseti
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Etienne Mouisel
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Volker M Lauschke
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Mikael Rydén
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Dominique Langin
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Toulouse University Hospitals, Department of Biochemistry, Toulouse, France
| |
Collapse
|
42
|
Estrada JB, Cramer HC, Scimone MT, Buyukozturk S, Franck C. Neural cell injury pathology due to high-rate mechanical loading. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
43
|
Abstract
Engineered human mini-brains, made possible by knowledge from the convergence of precision microengineering and cell biology, permit systematic studies of complex neurological processes and of pathogenesis beyond what can be done with animal models. By culturing human brain cells with physiological microenvironmental cues, human mini-brain models reconstitute the arrangement of structural tissues and some of the complex biological functions of the human brain. In this Review, we highlight the most significant developments that have led to microphysiological human mini-brain models. We introduce the history of mini-brain development, review methods for creating mini-brain models in static conditions, and discuss relevant state-of-the-art dynamic cell-culture systems. We also review human mini-brain models that reconstruct aspects of major neurological disorders under static or dynamic conditions. Engineered human mini-brains will contribute to advancing the study of the physiology and aetiology of neurological disorders, and to the development of personalized medicines for them.
Collapse
|
44
|
Lecomte A, Giantomasi L, Rancati S, Boi F, Angotzi GN, Berdondini L. Surface-Functionalized Self-Standing Microdevices Exhibit Predictive Localization and Seamless Integration in 3D Neural Spheroids. ACTA ACUST UNITED AC 2020; 4:e2000114. [PMID: 33135377 DOI: 10.1002/adbi.202000114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Brain organoids is an exciting technology proposed to advance studies on human brain development, diseases, and possible therapies. Establishing and applying such models, however, is hindered by the lack of technologies to chronically monitor neural activity. A promising new approach comprising self-standing biosensing microdevices capable of achieving seamless tissue integration during cell aggregation and culture. To date, there is little information on how to control the aggregation of such bioartificial 3D neural assemblies. Here, the growth of hybrid neurospheroids obtained by the aggregation of silicon sham microchips (100 × 100 × 50 μm3 ) with primary cortical cells is investigated. Results obtained via protein-binding microchips with different molecules reveal that surface functionalization can tune the integration and final 3D location of self-standing microdevices into neurospheroids. Morphological and functional characterization suggests that the presence of an integrated microdevice does not alter spheroid growth, cellular composition, nor functional development. Ultimately, cells and microdevices constituting such hybrid neurospheroids can be disaggregated for further single-cell analysis, and quantifications confirm an unaltered ratio of neurons and glia. These results uncover the potential of surface-engineered self-standing microdevices to grow untethered 3D brain tissue models with inbuilt bioelectronic sensors at predefined sites.
Collapse
Affiliation(s)
- Aziliz Lecomte
- Fondazione Istituto Italiano di Tecnologia (IIT), NetS3 Lab, Genova, 16163, Italy
| | - Lidia Giantomasi
- Fondazione Istituto Italiano di Tecnologia (IIT), NetS3 Lab, Genova, 16163, Italy
| | - Silvia Rancati
- Fondazione Istituto Italiano di Tecnologia (IIT), Neurobiology of miRNA Lab, Genova, 16163, Italy
| | - Fabio Boi
- Fondazione Istituto Italiano di Tecnologia (IIT), NetS3 Lab, Genova, 16163, Italy
| | - Gian Nicola Angotzi
- Fondazione Istituto Italiano di Tecnologia (IIT), NetS3 Lab, Genova, 16163, Italy
| | - Luca Berdondini
- Fondazione Istituto Italiano di Tecnologia (IIT), NetS3 Lab, Genova, 16163, Italy
| |
Collapse
|
45
|
Lovett ML, Nieland TJ, Dingle YTL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909146. [PMID: 34211358 PMCID: PMC8240470 DOI: 10.1002/adfm.201909146] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/04/2023]
Abstract
3-dimensional (3D) laboratory tissue cultures have emerged as an alternative to traditional 2-dimensional (2D) culture systems that do not recapitulate native cell behavior. The discrepancy between in vivo and in vitro tissue-cell-molecular responses impedes understanding of human physiology in general and creates roadblocks for the discovery of therapeutic solutions. Two parallel approaches have emerged for the design of 3D culture systems. The first is biomedical engineering methodology, including bioengineered materials, bioprinting, microfluidics and bioreactors, used alone or in combination, to mimic the microenvironments of native tissues. The second approach is organoid technology, in which stem cells are exposed to chemical and/or biological cues to activate differentiation programs that are reminiscent of human (prenatal) development. This review article describes recent technological advances in engineering 3D cultures that more closely resemble the human brain. The contributions of in vitro 3D tissue culture systems to new insights in neurophysiology, neurological diseases and regenerative medicine are highlighted. Perspectives on designing improved tissue models of the human brain are offered, focusing on an integrative approach merging biomedical engineering tools with organoid biology.
