1
|
Absmeier E, Heyd F. Temperature-controlled molecular switches in mammalian cells. J Biol Chem 2024; 300:107865. [PMID: 39374780 PMCID: PMC11570493 DOI: 10.1016/j.jbc.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Temperature is an omnipresent factor impacting on many aspects of life. In bacteria and ectothermic eukaryotes, various thermosensors and temperature-controlled switches have been described, ranging from RNA thermometers controlling the heat shock response in prokaryotes to temperature-dependent sex determination in reptiles, likely controlled through protein phosphorylation. However, the impact of subtle changes of human core body temperature are only beginning to be acknowledged. In this review, we will discuss thermosensing mechanisms and their functional implications with a focus on mammalian cells, also in the context of disease conditions. We will point out open questions and possible future directions for this emerging research field, which, in addition to molecular-mechanistic insights, holds the potential for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Eva Absmeier
- Laboratory of mRNA translation and turnover, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Pyrpyris N, Dimitriadis K, Iliakis P, Theofilis P, Beneki E, Terentes-Printzios D, Sakalidis A, Antonopoulos A, Aznaouridis K, Tsioufis K. Hypothermia for Cardioprotection in Acute Coronary Syndrome Patients: From Bench to Bedside. J Clin Med 2024; 13:5390. [PMID: 39336877 PMCID: PMC11432135 DOI: 10.3390/jcm13185390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Early revascularization for patients with acute myocardial infarction (AMI) is of outmost importance in limiting infarct size and associated complications, as well as for improving long-term survival and outcomes. However, reperfusion itself may further damage the myocardium and increase the infarct size, a condition commonly recognized as myocardial reperfusion injury. Several strategies have been developed for limiting the associated with reperfusion myocardial damage, including hypothermia. Hypothermia has been shown to limit the degree of infarct size increase, when started before reperfusion, in several animal models. Systemic hypothermia, however, failed to show any benefit, due to adverse events and potentially insufficient myocardial cooling. Recently, the novel technique of intracoronary selective hypothermia is being tested, with preclinical and clinical results being of particular interest. Therefore, in this review, we will describe the pathophysiology of myocardial reperfusion injury and the cardioprotective mechanics of hypothermia, report the animal and clinical evidence in both systemic and selective hypothermia and discuss the potential future directions and clinical perspectives in the context of cardioprotection for myocardial reperfusion injury.
Collapse
Affiliation(s)
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (N.P.); (P.I.); (P.T.); (E.B.); (D.T.-P.); (A.S.); (A.A.); (K.A.); (K.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Urakov A, Urakova N. Targeted temperature management in obstetrics for the prevention of perinatal encephalopathy. Turk J Med Sci 2024; 54:876-877. [PMID: 39295622 PMCID: PMC11407349 DOI: 10.55730/1300-0144.5859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/23/2024] [Accepted: 07/21/2024] [Indexed: 09/21/2024] Open
Affiliation(s)
- Aleksandr Urakov
- Department of General and Clinical Pharmacology, Faculty of Medicine, Izhevsk State Medical University, Izhevsk, Russia
| | - Natalya Urakova
- Department of Obstetrics and Gynecology, Faculty of Medicine, Izhevsk State Medical University, Izhevsk, Russia
| |
Collapse
|
4
|
Herrmann JR, Fink EL, Fabio A, Berger RP, Janesko-Feldman K, Gorse K, Clark RSB, Kochanek PM, Jackson TC. Characterization of Circulating Cold Shock Proteins FGF21 and RBM3 in a Multi-Center Study of Pediatric Cardiac Arrest. Ther Hypothermia Temp Manag 2024; 14:99-109. [PMID: 37669029 PMCID: PMC11391889 DOI: 10.1089/ther.2023.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Fibroblast Growth Factor 21 (FGF21) is a neuroprotective hormone induced by cold exposure that targets the β-klotho co-receptor. β-klotho is abundant in the newborn brain but decreases rapidly with age. RNA-Binding Motif 3 (RBM3) is a potent neuroprotectant upregulated by FGF21 in hypothermic conditions. We characterized serum FGF21 and RBM3 levels in patients enrolled in a prospective multi-center study of pediatric cardiac arrest (CA) via a secondary analysis of samples collected to evaluate brain injury biomarkers. Patients (n = 111) with remnant serum samples available from at least two of three available timepoints (0-24, 24-48 or 48-72 hours post-resuscitation) were included. Serum samples from 20 healthy controls were used for comparison. FGF21 was measured by Luminex and internally validated enzyme-linked immunoassay (ELISA). RBM3 was measured by internally validated ELISA. Of postarrest patients, 98 were managed with normothermia, while 13 were treated with therapeutic hypothermia (TH). FGF21 increased >20-fold in the first 24 hours postarrest versus controls (681 pg/mL [200-1864] vs. 29 pg/mL [15-51], n = 99 vs. 19, respectively, p < 0.0001, median [interquartile range]) with no difference in RBM3. FGF21 did not differ by sex, while RBM3 was increased in females versus males at 48-72 hours postarrest (1866 pg/mL [873-5176] vs. 1045 pg/mL [535-2728], n = 40 vs. 54, respectively, p < 0.05). Patients requiring extracorporeal membrane oxygenation (ECMO) postresuscitation had increased FGF21 versus those who did not at 48-72 hours (6550 pg/mL [1455-66,781] vs. 1213 pg/mL [480-3117], n = 7 vs 74, respectively, p < 0.05). FGF21 and RBM3 did not correlate (Spearman's rho = 0.004, p = 0.97). We conclude that in a multi-center study of pediatric CA patients where normothermic targeted temperature management was largely used, FGF21 was markedly increased postarrest versus control and highest in patients requiring ECMO postresuscitation. RBM3 was sex-dependent. We provide a framework for future studies examining the effect of TH on FGF21 or use of FGF21 therapy after pediatric CA.
Collapse
Affiliation(s)
- Jeremy R Herrmann
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ericka L Fink
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony Fabio
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel P Berger
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kiersten Gorse
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Robert S B Clark
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Travis C Jackson
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Lee S, Kim M, Kwon MY, Kwon SM, Ko YS, Chung Y, Park W, Park JC, Ahn JS, Jeon H, Im J, Kim JH. The efficacy of therapeutic hypothermia in patients with poor-grade aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Acute Crit Care 2024; 39:282-293. [PMID: 38863359 PMCID: PMC11167421 DOI: 10.4266/acc.2024.00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND This study evaluates the effectiveness of Therapeutic Hypothermia (TH) in treating poor-grade aneurysmal subarachnoid hemorrhage (SAH), focusing on functional outcomes, mortality, and complications such as vasospasm, delayed cerebral ischemia (DCI), and hydrocephalus. METHODS Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, a comprehensive literature search was conducted across multiple databases, including Medline, Embase, and Cochrane Central, up to November 2023. Nine studies involving 368 patients were selected based on eligibility criteria focusing on TH in poor-grade SAH patients. Data extraction, bias assessment, and evidence certainty were systematically performed. RESULTS The primary analysis of unfavorable outcomes in 271 participants showed no significant difference between the TH and standard care groups (risk ratio [RR], 0.87). However, a significant reduction in vasospasm was observed in the TH group (RR, 0.63) among 174 participants. No significant differences were found in DCI, hydrocephalus, and mortality rates in the respective participant groups. CONCLUSIONS TH did not significantly improve primary unfavorable outcomes in poor-grade SAH patients. However, the reduction in vasospasm rates indicates potential specific benefits. The absence of significant findings in other secondary outcomes and mortality highlights the need for further research to better understand TH's role in treating this patient population.
Collapse
Affiliation(s)
- Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Moinay Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Yong Kwon
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| | - Sae Min Kwon
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| | - Young San Ko
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| | - Yeongu Chung
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wonhyoung Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jihyun Im
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hyun Kim
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| |
Collapse
|
6
|
Jackson TC, Herrmann JR, Fink EL, Au AK, Kochanek PM. Harnessing the Promise of the Cold Stress Response for Acute Brain Injury and Critical Illness in Infants and Children. Pediatr Crit Care Med 2024; 25:259-270. [PMID: 38085024 PMCID: PMC10932834 DOI: 10.1097/pcc.0000000000003424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Travis C. Jackson
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jeremy R. Herrmann
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Malliou A, Mitsiou C, Kyritsis AP, Alexiou GA. Therapeutic Hypothermia in Treating Glioblastoma: A Review. Ther Hypothermia Temp Manag 2024; 14:2-9. [PMID: 37184912 DOI: 10.1089/ther.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly occurring of all malignant central nervous system (CNS) tumors in adults. Considering the low median survival of only ∼15 months and poor prognosis in GBM patients, despite surgical resection with adjuvant radiation and chemotherapy, it is vital to seek brand new and innovative treatment in combination with already existing methods. Hypothermia participates in many metabolic pathways, inflammatory responses, and apoptotic processes, while also promoting the integrity of neurons. Following the successful application of therapeutic hypothermia across a spectrum of disorders such as traumatic CNS injury, cardiac arrest, and epilepsy, several clinical trials have set to evaluate the potency of hypothermia in treating a variety of cancers, including breast and ovaries cancer. In regard to primary neoplasms and more specifically, GBM, hypothermia has recently shown promising results as an auxiliary treatment, reinforcing chemotherapy's efficacy. In this review, we discuss the recent advances in utilizing hypothermia as treatment for GBM and other cancers.
