1
|
Hearst S, Palermo PM, Watts DM, Campbell K, Ivey R, Young C, Yarbrough W, Facundus E, Spears J, Mills S, McNeely KA, Ray P, Burnett GC, Bates GT, Bates JT. Evidence of SARS-CoV-2 Antibody in Mississippi White-Tailed Deer. Vector Borne Zoonotic Dis 2024; 24:682-688. [PMID: 38695836 DOI: 10.1089/vbz.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Background: Early detection and monitoring of SARS-CoV-2 infections in animal populations living in close proximity to humans is crucial for preventing reverse zoonosis of new viral strains. Evidence accumulated has revealed widespread SARS-CoV-2 infection among white-tailed deer (WTD), (Odocoileus virginianus) populations in the United States except in the southeast region. Therefore, the objective was to conduct surveillance for evidence of SARS-CoV-2 infection among WTD in Mississippi. Materials and Methods: Blood, kidney tissues, and nasal swab samples were collected in 17 counties from hunter-harvested deer during 2021-2022 and 2022-2023.Samples of kidney tissue were collected to evaluate for detecting antibody as a possible alternative to blood that is not always available from dead WTD. Nasal swab samples were tested for SARS-CoV-2 viral RNA by a RT-PCR assay. Sera and kidney tissue samples were tested for SARS-CoV-2 antibody by an enzyme-linked immunoassay (ELISA) and sera by a plaque reduction neutralization test (PRNT80). Results: The results of testing sera and kidney homogenate samples provided the first evidence of SARS-CoV-2 infection among WTD in Mississippi. The infection rate during 2021-2022 was 67% (10/15) based on the detection of neutralizing antibody by the PRNT80 and 26%(16/62) based on the testing of kidney tissue homogenates by an ELISA, and viral RNA was detected in 25% (3/12) of nasal swab samples. In 2022 to 2023, neutralizing antibody was detected in 62% (28/45) of WTD serum samples. In contrast, antibodies were not detected in 220 kidney homogenates by an ELISA nor was viral RNA detected in 220 nasal swab samples. Evidence of WTD activity was common in urban areas during the survey. Conclusion: Overall, the findings documented the first SARS-CoV-2 infection among WTD in Mississippi and showed that WTD commonly inhabited urban areas as a possible source of acquiring infection from humans infected with this virus.
Collapse
Affiliation(s)
- Scoty Hearst
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Pedro M Palermo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas M Watts
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Kamen Campbell
- Mississippi Department of Wildlife, Fisheries, and Parks, Deer Program, Jackson, Mississippi, USA
| | - Ryan Ivey
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Caleb Young
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - William Yarbrough
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Edward Facundus
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Jack Spears
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Stephen Mills
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, Mississippi, USA
| | - Kaitlin A McNeely
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Priya Ray
- Summer Undergraduate Research Experience, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Grace C Burnett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - John T Bates
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
2
|
Goldberg AR, Langwig KE, Brown KL, Marano JM, Rai P, King KM, Sharp AK, Ceci A, Kailing CD, Kailing MJ, Briggs R, Urbano MG, Roby C, Brown AM, Weger-Lucarelli J, Finkielstein CV, Hoyt JR. Widespread exposure to SARS-CoV-2 in wildlife communities. Nat Commun 2024; 15:6210. [PMID: 39075057 PMCID: PMC11286844 DOI: 10.1038/s41467-024-49891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022-September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.
Collapse
Affiliation(s)
- Amanda R Goldberg
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Katherine L Brown
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Jeffrey M Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Kelsie M King
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Amanda K Sharp
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Alessandro Ceci
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | | | - Macy J Kailing
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Russell Briggs
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Matthew G Urbano
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Clinton Roby
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Data Services, University Libraries, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA.
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA.
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA.
