1
|
Yağız B, Karalı DT, Nalçacıoğlu H, Bıçakcı Ü, Hancıoğlu S, Demirel BD. Laparoscopic peritoneal dialysis catheter insertion with omentopexy-sparing the omentum in children. Pediatr Surg Int 2024; 40:128. [PMID: 38722444 DOI: 10.1007/s00383-024-05702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Continuous ambulatory peritoneal dialysis is an important modality of renal replacement therapy in children. Catheter dysfunction (commonly obstruction) is a major cause of morbidity and is a significant concern that hampers renal replacement therapy. As omentum is a significant cause of obstruction, some recommend routine omentectomy during insertion of the peritoneal dialysis catheter. Omentopexy rather than omentectomy has been described in adults to spare the omentum as it may be needed as a spare part in many conditions. Laparoscopic approach is commonly preferred as it provides global evaluation of the peritoneal space, proper location of the catheteral end in the pelvis and lesser morbidity due to inherent minimally invasive nature. AIM The aim of this study is to present the technique of laparoscopic peritoneal dialysis catheter placement in children with concurrent omentopexy. METHODS We retrospectively evaluated our patients who underwent laparoscopic placement of peritoneal dialysis catheter with concomitant omentopexy or omentectomy. RESULTS A total of 30 patients were enrolled who received either omentectomy (n = 18) or omentopexy (n = 12). Four catheters were lost in the omentopexy group (33%) and 3 in the omentectomy group (17%), but none were related to omental obstruction. Three out of 4 patients in the omentopexy group and 2 out of 3 patients in the omentectomy group had a previous abdominal operation as a potential cause of catheter loss. Previous history of abdominal surgery was present in 6 patients (50%) in the omentopexy group and 3 patients (17%) in the omentectomy group. CONCLUSIONS As omentum was associated with catheter failure, omentectomy is commonly recommended. Alternatively, omentopexy can be preferred in children to spare an organ that may potentially be necessary for many surgical reconstructive procedures in the future. Laparoscopic peritoneal dialysis catheter placement with concomitant omentopexy appears as a feasable and reproducible technique. Although the catheter loss seems to be higher in the omentopexy group, none was related with the omentopexy procedure and may be related to the higher rate of history of previous abdominal operations in this group.
Collapse
|
2
|
Wagner J, Luck S, Loger K, Açil Y, Spille JH, Kurz S, Ahlhelm M, Schwarzer-Fischer E, Ingwersen LC, Jonitz-Heincke A, Sedaghat S, Wiltfang J, Naujokat H. Bone regeneration in critical-size defects of the mandible using biomechanically adapted CAD/CAM hybrid scaffolds: An in vivo study in miniature pigs. J Craniomaxillofac Surg 2024; 52:127-135. [PMID: 38129185 DOI: 10.1016/j.jcms.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The study aimed to analyze bone regeneration in critical-size defects using hybrid scaffolds biomechanically adapted to the specific defect and adding the growth factor rhBMP-2. For this animal study, ten minipigs underwent bilateral defects in the corpus mandibulae and were subsequently treated with novel cylindrical hybrid scaffolds. These scaffolds were designed digitally to suit the biomechanical requirements of the mandibular defect, utilizing finite element analysis. The scaffolds comprised zirconium dioxide-tricalcium phosphate (ZrO2-TCP) support struts and TCP foam ceramics. One scaffold in each animal was loaded with rhBMP-2 (100 μg/cm³), while the other served as an unloaded negative control. Fluorescent dyes were administered every 2 weeks, and computed tomography (CT) scans were conducted every 4 weeks. Euthanasia was performed after 3 months, and samples were collected for examination using micro-CT and histological evaluation of both hard and soft tissue. Intravital CT examinations revealed minor changes in radiographic density from 4 to 12 weeks postoperatively. In the group treated with rhBMP-2, radiographic density shifted from 2513 ± 128 (mean ± SD) to 2606 ± 115 Hounsfield units (HU), while the group without rhBMP-2 showed a change from 2430 ± 131 to 2601 ± 67 HU. Prior to implantation, the radiological density of samples measured 1508 ± 30 mg HA/cm³, whereas post-mortem densities were 1346 ± 71 mg HA/cm³ in the rhBMP-2 group and 1282 ± 91 mg HA/cm³ in the control group (p = 0.045), as indicated by micro-CT measurements. The histological assessment demonstrated successful ossification in all specimens. The newly formed bone area proportion was significantly greater in the rhBMP-2 group (48 ± 10%) compared with the control group without rhBMP-2 (42 ± 9%, p = 0.03). The mean area proportion of remaining TCP foam was 23 ± 8% with rhBMP-2 and 24 ± 10% without rhBMP-2. Successful bone regeneration was accomplished by implanting hybrid scaffolds into critical-size mandibular defects. Loading these scaffolds with rhBMP-2 led to enhanced bone regeneration and a uniform distribution of new bone formation within the hybrid scaffolds. Further studies are required to determine the adaptability of hybrid scaffolds for larger and potentially segmental defects in the maxillofacial region.
Collapse
Affiliation(s)
- Juliane Wagner
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Cluster of Excellence, Precision Medicine in Inflammation, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Sascha Luck
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Klaas Loger
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johannes H Spille
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Kurz
- ZESBO - Center for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Dresden, Germany
| | | | - Lena-Christin Ingwersen
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
3
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
4
|
Liu P, Wang J, Xue Y, Zou L, Tian Y, Sun R, Zhang W, Li Y, Lv L, Gao Q, Fan B. Perfusion in vivo bioreactor promotes regeneration of vascularized tissue-engineered bone. Regen Med 2023; 18:707-718. [PMID: 37589274 DOI: 10.2217/rme-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Aim: This study improved the in vivo bioreactor (IVB) for bone regeneration by enhancing stem cell survival and promoting vascularized tissue-engineered bone. Methods: 12 New Zealand rabbits received β-TCP scaffolds with rabbit bone mesenchymal stem cells (BMSCs) implanted. Perfusion IVB with a perfusion electronic pump was compared with the control group using micro-CT, Microfil perfusion, histological staining and RT-PCR for gene expression. Results: Perfusion IVB demonstrated good biocompatibility, increased neoplastic bone tissue, neovascularization and upregulated osteogenic and angiogenesis-related genes in rabbits (p < 0.05). Conclusion: Perfusion IVB holds promise for bone regeneration and tissue engineering in orthopedics and maxillofacial surgery.
Collapse
Affiliation(s)
- Peng Liu
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, 730050, China
| | - Jian Wang
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Yun Xue
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Lei Zou
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Yongzheng Tian
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, 730050, China
| | - Ruilong Sun
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, 730050, China
| | - Wenhua Zhang
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Yunfei Li
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Lijun Lv
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Qiuming Gao
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Bo Fan
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| |
Collapse
|
5
|
Ramezanzade S, Aeinehvand M, Ziaei H, Khurshid Z, Keyhan SO, Fallahi HR, Melville JC, Saeinasab M, Sefat F. Reconstruction of Critical Sized Maxillofacial Defects Using Composite Allogeneic Tissue Engineering: Systematic Review of Current Literature. Biomimetics (Basel) 2023; 8:biomimetics8020142. [PMID: 37092394 PMCID: PMC10123735 DOI: 10.3390/biomimetics8020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/25/2023] Open
Abstract
The current review aimed to assess the reliability and efficacy of tissue-engineered composite grafts in the reconstruction of large maxillofacial defects resulting from trauma or a benign pathologic disease. A systematic review of the literature was conducted using PubMed/Medline, Embase, and Scopus up to March 2022. The eligibility criteria included patients who had been treated with composite allogeneic tissue engineering for immediate/delayed reconstruction of large maxillofacial defects with minimum/no bone harvesting site. In the initial search, 2614 papers were obtained, and finally, 13 papers were eligible to be included in the current study. Most included papers were case reports or case series. A total of 144 cases were enrolled in this systematic review. The mean age of the patients was 43.34 (age range: 9-89). Most studies reported a successful outcome. Bone tissue engineering for the reconstruction and regeneration of crucial-sized maxillofacial defects is an evolving science still in its infancy. In conclusion, this review paper and the current literature demonstrate the potential for using large-scale transplantable, vascularized, and customizable bone with the aim of reconstructing the large maxillofacial bony defects in short-term follow-ups.