Collapse
Affiliation(s)
- Athina Malliou
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| | | | | | - George A Alexiou
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| |
Collapse
|
8
|
Liddle LJ, Huang YG, Kung TFC, Mergenthaler P, Colbourne F, Buchan AM. An Assessment of Physical and N6-Cyclohexyladenosine-Induced Hypothermia in Rodent Distal Focal Ischemic Stroke. Ther Hypothermia Temp Manag 2024; 14:36-45. [PMID: 37339459 DOI: 10.1089/ther.2023.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Therapeutic hypothermia (TH) mitigates damage in ischemic stroke models. However, safer and easier TH methods (e.g., pharmacological) are needed to circumvent physical cooling complications. This study evaluated systemic and pharmacologically induced TH using the adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA), with control groups in male Sprague-Dawley rats. CHA was administered intraperitoneally 10 minutes following a 2-hour intraluminal middle cerebral artery occlusion. We used a 1.5 mg/kg induction dose, followed by three 1.0 mg/kg doses every 6 hours for a total of 4 doses, causing 20-24 hours of hypothermia. Animals assigned to physical hypothermia and CHA-hypothermia had similar induction rates and nadir temperatures, but forced cooling lasted ∼6 hours longer compared with CHA-treated animals. The divergence is likely attributable to individual differences in CHA metabolism, which led to varied durations at nadir, whereas physical hypothermia was better regulated. Physical hypothermia significantly reduced infarction (primary endpoint) on day 7 (mean reduction of 36.8 mm3 or 39% reduction; p = 0.021 vs. normothermic animals; Cohen's d = 0.75), whereas CHA-induced hypothermia did not (p = 0.33). Similarly, physical cooling improved neurological function (physical hypothermia median = 0, physical normothermia median = 2; p = 0.008) and CHA-induced cooling did not (p > 0.99). Our findings demonstrate that forced cooling was neuroprotective compared with controls, but prolonged CHA-induced cooling was not neuroprotective.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Yi-Ge Huang
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tiffany F C Kung
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Philipp Mergenthaler
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, NeuroCure Clinical Research Center, Berlin, Germany
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alastair M Buchan
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany
| |
Collapse
|
9
|
Shevtsova Y, Eldarov C, Starodubtseva N, Goryunov K, Chagovets V, Ionov O, Plotnikov E, Silachev D. Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1693. [PMID: 37892356 PMCID: PMC10605414 DOI: 10.3390/children10101693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
A study was performed to determine early metabolomic markers of ischemic hypoxic encephalopathy (HIE) using a Rice-Vannucci model for newborn rats. Dried blood spots from 7-day-old male and female rat pups, including 10 HIE-affected animals and 16 control animals, were analyzed by liquid chromatography coupled with mass spectrometry (HPLC-MS) in positive and negative ion recording modes. Multivariate statistical analysis revealed two distinct clusters of metabolites in both HPLC-MS modes. Subsequent univariate statistical analysis identified 120 positive and 54 negative molecular ions that exhibited statistically significant change in concentration, with more than a 1.5-fold difference after HIE. In the HIE group, the concentrations of steroid hormones, saturated mono- and triglycerides, and phosphatidylcholines (PCs) were significantly decreased in positive mode. On the contrary, the concentration of unsaturated PCs was increased in the HIE group. Among negatively charged molecular ions, the greatest variations were found in the categories of phosphatidylcholines, phosphatidylinositols, and triglycerides. The major metabolic pathways associated with changed metabolites were analyzed for both modes. Metabolic pathways such as steroid biosynthesis and metabolism fatty acids were most affected. These results underscored the central role of glycerophospholipid metabolism in triggering systemic responses in HIE. Therefore, lipid biomarkers' evaluation by targeted HPLC-MS research could be a promising approach for the early diagnosis of HIE.
Collapse
Affiliation(s)
- Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
10
|
Anatychuk L, Zadorozhnyy O, Naumenko V, Maltsev E, Kobylianskyi R, Nazaretyan R, Umanets M, Kustryn T, Nasinnyk I, Korol A, Pasyechnikova N. Vitreoretinal Surgery with Temperature Management: A Preliminary Study in Rabbits. Ther Hypothermia Temp Manag 2023; 13:126-133. [PMID: 36827431 DOI: 10.1089/ther.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The present study aimed to evaluate the structure of the rabbit retina after vitreoretinal surgery using prolonged irrigation with solutions of different temperatures. Thirty-six rabbits (72 eyes) were included in this study and randomly divided into 3 equal groups according to the temperature of the intraocular irrigating fluid they received during vitrectomy. Vitreoretinal surgery was performed with a 5°C irrigation solution in group 1 (12 rabbits, 24 eyes), a 22°C irrigation solution in group 2 (12 rabbits, 24 eyes), and a 36°C irrigation solution in group 3 (12 rabbits, 24 eyes). In each group of animals, the mean irrigation/aspiration time was 30 minutes for left eyes and 60 minutes for right eyes. Histological examination of the retina was performed 1, 7, and 30 days after surgery. During surgery, the temperature in the vitreous cavity of the eyes of rabbits of groups 1, 2, and 3 dropped by 26.0°C, 11.2°C (deep hypothermia), and 1.0°C (mild hypothermia), respectively. The highest rewarming rate was detected in group 1 (0.9°C/min) compared with group 2 (0.7°C/min) and group 3 (0.2°C/min). After 60 minutes of irrigation, retinal structural changes were detected in the animals of groups 1 and 2 (in contrast to the animals of group 3). After surgery with irrigation lasting 30 minutes, no retinal structural changes were observed. This study showed that temperature management, avoidance of intraoperative deep hypothermia, and prevention of rapid uncontrolled rewarming may protect the retinal morphology and increase the safety of prolonged vitreoretinal surgery.
Collapse
Affiliation(s)
- Lukyan Anatychuk
- Medical Department, Institute of Thermoelectricity of the National Academy of Sciences of Ukraine and the Ministry of Education and Science of Ukraine, Chernivtsi, Ukraine
- Department of Thermoelectricity, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Oleg Zadorozhnyy
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| | - Volodymyr Naumenko
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| | - Eduard Maltsev
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| | - Roman Kobylianskyi
- Medical Department, Institute of Thermoelectricity of the National Academy of Sciences of Ukraine and the Ministry of Education and Science of Ukraine, Chernivtsi, Ukraine
- Department of Thermoelectricity, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Rudolph Nazaretyan
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| | - Mykola Umanets
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| | - Taras Kustryn
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| | - Illia Nasinnyk
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| | - Andrii Korol
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| | - Nataliya Pasyechnikova
- Department of Laser Microsurgery of Eye Diseases, State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine," Odesa, Ukraine
| |
Collapse
|
11
|
Coppler PJ. Implementing a strict fever control protocol for resuscitated cardiac arrest patients. Resuscitation 2023; 188:109841. [PMID: 37196805 DOI: 10.1016/j.resuscitation.2023.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Patrick J Coppler
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Shevelev OA, Petrova MV, Mengistu EM, Yuriev MY, Kostenkova IZ, Vesnin SG, Kanarskii MM, Zhdanova MA, Goryanin I. Correction of Local Brain Temperature after Severe Brain Injury Using Hypothermia and Medical Microwave Radiometry (MWR) as Companion Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13061159. [PMID: 36980467 PMCID: PMC10047658 DOI: 10.3390/diagnostics13061159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
The temperature of the brain can reflect the activity of its different regions, allowing us to evaluate the connections between them. A study involving 111 patients in a vegetative state or minimally conscious state used microwave radiometry to measure their cortical temperature. The patients were divided into a main group receiving a 10-day selective craniocerebral hypothermia (SCCH) procedure, and a control group receiving basic therapy and rehabilitation. The main group showed a significant improvement in consciousness level as measured by CRS-R assessment on day 14 compared to the control group. Temperature heterogeneity increased in patients who received SCCH, while remaining stable in the control group. The use of microwave radiometry to assess rehabilitation effectiveness and the inclusion of SCCH in rehabilitation programs appears to be a promising approach.
Collapse
Affiliation(s)
- Oleg A Shevelev
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
- Department of Anaesthesiology and Intensive Care, Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Marina V Petrova
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
- Department of Anaesthesiology and Intensive Care, Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Elias M Mengistu
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
- Department of Anaesthesiology and Intensive Care, Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Mikhail Y Yuriev
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
| | - Inna Z Kostenkova
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
| | - Sergey G Vesnin
- Medical Microwave Radiometry (MMWR) LTD, Edinburgh EH10 5LZ, UK
| | - Michael M Kanarskii
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
| | - Maria A Zhdanova
- Federal Research and Clinical Centre for Resuscitation and Rehabilitology, 107031 Moscow, Russia
| | - Igor Goryanin
- School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, UK
- Biological Systems Unit, Okinawa Institute Science and Technology, Onna 904-0495, Japan
| |
Collapse
|
13
|
Narayanamurthy R, Armstrong EA, Yang JLJ, Yager JY, Unsworth LD. Administration of selective brain hypothermia using a simple cooling device in neonatal rats. J Neurosci Methods 2023; 390:109838. [PMID: 36933705 DOI: 10.1016/j.jneumeth.2023.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The interruption of oxygen and blood supply to the newborn brain around the time of birth is a risk factor for hypoxic-ischemic encephalopathy and may lead to infant mortality or lifelong neurological impairments. Currently, therapeutic hypothermia, the cooling of the infant's head or entire body, is the only treatment to curb the extent of brain damage. NEW METHOD In this study, we designed a focal brain cooling device that circulates cooled water at a steady state temperature of 19 ± 1 °C through a coil of tubing fitted onto the neonatal rat's head. We tested its ability to selectively decrease brain temperature and offer neuroprotection in a neonatal rat model of hypoxic-ischemic brain injury. RESULTS Our method cooled the brain to 30-33 °C in conscious pups, while keeping the core body temperature approximately 3.2 °C warmer. Furthermore, the application of the cooling device to the neonatal rat model demonstrated a reduction in brain volume loss compared to pups maintained at normothermia and achieved a level of brain tissue protection the same as that of whole-body cooling. COMPARISON WITH EXISTING METHODS Prevailing methods of selective brain hypothermia are designed for adult animal models rather than for immature animals such as the rat as a conventional model of developmental brain pathology. Contrary to existing methods, our method of cooling does not require surgical manipulation or anaesthesia. CONCLUSION Our simple, economical, and effective method of selective brain cooling is a useful tool for rodent studies in neonatal brain injury and adaptive therapeutic interventions.