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Boggiatto PM, Buckley A, Cassmann ED, Seger H, Olsen SC, Palmer MV. Persistence of viral RNA in North American elk experimentally infected with an ancestral strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sci Rep 2024; 14:11171. [PMID: 38750049 PMCID: PMC11096316 DOI: 10.1038/s41598-024-61414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
White-tailed deer (Odocoileus virginianus) have emerged as a reservoir host for SARS-CoV-2 given their susceptibility to infection and demonstrated high rates of seroprevalence and infection across the United States. As SARS-CoV-2 circulates within free-ranging white-tailed deer populations, there is the risk of transmission to other wildlife species and even back to the human population. The goal of this study was to determine the susceptibility, shedding, and immune response of North American elk (Cervus elaphus canadensis) to experimental infection with SARS-CoV-2, to determine if another wide-ranging cervid species could potentially serve as a reservoir host for the virus. Here we demonstrate that while North American elk do not develop clinical signs of disease, they do develop a neutralizing antibody response to infection, suggesting the virus is capable of replicating in this mammalian host. Additionally, we demonstrate SARS-CoV-2 RNA presence in the medial retropharyngeal lymph nodes of infected elk three weeks after experimental infection. Consistent with previous observations in humans, these data may highlight a mechanism of viral persistence for SARS-CoV-2 in elk.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
| | - Hannah Seger
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research, Ames, IA, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
4
|
Yang R, Han P, Han P, Li D, Zhao R, Niu S, Liu K, Li S, Tian WX, Gao GF. Molecular basis of hippopotamus ACE2 binding to SARS-CoV-2. J Virol 2024; 98:e0045124. [PMID: 38591877 PMCID: PMC11092335 DOI: 10.1128/jvi.00451-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide range of hosts, including hippopotami, which are semi-aquatic mammals and phylogenetically closely related to Cetacea. In this study, we characterized the binding properties of hippopotamus angiotensin-converting enzyme 2 (hiACE2) to the spike (S) protein receptor binding domains (RBDs) of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs). Furthermore, the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 PT S protein complexed with hiACE2 was resolved. Structural and mutational analyses revealed that L30 and F83, which are specific to hiACE2, played a crucial role in the hiACE2/SARS-CoV-2 RBD interaction. In addition, comparative and structural analysis of ACE2 orthologs suggested that the cetaceans may have the potential to be infected by SARS-CoV-2. These results provide crucial molecular insights into the susceptibility of hippopotami to SARS-CoV-2 and suggest the potential risk of SARS-CoV-2 VOCs spillover and the necessity for surveillance. IMPORTANCE The hippopotami are the first semi-aquatic artiodactyl mammals wherein SARS-CoV-2 infection has been reported. Exploration of the invasion mechanism of SARS-CoV-2 will provide important information for the surveillance of SARS-CoV-2 in hippopotami, as well as other semi-aquatic mammals and cetaceans. Here, we found that hippopotamus ACE2 (hiACE2) could efficiently bind to the RBDs of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs) and facilitate the transduction of SARS-CoV-2 PT and VOCs pseudoviruses into hiACE2-expressing cells. The cryo-EM structure of the SARS-CoV-2 PT S protein complexed with hiACE2 elucidated a few critical residues in the RBD/hiACE2 interface, especially L30 and F83 of hiACE2 which are unique to hiACE2 and contributed to the decreased binding affinity to PT RBD compared to human ACE2. Our work provides insight into cross-species transmission and highlights the necessity for monitoring host jumps and spillover events on SARS-CoV-2 in semi-aquatic/aquatic mammals.