Collapse
Affiliation(s)
- Shaqayeq Ramezanzade
- Section for Clinical Oral Microbiology, Department of Odontology Cariology and Endodontics, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mahsa Aeinehvand
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Tehran P.O. Box 14155-6559, Iran
| | - Heliya Ziaei
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Tehran P.O. Box 14155-6559, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Seied Omid Keyhan
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Isfahan P.O. Box 61355-45, Iran
| | - Hamid R Fallahi
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Isfahan P.O. Box 61355-45, Iran
| | - James C Melville
- Oral, Head & Neck Oncology and Microvascular Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morvarid Saeinasab
- Department of Biomedical and Electronic Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK
| | - Farshid Sefat
- Department of Biomedical and Electronic Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
6
|
Watson E, Mikos AG. Advances in In Vitro and In Vivo Bioreactor-Based Bone Generation for Craniofacial Tissue Engineering. BME FRONTIERS 2023; 4:0004. [PMID: 37849672 PMCID: PMC10521661 DOI: 10.34133/bmef.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 10/19/2023] Open
Abstract
Craniofacial reconstruction requires robust bone of specified geometry for the repair to be both functional and aesthetic. While native bone from elsewhere in the body can be harvested, shaped, and implanted within a defect, using either an in vitro or in vivo bioreactors eliminates donor site morbidity while increasing the customizability of the generated tissue. In vitro bioreactors utilize cells harvested from the patient, a scaffold, and a device to increase mass transfer of nutrients, oxygen, and waste, allowing for generation of larger viable tissues. In vivo bioreactors utilize the patient's own body as a source of cells and of nutrient transfer and involve the implantation of a scaffold with or without growth factors adjacent to vasculature, followed by the eventual transfer of vascularized, mineralized tissue to the defect site. Several different models of in vitro bioreactors exist, and several different implantation sites have been successfully utilized for in vivo tissue generation and defect repair in humans. In this review, we discuss the specifics of each bioreactor strategy, as well as the advantages and disadvantages of each and the future directions for the engineering of bony tissues for craniofacial defect repair.
Collapse
Affiliation(s)
- Emma Watson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
7
|
Mayfield CK, Ayad M, Lechtholz-Zey E, Chen Y, Lieberman JR. 3D-Printing for Critical Sized Bone Defects: Current Concepts and Future Directions. Bioengineering (Basel) 2022; 9:680. [PMID: 36421080 PMCID: PMC9687148 DOI: 10.3390/bioengineering9110680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2023] Open
Abstract
The management and definitive treatment of segmental bone defects in the setting of acute trauma, fracture non-union, revision joint arthroplasty, and tumor surgery are challenging clinical problems with no consistently satisfactory solution. Orthopaedic surgeons are developing novel strategies to treat these problems, including three-dimensional (3D) printing combined with growth factors and/or cells. This article reviews the current strategies for management of segmental bone loss in orthopaedic surgery, including graft selection, bone graft substitutes, and operative techniques. Furthermore, we highlight 3D printing as a technology that may serve a major role in the management of segmental defects. The optimization of a 3D-printed scaffold design through printing technique, material selection, and scaffold geometry, as well as biologic additives to enhance bone regeneration and incorporation could change the treatment paradigm for these difficult bone repair problems.
Collapse
Affiliation(s)
- Cory K. Mayfield
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Mina Ayad
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Elizabeth Lechtholz-Zey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Yong Chen
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angleles, CA 90089, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Naujokat H, Spille J, Bergholz R, Wieker H, Weitkamp J, Wiltfang J. Robot‐assisted scaffold implantation and two‐stage flap raising of the greater omentum for reconstruction of the facial skeleton: Description of a novel technique. Int J Med Robot 2022; 18:e2429. [DOI: 10.1002/rcs.2429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery University Hospital of Schleswig‐Holstein Campus Kiel Kiel Germany
| | - Johannes Spille
- Department of Oral and Maxillofacial Surgery University Hospital of Schleswig‐Holstein Campus Kiel Kiel Germany
| | - Robert Bergholz
- Department of General Visceral Thoracic, Transplant and Pediatric Surgery University Hospital of Schleswig‐Holstein Campus Kiel Kiel Germany
| | - Henning Wieker
- Department of Oral and Maxillofacial Surgery University Hospital of Schleswig‐Holstein Campus Kiel Kiel Germany
| | - Jan‐Tobias Weitkamp
- Department of Oral and Maxillofacial Surgery University Hospital of Schleswig‐Holstein Campus Kiel Kiel Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery University Hospital of Schleswig‐Holstein Campus Kiel Kiel Germany
| |
Collapse
|
9
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
10
|
Ismail T, Haumer A, Lunger A, Osinga R, Kaempfen A, Saxer F, Wixmerten A, Miot S, Thieringer F, Beinemann J, Kunz C, Jaquiéry C, Weikert T, Kaul F, Scherberich A, Schaefer DJ, Martin I. Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft. Front Oncol 2021; 11:775136. [PMID: 34938659 PMCID: PMC8685218 DOI: 10.3389/fonc.2021.775136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
The reconstruction of complex midface defects is a challenging clinical scenario considering the high anatomical, functional, and aesthetic requirements. In this study, we proposed a surgical treatment to achieve improved oral rehabilitation and anatomical and functional reconstruction of a complex defect of the maxilla with a vascularized, engineered composite graft. The patient was a 39-year-old female, postoperative after left hemimaxillectomy for ameloblastic carcinoma in 2010 and tumor-free at the 5-year oncological follow-up. The left hemimaxillary defect was restored in a two-step approach. First, a composite graft was ectopically engineered using autologous stromal vascular fraction (SVF) cells seeded on an allogenic devitalized bone matrix. The resulting construct was further loaded with bone morphogenic protein-2 (BMP-2), wrapped within the latissimus dorsi muscle, and pedicled with an arteriovenous (AV) bundle. Subsequently, the prefabricated graft was orthotopically transferred into the defect site and revascularized through microvascular surgical techniques. The prefabricated graft contained vascularized bone tissue embedded within muscular tissue. Despite unexpected resorption, its orthotopic transfer enabled restoration of the orbital floor, separation of the oral and nasal cavities, and midface symmetry and allowed the patient to return to normal diet as well as to restore normal speech and swallowing function. These results remained stable for the entire follow-up period of 2 years. This clinical case demonstrates the safety and the feasibility of composite graft engineering for the treatment of complex maxillary defects. As compared to the current gold standard of autologous tissue transfer, this patient’s benefits included decreased donor site morbidity and improved oral rehabilitation. Bone resorption of the construct at the ectopic prefabrication site still needs to be further addressed to preserve the designed graft size and shape.