Collapse
Affiliation(s)
- Rukhmani Narayanamurthy
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Edward A Armstrong
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Jung-Lynn Jonathan Yang
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 Avenue, Edmonton, Alberta T6G 2M7, Canada
| | - Jerome Y Yager
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 Avenue, Edmonton, Alberta T6G 2M7, Canada.
| |
Collapse
|
14
|
Li P, Sun Z, Tian T, Yu D, Tian H, Gong P. Recent developments and controversies in therapeutic hypothermia after cardiopulmonary resuscitation. Am J Emerg Med 2023; 64:1-7. [PMID: 36435004 DOI: 10.1016/j.ajem.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia was recommended as the only neuroprotective treatment in comatose patients after return of spontaneous circulation (ROSC). With new evidence suggesting a similar neuroprotective effect of 36 °C and 33 °C, the term "therapeutic hypothermia" was substituted by "targeted temperature management" in 2011, which in turn was replaced by the term "temperature control" in 2022 because of new evidence of the similar effects of target normothermia and 33 °C. However, there is no clear consensus on the efficacy of therapeutic hypothermia. In this article, we provide an overview of the recent evidence from basic and clinical research related to therapeutic hypothermia and re-evaluate its application as a post-ROSC neuroprotective intervention in clinical settings.
Collapse
Affiliation(s)
- Peijuan Li
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Zhangping Sun
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Tian Tian
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Dongping Yu
- Department of Emergency, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Tian
- Department of Emergency, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ping Gong
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China; Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
15
|
Drew KL, Bhowmick S, Laughlin BW, Goropashnaya AV, Tøien Ø, Sugiura MH, Wong A, Pourrezaei K, Barati Z, Chen CY. Opportunities and barriers to translating the hibernation phenotype for neurocritical care. Front Neurol 2023; 14:1009718. [PMID: 36779060 PMCID: PMC9911456 DOI: 10.3389/fneur.2023.1009718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Targeted temperature management (TTM) is standard of care for neonatal hypoxic ischemic encephalopathy (HIE). Prevention of fever, not excluding cooling core body temperature to 33°C, is standard of care for brain injury post cardiac arrest. Although TTM is beneficial, HIE and cardiac arrest still carry significant risk of death and severe disability. Mammalian hibernation is a gold standard of neuroprotective metabolic suppression, that if better understood might make TTM more accessible, improve efficacy of TTM and identify adjunctive therapies to protect and regenerate neurons after hypoxic ischemia brain injury. Hibernating species tolerate cerebral ischemia/reperfusion better than humans and better than other models of cerebral ischemia tolerance. Such tolerance limits risk of transitions into and out of hibernation torpor and suggests that a barrier to translate hibernation torpor may be human vulnerability to these transitions. At the same time, understanding how hibernating mammals protect their brains is an opportunity to identify adjunctive therapies for TTM. Here we summarize what is known about the hemodynamics of hibernation and how the hibernating brain resists injury to identify opportunities to translate these mechanisms for neurocritical care.
Collapse
Affiliation(s)
- Kelly L. Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Saurav Bhowmick
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Bernard W. Laughlin
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Anna V. Goropashnaya
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Øivind Tøien
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - M. Hoshi Sugiura
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Ardy Wong
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Kambiz Pourrezaei
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Zeinab Barati
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
- Barati Medical LLC, Fairbanks, AK, United States
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Overexpressed cold inducible RNA-binding protein improves cell viability and EGF expression in glial cells. BMC Mol Cell Biol 2022; 23:58. [PMID: 36526996 PMCID: PMC9756664 DOI: 10.1186/s12860-022-00460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cold inducible RNA-binding protein (CIRP) is a key protein in the hypothermic therapy. Highly expressed CIRP exerts a neuroprotective effect on neurons. The aim of this study is to provide the evidence of the protective effects of CIRP on the glial cells and explore the downstream pathway of CIRP. RESULTS The results of this study demonstrated that the cell viability of the glial cells with CIRP overexpression was increased significantly compared to the control. With CIRP overexpression, the epidermal growth factor (EGF) mRNA expression was found increasing significantly and the mRNA expressions of derived neurotrophic factor (BDNF), bcl-2, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were not upregulated compared to the control. EGF and CIRP co-expression was demonstrated on the glial cells. With CIRP expression, EGF expression on the glial cells was increased statistically compared to the control. CONCLUSION CIRP overexpression increases the cell viability of the glial cells, exerting a neuroprotective effect. EGF expression is activated on the glial cells with CIRP overexpression, implying a pathway of CIRP neuroprotection via EGF activation.
Collapse
|
17
|
Bai Y, Yuan M, Mi H, Zhang F, Liu X, Lu C, Bao Y, Li Y, Lu Q. Hypothermia reduces glymphatic transportation in traumatic edematous brain assessed by intrathecal dynamic contrast-enhanced MRI. Front Neurol 2022; 13:957055. [PMID: 36341130 PMCID: PMC9632734 DOI: 10.3389/fneur.2022.957055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/03/2022] [Indexed: 02/28/2024] Open
Abstract
The glymphatic system has recently been shown to clear brain extracellular solutes and can be extensively impaired after traumatic brain injury (TBI). Despite hypothermia being identified as a protective method for the injured brain via minimizing the formation of edema in the animal study, little is known about how hypothermia affects the glymphatic system following TBI. We use dynamic contrast-enhanced MRI (DCE-MRI) following cisterna magna infusion with a low molecular weight contrast agent to track glymphatic transport in male Sprague-Dawley rats following TBI with hypothermia treatment and use diffusion-weighted imaging (DWI) sequence to identify edema after TBI, and further distinguish between vasogenic and cytotoxic edema. We found that hypothermia could attenuate brain edema, as demonstrated by smaller injured lesions and less vasogenic edema in most brain subregions. However, in contrast to reducing cerebral edema, hypothermia exacerbated the reduction of efficiency of glymphatic transportation after TBI. This deterioration of glymphatic drainage was present brain-wide and showed hemispherical asymmetry and regional heterogeneity across the brain, associated with vasogenic edema. Moreover, our data show that glymphatic transport reduction and vasogenic edema are closely related to reducing perivascular aquaporin-4 (AQP4) expression. The suppression of glymphatic transportation might eliminate the benefits of brain edema reduction induced by hypothermia and provide an alternative pathophysiological factor indicating injury to the brain after TBI. Thus, this study poses a novel emphasis on the potential role of hypothermia in managing severe TBI.
Collapse
Affiliation(s)
- Yingnan Bai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mingyuan Yuan
- Department of Radiology, Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Honglan Mi
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fengchen Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Liu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Lu
- Shanghai Wei Yu International School, Shanghai, China
| | - Yinghui Bao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Radiology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Shanghai East Hospital Tongji University, Shanghai, China
| |
Collapse
|
18
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
19
|
Ekpo MD, Boafo GF, Gambo SS, Hu Y, Liu X, Xie J, Tan S. Cryopreservation of Animals and Cryonics: Current Technical Progress, Difficulties and Possible Research Directions. Front Vet Sci 2022; 9:877163. [PMID: 35754544 PMCID: PMC9219731 DOI: 10.3389/fvets.2022.877163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The basis of cryonics or medical cryopreservation is to safely store a legally dead subject until a time in the future when technology and medicine will permit reanimation after eliminating the disease or cause of death. Death has been debunked as an event occurring after cardiac arrest to a process where interjecting its progression can allow for reversal when feasible. Cryonics technology artificially halts further damages and injury by restoring respiration and blood circulation, and rapidly reducing temperature. The body can then be preserved at this extremely low temperature until the need for reanimation. Presently, the area has attracted numerous scientific contributions and advancement but the practice is still flooded with challenges. This paper presents the current progression in cryonics research. We also discuss obstacles to success in the field, and identify the possible solutions and future research directions.
Collapse
Affiliation(s)
- Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Suleiman Shafiu Gambo
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
20
|
Guseynov NA, Ivashkevich SG, Boyko EM. Physiological features of cells and microvasculature under the local hypothermia influence. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-1-34-41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Hypothermia or cold therapy is the local or systemic application of cold for therapeutic purposes. Local application of cold is used to control inflammation: pain and swelling, hematoma and trismus reduction. Despite the frequent use of cooling in prosthodontic rehabilitation and in physical therapy, as evidenced by many reports in the literature, there is scientific documentation that suggests disadvantages of using this treatment in maxillofacial surgery and oral surgery. Also the clinical studies that have been carried out in maxillofacial surgery and oral surgery have been conducted in an empirical manner, which casts doubt on the results. In view of this, it is relevant to study the mechanisms of microcirculatory preconditioning and hypothermia. This physiological process is so interesting for the development of medical devices of controlled hardware hypothermia to prevent inflammatory symptoms at the stage of rehabilitation by targeting the vascular and cellular component of the inflammatory process in different areas of the human body. To date, the use of local hardware controlled hypothermia in various pathological conditions in humans is a topical trend in medicine. Microcirculatory bloodstream is directly related to temperature factors. Although there are concepts of vascular spasm or dilatation in the microcirculatory bloodstream during systemic hypothermia, there are no reliable data on the cellular and vascular reactions during local hypothermia. In this paper, a search for fundamental and current scientific work on the topic of cellular and vascular changes under the influence of hypothermia was conducted. The search for data revealed that the mechanisms of intracellular hypothermia are of particular interest for the development of therapeutic treatments after surgical interventions in areas with extensive blood supply. With this in mind, it is relevant to investigate several areas: the role of endothelium, glycocalyx and blood cells in microcirculatory-mediated preconditioning and intracellular hypothermia, and in the molecular mechanism that regulates these processes, whether they occur in the same way in all tissues.