Collapse
Affiliation(s)
- Michael L. Lovett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| |
Collapse
|
46
|
Wan X, Wu X, Hill MA, Ebner DV. ReN VM spheroids in matrix: A neural progenitor three-dimensional in vitro model reveals DYRK1A inhibitors as potential regulators of radio-sensitivity. Biochem Biophys Res Commun 2020; 531:535-542. [PMID: 32807492 DOI: 10.1016/j.bbrc.2020.07.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Pre-clinical testing of small molecules for therapeutic development across many pathologies relies on the use of in-vitro and in-vivo models. When designed and implemented well, these models serve to predict the clinical outcome as well as the toxicity of the evaluated therapies. The two-dimensional (2D) reductionist approach where cells are incubated in a mono-layer on hard plastic microtiter plates is relatively inexpensive but not physiologically relevant. In contrast, well developed and applied three dimensional (3D) in vitro models could be employed to bridge the gap between 2D in vitro primary screening and expensive in vivo rodent models by incorporating key features of the tissue microenvironment to explore differentiation, cortical development, cancers and various neuronal dysfunctions. These features include an extracellular matrix, co-culture, tension and perfusion and could replace several hundred rodents in the drug screening validation cascade. METHODS Human neural progenitor cells from middle brain (ReN VM, Merck Millipore, UK) were expanded as instructed by the supplier (Merck Millipore, UK), and then seeded in 96-well low-attachment plates (Corning, UK) to form multicellular spheroids followed by adding a Matrigel layer to mimic extracellular matrix around neural stem cell niche. ReN VM cells were then differentiated via EGF and bFGF deprivation for 7 days and were imaged at day 7. Radiotherapy was mimicked via gamma-radiation at 2Gy in the absence and presence of selected DYRK1A inhibitors Harmine, INDY and Leucettine 41 (L41). Cell viability was measured by AlamarBlue assay. Immunofluorescence staining was used to assess cell pluripotency marker SOX2 and differentiation marker GFAP. RESULTS After 7 days of differentiation, neuron early differentiation marker (GFAP, red) started to be expressed among the cells expressing neural stem cell marker SOX2 (green). Radiation treatment caused significant morphology change including the reduced viability of the spheroids. These spheroids also revealed sensitizing potential of DYRK1A inhibitors tested in this study, including Harmine, INDY and L41. DISCUSSION & CONCLUSIONS Combined with the benefit of greatly reducing the issues associated with in vivo rodent models, including reducing numbers of animals used in a drug screening cascade, cost, ethics, and potential animal welfare burden, we feel the well-developed and applied 3D neural spheroid model presented in this study will provide a crucial tool to evaluate combinatorial therapies, optimal drug concentrations and treatment dosages.