Collapse
Affiliation(s)
- Tarek Ismail
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander Haumer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander Lunger
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Rik Osinga
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Center for Musculoskeletal Infections, University Hospital Basel, Basel, Switzerland
| | - Alexandre Kaempfen
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Franziska Saxer
- Department of Orthopedic Surgery, University Hospital Basel, Basel, Switzerland
| | - Anke Wixmerten
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sylvie Miot
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Florian Thieringer
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Joerg Beinemann
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Christoph Kunz
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Claude Jaquiéry
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Thomas Weikert
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Felix Kaul
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Center for Musculoskeletal Infections, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Cao SS, Li SY, Geng YM, Kapat K, Liu SB, Perera FH, Li Q, Terheyden H, Wu G, Che YJ, Miranda P, Zhou M. Prefabricated 3D-Printed Tissue-Engineered Bone for Mandibular Reconstruction: A Preclinical Translational Study in Primate. ACS Biomater Sci Eng 2021; 7:5727-5738. [PMID: 34808042 PMCID: PMC8672350 DOI: 10.1021/acsbiomaterials.1c00509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
advent of three dimensionally (3D) printed customized bone
grafts using different biomaterials has enabled repairs of complex
bone defects in various in vivo models. However, studies related to
their clinical translations are truly limited. Herein, 3D printed
poly(lactic-co-glycolic acid)/β-tricalcium
phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant
bone morphogenetic protein −2 (rhBMP-2) coating were utilized
to repair primate’s large-volume mandibular defects and compared
efficacy of prefabricated tissue-engineered bone (PTEB) over direct
implantation (without prefabrication). 18F-FDG PET/CT was
explored for real-time monitoring of bone regeneration and vascularization.
After 3-month’s prefabrication, the original 3D-architecture
of the PLGA/TCP-BMP scaffold was found to be completely lost, while
it was properly maintained in TCP-BMP scaffolds. Besides, there was
a remarkable decrease in the PLGA/TCP-BMP scaffold density and increase
in TCP-BMP scaffolds density during ectopic (within latissimus dorsi
muscle) and orthotopic (within mandibular defect) implantation, indicating
regular bone formation with TCP-BMP scaffolds. Notably, PTEB based
on TCP-BMP scaffold was successfully fabricated with pronounced effects
on bone regeneration and vascularization based on radiographic, 18F-FDG PET/CT, and histological evaluation, suggesting a promising
approach toward clinical translation.
Collapse
Affiliation(s)
- Shuai-Shuai Cao
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shu-Yi Li
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, de Boelelaan, Vrije Universiteit Amsterdam 1117, Amsterdam, The Netherlands
| | - Yuan-Ming Geng
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kausik Kapat
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shang-Bin Liu
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Fidel Hugo Perera
- Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Industrial Engineering School, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Qian Li
- Hangzhou Jiuyuan Gene Engineering Co., Ltd., Hangzhou 3100018, China
| | - Hendrik Terheyden
- Department of Oral and Maxillofacial Surgery, Red Cross Hospital, Kassel 34117, Germany
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam 1117, The Netherlands
| | - Yue-Juan Che
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Pedro Miranda
- Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Industrial Engineering School, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Miao Zhou
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
12
|
Dalisson B, Charbonnier B, Aoude A, Gilardino M, Harvey E, Makhoul N, Barralet J. Skeletal regeneration for segmental bone loss: Vascularised grafts, analogues and surrogates. Acta Biomater 2021; 136:37-55. [PMID: 34626818 DOI: 10.1016/j.actbio.2021.09.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Massive segmental bone defects (SBD) are mostly treated by removing the fibula and transplanting it complete with blood supply. While revolutionary 50 years ago, this remains the standard treatment. This review considers different strategies to repair SBD and emerging potential replacements for this highly invasive procedure. Prior to the technical breakthrough of microsurgery, researchers in the 1960s and 1970s had begun to make considerable progress in developing non autologous routes to repairing SBD. While the breaktthrough of vascularised bone transplantation solved the immediate problem of a lack of reliable repair strategies, much of their prior work is still relevant today. We challenge the assumption that mimicry is necessary or likely to be successful and instead point to the utility of quite crude (from a materials technology perspective), approaches. Together there are quite compelling indications that the body can regenerate entire bone segments with few or no exogenous factors. This is important, as there is a limit to how expensive a bone repair can be and still be widely available to all patients since cost restraints within healthcare systems are not likely to diminish in the near future. STATEMENT OF SIGNIFICANCE: This review is significant because it is a multidisciplinary view of several surgeons and scientists as to what is driving improvement in segmental bone defect repair, why many approaches to date have not succeeded and why some quite basic approaches can be as effective as they are. While there are many reviews of the literature of grafting and bone repair the relative lack of substantial improvement and slow rate of progress in clinical translation is often overlooked and we seek to challenge the reader to consider the issue more broadly.
Collapse
|
13
|
Mueller ML, Ottensmeyer MP, Thamm JR, Schmelzeisen R, Troulis MJ, Guastaldi FPS. Increased Osteogenic Activity of Dynamic Cultured Composite Bone Scaffolds: Characterization and In Vitro Study. J Oral Maxillofac Surg 2021; 80:303-312. [PMID: 34822754 DOI: 10.1016/j.joms.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to develop and characterize beta-tricalcium phosphate (β-TCP)/polycaprolactone (PCL) scaffolds, with 2 different ratios (50/50% and 65/35%), using 3-dimensionally (3D) printed dissolvable molds, and to evaluate cellular growth and osteogenic differentiation of both groups seeded with porcine bone marrow stem cells (pBMSCs) under dynamic culture in vitro. MATERIALS AND METHODS Two different groups of scaffolds were produced: group 1 (n = 40) with a ratio (wt%) of 50/50% and group 2 (n = 40) with 65/35% of β-TCP/PCL. Physicochemical, morphological, and mechanical characterization of the scaffolds were performed. Scaffolds were seeded with pBMSCs and differentiated osteogenically in dynamic culture. Cell density, distribution, and viability were assessed. Osteogenic differentiation was examined through alkaline phosphatase (ALP) staining, immunofluorescence, and photospectrometry. RESULTS Osteogenic differentiated constructs showed homogenous and viable cell distribution. Cell density was significantly higher (P < .05) for 65/35% scaffolds at 10 days postseeding, whereas at 6 weeks, cell number equalized for both groups. ALP activity increased over time and was significantly higher (P < .05) for 65/35% scaffolds at 14 days postseeding. CONCLUSIONS The mechanical properties of the developed 65/35% scaffolds were within the range of natural trabecular bone. Moreover, the 65/35% scaffolds showed biological advantages, such as higher cell growth and higher ALP activity.
Collapse
Affiliation(s)
- Max-Laurin Mueller
- Research Fellow, Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA
| | - Mark P Ottensmeyer
- Senior Engineer, Medical Device & Simulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Janis R Thamm
- Research Fellow, Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA
| | - Rainer Schmelzeisen
- Medical Director, Department of Oral and Maxillofacial Surgery, Center for Dental Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Maria J Troulis
- Walter C. Guralnick Distinguished Professor, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA
| | - Fernando P S Guastaldi
- Instructor of Oral and Maxillofacial Surgery, Director, Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA.
| |
Collapse
|
14
|
Kengelbach-Weigand A, Thielen C, Bäuerle T, Götzl R, Gerber T, Körner C, Beier JP, Horch RE, Boos AM. Personalized medicine for reconstruction of critical-size bone defects - a translational approach with customizable vascularized bone tissue. NPJ Regen Med 2021; 6:49. [PMID: 34413320 PMCID: PMC8377075 DOI: 10.1038/s41536-021-00158-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Tissue engineering principles allow the generation of functional tissues for biomedical applications. Reconstruction of large-scale bone defects with tissue-engineered bone has still not entered the clinical routine. In the present study, a bone substitute in combination with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) with or without growth factors BMP-2 and VEGF-A was prevascularized by an arteriovenous (AV) loop and transplanted into a critical-size tibia defect in the sheep model. With 3D imaging and immunohistochemistry, we could show that this approach is a feasible and simple alternative to the current clinical therapeutic option. This study serves as proof of concept for using large-scale transplantable, vascularized, and customizable bone, generated in a living organism for the reconstruction of load-bearing bone defects, individually tailored to the patient's needs. With this approach in personalized medicine for the reconstruction of critical-size bone defects, regeneration of parts of the human body will become possible in the near future.