Collapse
|
21
|
Guseynov NA, Ivashkevich SG, Boyko EM. Physiological features of cells and microvasculature under the local hypothermia influence. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-1-33-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Hypothermia or cold therapy is the local or systemic application of cold for therapeutic purposes. Local application of cold is used to control inflammation: pain and swelling, hematoma and trismus reduction. Despite the frequent use of cooling in prosthodontic rehabilitation and in physical therapy, as evidenced by many reports in the literature, there is scientific documentation that suggests disadvantages of using this treatment in maxillofacial surgery and oral surgery. Also the clinical studies that have been carried out in maxillofacial surgery and oral surgery have been conducted in an empirical manner, which casts doubt on the results. In view of this, it is relevant to study the mechanisms of microcirculatory preconditioning and hypothermia. This physiological process is so interesting for the development of medical devices of controlled hardware hypothermia to prevent inflammatory symptoms at the stage of rehabilitation by targeting the vascular and cellular component of the inflammatory process in different areas of the human body. To date, the use of local hardware controlled hypothermia in various pathological conditions in humans is a topical trend in medicine. Microcirculatory bloodstream is directly related to temperature factors. Although there are concepts of vascular spasm or dilatation in the microcirculatory bloodstream during systemic hypothermia, there are no reliable data on the cellular and vascular reactions during local hypothermia. In this paper, a search for fundamental and current scientific work on the topic of cellular and vascular changes under the influence of hypothermia was conducted. The search for data revealed that the mechanisms of intracellular hypothermia are of particular interest for the development of therapeutic treatments after surgical interventions in areas with extensive blood supply. With this in mind, it is relevant to investigate several areas: the role of endothelium, glycocalyx and blood cells in microcirculatory-mediated preconditioning and intracellular hypothermia, and in the molecular mechanism that regulates these processes, whether they occur in the same way in all tissues.
Collapse
|
22
|
Herrmann JR, Fink EL, Fabio A, Au AK, Berger RP, Janesko-Feldman K, Clark RSB, Kochanek PM, Jackson TC. Serum levels of the cold stress hormones FGF21 and GDF-15 after cardiac arrest in infants and children enrolled in single center therapeutic hypothermia clinical trials. Resuscitation 2022; 172:173-180. [PMID: 34822938 PMCID: PMC8923906 DOI: 10.1016/j.resuscitation.2021.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Fibroblast Growth Factor 21 (FGF21) and Growth Differentiation Factor-15 (GDF-15) are putative neuroprotective cold stress hormones (CSHs) provoked by cold exposure that may be age-dependent. We sought to characterize serum FGF21 and GDF-15 levels in pediatric cardiac arrest (CA) patients and their association with use of therapeutic hypothermia (TH). METHODS Secondary analysis of serum samples from clinical trials. We measured FGF21 and GDF-15 levels in pediatric patients post-CA and compared levels to both pediatric intensive care (PICU) and healthy controls. Post-CA, we compared normothermia (NT) vs TH (33 °C for 72 h) treated cohorts at < 24 h, 24 h, 48 h, 72 h, and examined the change in CSHs over 72 h. We also assessed association between hospital mortality and initial levels. RESULTS We assessed 144 samples from 68 patients (27 CA [14 TH, 13 NT], 9 PICU and 32 healthy controls). Median initial FGF21 levels were higher post-CA vs. healthy controls (392 vs. 40 pg/mL, respectively, P < 0.001). Median GDF-15 levels were higher post-CA vs. healthy controls (7,089 vs. 396 pg/mL, respectively, P < 0.001). In the CA group, the median change in FGF21 from PICU day 1-3 (after 72 h of temperature control), was higher in TH vs. NT (231 vs. -20 pg/mL, respectively, P < 0.05), with no difference in GDF-15 over time. Serum GDF-15 levels were higher in CA patients that died vs. survived (19,450 vs. 5,337 pg/mL, respectively, P < 0.05), whereas serum FGF21 levels were not associated with mortality. CONCLUSION Serum levels of FGF21 and GDF-15 increased after pediatric CA, and FGF21 appears to be augmented by TH.
Collapse
Affiliation(s)
- Jeremy R Herrmann
- Departments of Critical Care Medicine, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ericka L Fink
- Departments of Critical Care Medicine, Pittsburgh, PA, USA; Pediatrics, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony Fabio
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alicia K Au
- Departments of Critical Care Medicine, Pittsburgh, PA, USA; Pediatrics, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel P Berger
- Pediatrics, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Keri Janesko-Feldman
- Departments of Critical Care Medicine, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S B Clark
- Departments of Critical Care Medicine, Pittsburgh, PA, USA; Pediatrics, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Departments of Critical Care Medicine, Pittsburgh, PA, USA; Pediatrics, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Travis C Jackson
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
23
|
Jackson TC, Herrmann JR, Garman RH, Kang RD, Vagni VA, Gorse K, Janesko-Feldman K, Stezoski J, Kochanek PM. Hypoxia-ischemia-mediated effects on neurodevelopmentally regulated cold-shock proteins in neonatal mice under strict temperature control. Pediatr Res 2022:10.1038/s41390-022-01990-4. [PMID: 35184138 PMCID: PMC9388702 DOI: 10.1038/s41390-022-01990-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neonates have high levels of cold-shock proteins (CSPs) in the normothermic brain for a limited period following birth. Hypoxic-ischemic (HI) insults in term infants produce neonatal encephalopathy (NE), and it remains unclear whether HI-induced pathology alters baseline CSP expression in the normothermic brain. METHODS Here we established a version of the Rice-Vannucci model in PND 10 mice that incorporates rigorous temperature control. RESULTS Common carotid artery (CCA)-ligation plus 25 min hypoxia (8% O2) in pups with targeted normothermia resulted in classic histopathological changes including increased hippocampal degeneration, astrogliosis, microgliosis, white matter changes, and cell signaling perturbations. Serial assessment of cortical, thalamic, and hippocampal RNA-binding motif 3 (RBM3), cold-inducible RNA binding protein (CIRBP), and reticulon-3 (RTN3) revealed a rapid age-dependent decrease in levels in sham and injured pups. CSPs were minimally affected by HI and the age point of lowest expression (PND 18) coincided with the timing at which heat-generating mechanisms mature in mice. CONCLUSIONS The findings suggest the need to determine whether optimized therapeutic hypothermia (depth and duration) can prevent the age-related decline in neuroprotective CSPs like RBM3 in the brain, and improve outcomes during critical phases of secondary injury and recovery after NE. IMPACT The rapid decrease in endogenous neuroprotective cold-shock proteins (CSPs) in the normothermic cortex, thalamus, and hippocampus from postnatal day (PND) 11-18, coincides with the timing of thermogenesis maturation in neonatal mice. Hypoxia-ischemia (HI) has a minor impact on the normal age-dependent decline in brain CSP levels in neonates maintained normothermic post-injury. HI robustly disrupts the expected correlation in RNA-binding motif 3 (RBM3) and reticulon-3 (RTN3). The potent neuroprotectant RBM3 is not increased 1-4 days after HI in a mouse model of neonatal encephalopathy (NE) in the term newborn and in which rigorous temperature control prevents the manifestation of endogenous post-insult hypothermia.
Collapse
Affiliation(s)
- Travis C Jackson
- University of South Florida Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Drive, Tampa, FL, 33602, USA.
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL, 33612-4799, USA.
| | - Jeremy R Herrmann
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| | - Robert H Garman
- Division of Neuropathology, University of Pittsburgh, 3550 Terrrace Street, Pittsburgh, PA, 15261, USA
| | - Richard D Kang
- University of South Florida Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Drive, Tampa, FL, 33602, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL, 33612-4799, USA
| | - Vincent A Vagni
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| | - Kiersten Gorse
- University of South Florida Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Drive, Tampa, FL, 33602, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL, 33612-4799, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| | - Jason Stezoski
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| |
Collapse
|
24
|
El Farissi M, Mast TP, van de Kar MRD, Dillen DMM, Demandt JPA, Vervaat FE, Eerdekens R, Dello SAG, Keulards DC, Zelis JM, van ‘t Veer M, Zimmermann FM, Pijls NHJ, Otterspoor LC. Hypothermia for Cardioprotection in Patients with St-Elevation Myocardial Infarction: Do Not Give It the Cold Shoulder Yet! J Clin Med 2022; 11:1082. [PMID: 35207350 PMCID: PMC8878494 DOI: 10.3390/jcm11041082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
The timely revascularization of an occluded coronary artery is the cornerstone of treatment in patients with ST-elevation myocardial infarction (STEMI). As essential as this treatment is, it can also cause additional damage to cardiomyocytes that were still viable before reperfusion, increasing infarct size. This has been termed "myocardial reperfusion injury". To date, there is still no effective treatment for myocardial reperfusion injury in patients with STEMI. While numerous attempts have been made to overcome this hurdle with various experimental therapies, the common denominator of these therapies is that, although they often work in the preclinical setting, they fail to demonstrate the same results in human trials. Hypothermia is an example of such a therapy. Although promising results were derived from experimental studies, multiple randomized controlled trials failed to do the same. This review includes a discussion of hypothermia as a potential treatment for myocardial reperfusion injury, including lessons learned from previous (negative) trials, advanced techniques and materials in current hypothermic treatment, and the possible future of hypothermia for cardioprotection in patients with STEMI.