Collapse
Affiliation(s)
- Xiao Wan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, England, UK
| | - Xiaoning Wu
- Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ, Oxford, England, UK
| | - Mark A Hill
- Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ, Oxford, England, UK
| | - Daniel V Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, England, UK.
| |
Collapse
|
47
|
Pasturel A, Strale P, Studer V. Tailoring Common Hydrogels into 3D Cell Culture Templates. Adv Healthc Mater 2020; 9:e2000519. [PMID: 32743980 DOI: 10.1002/adhm.202000519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Physiologically relevant cell-based models require engineered microenvironments which recapitulate the topographical, biochemical, and mechanical properties encountered in vivo. In this context, hydrogels are the materials of choice. Here a light-based toolbox is able to craft such microniches out of common place materials. Extensive use of benzophenone photoinitiators and their interaction with oxygen achieves this. First, the oxygen inhibition of radicals is harnessed to photoprint hydrogel topographies. Then the chemical properties of benzophenone are exploited to crosslink and functionalize native hydrogels lacking photosensitive moieties. At last, photoscission is introduced: an oxygen-driven, benzophenone-enabled reaction that photoliquefies Matrigel and other common gels. Using these tools, soft hydrogel templates are tailored for cells to grow or self-organize into standardized structures. The described workflow emerges as an effective microniche manufacturing toolset for 3D cell culture.
Collapse
Affiliation(s)
- Aurélien Pasturel
- Interdisciplinary Institute for Neuroscience University of Bordeaux CNRS UMR 5297 Bordeaux F‐33000 France
- Alvéole 30 rue de Campo Formio Paris F‐75013 France
| | | | - Vincent Studer
- Interdisciplinary Institute for Neuroscience University of Bordeaux CNRS UMR 5297 Bordeaux F‐33000 France
| |
Collapse
|
48
|
Dingle YTL, Liaudanskaya V, Finnegan LT, Berlind KC, Mizzoni C, Georgakoudi I, Nieland TJF, Kaplan DL. Functional Characterization of Three-Dimensional Cortical Cultures for In Vitro Modeling of Brain Networks. iScience 2020; 23:101434. [PMID: 32805649 PMCID: PMC7452433 DOI: 10.1016/j.isci.2020.101434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/27/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Three-dimensional (3D) in vitro cultures recapitulate key features of the brain including morphology, cell-cell and cell-extracellular matrix interactions, gradients of factors, and mechanical properties. However, there remains a need for experimental and computational tools to investigate network functions in these 3D models. To address this need, we present an experimental system based on 3D scaffold-based cortical neuron cultures in which we expressed the genetically encoded calcium indicator GCaMP6f to record neuronal activity at the millimeter-scale. Functional neural network descriptors were computed with graph-theory-based network analysis methods, showing the formation of functional networks at 3 weeks of culture. Changes to the functional network properties upon perturbations to glutamatergic neurotransmission or GABAergic neurotransmission were quantitatively characterized. The results illustrate the applicability of our 3D experimental system for the study of brain network development, function, and disruption in a biomimetic microenvironment.
Collapse
Affiliation(s)
- Yu-Ting L Dingle
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Liam T Finnegan
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Kyler C Berlind
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA.
| |
Collapse
|
49
|
Heuer RA, Nella KT, Chang HT, Coots KS, Oleksijew AM, Roque CB, Silva LHA, McGuire TL, Homma K, Matsuoka AJ. Three-Dimensional Otic Neuronal Progenitor Spheroids Derived from Human Embryonic Stem Cells. Tissue Eng Part A 2020; 27:256-269. [PMID: 32580647 DOI: 10.1089/ten.tea.2020.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cell-replacement therapies have been proposed as a potential tool to treat sensorineural hearing loss by aiding the regeneration of spiral ganglion neurons (SGNs) in the inner ear. However, transplantation procedures have yet to be explored thoroughly to ensure proper cell differentiation and optimal transplant procedures. We hypothesized that the aggregation of human embryonic stem cell (hESC)-derived otic neuronal progenitor (ONP) cells into a multicellular form would improve their function and their survival in vivo post-transplantation. We generated hESC-derived ONP spheroids-an aggregate form conducive to differentiation, transplantation, and prolonged cell survival-to optimize conditions for their transplantation. Our findings indicate that these cell spheroids maintain the molecular and functional characteristics similar to those of ONP cells, which are upstream in the SGN lineage. Moreover, our phenotypical, electrophysiological, and mechanical data suggest an optimal spheroid transplantation point after 7 days of in vitro three-dimensional (3D) culture. We have also developed a feasible transplantation protocol for these spheroids using a micropipette aided by a digital microinjection system. In summary, the present work demonstrates that the transplantation of ONP cells in spheroid form into the inner ear through micropipette 7 days after seeding for 3D spheroid culture is an expedient and viable method for stem cell replacement therapies in the inner ear.