Collapse
Affiliation(s)
- Annika Kengelbach-Weigand
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carolina Thielen
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- grid.5330.50000 0001 2107 3311Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rebekka Götzl
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.412301.50000 0000 8653 1507Present Address: Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Thomas Gerber
- grid.10493.3f0000000121858338Institute of Physics, University of Rostock, Rostock, Germany
| | - Carolin Körner
- grid.5330.50000 0001 2107 3311Department of Materials Science and Engineering, Institute of Science and Technology of Metals, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Justus P. Beier
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.412301.50000 0000 8653 1507Present Address: Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Raymund E. Horch
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja M. Boos
- grid.411668.c0000 0000 9935 6525Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.412301.50000 0000 8653 1507Present Address: Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
15
|
Naujokat H, Rohwedder J, Gülses A, Cenk Aktas O, Wiltfang J, Açil Y. CAD/CAM scaffolds for bone tissue engineering: investigation of biocompatibility of selective laser melted lightweight titanium. IET Nanobiotechnol 2021; 14:584-589. [PMID: 33010133 DOI: 10.1049/iet-nbt.2019.0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The objective of the current in-vitro study was to evaluate the biocompatibility of a new type of CAD/CAM scaffold for bone tissue engineering by using human cells. Porous lightweight titanium scaffolds and Bio-Oss® scaffolds as well as their eluates were used for incubation with human osteoblasts, fibroblasts and osteosarcoma cells. The cell viability was assessed by using fluorescein diazo-acetate propidium iodide staining. Cell proliferation and metabolism was examined by using MTT-, WST-Test and BrdU-ELISA tests. Scanning electron microscope was used for investigation of the cell adhesion behaviour. The number of devitalised cells in all treatment groups did not significantly deviate from the control group. According to MTT and WST results, the number of metabolically active cells was decreased by the eluates of both test groups with a more pronounced impact of the eluate from Bio-Oss®. The proliferation of the cells was inhibited by the addition of the eluates. Both scaffolds showed a partial surface coverage after 1 week and an extensive to complete coverage after 3 weeks. The CAD/CAM titanium scaffolds showed favourable biocompatibility compared to Bio-Oss® scaffolds in vitro. The opportunity of a defect-specific design and rapid prototyping by selective laser melting are relevant advantages in the field of bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Johanna Rohwedder
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany.
| | - Oral Cenk Aktas
- Institute for Materials Science, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
16
|
Wang J, Wang X, Zhen P, Fan B. [Research progress of in vivo bioreactor for bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:627-635. [PMID: 33998218 DOI: 10.7507/1002-1892.202012083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress of in vivo bioreactor (IVB) for bone tissue engineering in order to provide reference for its future research direction. Methods The literature related to IVB used in bone tissue engineering in recent years was reviewed, and the principles of IVB construction, tissue types, sites, and methods of IVB construction, as well as the advantages of IVB used in bone tissue engineering were summarized. Results IVB takes advantage of the body's ability to regenerate itself, using the body as a bioreactor to regenerate new tissues or organs at injured sites or at ectopic sites that can support the regeneration of new tissues. IVB can be constructed by tissue flap (subcutaneous pocket, muscle flap/pocket, fascia flap, periosteum flap, omentum flap/abdominal cavity) and axial vascular pedicle (axial vascular bundle, arteriovenous loop) alone or jointly. IVB is used to prefabricate vascularized tissue engineered bone that matched the shape and size of the defect. The prefabricated vascularized tissue engineered bone can be used as bone graft, pedicled bone flap, or free bone flap to repair bone defect. IVB solves the problem of insufficient vascularization in traditional bone tissue engineering to a certain extent. Conclusion IVB is a promising method for vascularized tissue engineered bone prefabrication and subsequent bone defect reconstruction, with unique advantages in the repair of large complex bone defects. However, the complexity of IVB construction and surgical complications hinder the clinical application of IVB. Researchers should aim to develop a simple, safe, and efficient IVB.
Collapse
Affiliation(s)
- Jian Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P.R.China.,Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| | - Xiao Wang
- School of Design and Art, Lanzhou University of Technology, Lanzhou Gansu, 730000, P.R.China
| | - Ping Zhen
- Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| | - Bo Fan
- Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| |
Collapse
|
17
|
Bass GA, Seamon MJ, Schwab CW. A surgeon's history of the omentum: From omens to patches to immunity. J Trauma Acute Care Surg 2021; 89:e161-e166. [PMID: 32925575 DOI: 10.1097/ta.0000000000002945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Gary Alan Bass
- From the Division of Traumatology, Emergency Surgery, and Surgical Critical Care, Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
18
|
Bioengineering for head and neck reconstruction: the role of customized flaps. Curr Opin Otolaryngol Head Neck Surg 2021; 29:156-160. [PMID: 33664198 DOI: 10.1097/moo.0000000000000705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide the reader with an overview of the present and future applications of bioengineering for head and neck reconstruction, ranging from the application of Computed Assisted Surgery (CAS) to the most recent advances in 3D printing and tissue engineering. RECENT FINDINGS The use of CAS in head and neck reconstruction has been demonstrated to provide shorter surgical times, improved reconstructive accuracy of bone reconstruction, and achieves better alignment of bone segments in osteotomized reconstructions. Beyond its classical application in bone reconstructions, CAS has demonstrated reliability in the planning and harvesting of soft tissue flaps. To date, literature regarding bioengineering for head and neck reconstruction is mainly focused on in-vitro and animal model experiments; however, some pioneering reports on human patients suggest the potential feasibility of this technology. SUMMARY Bioengineering is anticipated to play a key role in the future development of customized flaps for head and neck reconstruction. These technologies are particularly appealing as a new technology to address certain unsolved challenges in head and neck reconstruction.