Collapse
Affiliation(s)
- Mohamed El Farissi
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Thomas P. Mast
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Mileen R. D. van de Kar
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Daimy M. M. Dillen
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Jesse P. A. Demandt
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Fabienne E. Vervaat
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Rob Eerdekens
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Simon A. G. Dello
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Danielle C. Keulards
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Jo M. Zelis
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Marcel van ‘t Veer
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Frederik M. Zimmermann
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| | - Nico H. J. Pijls
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Luuk C. Otterspoor
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; (T.P.M.); (M.R.D.v.d.K.); (D.M.M.D.); (J.P.A.D.); (F.E.V.); (R.E.); (S.A.G.D.); (D.C.K.); (J.M.Z.); (M.v.‘t.V.); (F.M.Z.); (N.H.J.P.); (L.C.O.)
| |
Collapse
|
25
|
Ávila-Gómez P, Pérez-Mato M, Hervella P, Dopico-López A, da Silva-Candal A, Bugallo-Casal A, López-Amoedo S, Candamo-Lourido M, Sobrino T, Iglesias-Rey R, Castillo J, Campos F. Associations between RNA-Binding Motif Protein 3, Fibroblast Growth Factor 21, and Clinical Outcome in Patients with Stroke. J Clin Med 2022; 11:jcm11040949. [PMID: 35207221 PMCID: PMC8875775 DOI: 10.3390/jcm11040949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Background: RNA-binding motif protein 3 (RBM3) is a cold-induced marker of good functional outcome of ischemic stroke that is promising as a protective target. Fibroblast growth factor 21 (FGF21) is an obesity- and temperature-related hormone that upregulates the expression of RBM3, which is beneficial as a recombinant treatment and has been tested under different experimental pathological conditions, including stroke. However, the interaction between RBM3 and FGF21 has not yet been tested for clinical stroke conditions. Methods: In a sample of 66 stroke patients, we analyzed the associations between the FGF21 and RBM3 serum concentrations on admission and at 72 h, body weight, maximum temperature during the first 24 h, and the outcome of patients at 3 months. We also analyzed their association with biomarkers of obesity (adiponectin and leptin) and inflammation (interleukin-6 (IL-6) and interleukin (IL-10)). Results: Higher concentrations of FGF21 on admission and RBM3 at 72 h were associated with good outcomes. Serum FGF21 and RBM3 were directly related to body mass index and inversely related to the maximum temperature during the first 24 h. We found a positive association between the FGF21 concentrations in obese patients with leptin and a negative correlation with adiponectin in non-obese participants. Conclusions: This clinical study demonstrates the association between RBM3 and FGF21 levels and the outcome of stroke patients. Although further investigations are required, these data support the pharmacological induction of RBM3 as a promising protective therapy.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - María Pérez-Mato
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Pablo Hervella
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Antonio Dopico-López
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Andrés da Silva-Candal
- Neurovascular Diseases Laboratory, Neurology Service, Biomedical Research Institute (INIBIC), University Hospital Complex of A Coruña, 15006 A Coruña, Spain;
| | - Ana Bugallo-Casal
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Sonia López-Amoedo
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - María Candamo-Lourido
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - José Castillo
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
- Correspondence: ; Tel./Fax: +34-981951097
| |
Collapse
|
26
|
Onose G, Anghelescu A, Blendea D, Ciobanu V, Daia C, Firan FC, Oprea M, Spinu A, Popescu C, Ionescu A, Busnatu Ș, Munteanu C. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int J Mol Sci 2022; 23:907. [PMID: 35055089 PMCID: PMC8846361 DOI: 10.3390/ijms23020907] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cerebral circulation delivers the blood flow to the brain through a dedicated network of sanguine vessels. A healthy human brain can regulate cerebral blood flow (CBF) according to any physiological or pathological challenges. The brain is protected by its self-regulatory mechanisms, which are dependent on neuronal and support cellular populations, including endothelial ones, as well as metabolic, and even myogenic factors. OBJECTIVES Accumulating data suggest that "non-pharmacological" approaches might provide new opportunities for stroke therapy, such as electro-/acupuncture, hyperbaric oxygen therapy, hypothermia/cooling, photobiomodulation, therapeutic gases, transcranial direct current stimulations, or transcranial magnetic stimulations. We reviewed the recent data on the mechanisms and clinical implications of these non-pharmaceutical treatments. METHODS To present the state-of-the-art for currently available non-invasive, non-pharmacological-related interventions in acute ischemic stroke, we accomplished this synthetic and systematic literature review based on the Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses (PRISMA). RESULTS The initial number of obtained articles was 313. After fulfilling the five steps in the filtering/selection methodology, 54 fully eligible papers were selected for synthetic review. We enhanced our documentation with other bibliographic resources connected to our subject, identified in the literature within a non-standardized search, to fill the knowledge gaps. Fifteen clinical trials were also identified. DISCUSSION Non-invasive, non-pharmacological therapeutic/rehabilitative interventions for acute ischemic stroke are mainly holistic therapies. Therefore, most of them are not yet routinely used in clinical practice, despite some possible beneficial effects, which have yet to be supplementarily proven in more related studies. Moreover, few of the identified clinical trials are already completed and most do not have final results. CONCLUSIONS This review synthesizes the current findings on acute ischemic stroke therapeutic/rehabilitative interventions, described as non-invasive and non-pharmacological.
Collapse
Affiliation(s)
- Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Dan Blendea
- Faculty of Medicine, University ”Titu Maiorescu”, 0400511 Bucharest, Romania;
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Cristina Daia
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Florentina Carmen Firan
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Mihaela Oprea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aura Spinu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Anca Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Ștefan Busnatu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy” Grigore T. Popa”, 700115 Iași, Romania
| |
Collapse
|
27
|
Kernan KF, Kochanek PM. Black swans or red herrings - inflammatory derangement after cardiac arrest. Resuscitation 2021; 171:100-102. [PMID: 34920016 DOI: 10.1016/j.resuscitation.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Kate F Kernan
- Department of Critical Care Medicine; UPMC Children's Hospital of Pittsburgh; University of Pittsburgh School of Medicine
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research; Department of Critical Care Medicine; UPMC Children's Hospital of Pittsburgh; University of Pittsburgh School of Medicine.
| |
Collapse
|
28
|
Usmanov ES, Chubarova MA, Saidov SK. Emerging Trends in the Use of Therapeutic Hypothermia as a Method for Neuroprotection in Brain Damage (Review). Sovrem Tekhnologii Med 2021; 12:94-104. [PMID: 34796010 PMCID: PMC8596265 DOI: 10.17691/stm2020.12.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 11/14/2022] Open
Abstract
The review analyzes current clinical studies on the use of therapeutic hypothermia as a neuroprotective method for treatment of brain damage. This method yields good outcomes in patients with acute brain injuries and chronic critical conditions. There has been shown the interest of researchers in studying the preventive potential of therapeutic hypothermia in secondary neuronal damage. There has been described participation of new molecules producing positive effect on tissues and cells of the central nervous system - proteins and hormones of cold stress - in the mechanisms of neuroprotection in the brain. The prospects of using targeted temperature management in treatment of brain damage are considered.
Collapse
Affiliation(s)
- E Sh Usmanov
- Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - M A Chubarova
- Junior Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - Sh Kh Saidov
- Senior Researcher, Laboratory of Clinical Neurophysiology Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| |
Collapse
|
29
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Precision neuroresuscitation after hypoxic-ischemic brain injury. Resuscitation 2021; 167:414-416. [PMID: 34438001 DOI: 10.1016/j.resuscitation.2021.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
|
31
|
El Farissi M, Keulards DCJ, Zelis JM, van 't Veer M, Zimmermann FM, Pijls NHJ, Otterspoor LC. Hypothermia for Reduction of Myocardial Reperfusion Injury in Acute Myocardial Infarction: Closing the Translational Gap. Circ Cardiovasc Interv 2021; 14:e010326. [PMID: 34266310 DOI: 10.1161/circinterventions.120.010326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myocardial reperfusion injury-triggered by an inevitable inflammatory response after reperfusion-may undo a considerable part of the myocardial salvage achieved through timely percutaneous coronary intervention in patients with acute myocardial infarction. Because infarct size is strongly correlated to mortality and risk of heart failure, the importance of endeavors for cardioprotective therapies to attenuate myocardial reperfusion injury and decrease infarct size remains undisputed. Myocardial reperfusion injury is the result of several complex nonlinear phenomena, and for a therapy to be effective, it should act on multiple targets involved in this injury. In this regard, hypothermia remains a promising treatment despite a number of negative randomized controlled trials in humans with acute myocardial infarction so far. To turn the tide for hypothermia in patients with acute myocardial infarction, sophisticated solutions for important limitations of systemic hypothermia should continue to be developed. In this review, we provide a comprehensive overview of the pathophysiology and clinical expression of myocardial reperfusion injury and discuss the current status and possible future of hypothermia for cardioprotection in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Mohamed El Farissi
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Jo M Zelis
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Marcel van 't Veer
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Nico H J Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - Luuk C Otterspoor
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
32
|
Dalton HJ, Berg RA, Nadkarni VM, Kochanek PM, Tisherman SA, Thiagarajan R, Alexander P, Bartlett RH. Cardiopulmonary Resuscitation and Rescue Therapies. Crit Care Med 2021; 49:1375-1388. [PMID: 34259654 DOI: 10.1097/ccm.0000000000005106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The history of cardiopulmonary resuscitation and the Society of Critical Care Medicine have much in common, as many of the founders of the Society of Critical Care Medicine focused on understanding and improving outcomes from cardiac arrest. We review the history, the current, and future state of cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Heidi J Dalton
- Heart and Vascular Institute and Department of Pediatrics, INOVA Fairfax Medical Center, Falls Church, VA. Department of Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA. Department of Anesthesiology/Critical Care Medicine, Peter Safer Resuscitation Center, Pittsburgh, PA. Department of Surgery, R Adams Cowley Shock Trauma Center, Baltimore, MD. Department of Cardiology, Division of Cardiovascular Critical Care, Boston Children's Hospital, Boston, MA. Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zakharova NM, Tarahovsky YS, Komelina NP, Khrenov MO, Kovtun AL. Pharmacological torpor prolongs rat survival in lethal normobaric hypoxia. J Therm Biol 2021; 98:102906. [PMID: 34016333 DOI: 10.1016/j.jtherbio.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Resistance to hypoxia is one of the most prominent features of natural hibernation and is expected to be present in the pharmacological torpor (PT) that simulates hibernation. We studied resistance to lethal hypoxia (3.5% oxygen content) in rats under PT. To initiate PT, we used the previously developed pharmacological composition (PC) which, after a single intravenous injection, can induce a daily decrease in Tb by 7 °C-8 °C at the environmental temperature of 22 °C-23 °C. Half-survival (median) time of rats in lethal hypoxia was found to increase from 5 ± 0.8 min in anesthetized control rats to 150 ± 12 min in rats injected with PC, which is a 30-fold increase. Behavioral tests after PT and hypoxia, including the traveling distance, the number of rearing and grooming episodes, revealed that animal responses are significantly restored within a week. It is assumed that the discovered unprecedented resistance of artificially torpid rats to lethal hypoxia may open up broad prospects for the therapeutic use of PT for preconditioning to various damaging factors, treatment of diseases, and extend the so-called "golden hour" for lifesaving interventions.