Collapse
Affiliation(s)
- Ruirui Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengcheng Han
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runchu Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - George Fu Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
5
|
Sarlo Davila KM, Nelli RK, Phadke KS, Ruden RM, Sang Y, Bellaire BH, Gimenez-Lirola LG, Miller LC. How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain? Microbiol Spectr 2024; 12:e0252423. [PMID: 38189329 PMCID: PMC10846091 DOI: 10.1128/spectrum.02524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.IMPORTANCEThis study demonstrated that human and white-tailed deer primary respiratory epithelial cells are susceptible to the SARS-CoV-2 WA1/2020 strain infection. However, the comparative transcriptomic analysis revealed that deer cells could limit viral replication without causing hypercytokinemia by downregulating IL-17 and NF-κB signaling pathways. Identifying differentially expressed genes in human and deer cells that modulate key innate immunity pathways during the early infection will lead to developing targeted therapies toward preventing or mitigating the "cytokine storm" often associated with severe cases of coronavirus disease 19 (COVID-19). Moreover, results from this study will aid in identifying novel prognostic biomarkers in predicting SARS-CoV-2 adaption and transmission in deer and associated cervids.
Collapse
Affiliation(s)
- Kaitlyn M. Sarlo Davila
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Disease Research Unit, National Animal Disease Center , Ames, Iowa, USA
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kruttika S. Phadke
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Rachel M. Ruden
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tennessee, USA
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G. Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Laura C. Miller
- United States Department of Agriculture, Agricultural Research Service, Virus and Prion Research Unit, National Animal Disease Center, Ames, Iowa, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
6
|
Kotwa JD, Lobb B, Massé A, Gagnier M, Aftanas P, Banerjee A, Banete A, Blais-Savoie J, Bowman J, Buchanan T, Chee HY, Kruczkiewicz P, Nirmalarajah K, Soos C, Vernygora O, Yip L, Lindsay LR, McGeer AJ, Maguire F, Lung O, Doxey AC, Pickering B, Mubareka S. Genomic and transcriptomic characterization of delta SARS-CoV-2 infection in free-ranging white-tailed deer ( Odocoileus virginianus). iScience 2023; 26:108319. [PMID: 38026171 PMCID: PMC10665813 DOI: 10.1016/j.isci.2023.108319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023] Open
Abstract
White-tailed deer (WTD) are susceptible to SARS-CoV-2 and represent an important species for surveillance. Samples from WTD (n = 258) collected in November 2021 from Québec, Canada were analyzed for SARS-CoV-2 RNA. We employed viral genomics and host transcriptomics to further characterize infection and investigate host response. We detected Delta SARS-CoV-2 (B.1.617.2) in WTD from the Estrie region; sequences clustered with human sequences from October 2021 from Vermont, USA, which borders this region. Mutations in the S-gene and a deletion in ORF8 were detected. Host expression patterns in SARS-CoV-2 infected WTD were associated with the innate immune response, including signaling pathways related to anti-viral, pro- and anti-inflammatory signaling, and host damage. We found limited correlation between genes associated with innate immune response from human and WTD nasal samples, suggesting differences in responses to SARS-CoV-2 infection. Our findings provide preliminary insights into host response to SARS-CoV-2 infection in naturally infected WTD.
Collapse
Affiliation(s)
| | - Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ariane Massé
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec City, QC G1S 4X4, Canada
| | - Marianne Gagnier
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec City, QC G1S 4X4, Canada
| | | | - Arinjay Banerjee
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andra Banete
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | - Jeff Bowman
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON K9J 8M5, Canada
| | - Tore Buchanan
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON K9J 8M5, Canada
| | - Hsien-Yao Chee
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Global Health Research Center and Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215316, China
| | - Peter Kruczkiewicz
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | | | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Oksana Vernygora
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - L. Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Allison J. McGeer
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Finlay Maguire