Collapse
|
19
|
Naujokat H, Loger K, Schulz J, Açil Y, Wiltfang J. Bone tissue engineering in the greater omentum with computer-aided design/computer-aided manufacturing scaffolds is enhanced by a periosteum transplant. Regen Med 2020; 15:2297-2309. [PMID: 33355523 DOI: 10.2217/rme-2020-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: This study aimed to evaluate two different vascularized bone flap scaffolds and the impact of two barrier membranes for the reconstruction of critical-size bone defects. Materials & methods: 3D-printed scaffolds of biodegradable calcium phosphate and bioinert titanium were loaded with rhBMP-2 bone marrow aspirate, wrapped by a collagen membrane or a periosteum transplant and implanted into the greater omentum of miniature pigs. Results: Histological evaluation demonstrated significant bone formation within the first 8 weeks in both scaffolds. The periosteum transplant led to enhanced bone formation and a homogenous distribution in the scaffolds. The omentum tissue grew out a robust vascular supply. Conclusion: Endocultivation using 3D-printed scaffolds in the greater omentum is a very promising approach in defect-specific bone tissue regeneration.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Klaas Loger
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Juliane Schulz
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
20
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
21
|
Kumar VV, Rometsch E, Thor A, Wolvius E, Hurtado-Chong A. Segmental Mandibular Reconstruction Using Tissue Engineering Strategies: A Systematic Review of Individual Patient Data. Craniomaxillofac Trauma Reconstr 2020; 13:267-284. [PMID: 33456698 DOI: 10.1177/1943387520917511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective The aim of the systematic review was to analyze the current clinical evidence concerning the use of tissue engineering as a treatment strategy for reconstruction of segmental defects of the mandible and their clinical outcomes using individual patient data. Methods A systematic review of the literature was conducted using PubMed and Cochrane Library on May 21, 2019. The eligibility criteria included patients in whom segmental mandibular reconstruction was carried out using tissue engineering as the primary treatment strategy. After screening and checking for eligibility, individual patient data were extracted to the extent it was available. Data extraction included the type of tissue engineering strategy, demographics, and indication for treatment, and outcomes included clinical and radiographic outcome measures, vitality of engineered bone, dental rehabilitation, and patient-reported outcome measures and complications. Results Out of a total of 408 articles identified, 44 articles reporting on 285 patients were included, of which 179 patients fulfilled the inclusion criteria. The different tissue engineering treatment strategies could be broadly classified into 5 groups: "prefabrication," "cell culture," "bone morphogenetic protein (BMP) without autografts," "BMP with autografts," and "scaffolds containing autografts." Most included studies were case reports or case series. A wide variety of components were used as scaffolds, cells, and biological substances. There was not a single outcome measure that was both objective and consistently reported, although most studies reported successful outcome. Discussion A wide variety of tissue engineering strategies were used for segmental mandibular reconstruction that could be classified into 5 groups. Due to the low number of treated patients, lack of standardized and consistent reporting outcomes, lack of comparative studies, and low evidence of reported literature, there is insufficient evidence to recommend any particular tissue engineering strategy.
Collapse
Affiliation(s)
- Vinay V Kumar
- Plastic and Oral & Maxillofacial Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Andreas Thor
- Plastic and Oral & Maxillofacial Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Eppo Wolvius
- Department of Oral & Maxillofacial Surgery, Erasmus University Center, Rotterdam, the Netherlands
| | | |
Collapse
|
22
|
Sparks DS, Savi FM, Saifzadeh S, Schuetz MA, Wagels M, Hutmacher DW. Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies-A Quest for Regenerative Matching Axial Vascularization. Front Bioeng Biotechnol 2020; 7:448. [PMID: 31998712 PMCID: PMC6967032 DOI: 10.3389/fbioe.2019.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalent challenge facing tissue engineering today is the lack of adequate vascularization to support the growth, function, and viability of tissue engineered constructs (TECs) that require blood vessel supply. The research and clinical community rely on the increasing knowledge of angiogenic and vasculogenic processes to stimulate a clinically-relevant vascular network formation within TECs. The regenerative matching axial vascularization approach presented in this manuscript incorporates the advantages of flap-based techniques for neo-vascularization yet also harnesses the in vivo bioreactor principle in a more directed "like for like" approach to further assist regeneration of the specific tissue type that is lost, such as a corticoperiosteal flap in critical sized bone defect reconstruction.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia Medeiros Savi
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Michael A Schuetz
- Department of Orthopaedic Surgery, Royal Brisbane Hospital, Herston, QLD, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia.,Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,ARC Centre for Additive Bio-Manufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
23
|
Implantable electrical stimulation bioreactor with liquid crystal polymer-based electrodes for enhanced bone regeneration at mandibular large defects in rabbit. Med Biol Eng Comput 2019; 58:383-399. [PMID: 31853774 DOI: 10.1007/s11517-019-02046-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
The osseous regeneration of large bone defects is still a major clinical challenge in maxillofacial and orthopedic surgery. Previous studies demonstrated that biphasic electrical stimulation (ES) stimulates bone formation; however, polyimide electrode should be removed after regeneration. This study presents an implantable electrical stimulation bioreactor with electrodes based on liquid crystal polymer (LCP), which can be permanently implanted due to excellent biocompatibility to bone tissue. The bioreactor was implanted into a critical-sized bone defect and subjected to ES for one week, where bone regeneration was evaluated four weeks after surgery using micro-CT. The effect of ES via the bioreactor was compared with a sham control group and a positive control group that received recombinant human bone morphogenetic protein (rhBMP)-2 (20 μg). New bone volume per tissue volume (BV/TV) in the ES and rhBMP-2 groups increased to 132% (p < 0.05) and 174% (p < 0.01), respectively, compared to that in the sham control group. In the histological evaluation, there was no inflammation within the bone defects and adjacent to LCP in all the groups. This study showed that the ES bioreactor with LCP electrodes could enhance bone regeneration at large bone defects, where LCP can act as a mechanically resistant outer box without inflammation. Graphical abstract To enhance bone regeneration, a bioreactor comprising collagen sponge and liquid crystal polymer-based electrode was implanted in the bone defect. Within the defect, electrical current pulses having biphasic waveform were applied from the implanted bioreactor.
Collapse
|
24
|
Li W, Midgley AC, Bai Y, Zhu M, Chang H, Zhu W, Wang L, Wang Y, Wang H, Kong D. Subcutaneously engineered autologous extracellular matrix scaffolds with aligned microchannels for enhanced tendon regeneration: Aligned microchannel scaffolds for tendon repair. Biomaterials 2019; 224:119488. [PMID: 31562997 DOI: 10.1016/j.biomaterials.2019.119488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Improved strategies for the treatment of tendon defects are required to successfully restore mechanical function and strength to the damaged tissue. This remains a scientific and clinical challenge, given the tendon's limited innate regenerative capacity. Here, we present an engineering solution that stimulates the host cell's remodeling abilities. We combined precision-designed templates with subcutaneous implantation to generate decellularized autologous extracellular matrix (aECM) scaffolds that had highly aligned microchannels after removal of templates and cellular components. The aECM scaffolds promoted rapid cell infiltration, favorable macrophage responses, collagen-rich extracellular matrix (ECM) synthesis, and physiological tissue remodeling in rat Achilles tendon defects. At three months post-surgery, the mechanical strength of tenocyte-populated 'neo-tendons' was comparable to pre-injury state tendons. Overall, we demonstrated an in vivo bioengineering strategy for improved restoration of tendon tissue, which also offers wider implications for the regeneration of other highly organized tissues.