Collapse
Affiliation(s)
| | - Yury S Tarahovsky
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia; Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region 142290, Russia.
| | - Natalia P Komelina
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia
| | | |
Collapse
|
34
|
Fulbert C, Chabardès S, Ratel D. Adjuvant therapeutic potential of moderate hypothermia for glioblastoma. J Neurooncol 2021; 152:467-482. [PMID: 33740164 DOI: 10.1007/s11060-021-03704-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/16/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Glioblastoma is the most common malignant brain tumor, currently treated by surgery followed by concomitant radiotherapy and temozolomide-based chemotherapy. Despite these treatments, median survival is only 15 months as a result of tumor recurrence in the resection margins. Here, we propose therapeutic hypothermia - known to have neuroprotective effects - as an adjuvant treatment to maintain residual glioblastoma cells in a dormant state, and thus prevent tumor recurrence. METHODS In vitro experiments were performed on healthy tissue with primary human astrocytes, and four human glioblastoma cell lines: A172, U251, U87, and T98G. We explored the adjuvant potential of moderate hypothermia (28 °C) by studying the reversibility of its inhibitory effects on cell proliferation and comparing them to currently used temozolomide. RESULTS Moderate hypothermia reduced healthy cell growth, but also inhibited glioblastoma cell proliferation even after rewarming. Indeed, hypothermic preconditioning duration strongly enhanced inhibitory effects from 35% after 3 days to 100% after 30 days. In contrast, moderate (28 °C) and severe (23 °C) preconditioning induced similar results. Finally, moderate hypothermia had more uniform inhibitory effects than temozolomide, which reduced proliferation by between 15% and 95%, and also potentiated the effects of the latter. CONCLUSION Moderate hypothermia shows promise as an adjuvant therapy for glioblastoma through its inhibition of cell proliferation beyond direct conditioning and potentiation of the effects of chemotherapy. If in vivo preclinical results corroborate our findings, therapeutic hypothermia applied at the resection margins could probably inhibit tumor growth, delay tumor recurrence and reduce inter-patient variability.
Collapse
Affiliation(s)
| | - Stéphan Chabardès
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France.,Neurosurgery Department, CHU Grenoble Alpes, 38000, Grenoble, France.,Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - David Ratel
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France.
| |
Collapse
|
35
|
Coppler PJ, Elmer J. Mitochondrial resuscitation after cardiac arrest. Resuscitation 2021; 162:433-434. [PMID: 33662525 DOI: 10.1016/j.resuscitation.2021.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick J Coppler
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Rosahl SC, Covarrubias C, Wu JH, Urquieta E. Staying Cool in Space: A Review of Therapeutic Hypothermia and Potential Application for Space Medicine. Ther Hypothermia Temp Manag 2021; 12:115-128. [PMID: 33617356 DOI: 10.1089/ther.2020.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite rigorous health screenings, medical incidents during spaceflight missions cannot be avoided. With long-duration exploration flights on the rise, the likelihood of critical medical conditions with no suitable treatment on board will increase. Therapeutic hypothermia (TH) could serve as a bridge treatment in space prolonging survival and reducing neurological damage in ischemic conditions such as stroke and cardiac arrest. We conducted a review of published studies to determine the potential and challenges of TH in space based on its physiological effects, the cooling methods available, and clinical evidence on Earth. Currently, investigators have found that application of low normothermia leads to better outcomes than mild hypothermia. Data on the impact of hypothermia on a favorable neurological outcome are inconclusive due to lack of standardized protocols across hospitals and the heterogeneity of medical conditions. Adverse effects with systemic cooling are widely reported, and could be reduced through selective brain cooling and pharmacological cooling, promising techniques that currently lack clinical evidence. We hypothesize that TH has the potential for application as supportive treatment for multiple medical conditions in space and recommend further investigation of the concept in feasibility studies.
Collapse
Affiliation(s)
- Sophie C Rosahl
- Faculty of Medicine, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Claudia Covarrubias
- School of Medicine, Universidad Anáhuac Querétaro, Santiago de Querétaro, México
| | - Jimmy H Wu
- Department of Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA.,Translational Research Institute for Space Health, Houston, Texas, USA
| | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, Texas, USA.,Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
37
|
Martin LJ, Niedzwiecki MV, Wong M. Chronic Intermittent Mild Whole-Body Hypothermia Is Therapeutic in a Mouse Model of ALS. Cells 2021; 10:320. [PMID: 33557211 PMCID: PMC7913914 DOI: 10.3390/cells10020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration. There are no cures or effective treatments for ALS. Therapeutic hypothermia is effectively used clinically to mitigate mortality in patients with acute acquired brain injury and in surgical settings to minimize secondary brain injury. The efficacy of therapeutic hypothermia in chronic neurodegenerative disorders has not been examined. We tested the hypothesis that mild hypothermia/cold acclimation is therapeutic in a transgenic mouse model of ALS caused by expression of mutated human superoxide dismutase-1 gene. At presymptomatic stages of disease, body temperatures (oral and axial) of mutant male mice were persistently hyperthermic (38-38.5 °C) compared to littermate controls, but at end-stage disease mice were generally hypothermic (36-36.5 °C). Presymptomatic mutant mice (awake-freely moving) were acclimated to systemic mild hypothermia using an environmentally controlled chamber (12 h-on/12-off or 24 h-on/24 h-off) to lower body temperature (1-3 °C). Cooled ALS mice showed a significant delay in disease onset (103-112 days) compared to normothermia mice (80-90 days) and exhibited significant attenuation of functional decline in motor performance. Cooled mice examined at 80 days had reduced motor neuron loss, mitochondrial swelling, and spinal cord inflammation compared to non-cooled mice. Cooling attenuated the loss of heat-shock protein 70, mitochondrial uncoupling protein-3, and sumoylated-1 (SUMO1)-conjugated proteins in skeletal muscle and disengaged the mitochondrial permeability transition pore. Cooled ALS mice had a significant extension of lifespan (148 ± 7 days) compared to normothermic mice (135 ± 4 days). Thus, intermittent systemic mild hypothermia is therapeutic in mouse ALS with protective effects manifested within the CNS and skeletal muscle that target mitochondria.
Collapse
Affiliation(s)
- Lee J. Martin
- Departments of Pathology, Division of Neuropathology, Neuroscience, and Anesthesiology and Critical Medicine and the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (M.V.N.); (M.W.)
| | | | | |
Collapse
|
38
|
Idris Z, Ang SY, Wan Hassan WMN, Hassan MH, Mohd Zain KA, Abdul Manaf A. A Clinical Test for a Newly Developed Direct Brain Cooling System for the Injured Brain and Pattern of Cortical Brainwaves in Cooling, Noncooling, and Dead Brain. Ther Hypothermia Temp Manag 2021; 12:103-114. [PMID: 33513054 DOI: 10.1089/ther.2020.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To ensure the direct delivery of therapeutic hypothermia at a selected constant temperature to the injured brain, a newly innovated direct brain cooling system was constructed. The practicality, effectiveness, and safety of this system were clinically tested in our initial series of 14 patients with severe head injuries. The patients were randomized into two groups: direct brain cooling at 32°C and the control group. All of them received intracranial pressure (ICP), focal brain oxygenation, brain temperature, and direct cortical brainwave monitoring. The direct brain cooling group did better in the Extended Glasgow Outcome Scale at the time of discharge and at 6 months after trauma. This could be owing to a trend in the monitored parameters; reduction in ICP, increment in cerebral perfusion pressure, optimal brain redox regulation, near-normal brain temperature, and lessening of epileptic-like brainwave activities are likely the reasons for better outcomes in the cooling group. Finally, this study depicts interesting cortical brainwaves during a transition time from being alive to dead. It is believed that the demonstrated cortical brainwaves follow the principles of quantum physics.