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Shared Hospital Laboratory, Toronto, ON M4N 3M5, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bradley Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
7
|
Poonsuk K, Loy D, Birn R, Buss B, Donahue M, Nordeen T, Sinclair K, Meduna L, Brodersen B, Loy JD. DETECTION OF SARS-COV-2 NEUTRALIZING ANTIBODIES IN RETROPHARYNGEAL LYMPH NODE EXUDATES OF WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS) FROM NEBRASKA, USA. J Wildl Dis 2023; 59:702-708. [PMID: 37768779 PMCID: PMC10913095 DOI: 10.7589/jwd-d-23-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/30/2023]
Abstract
Disease surveillance testing for emerging zoonotic pathogens in wildlife is a key component in understanding the epidemiology of these agents and potential risk to human populations. Recent emergence of SARS-CoV-2 in humans, and subsequent detection of this virus in wildlife, highlights the need for developing new One Health surveillance strategies. We used lymph node exudate, a sample type that is routinely collected in hunter-harvested white-tailed deer (WTD, Odocoileus virginianus) for surveillance of chronic wasting disease, to assess anti-SARS-CoV-2 neutralizing antibodies. A total of 132 pairs of retropharyngeal lymph nodes collected from Nebraska WTD harvested in Nebraska, US, in 2019 (pre-SARS-CoV-2 pandemic) and 2021 (post-SARS-CoV-2 pandemic) were tested for SARS-CoV-2 with reverse transcription PCR. Thereafter, exudates obtained from these same lymph nodes were tested for SARS-CoV-2 neutralizing antibodies using a surrogate virus neutralization test. Neutralizing antibodies were detected in the exudates with high diagnostic specificity (100% at proposed cutoff of 40% inhibition). Application of this testing approach to samples collected for use in other disease surveillance activities may provide additional epidemiological data on SARS-CoV-2 exposure, and there is further potential to apply this sample type to detection of other pathogens of interest.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Duan Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Rachael Birn
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Council State and Territorial Epidemiologists, 2635 Century Pkwy NE no. 700, Atlanta, Georgia 30345, USA
| | - Bryan Buss
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Division of State and Local Readiness, Center for Preparedness and Response, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, USA
| | - Matthew Donahue
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
| | - Todd Nordeen
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Kylie Sinclair
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Luke Meduna
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Bruce Brodersen
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - John Dustin Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| |
Collapse
|
8
|
Despres HW, Mills MG, Schmidt MM, Gov J, Perez Y, Jindrich M, Crawford AML, Kohl WT, Rosenblatt E, Kubinski HC, Simmons BC, Nippes MC, Goldenberg AJ, Murtha KE, Nicoloro S, Harris MJ, Feeley AC, Gelinas TK, Cronin MK, Frederick RS, Thomas M, Johnson ME, Murphy J, Lenzini EB, Carr PA, Berger DH, Mehta SP, Floreani CJ, Koval AC, Young AL, Fish JH, Wallace J, Chaney E, Ushay G, Ross RS, Vostal EM, Thisner MC, Gonet KE, Deane OC, Pelletiere KR, Rockafeller VC, Waterman M, Barry TW, Goering CC, Shipman SD, Shiers AC, Reilly CE, Duff AM, Madruga SL, Shirley DJ, Jerome KR, Pérez-Osorio AC, Greninger AL, Fortin N, Mosher BA, Bruce EA. Surveillance of Vermont wildlife in 2021-2022 reveals no detected SARS-CoV-2 viral RNA. Sci Rep 2023; 13:14683. [PMID: 37674004 PMCID: PMC10482933 DOI: 10.1038/s41598-023-39232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes (Vulpes vulples and Urocyon cineroargentus, respectively), fishers (Martes pennati), river otters (Lutra canadensis), coyotes (Canis lantrans), bobcats (Lynx rufus rufus), black bears (Ursus americanus), and white-tailed deer (Odocoileus virginianus). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Surprisingly, we initially detected a number of N1 and/or N2 positive samples with high cycle threshold values, though after conducting environmental swabbing of the laboratory and verifying with a second independent primer set (WHO-E) and PCR without reverse transcriptase, we showed that these were false positives due to plasmid contamination from a construct expressing the N gene in the general laboratory environment. Our final results indicate that no sampled wildlife were positive for SARS-CoV-2 RNA, and highlight the importance of physically separate locations for the processing of samples for surveillance and experiments that require the use of plasmid DNA containing the target RNA sequence. These negative findings are surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.