Collapse
Affiliation(s)
- Wen Li
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China
| | - Yanli Bai
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China
| | - Meifeng Zhu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Hong Chang
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China
| | - Wenying Zhu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China
| | - Lina Wang
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Deling Kong
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
25
|
Rasch A, Naujokat H, Wang F, Seekamp A, Fuchs S, Klüter T. Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality. PLoS One 2019; 14:e0218404. [PMID: 31220118 PMCID: PMC6586299 DOI: 10.1371/journal.pone.0218404] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
In an ever-aging society the demand for bone-defect filling grafts continues to gain in importance. While autologous grafting still prevails as the gold standard, allografts and xenografts present viable alternatives with promising results. Physiochemical properties of a graft strongly depend on the processing method such as the decellularization protocol. In addition, the physiochemical characteristics are critical factors for a successful integration of the graft after the implantation and might influence mesenchymal stem cell function in therapeutic approaches combining grafts and autologous mesenchymal stem cells (MSCs). Several decellularization methods have been proposed, however it still remains unclear which method results in favorable physiochemical properties or might be preferred in stem cell applications. In the first part of this study we compared two decellularization approaches resulting in chemically processed allografts (CPAs) or sonication-based processed allografts (SPAs). Each decellularization approach was compared for its decellularization efficacy and its influence on the grafts' surface texture and composition. In the second part of this study biocompatibility of grafts was assessed by testing the effect of extraction medium on MSC viability and comparing them to commercially available allografts and xenografts. Additionally, grafts' performance in terms of MSC functionality was assessed by reseeding with MSCs pre-differentiated in osteogenic medium and determining cell adhesion, proliferation, as well as alkaline phosphatase (ALP) activity and the degree of mineralization. In summary, results indicate a more effective decellularization for the SPA approach in comparison to the CPA approach. Even though SPA extracts induced a decrease in MSC viability, MSC performance after reseeding was comparable to commercially available grafts based on DNA quantification, alkaline phosphatase activity and quantification of mineralization. Commercial Tutoplast allografts showed overall the best effects on MSC functionality as indicated by extraction biocompatibility testing as well as by comparing proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Alexander Rasch
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Fanlu Wang
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- * E-mail:
| | - Tim Klüter
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
26
|
Scaffold implantation in the omentum majus of rabbits for new bone formation. J Craniomaxillofac Surg 2019; 47:1274-1279. [PMID: 31331852 DOI: 10.1016/j.jcms.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022] Open
Abstract
Restoration of the mandible after defects caused by ablative surgery remains challenging. Microvascular free flaps from the scapula, fibula or iliac crest remain the 'gold standard'. A drawback of these methods is donor-side morbidity, availability and the shape of the bone. Former cases have shown that prefabrication of a customized bone flap in the latissimus dorsi muscle may be successful; however, this method is still associated with high donor-side morbidity. Osteogenesis in the omentum majus of rabbits by wrapping the periosteum into it was confirmed recently and is particularly interesting for bone endocultivation. Twelve adult male New Zealand white rabbits were used. In each, two hydroxyapatite blocks were implanted in the greater omentum with autologous bone or autologous bone + rhBMP-2. Bone density measurements were performed by CT scans. Fluorochrome labelling was used for new bone formation detection. The animals were sacrificed at week 10, and the specimens were harvested for histological and histomorphometric analysis. In histological and fluorescence microscopic analysis, new bone formation could be found, as well as new blood vessels and connective tissue. No significant differences were found regarding the histological analysis and bone density measurements between the groups. It could be demonstrated that the omentum majus is a practical way to use one's own body as a bioreactor for prefabrication of tissue-engineered bony constructs. Regarding the influence and exact dose of rhBMP-2, further research is necessary. To establish and improve this method, further large-animal experimental studies are also necessary.
Collapse
|
27
|
Naujokat H, Açil Y, Harder S, Lipp M, Böhrnsen F, Wiltfang J. Osseointegration of dental implants in ectopic engineered bone in three different scaffold materials. Int J Oral Maxillofac Surg 2019; 49:135-142. [PMID: 31053519 DOI: 10.1016/j.ijom.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
The in vivo regeneration of bone flaps might be an alternative to autogenous bone grafting. The first human case of mandibular reconstruction using the greater omentum as a bioreactor was reported in 2016. However, whether engineered bone will support the osseointegration of dental implants has not yet been investigated. In this study, bone tissue engineering was performed in the greater omentum of nine miniature pigs using bone morphogenetic protein 2, bone marrow aspirate, and three different scaffolds: hydroxyapatite, biphasic calcium phosphate (BCP), and titanium. After 8 weeks, two implants were placed in each scaffold; after another 8 weeks, the bone blocks were harvested for radiographic, histological, and histomorphometric analysis. All implants exhibited sufficient primary stability, and the success rate was 100%. The bone-to-implant contact ratios (BICs) were 38.2%, 68.5%, and 42.9%; the inter-thread bone densities were 29.4%, 64.9%, and 33.5%; and the peri-implant bone-scaffold densities were 56.4%, 87.6%, and 68.6% in the hydroxyapatite, BCP, and titanium groups, respectively. The BIC showed a strong correlation (r = 0.76) with the peri-implant bone-scaffold density. This study shows that de novo engineered bone leads to successful osseointegration and therefore may allow implant-based prosthodontic rehabilitation.
Collapse
Affiliation(s)
- H Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany.
| | - Y Açil
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - S Harder
- Department of Prosthodontics, Propaedeutics and Dental Materials, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - M Lipp
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - F Böhrnsen
- Department of Oral and Maxillofacial Surgery, University Hospital of Göttingen, Göttingen, Germany
| | - J Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
28
|
Gentile P, Casella D, Palma E, Calabrese C. Engineered Fat Graft Enhanced with Adipose-Derived Stromal Vascular Fraction Cells for Regenerative Medicine: Clinical, Histological and Instrumental Evaluation in Breast Reconstruction. J Clin Med 2019; 8:jcm8040504. [PMID: 31013744 PMCID: PMC6518258 DOI: 10.3390/jcm8040504] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
The areas in which Stromal Vascular Fraction cells (SVFs) have been used include radiotherapy based tissue damage after mastectomy, breast augmentation, calvarial defects, Crohn's fistulas, and damaged skeletal muscle. Currently, the authors present their experience using regenerative cell therapy in breast reconstruction. The goal of this study was to evaluate the safety and efficacy of the use of Engineered Fat Graft Enhanced with Adipose-derived Stromal Vascular Fraction cells (EF-e-A) in breast reconstruction. 121 patients that were affected by the outcomes of breast oncoplastic surgery were treated with EF-e-A, comparing the results with the control group (n = 50) treated with not enhanced fat graft (EF-ne-A). The preoperative evaluation included a complete clinical examination, a photographic assessment, biopsy, magnetic resonance (MRI) of the soft tissue, and ultrasound (US). Postoperative follow-up took place at two, seven, 15, 21, 36 weeks, and then annually. In 72.8% (n = 88) of breast reconstruction treated with EF-e-A, we observed a restoration of the breast contour and an increase of 12.8 mm in the three-dimensional volume after 12 weeks, which was only observed in 27.3% (n = 33) of patients in the control group that was treated with EF-ne-A. Transplanted fat tissue reabsorption was analyzed with instrumental MRI and US. Volumetric persistence in the study group was higher (70.8%) than that in the control group (41.4%) (p < 0.0001 vs. control group). The use of EF-e-A was safe and effective in this series of treated cases.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, Plastic and Reconstructive Surgery Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Donato Casella
- The Oncologic and Reconstructive Surgery Breast Unit, Oncology Department, Careggi University Hospital, 50134 Florence, Italy.
- Department of Oncologic and Reconstructive Breast Surgery, "Breast Unit Integrata di Livorno, Cecina, Piombino, Elba, Azienda USL Toscana nord ovest", 50132 Livorno, Italy.
| | - Enza Palma
- The Oncologic and Reconstructive Surgery Breast Unit, Oncology Department, Careggi University Hospital, 50134 Florence, Italy.
- Breast Surgical Oncology Unit, General Hospital, 41125 Modena, Italy.
| | - Claudio Calabrese
- The Oncologic and Reconstructive Surgery Breast Unit, Oncology Department, Careggi University Hospital, 50134 Florence, Italy.