Collapse
Affiliation(s)
- Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Brain and Behaviour Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Song Yee Ang
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Mohd Nazaruddin Wan Hassan
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Anaesthesiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mohd Hasyizan Hassan
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Anaesthesiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Khairu Anuar Mohd Zain
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Asrulnizam Abdul Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Bayan Lepas, Malaysia
| |
Collapse
|
39
|
Rymaszewska J, Lion KM, Stańczykiewicz B, Rymaszewska JE, Trypka E, Pawlik-Sobecka L, Kokot I, Płaczkowska S, Zabłocka A, Szcześniak D. The improvement of cognitive deficits after whole-body cryotherapy - A randomised controlled trial. Exp Gerontol 2021; 146:111237. [PMID: 33454354 DOI: 10.1016/j.exger.2021.111237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Whole-body cryotherapy (WBC) - a repetitive, short-term exposure to extremely low temperatures - may become an effective early intervention for mild cognitive impairment (MCI). It is a heterogeneous group of symptoms associated with cognitive dysfunction which is estimated to transform into dementia in 50% cases. STUDY DESIGN The prospective randomised double-blind sham-controlled study aimed to determine the efficacy of WBC on cognitive functioning and biological mechanisms. The study was registered with Australian New Zealand Clinical Trials Registry (ACTRN12619001627145). METHODS Participants with MCI (n = 62; (20<MoCA>26) were randomly allocated to cryogenic temperatures (-110 °C till -160 °C) (EG, n = 33) or placebo-controlled group (CG, n = 29). Cognitive functions were measured at baseline (T1), after the 10th WBC session (T2) and after 2 week-break (T3) with DemTect, SLUMS and Test Your Memory (TYM). Secondary outcome measures included quality of life (WHOQoL-BREF), self-reported well-being (VAS) and depressive symptoms (GDS). Whole blood samples (10 ml) were collected at T1 and T2 to evaluate levels of cytokines, neurotrophins, NO and biochemical parameters CRP total cholesterol, prolactin). RESULTS There were significant differences between groups measured at T2 in immediate recall (DemTect) and in orientation (TYM) in favour of WBC group. Improvement in mood was detected in self-reported depressive symptoms level (WHOQoL-26; T2 p = 0.04; VAS mood T2 p = 0.02; T3 p = 0.07). The significant reduction of BDNF level was observed (p < 0.05). CONCLUSIONS WBC may increase the performance of cognitive functions. It seems promising to combine WBC with existing behavioural and cognitive trainings in the future studies investigating early interventions methods in MCI.
Collapse
Affiliation(s)
| | - Katarzyna M Lion
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland; Menzies Health Institute Queensland, Griffith University, Australia.
| | | | - Julia E Rymaszewska
- Student Scientific Association at Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Elżbieta Trypka
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Lilla Pawlik-Sobecka
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Płaczkowska
- Department of Laboratory Diagnostics, Diagnostics Laboratory for Teaching and Research, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
40
|
Jackson TC, Gorse K, Herrmann JR, Kochanek PM. Hippocampal and Prefrontal Cortical Brain Tissue Levels of Irisin and GDF15 Receptor Subunits in Children. Mol Neurobiol 2021; 58:2145-2157. [PMID: 33411243 PMCID: PMC7788542 DOI: 10.1007/s12035-020-02250-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Cold-stress hormones (CSHs) stimulate thermogenesis and have direct neuroprotective effects on the brain. The obligatory receptor components of two new CSHs (irisin and growth differentiation factor-15 [GDF15]) were recently discovered. Irisin binds integrin-αV/β5 heterodimers while GDF-15 binds to the orphan receptor glial cell-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). In addition, integrin-αV/β5 was just identified as the key receptor mediating Zika virus infection in the CNS. We measured integrin-αV, integrin-β5, and GFRAL protein levels across 78 high-quality human male/female brain tissues in infants, toddlers, preschoolers, adolescent, and adults-providing the most robust analysis to date on their levels in the human cortex and hippocampus. We report that integrin-αV was detected at all ages in the prefrontal cortex with levels greatest in adults. Integrin-αV was also detected in the hippocampus in all age groups. In contrast, integrin-β5 was detected in cortex and hippocampus largely restricted to infants. Co-expression of integrin-αV/β5 in the human infant hippocampus and cortex suggests the possibility that irisin has a more robust effect on the developing vs. the adult brain and may have implications for Zika virus infection in infants and young children.
Collapse
Affiliation(s)
- Travis C Jackson
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0742, 560 Channelside Dr, Tampa, FL, 33602, USA.
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B Downs BLVD, MDC 2532, Tampa, FL, 33612-4799, USA.
| | - Kiersten Gorse
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0742, 560 Channelside Dr, Tampa, FL, 33602, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B Downs BLVD, MDC 2532, Tampa, FL, 33612-4799, USA
| | - Jeremy R Herrmann
- School of Medicine, Children's Hospital of Pittsburgh of UPMC, Safar Center for Resuscitation Research, University of Pittsburgh, John G. Rangos Research Center - 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Patrick M Kochanek
- School of Medicine, Children's Hospital of Pittsburgh of UPMC, Safar Center for Resuscitation Research, University of Pittsburgh, John G. Rangos Research Center - 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
41
|
Benninger KL, Inder TE, Goodman AM, Cotten CM, Nordli DR, Shah TA, Slaughter JC, Maitre NL. Perspectives from the Society for Pediatric Research. Neonatal encephalopathy clinical trials: developing the future. Pediatr Res 2021; 89:74-84. [PMID: 32221474 PMCID: PMC7529683 DOI: 10.1038/s41390-020-0859-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
The next phase of clinical trials in neonatal encephalopathy (NE) focuses on hypothermia adjuvant therapies targeting alternative recovery mechanisms during the process of hypoxic brain injury. Identifying infants eligible for neuroprotective therapies begins with the clinical detection of brain injury and classification of severity. Combining a variety of biomarkers (serum, clinical exam, EEG, movement patterns) with innovative clinical trial design and analyses will help target infants with the most appropriate and timely treatments. The timing of magnetic resonance imaging (MRI) and MR spectroscopy after NE both assists in identifying the acute perinatal nature of the injury (days 3-7) and evaluates the full extent and evolution of the injury (days 10-21). Early, intermediate outcome of neuroprotective interventions may be best defined by the 21-day neuroimaging, with recognition that the full neurodevelopmental trajectory is not yet defined. An initial evaluation of each new therapy at this time point may allow higher-throughput selection of promising therapies for more extensive investigation. Functional recovery can be assessed using a trajectory of neurodevelopmental evaluations targeted to a prespecified and mechanistically derived hypothesis of drug action. As precision medicine revolutionizes healthcare, it should also include the redesign of NE clinical trials to allow safe, efficient, and targeted therapeutics. IMPACT: As precision medicine revolutionizes healthcare, it should also include the redesign of NE clinical trials to allow faster development of safe, effective, and targeted therapeutics. This article provides a multidisciplinary perspective on the future of clinical trials in NE; novel trial design; study management and oversight; biostatistical methods; and a combination of serum, imaging, and neurodevelopmental biomarkers can advance the field and improve outcomes for infants affected by NE. Innovative clinical trial designs, new intermediate trial end points, and a trajectory of neurodevelopmental evaluations targeted to a prespecified and mechanistically derived hypothesis of drug action can help address common challenges in NE clinical trials and allow for faster selection and validation of promising therapies for more extensive investigation.
Collapse
MESH Headings
- Biomarkers/blood
- Biomedical Research/trends
- Brain Diseases/diagnostic imaging
- Brain Diseases/etiology
- Brain Diseases/physiopathology
- Brain Diseases/therapy
- Clinical Trials as Topic
- Consensus
- Delphi Technique
- Diffusion of Innovation
- Forecasting
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnostic imaging
- Infant, Newborn, Diseases/etiology
- Infant, Newborn, Diseases/physiopathology
- Infant, Newborn, Diseases/therapy
- Neonatology/trends
- Neuroimaging
- Research Design/trends
- Societies, Medical
- Societies, Scientific
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Kristen L Benninger
- Division of Neonatology and Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy M Goodman
- Division of Child Neurology, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Douglas R Nordli
- Section of Child Neurology, Department of Pediatrics, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Tushar A Shah
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Children's Hospital of The King's Daughters, Eastern Virginia Medical School, Norfolk, VA, USA
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathalie L Maitre
- Division of Neonatology and Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
42
|
Fischl H, McManus D, Oldenkamp R, Schermelleh L, Mellor J, Jagannath A, Furger A. Cold-induced chromatin compaction and nuclear retention of clock mRNAs resets the circadian rhythm. EMBO J 2020; 39:e105604. [PMID: 33034091 PMCID: PMC7667876 DOI: 10.15252/embj.2020105604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022] Open
Abstract
Cooling patients to sub‐physiological temperatures is an integral part of modern medicine. We show that cold exposure induces temperature‐specific changes to the higher‐order chromatin and gene expression profiles of human cells. These changes are particularly dramatic at 18°C, a temperature synonymous with that experienced by patients undergoing controlled deep hypothermia during surgery. Cells exposed to 18°C exhibit largely nuclear‐restricted transcriptome changes. These include the nuclear accumulation of mRNAs encoding components of the negative limbs of the core circadian clock, most notably REV‐ERBα. This response is accompanied by compaction of higher‐order chromatin and hindrance of mRNPs from engaging nuclear pores. Rewarming reverses chromatin compaction and releases the transcripts into the cytoplasm, triggering a pulse of negative limb gene proteins that reset the circadian clock. We show that cold‐induced upregulation of REV‐ERBα is sufficient to trigger this reset. Our findings uncover principles of the cellular cold response that must be considered for current and future applications involving therapeutic deep hypothermia.
