1
|
Munyua P, Osoro E, Jones J, Njogu G, Yang G, Hunsperger E, Szablewski CM, Njoroge R, Marwanga D, Oyas H, Andagalu B, Ndanyi R, Otieno N, Obanda V, Nasimiyu C, Njagi O, DaSilva J, Jang Y, Barnes J, Emukule GO, Onyango CO, Davis CT. Characterization of Avian Influenza Viruses Detected in Kenyan Live Bird Markets and Wild Bird Habitats Reveal Genetically Diverse Subtypes and High Proportion of A(H9N2), 2018-2020. Viruses 2024; 16:1417. [PMID: 39339892 PMCID: PMC11436075 DOI: 10.3390/v16091417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Following the detection of highly pathogenic avian influenza (HPAI) virus in countries bordering Kenya to the west, we conducted surveillance among domestic and wild birds along the shores of Lake Victoria. In addition, between 2018 and 2020, we conducted surveillance among poultry and poultry workers in live bird markets and among wild migratory birds in various lakes that are resting sites during migration to assess introduction and circulation of avian influenza viruses in these populations. We tested 7464 specimens (oropharyngeal (OP) and cloacal specimens) from poultry and 6531 fresh fecal specimens from wild birds for influenza A viruses by real-time RT-PCR. Influenza was detected in 3.9% (n = 292) of specimens collected from poultry and 0.2% (n = 10) of fecal specimens from wild birds. On hemagglutinin subtyping, most of the influenza A positives from poultry (274/292, 93.8%) were H9. Of 34 H9 specimens randomly selected for further subtyping, all were H9N2. On phylogenetic analysis, these viruses were genetically similar to other H9 viruses detected in East Africa. Only two of the ten influenza A-positive specimens from the wild bird fecal specimens were successfully subtyped; sequencing analysis of one specimen collected in 2018 was identified as a low-pathogenicity avian influenza H5N2 virus of the Eurasian lineage, and the second specimen, collected in 2020, was subtyped as H11. A total of 18 OP and nasal specimens from poultry workers with acute respiratory illness (12%) were collected; none were positive for influenza A virus. We observed significant circulation of H9N2 influenza viruses in poultry in live bird markets in Kenya. During the same period, low-pathogenic H5N2 virus was detected in a fecal specimen collected in a site hosting a variety of migratory and resident birds. Although HPAI H5N8 was not detected in this survey, these results highlight the potential for the introduction and establishment of highly pathogenic avian influenza viruses in poultry populations and the associated risk of spillover to human populations.
Collapse
Affiliation(s)
- Peninah Munyua
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - Eric Osoro
- Paul G. Allen School for Global Health-Kenya, Washington State University, Nairobi P.O. Box 72938-00200, Kenya
| | - Joyce Jones
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - George Njogu
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, P.O. Box 29114, Kangemi, Nairobi 00625, Kenya
| | - Genyan Yang
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - Elizabeth Hunsperger
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - Christine M. Szablewski
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - Ruth Njoroge
- Paul G. Allen School for Global Health-Kenya, Washington State University, Nairobi P.O. Box 72938-00200, Kenya
| | - Doris Marwanga
- Paul G. Allen School for Global Health-Kenya, Washington State University, Nairobi P.O. Box 72938-00200, Kenya
| | - Harry Oyas
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, P.O. Box 29114, Kangemi, Nairobi 00625, Kenya
| | - Ben Andagalu
- Influenza Division, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - Romona Ndanyi
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, P.O. Box 29114, Kangemi, Nairobi 00625, Kenya
| | - Nancy Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu P.O. Box 1578-40100, Kenya
| | - Vincent Obanda
- Department of Veterinary Services, Kenya Wildlife Services, Nairobi P.O. Box 40241-00100, Kenya
| | - Carolyne Nasimiyu
- Paul G. Allen School for Global Health-Kenya, Washington State University, Nairobi P.O. Box 72938-00200, Kenya
| | - Obadiah Njagi
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, P.O. Box 29114, Kangemi, Nairobi 00625, Kenya
| | - Juliana DaSilva
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - Yunho Jang
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - John Barnes
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - Gideon O. Emukule
- Influenza Division, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - Clayton O. Onyango
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - C. Todd Davis
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| |
Collapse
|
2
|
A SYSTEMATIC REVIEW AND NARRATIVE SYNTHESIS OF THE USE OF ENVIRONMENTAL SAMPLES FOR THE SURVEILLANCE OF AVIAN INFLUENZA VIRUSES IN WILD WATERBIRDS. J Wildl Dis 2021; 57:1-18. [PMID: 33635994 DOI: 10.7589/jwd-d-20-00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2020] [Indexed: 11/20/2022]