- San Rossore Breast Unit, 56122 Pisa, Italy.
| |
Collapse
|
29
|
Naujokat H, Lipp M, Açil Y, Wieker H, Birkenfeld F, Sengebusch A, Böhrnsen F, Wiltfang J. Bone tissue engineering in the greater omentum is enhanced by a periosteal transplant in a miniature pig model. Regen Med 2019; 14:127-138. [DOI: 10.2217/rme-2018-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: Reconstruction of bone defects with autologous grafts has certain disadvantages. The aim of this study is to introduce a new type of living bioreactor for engineering of bone flaps and to evaluate the effect of different barrier membranes. Materials & methods: Scaffolds loaded with bone morphogenetic proteins and bone marrow aspirate wrapped with either a collagen membrane or a periosteal flap were implanted in the greater omentum of miniature pigs. Results: Both histological and radiographic evaluation showed proven bone formation and increased density after 8 and 16 weeks, with an enhanced effect of the periosteal transplant. Conclusion: The greater omentum is a suitable bioreactor for bone tissue engineering. Endocultivation is both an innovative and promising approach in regenerative medicine.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Maximilian Lipp
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Henning Wieker
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Falk Birkenfeld
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Andre Sengebusch
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Florian Böhrnsen
- Department of Oral & Maxillofacial Surgery, University Hospital of Göttingen, Robert-Koch-Straße 40, 37099 Göttingen, Germany
| | - Jörg Wiltfang
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
30
|
Li B, Ruan C, Ma Y, Huang Z, Huang Z, Zhou G, Zhang J, Wang H, Wu Z, Qiu G. Fabrication of Vascularized Bone Flaps with Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Arteriovenous Bundle. Tissue Eng Part A 2018; 24:1413-1422. [PMID: 29676206 DOI: 10.1089/ten.tea.2018.0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Bo Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Orthopedic Surgery, Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yufei Ma
- Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhifeng Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Orthopedic Surgery, Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Zhenfei Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
[Implantation strategy of tissue-engineered liver based on decellularized spleen matrix in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38. [PMID: 29997092 PMCID: PMC6765707 DOI: 10.3969/j.issn.1673-4254.2018.06.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the optimal implantation strategy of tissue-engineered liver (TEL) constructed based on decellularized spleen matrix (DSM) in rats. METHODS DSM was prepared by freeze-thawing and perfusion with sodium dodecyl sulfate (SDS) of the spleen of healthy SD rats. Primary rat hepatocytes isolated using modified Seglen 2-step perfusion method were implanted into the DSM to construct the TEL. The advantages and disadvantages were evaluated of 4 transplant strategies of the TEL, namely ectopic vascular anastomosis, liver cross-section suture transplantation, intrahepatic insertion and mesenteric transplantation. RESULTS The planting rate of hepatocytes in the DSM was (74.5∓7.7)%. HE staining and scanning electron microscopy showed satisfactory cell status, and immunofluorescence staining confirmed the normal expression of ALB and G6Pc in the cells. For TEL implantation, ectopic vascular anastomosis was difficult and resulted in a mortality rate of 33.3% perioperatively and massive thrombus formation in the matrix within 6 h. Hepatic cross-section suture failed to rapidly establish sufficient blood supply, and no viable graft was observed 3 days after the operation. With intrahepatic insertion method, the hepatocytes in the DSM could survive as long as 14 days. Mesenteric transplantation resulted in a hepatocyte survival rate of (38.3+7.1)% at 14 days after implantation. CONCLUSION TEL constructed based on DSM can perform liver-specific functions with a good cytological bioactivity. Mesenteric transplantation of the TEL, which is simple, safe and effective, is currently the optimal transplantation strategy.
Collapse
|
32
|
Yamawaki T, Fujihara Y, Harata M, Takato T, Hikita A, Hoshi K. Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration. Regen Ther 2018; 8:1-8. [PMID: 30271859 PMCID: PMC6147154 DOI: 10.1016/j.reth.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022] Open
Abstract
Restoration of damaged cartilage tissue has been deemed futile with current treatments. Although there have been many studies on cartilage regeneration thus far, there is no report that chondrocytes were completely re-differentiated in vitro. The clarification of cellular composition and matrix production during cartilage regeneration must be elucidated to fabricate viable mature cartilage in vitro. In order to achieve this aim, the chondrocytes cultured on coverslips were transplanted into the peritoneal cavities of mice. At different time points post-transplantation, the cartilage maturation progression and cells composing the regeneration were examined. Cartilage regeneration was confirmed by hematoxylin & eosin (HE) and toluidine blue staining. The maturation progression was carefully examined further by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). At the first and second week time points, various cell shapes were observed using SEM. Chronologically, by the third week, the number of fibers increased, suggesting the progression of extracellular matrix (ECM) maturation. Observation through TEM revealed the chondrocytes located in close proximity to various cells including macrophage-like cells. On the second week, infiltration of lymphocytes and capillary vessels were observed, and after the third week, the chondrocytes had matured and were abundantly releasing extracellular matrix. Chronological observation of transplanted chondrocytes by electron microscopy revealed maturation of chondrocytes and accumulation of matrix during the re-differentiation process. Emerging patterns of host-derived cells such as macrophage-like cells and subsequent appearance of lymphocytes-like cells and angiogenesis were documented, providing crucial context for the identification of the cells responsible for in vivo cartilage regeneration.
Collapse
Affiliation(s)
- Takanori Yamawaki
- Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuko Fujihara
- Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mikako Harata
- Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsuyoshi Takato
- Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- JR East General Hospital, 2-1-3, Shibuya-ku, Tokyo 151-8528, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuto Hoshi
- Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
33
|
Naujokat H, Açil Y, Gülses A, Birkenfeld F, Wiltfang J. Man as a living bioreactor: Long-term histological aspects of a mandibular replacement engineered in the patient's own body. Int J Oral Maxillofac Surg 2018; 47:1481-1487. [PMID: 29843951 DOI: 10.1016/j.ijom.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
Abstract
In 2016, we reported the world's first reconstruction of a mandibular discontinuity defect using a custom-made bone transplant that had been prefabricated in the gastrocolic omentum using tissue engineering strategies. However, the tissue of an engineered human neomandible has not been evaluated histologically until now. The current study assessed the long-term histological characteristics of biopsies of the neomandible 9months after transplantation. Histological analysis showed an increased amount of vital mineralized bone tissue after 10months, in comparison to biopsies obtained earlier. The engineered bone covered the surface of the bone substitute material but also grew out typical structures of cancellous bone tissue without a core of BioOss. The amount of induced bone tissue was 32% in the biopsy. In addition, the soft tissue showed an alignment of the connective tissue fibres parallel to the trabecular bone. Increasing time and mechanical forces at the mandible led to an increased amount of mineralized tissue and remodelling of the connective tissue fibres after transplantation. Further research should focus on developing advanced scaffold materials, as the outer titanium mesh cage leads to complications.
Collapse
Affiliation(s)
- H Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany.
| | - Y Açil
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - A Gülses
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - F Birkenfeld
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - J Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
34
|
Abstract
Bioreactors have become indispensable tools in the cell-based therapy industry. Various forms of bioreactors are used to maintain well-controlled microenvironments to regulate cell growth, differentiation, and tissue development. They are essential for providing standardized, reproducible cell-based products for regenerative medicine applications or to establish physiologically relevant
in vitro models for testing of pharmacologic agents. In this review, we discuss three main classes of bioreactors: cell expansion bioreactors, tissue engineering bioreactors, and lab-on-a-chip systems. We briefly examine the factors driving concerted research endeavors in each of these areas and describe the major advancements that have been reported in the last three years. Emerging issues that impact the commercialization and clinical use of bioreactors include (i) the need to scale up to greater cell quantities and larger graft sizes, (ii) simplification of
in vivo systems to function without exogenous stem cells or growth factors or both, and (iii) increased control in the manufacture and monitoring of miniaturized systems to better capture complex tissue and organ physiology.