Collapse
Affiliation(s)
- Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin T Nella
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hsiang-Tsun Chang
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kyle S Coots
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew M Oleksijew
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Luisa H A Silva
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Hugh Knowles Center for Hearing Research and Northwestern University, Evanston, Illinois, USA
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Hugh Knowles Center for Hearing Research and Northwestern University, Evanston, Illinois, USA.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
50
|
Balion Z, Cėpla V, Svirskiene N, Svirskis G, Druceikaitė K, Inokaitis H, Rusteikaitė J, Masilionis I, Stankevičienė G, Jelinskas T, Ulčinas A, Samanta A, Valiokas R, Jekabsone A. Cerebellar Cells Self-Assemble into Functional Organoids on Synthetic, Chemically Crosslinked ECM-Mimicking Peptide Hydrogels. Biomolecules 2020; 10:E754. [PMID: 32408703 PMCID: PMC7277677 DOI: 10.3390/biom10050754] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Hydrogel-supported neural cell cultures are more in vivo-relevant compared to monolayers formed on glass or plastic substrates. However, there is a lack of synthetic microenvironment available for obtaining standardized and easily reproducible cultures characterized by tissue-mimicking cell composition, cell-cell interactions, and functional networks. Synthetic peptides representing the biological properties of the extracellular matrix (ECM) proteins have been reported to promote the adhesion-driven differentiation and functional maturation of neural cells. Thus, such peptides can serve as building blocks for engineering a standardized, all-synthetic environment. In this study, we have compared the effect of two chemically crosslinked hydrogel compositions on primary cerebellar cells: collagen-like peptide (CLP), and CLP with an integrin-binding motif arginine-glycine-aspartate (CLP-RGD), both conjugated to polyethylene glycol molecular templates (PEG-CLP and PEG-CLP-RGD, respectively) and fabricated as self-supporting membranes. Both compositions promoted a spontaneous organization of primary cerebellar cells into tissue-like clusters with fast-rising Ca2+ signals in soma, reflecting action potential generation. Notably, neurons on PEG-CLP-RGD had more neurites and better synaptic efficiency compared to PEG-CLP. For comparison, poly-L-lysine-coated glass and plastic surfaces did not induce formation of such spontaneously active networks. Additionally, contrary to the hydrogel membranes, glass substrates functionalized with PEG-CLP and PEG-CLP-RGD did not sufficiently support cell attachment and, subsequently, did not promote functional cluster formation. These results indicate that not only chemical composition but also the hydrogel structure and viscoelasticity are essential for bioactive signaling. The synthetic strategy based on ECM-mimicking, multifunctional blocks in registry with chemical crosslinking for obtaining tissue-like mechanical properties is promising for the development of fast and well standardized functional in vitro neural models and new regenerative therapies.
Collapse
Affiliation(s)
- Zbigniev Balion
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT-50162 Kaunas, Lithuania; (Z.B.); (J.R.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (N.S.); (G.S.)
| | - Vytautas Cėpla
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania;
| | - Nataša Svirskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (N.S.); (G.S.)
| | - Gytis Svirskis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (N.S.); (G.S.)
| | - Kristina Druceikaitė
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
| | - Hermanas Inokaitis
- Institute of Anatomy, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-43074 Kaunas, Lithuania;
| | - Justina Rusteikaitė
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT-50162 Kaunas, Lithuania; (Z.B.); (J.R.)
| | - Ignas Masilionis
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
| | - Gintarė Stankevičienė
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania;
| | - Tadas Jelinskas
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
| | - Artūras Ulčinas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania;
| | - Ayan Samanta
- Polymer Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden;
| | - Ramūnas Valiokas
- Ferentis UAB, Savanorių 231, LT-02300 Vilnius, Lithuania; (V.C.); (K.D.); (I.M.); (G.S.); (T.J.); (R.V.)
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania;
| | - Aistė Jekabsone
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT-50162 Kaunas, Lithuania; (Z.B.); (J.R.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (N.S.); (G.S.)
| |
Collapse
|