Abstract
Wild waterbirds are reservoir hosts for avian influenza viruses (AIV), which can cause devastating outbreaks in multiple species, making them a focus for surveillance efforts. Traditional AIV surveillance involves direct sampling of live or dead birds, but environmental substrates present an alternative sample for surveillance. Environmental sampling analyzes AIV excreted by waterbirds into the environment and complements direct bird sampling by minimizing financial, logistic, permitting, and spatial-temporal constraints associated with traditional surveillance. Our objectives were to synthesize the literature on environmental AIV surveillance, to compare and contrast the different sample types, and to identify key themes and recommendations to aid in the implementation of AIV surveillance using environmental samples. The four main environmental substrates for AIV surveillance are feces, feathers, water, and sediment or soil. Feces were the most common environmental substrate collected. The laboratory analysis of water and sediment provided challenges, such as low AIV concentration, heterogenous AIV distribution, or presence of PCR inhibitors. There are a number of abiotic and biotic environmental factors, including temperature, pH, salinity, or presence of filter feeders, that can influence the presence and persistence of AIV in environmental substrates; however, the nature of this influence is poorly understood in field settings, and field data from southern, coastal, and tropical ecosystems are underrepresented. Similarly, there are few studies comparing the performance of environmental samples to each other and to samples collected in wild waterbirds, and environmental surveillance workflows have yet to be validated or optimized. Environmental samples, particularly when used in combination with new technology such as environmental DNA and next generation sequencing, provided information on trends in AIV detection rates and circulating subtypes that complemented traditional, direct waterbird sampling. The use of environmental samples for AIV surveillance also shows significant promise for programs whose goal is early warning of high-risk subtypes.
Collapse
|
3
|
Carter DL, Link P, Tan G, Stallknecht DE, Poulson RL. Influenza A Viruses in Whistling Ducks (Subfamily Dendrocygninae). Viruses 2021; 13:v13020192. [PMID: 33525360 PMCID: PMC7911599 DOI: 10.3390/v13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/23/2022] Open
Abstract
As compared to other Anseriformes, data related to influenza A virus (IAV) detection and isolation, and IAV antibody detection in whistling ducks (Dendrocygna spp. and Thalassornis leuconotus; subfamily Dendrocygninae) are limited. To better evaluate the potential role of whistling ducks in the epidemiology of IAV, we (1) conducted surveillance for IAV from black-bellied whistling ducks (BBWD, Dendrocygnaautumnalis) sampled in coastal Louisiana, USA, during February 2018 and 2019, and (2) reviewed the published literature and Influenza Resource Database (IRD) that reported results of IAV surveillance of whistling ducks. In the prospective study, from 166 BBWD sampled, one H10N7 IAV was isolated (0.6% prevalence), and overall blocking enzyme-linked immunosorbent assay (bELISA) antibody seroprevalence was 10%. The literature review included publications and data in the IRD from 1984 to 2020 that reported results from nearly 5000 collected samples. For any given collection, the IAV isolation rate never exceeded 5.5%, and seroprevalence estimates ranged from 0 to 42%. Results from our prospective study in Louisiana are consistent with this historic literature; however, although all data consistently demonstrated a low prevalence of infection, the potential role of this species in the epidemiology of IAV should not be totally discounted. In sum, whistling ducks can be infected with IAV, they represent important species on many areas where waterfowl winter, and their distribution across the globe appears to be changing.
Collapse
Affiliation(s)
- Deborah L. Carter
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, The University of Georgia, 589 D. W. Brooks Dr., Athens, GA 30602, USA; (D.L.C.); (D.E.S.)
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, 2000 Quail Drive, Room 436, Baton Rouge, LA 70808, USA;
| | - Gene Tan
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA;
- Division of Infectious Diseases, Department of Medicine, University of California, La Jolla, San Diego, CA 92037, USA
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, The University of Georgia, 589 D. W. Brooks Dr., Athens, GA 30602, USA; (D.L.C.); (D.E.S.)
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, The University of Georgia, 589 D. W. Brooks Dr., Athens, GA 30602, USA; (D.L.C.); (D.E.S.)