Collapse
Affiliation(s)
- Makeda Stephenson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Zhang H, Mao X, Zhao D, Jiang W, Du Z, Li Q, Jiang C, Han D. Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model. Sci Rep 2017; 7:15255. [PMID: 29127293 PMCID: PMC5681514 DOI: 10.1038/s41598-017-14923-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 01/10/2023] Open
Abstract
The repair of large bone defects with complex geometries remains a major clinical challenge. Here, we explored the feasibility of fabricating polylactic acid-hydroxyapatite (PLA-HA) composite scaffolds. These scaffolds were constructed from vascularized tissue engineered bone using an in vivo bioreactor (IVB) strategy with three-dimensional printing technology. Specifically, a rabbit model was established to prefabricate vascularized tissue engineered bone in two groups. An experimental group (EG) was designed using a tibial periosteum capsule filled with 3D printed (3DP) PLA-HA composite scaffolds seeded with bone marrow stromal cells (BMSCs) and crossed with a vascular bundle. 3DP PLA-HA scaffolds were also combined with autologous BMSCs and transplanted to tibial periosteum without blood vessel as a control group (CG). After four and eight weeks, neovascularisation and bone tissues were analysed by studying related genes, micro-computed tomography (Micro-CT) and histological examinations between groups. The results showed that our method capably generated vascularized tissue engineered bone in vivo. Furthermore, we observed significant differences in neovascular and new viable bone formation in the two groups. In this study, we demonstrated the feasibility of generating large vascularized bone tissues in vivo with 3DP PLA-HA composite scaffolds.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbo Jiang
- Clinical Translational Research and Development Center of 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijing Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaohua Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Lin J, Shao J, Juan L, Yu W, Song X, Liu P, Weng W, Xu J, Mehl C. Enhancing bone regeneration by combining mesenchymal stem cell sheets with β-TCP/COL-I scaffolds. J Biomed Mater Res B Appl Biomater 2017; 106:2037-2045. [PMID: 29098765 DOI: 10.1002/jbm.b.34003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Jun Lin
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Jiaqi Shao
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Li Juan
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Wenke Yu
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Xiaojia Song
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Pengruofeng Liu
- Department of Stomatology; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Wenjian Weng
- School of Materials Science and Engineering; Zhejiang University; 310027 Hangzhou China
| | - Jinghong Xu
- Department of Plastic Surgery; First Affiliated Hospital of Zhejiang University; 310003 Hangzhou China
| | - Christian Mehl
- Department of Prosthodontics, Propaedeutics and Dental Materials; Christian-Albrechts University at Kiel; 2415 Kiel Germany
| |
Collapse
|
37
|
Birkenfeld F, Sengebusch A, Völschow C, Naujokat H, Möller B, Wieker H, Wiltfang J. * Endocultivation of Scaffolds with Recombinant Human Bone Morphogenetic Protein-2 and VEGF 165 in the Omentum Majus in a Rabbit Model. Tissue Eng Part C Methods 2017; 23:842-849. [PMID: 28762869 DOI: 10.1089/ten.tec.2017.0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The reconstruction of defects in the mandible are still challenging. Despite several adequate microvascular bone reconstruction techniques, there is a need for ectopic bone endocultivation without drawbacks by donor-site morbidity. The omentum majus is described as a good vascularized fleece with undifferentiated cells with potential for bone culturing. In the omentum majus of six rabbits, two hydroxyapatite blocks were incorporated for 12 weeks each. The blocks were prepared with recombinant human bone morphogenetic protein-2 (rhBMP-2) or VEGF165 + rhBMP-2 and wrapped into the omentum. For ectopic bone endocultivation observation computed tomography (CT) scans were performed, and fluorescence markers were applied. After harvesting the block, histological sections were performed with hematoxylin and eosin and toluidine blue staining. In the CT scans, the Hounsfield units of the blocks increased within the trail. In some sections, new bone formation was observed within the hydroxyapatite blocks, however, the histological staining showed soft-tissue invasion only, no gross bone formation was observed. The ectopic bone endocultivation in the omentum majus is technically a good approach. An adequate mixture of osteoinductive proteins is still missing.
Collapse
Affiliation(s)
- Falk Birkenfeld
- Department of Craniofacial Surgery, University Hospital Schleswig-Holstein , Kiel, Germany
| | - Andre Sengebusch
- Department of Craniofacial Surgery, University Hospital Schleswig-Holstein , Kiel, Germany
| | - Chiara Völschow
- Department of Craniofacial Surgery, University Hospital Schleswig-Holstein , Kiel, Germany
| | - Hendrik Naujokat
- Department of Craniofacial Surgery, University Hospital Schleswig-Holstein , Kiel, Germany
| | - Björn Möller
- Department of Craniofacial Surgery, University Hospital Schleswig-Holstein , Kiel, Germany
| | - Henning Wieker
- Department of Craniofacial Surgery, University Hospital Schleswig-Holstein , Kiel, Germany
| | - Jörg Wiltfang
- Department of Craniofacial Surgery, University Hospital Schleswig-Holstein , Kiel, Germany
| |
Collapse
|
38
|
Bioreactor as a New Resource of Autologous Bone Graft to Overcome Bone Defect In Vivo. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-017-9237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Hollister SJ, Flanagan CL, Morrison RJ, Patel JJ, Wheeler MB, Edwards SP, Green GE. Integrating Image-Based Design and 3D Biomaterial Printing to create Patient Specific Devices within a Design Control Framework for Clinical Translation. ACS Biomater Sci Eng 2016; 2:1827-1836. [PMID: 31231678 PMCID: PMC6588290 DOI: 10.1021/acsbiomaterials.6b00332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite significant advances in 3D biomaterial printing, the potential of 3D printing for patient specific implants and tissue reconstruction has not been fully exploited. This is due in part to the lack of integration of image-based patient specific design with 3D biomaterial printing within a relevant regulatory framework, namely design control, required by the FDA. In this manuscript, we describe the integration of image-based, multi-scale patient specific design with 3D biomaterial printing within a design control framework for clinical translation. Specifically, we define design inputs for patient specific implants and scaffolds, and utilize image-based patient specific design to achieve these design inputs. We then illustrate realization of these topology designed patient specific implants by laser sintering of polycaprolactone (PCL). Finally, we present initial results in large animal models using 3D printed PCL implants addressing two challenging problems in tissue reconstruction: 1) designing and 3D printing implantable devices to allow growth in pediatric airway applications and 2) utilizing 3D printed scaffolds as foundations for pre-fabricated flaps to obtain vascularization and bone formation for large volume bone/soft tissue reconstruction. We illustrate these challenging problems as they need to be incorporated in design control, but as of yet there is little data to direct how growth and vascularization should be utilized in design control.
Collapse
Affiliation(s)
- Scott J. Hollister
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI
| | - Colleen L. Flanagan
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI
| | - Robert J. Morrison
- Department of Otolaryngology Head and Neck Surgery, Division of Pediatric Otolaryngology, The University of Michigan, Ann Arbor, MI
| | - Janki J. Patel
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI
| | - Matthew B. Wheeler
- Institute for Genomic Biology and Department of Animal Sciences, The University of Illinois, Urbana-Champaign, Champaign, IL
| | - Sean P. Edwards
- Department of Oral and Maxillofacial Surgery, The University of Michigan, Ann Arbor, MI
| | - Glenn E. Green
- Department of Otolaryngology Head and Neck Surgery, Division of Pediatric Otolaryngology, The University of Michigan, Ann Arbor, MI
| |
Collapse
|