Collapse
Affiliation(s)
- Harry Fischl
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David McManus
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Roel Oldenkamp
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Aarti Jagannath
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - André Furger
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Lutz Y, Meiner T, Krames L, Cattaneo G, Meckel S, Dossel O, Loewe A. Selective Brain Hypothermia for Ischemic MCA-M1 Stroke: Influence of Cerebral Arterial Circulation in a 3D Brain Temperature Model. IEEE Trans Biomed Eng 2020; 68:404-415. [PMID: 32746020 DOI: 10.1109/tbme.2020.3000521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute ischemic stroke is a major health problem with a high mortality rate and a high risk for permanent disabilities. Selective brain hypothermia has the neuroprotective potential to possibly lower cerebral harm. A recently developed catheter system enables to combine endovascular blood cooling and thrombectomy using the same endovascular access. By using the penumbral perfusion via leptomeningeal collaterals, the catheter aims at enabling a cold reperfusion, which mitigates the risk of a reperfusion injury. However, cerebral circulation is highly patient-specific and can vary greatly. Since direct measurement of remaining perfusion and temperature decrease induced by the catheter is not possible without additional harm to the patient, computational modeling provides an alternative to gain knowledge about resulting cerebral temperature decrease. In this work, we present a brain temperature model with a realistic division into gray and white matter and consideration of spatially resolved perfusion. Furthermore, it includes detailed anatomy of cerebral circulation with possibility of personalizing on base of real patient anatomy. For evaluation of catheter performance in terms of cold reperfusion and to analyze its general performance, we calculated the decrease in brain temperature in case of a large vessel occlusion in the middle cerebral artery (MCA) for different scenarios of cerebral arterial anatomy. Congenital arterial variations in the circle of Willis had a distinct influence on the cooling effect and the resulting spatial temperature distribution before vessel recanalization. Independent of the branching configurations, the model predicted a cold reperfusion due to a strong temperature decrease after recanalization (1.4-2.2 °C after 25 min of cooling, recanalization after 20 min of cooling). Our model illustrates the effectiveness of endovascular cooling in combination with mechanical thrombectomy and its results serve as an adequate substitute for temperature measurement in a clinical setting in the absence of direct intraparenchymal temperature probes.
Collapse
|
44
|
Marinšek M, Sinkovič A, Šuran D. Neurological outcome in patients after successful resuscitation in out-of-hospital settings. Bosn J Basic Med Sci 2020; 20:389-395. [PMID: 32156250 PMCID: PMC7416179 DOI: 10.17305/bjbms.2020.4623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
Neurological outcome is an important determinant of death in admitted survivors after out-of-hospital cardiac arrest (OHCA). Studies demonstrated several significant pre-hospital predictors of ischemic brain injury (time to resuscitation, time of resuscitation, and cause of OHCA). Our aim was to evaluate the relationship between post-resuscitation clinical parameters and neurological outcome in OHCA patients, when all recommended therapeutic strategies, including hypothermia, were on board. We retrospectively included consecutive 110 patients, admitted to the medical ICU after successful resuscitation due to OHCA. Neurological outcome was defined by cerebral performance category (CPC) scale I-V. CPC categories I-II defined good neurological outcome and CPC categories III-V severe ischemic brain injury. Therapeutic measures were aimed to achieve optimal circulation and oxygenation, early percutaneous coronary interventions (PCI) in acute coronary syndromes (ACS), and therapeutic hypothermia to improve survival and neurological outcome of OHCA patients. We observed good neurological outcome in 37.2% and severe ischemic brain injury in 62.7% of patients. Severe ischemic brain injury was associated significantly with known pre-hospital data (older age, cause of OHCA, and longer resuscitations), but also with increased admission lactate, in-hospital complications (involuntary muscular contractions/seizures, heart failure, cardiogenic shock, acute kidney injury, and mortality), and inotropic and vasopressor support. Good neurological outcome was associated with early PCI, dual antiplatelet therapy, and better survival. We conclude that in OHCA patients, post-resuscitation early PCI and dual antiplatelet therapy in ACS were significantly associated with good neurological outcome, but severe ischemic brain injury was associated with several in-hospital complications and the need for vasopressor and inotropic support.
Collapse
Affiliation(s)
- Martin Marinšek
- Department of Medical Intensive Care, University Clinical Centre Maribor, Maribor, Slovenia
| | - Andreja Sinkovič
- Department of Medical Intensive Care, University Clinical Centre Maribor, Maribor, Slovenia; Medical Faculty, University of Maribor, Maribor, Slovenia
| | - David Šuran
- Department of Cardiology and Angiology, University Clinical Centre Maribor, Maribor, Slovenia
| |
Collapse
|
45
|
Hosseini M, Wilson RH, Crouzet C, Amirhekmat A, Wei KS, Akbari Y. Resuscitating the Globally Ischemic Brain: TTM and Beyond. Neurotherapeutics 2020; 17:539-562. [PMID: 32367476 PMCID: PMC7283450 DOI: 10.1007/s13311-020-00856-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrest (CA) afflicts ~ 550,000 people each year in the USA. A small fraction of CA sufferers survive with a majority of these survivors emerging in a comatose state. Many CA survivors suffer devastating global brain injury with some remaining indefinitely in a comatose state. The pathogenesis of global brain injury secondary to CA is complex. Mechanisms of CA-induced brain injury include ischemia, hypoxia, cytotoxicity, inflammation, and ultimately, irreversible neuronal damage. Due to this complexity, it is critical for clinicians to have access as early as possible to quantitative metrics for diagnosing injury severity, accurately predicting outcome, and informing patient care. Current recommendations involve using multiple modalities including clinical exam, electrophysiology, brain imaging, and molecular biomarkers. This multi-faceted approach is designed to improve prognostication to avoid "self-fulfilling" prophecy and early withdrawal of life-sustaining treatments. Incorporation of emerging dynamic monitoring tools such as diffuse optical technologies may provide improved diagnosis and early prognostication to better inform treatment. Currently, targeted temperature management (TTM) is the leading treatment, with the number of patients needed to treat being ~ 6 in order to improve outcome for one patient. Future avenues of treatment, which may potentially be combined with TTM, include pharmacotherapy, perfusion/oxygenation targets, and pre/postconditioning. In this review, we provide a bench to bedside approach to delineate the pathophysiology, prognostication methods, current targeted therapies, and future directions of research surrounding hypoxic-ischemic brain injury (HIBI) secondary to CA.
Collapse
Affiliation(s)
- Melika Hosseini
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Robert H Wilson
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Christian Crouzet
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Arya Amirhekmat
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Kevin S Wei
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, USA.
- Beckman Laser Institute, University of California, Irvine, USA.
| |
Collapse
|
46
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020; 9:94-105. [PMID: 32257625 PMCID: PMC7133426 DOI: 10.1089/biores.2020.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Anastasios N. Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantina Sampani
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | | | | | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
47
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Abstract
The pathophysiology of dying and death, related to veterinary patients, has warranted less attention than normal and abnormal physiologic processes related to life preservation. In addition, many veterinary patients are euthanized, which prevents observation of natural disease progression, while ameliorating suffering. Acute death in human medicine can serve as a model for understanding mechanisms of death in veterinary patients under certain conditions. The specific cause of cardiac arrest in several different models of disease elucidates end-stage disease processes. Understanding the path to death and dying in veterinary patients physiologically serves to guide best practices focused on alleviating suffering.
Collapse
Affiliation(s)
- Beth Marchitelli
- 4 Paws Farewell: Mobile Pet Hospice, Palliative Care and Home Euthanasia, Asheville, NC, USA.
| |
Collapse
|
49
|
Jackson TC, Janesko-Feldman K, Carlson SW, Kotermanski SE, Kochanek PM. Robust RBM3 and β-klotho expression in developing neurons in the human brain. J Cereb Blood Flow Metab 2019; 39:2355-2367. [PMID: 31566073 PMCID: PMC6890998 DOI: 10.1177/0271678x19878889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA binding motif 3 (RBM3) is a powerful neuroprotectant that inhibits neurodegenerative cell death in vivo and is a promising therapeutic target in brain ischemia. RBM3 is increased by the hormone fibroblast growth factor 21 (FGF21) in an age- and temperature-dependent manner in rat cortical neurons. FGF21 receptor binding is controlled by the transmembrane protein β-klotho, which is mostly absent in the adult brain. We discovered that RBM3/β-klotho is unexpectedly high in the human infant vs. adult brain (hippocampus/prefrontal cortex). The use of tissue homogenates in that study precluded a comparison of RBM3/β-klotho expression among different CNS cell-types, thus, omitted key evidence (i.e. confirmation of neuronal expression) that would otherwise provide a critical link to support their possible direct neuroprotective effects in humans. This report addresses that knowledge gap. High-quality fixed human hippocampus, cortex, and hypothalamic tissues were acquired from the NIH Neurobiobank (<1 yr (premature born) infants, 1 yr, 4 yr, and 34 yr). Dual labeling of cell-type markers vs. RBM3/β-klotho revealed enriched staining of targets in neurons in the developing brain. Identifying that RBM3/β-klotho is abundant in neurons in the immature brain is fundamentally important to guide protocol design and conceptual frameworks germane to future testing of these neuroprotective pathways in humans.
Collapse
Affiliation(s)
- Travis C Jackson
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, School of Medicine Children's Hospital of Pittsburgh of UPMC John G. Rangos Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shawn E Kotermanski
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, School of Medicine Children's Hospital of Pittsburgh of UPMC John G. Rangos Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Andrews P, Toossi S, Kurz M, Jackson TC. Perspectives on Temperature Management. Ther Hypothermia Temp Manag 2019; 9:98-101. [PMID: 31135301 DOI: 10.1089/ther.2019.29061.pja] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Peter Andrews
- 1 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Shahed Toossi
- 2 Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael Kurz
- 3 Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Travis C Jackson
- 4 Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|