- Correspondence:
| |
Collapse
|
4
|
El Zowalaty ME, DeBeauchmp J, Jeevan T, Franks J, Friedman K, Pretorius R, Young SG, Webster RG, Webby RJ. Molecular detection of influenza A viruses and H5 subtype among migratory Amur falcons (Falco amurensis) and captive birds of prey. Transbound Emerg Dis 2021; 69:369-377. [PMID: 33428819 DOI: 10.1111/tbed.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 11/27/2022]
Abstract
Influenza A viruses (IAVs) and Newcastle disease viruses (NDVs) are major human and animal health threats with geographic differences in prevalence, characteristics and host populations. Currently, there is sparse information on IAVs and NDVs in avian species in South Africa. Because raptors feed on live wild birds which are the reservoir hosts of IAVs and NDVs, we considered them a good sentinel for surveillance. Therefore, in addition to other resident birds of prey, migratory Amur falcons (Falco amurensis) were screened for IAVs and NDVs. Oropharyngeal and cloacal samples were collected from raptor species at three sampling sites in KwaZulu-Natal Province and samples were screened for IAVs and NDVs using molecular and virus isolation methods. IAV-positive samples were further screened for the presence of H5, H7 and H9 viruses. A total of 14 samples from 11 birds (45.8% of all sampled birds) were IAV positive with Ct lower than 36 in duplicate tests. Five out of 24 birds (20.8%) were positive for IAV RNA in duplicate testing, albeit at low concentrations. Among raptor samples, three out of 24 birds (12.5%) were positive for IAVs with viral RNA detected in both cloacal and oropharyngeal swabs. One IAV-positive sample was also positive for H5 subtype (4.1%); all other samples were H5, H7 and H9 negative. Besides, all samples were NDV negative. Overall, our results support the development of more intensive and expanded influenza and other emerging virus studies in raptor species.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jennifer DeBeauchmp
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Trushar Jeevan
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Franks
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kimberly Friedman
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Sean G Young
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
6
|
Soilemetzidou ES, De Bruin E, Franz M, Aschenborn OHK, Rimmelzwaan GF, van Beek R, Koopmans M, Greenwood AD, Czirják GÁ. Diet May Drive Influenza A Virus Exposure in African Mammals. J Infect Dis 2020; 221:175-182. [PMID: 30838397 DOI: 10.1093/infdis/jiz032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/24/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) represent repeatedly emerging pathogens with near worldwide distribution and an unclear nonavian-host spectrum. While the natural hosts for IAV are among waterfowl species, certain mammals can be productively infected. Southern Africa is home to diverse avian and mammalian fauna for which almost no information exists on IAV dynamics. METHODS We evaluated 111 serum samples from 14 mammalian species from Namibia for the presence of IAV-specific antibodies and tested whether host phylogeny, sociality, or diet influence viral prevalence and diversity. RESULTS Free-ranging African mammals are exposed to diverse IAV subtypes. Herbivores developed antibodies against 3 different hemagglutinin (HA) subtypes, at low prevalence, while carnivores showed a higher prevalence and diversity of HA-specific antibody responses against 11 different subtypes. Host phylogeny and sociality were not significantly associated with HA antibody prevalence or subtype diversity. Both seroprevalence and HA diversity were significantly increased in carnivores regularly feeding on birds. CONCLUSIONS The risk of infection and transmission may be driven by diet and ecological factors that increase contact with migratory and resident waterfowl. Consequently, wild mammals, particularly those that specialize on hunting and scavenging birds, could play an important but overlooked role in influenza epizootics.
Collapse
Affiliation(s)
| | | | - Mathias Franz
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin
| | - Ortwin H K Aschenborn
- Bwabwata Ecological Institute, Ministry of Environment and Tourism, Zambezi, Namibia
| | - Guus F Rimmelzwaan
- Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany.,Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin.,Department of Veterinary Medicine, Free University of Berlin, Berlin
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin
| |
Collapse
|
7
|
Kalonda A, Saasa N, Nkhoma P, Kajihara M, Sawa H, Takada A, Simulundu E. Avian Influenza Viruses Detected in Birds in Sub-Saharan Africa: A Systematic Review. Viruses 2020; 12:v12090993. [PMID: 32906666 PMCID: PMC7552061 DOI: 10.3390/v12090993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
In the recent past, sub-Saharan Africa has not escaped the devastating effects of avian influenza virus (AIV) in poultry and wild birds. This systematic review describes the prevalence, spatiotemporal distribution, and virus subtypes detected in domestic and wild birds for the past two decades (2000–2019). We collected data from three electronic databases, PubMed, SpringerLink electronic journals and African Journals Online, using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol. A total of 1656 articles were reviewed, from which 68 were selected. An overall prevalence of 3.0% AIV in birds was observed. The prevalence varied between regions and ranged from 1.1% to 7.1%. The Kruskal–Wallis and Wilcoxon signed-rank sum test showed no significant difference in the prevalence of AIV across regions, χ2(3) = 5.237, p = 0.1553 and seasons, T = 820, z = −1.244, p = 0.2136. Nineteen hemagglutinin/neuraminidase subtype combinations were detected during the reviewed period, with southern Africa recording more diverse AIV subtypes than other regions. The most detected subtype was H5N1, followed by H9N2, H5N2, H5N8 and H6N2. Whilst these predominant subtypes were mostly detected in domestic poultry, H1N6, H3N6, H4N6, H4N8, H9N1 and H11N9 were exclusively detected in wild birds. Meanwhile, H5N1, H5N2 and H5N8 were detected in both wild and domestic birds suggesting circulation of these subtypes among wild and domestic birds. Our findings provide critical information on the eco-epidemiology of AIVs that can be used to improve surveillance strategies for the prevention and control of avian influenza in sub-Saharan Africa.
Collapse
Affiliation(s)
- Annie Kalonda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (A.K.); (P.N.)
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Africa Centre of Excellence for Infectious Disease of Humans and Animals, School of Veterinary Medicine, Lusaka 10101, Zambia
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (A.K.); (P.N.)
| | - Masahiro Kajihara
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University Kita-ku, Sapporo 001-0020, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Macha Research Trust, Choma 20100, Zambia
- Correspondence: ; Tel.: +260-977469479
| |
Collapse
|
8
|
Systematic Review of Important Viral Diseases in Africa in Light of the 'One Health' Concept. Pathogens 2020; 9:pathogens9040301. [PMID: 32325980 PMCID: PMC7238228 DOI: 10.3390/pathogens9040301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging and re-emerging viral diseases are of great public health concern. The recent emergence of Severe Acute Respiratory Syndrome (SARS) related coronavirus (SARS-CoV-2) in December 2019 in China, which causes COVID-19 disease in humans, and its current spread to several countries, leading to the first pandemic in history to be caused by a coronavirus, highlights the significance of zoonotic viral diseases. Rift Valley fever, rabies, West Nile, chikungunya, dengue, yellow fever, Crimean-Congo hemorrhagic fever, Ebola, and influenza viruses among many other viruses have been reported from different African countries. The paucity of information, lack of knowledge, limited resources, and climate change, coupled with cultural traditions make the African continent a hotspot for vector-borne and zoonotic viral diseases, which may spread globally. Currently, there is no information available on the status of virus diseases in Africa. This systematic review highlights the available information about viral diseases, including zoonotic and vector-borne diseases, reported in Africa. The findings will help us understand the trend of emerging and re-emerging virus diseases within the African continent. The findings recommend active surveillance of viral diseases and strict implementation of One Health measures in Africa to improve human public health and reduce the possibility of potential pandemics due to zoonotic viruses.
Collapse
|
9
|
Lickfett TM, Clark E, Gehring TM, Alm EW. Detection of Influenza A viruses at migratory bird stopover sites in Michigan, USA. Infect Ecol Epidemiol 2018; 8:1474709. [PMID: 29805786 PMCID: PMC5965024 DOI: 10.1080/20008686.2018.1474709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/25/2018] [Indexed: 11/04/2022] Open
Abstract
Introduction: Influenza A viruses have the potential to cause devastating illness in humans and domestic poultry. Wild birds are the natural reservoirs of Influenza A viruses and migratory birds are implicated in their global dissemination. High concentrations of this virus are excreted in the faeces of infected birds and faecal contamination of shared aquatic habitats can lead to indirect transmission among birds via the faecal-oral route. The role of migratory birds in the spread of avian influenza has led to large-scale surveillance efforts of circulating avian influenza viruses through direct sampling of live and dead wild birds. Environmental monitoring of bird habitats using molecular detection methods may provide additional information on the persistence of influenza virus at migratory stopover sites distributed across large spatial scales. Materials and methods: In the current study, faecal and water samples were collected at migratory stopover sites and evaluated for Influenza A by real-time quantitative reverse transcriptase PCR. Results and Discussion: This study found that Influenza A was detected at 53% of the evaluated stopover sites, and 7% and 4.8% of the faecal and water samples, respectively, tested positive for Influenza A virus. Conclusion: Environmental monitoring detected Influenza A at stopover sites used by migratory birds.
Collapse
Affiliation(s)
- Todd M Lickfett
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.,Region 6 Ecological Services, U.S. Fish and Wildlife Service, Lakewood, CO, USA
| | - Erica Clark
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.,Silver Spring, MD, USA
| | - Thomas M Gehring
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Elizabeth W Alm
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
10
|
Molecular Diagnostic Assays for the Detection and Control of Zoonotic Diseases. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|