Collapse
Affiliation(s)
- Hannah W Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Margaret G Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Madaline M Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jolene Gov
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yael Perez
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Mars Jindrich
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Allison M L Crawford
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Warren T Kohl
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr, Burlington, VT, 05405, USA
| | - Hannah C Kubinski
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Benjamin C Simmons
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Miles C Nippes
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Anne J Goldenberg
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kristina E Murtha
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Samantha Nicoloro
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Mia J Harris
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Avery C Feeley
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Taylor K Gelinas
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Maeve K Cronin
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Robert S Frederick
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Matthew Thomas
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Meaghan E Johnson
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - James Murphy
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Elle B Lenzini
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Peter A Carr
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Danielle H Berger
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Soham P Mehta
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Christopher J Floreani
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Amelia C Koval
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Aleah L Young
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Jess H Fish
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Jack Wallace
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Ella Chaney
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Grace Ushay
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Rebecca S Ross
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Erin M Vostal
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Maya C Thisner
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kyliegh E Gonet
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Owen C Deane
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kari R Pelletiere
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Vegas C Rockafeller
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Madeline Waterman
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Tyler W Barry
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Catriona C Goering
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Sarah D Shipman
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Allie C Shiers
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Claire E Reilly
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Alanna M Duff
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Sarah L Madruga
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - David J Shirley
- Department of Engineering, Faraday, Inc., Burlington, VT, 05405, USA
| | - Keith R Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ailyn C Pérez-Osorio
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Nick Fortin
- Fish and Wildlife Department, Vermont Agency of Natural Resources, Rutland, VT, 05701, USA
| | - Brittany A Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr, Burlington, VT, 05405, USA.
| | - Emily A Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
9
|
Devaux CA, Fantini J. ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus. Front Microbiol 2023; 14:1199561. [PMID: 37520374 PMCID: PMC10373931 DOI: 10.3389/fmicb.2023.1199561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Like other coronaviruses, SARS-CoV-2 has ability to spread through human-to-human transmission and to circulate from humans to animals and from animals to humans. A high frequency of SARS-CoV-2 mutations has been observed in the viruses isolated from both humans and animals, suggesting a genetic fitness under positive selection in both ecological niches. The most documented positive selection force driving SARS-CoV-2 mutations is the host-specific immune response. However, after electrostatic interactions with lipid rafts, the first contact between the virus and host proteins is the viral spike-cellular receptor binding. Therefore, it is likely that the first level of selection pressure impacting viral fitness relates to the virus's affinity for its receptor, the angiotensin I converting enzyme 2 (ACE2). Although sufficiently conserved in a huge number of species to support binding of the viral spike with enough affinity to initiate fusion, ACE2 is highly polymorphic both among species and within a species. Here, we provide evidence suggesting that when the viral spike-ACE2 receptor interaction is not optimal, due to host-switching, mutations can be selected to improve the affinity of the spike for the ACE2 expressed by the new host. Notably, SARS-CoV-2 is mutation-prone in the spike receptor binding domain (RBD), allowing a better fit for ACE2 orthologs in animals. It is possibly that this may also be true for rare human alleles of ACE2 when the virus is spreading to billions of people. In this study, we present evidence that human subjects expressing the rare E329G allele of ACE2 with higher allele frequencies in European populations exhibit a improved affinity for the SARS-CoV-2 spike N501Y variant of the virus. This may suggest that this viral N501Y variant emerged in the human population after SARS-CoV-2 had infected a human carrying the rare E329G allele of ACE2. In addition, this viral evolution could impact viral replication as well as the ability of the adaptive humoral response to control infection with RBD-specific neutralizing antibodies. In a shifting landscape, this ACE2-driven genetic drift of SARS-CoV-2 which we have named the 'boomerang effect', could complicate the challenge of preventing COVID with a SARS-CoV-2 spike-derived vaccine.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S1072, Marseille, France, Aix-Marseille Université, Marseille, France
| |
Collapse
|
10
|
Italiya J, Bhavsar T, Černý J. Assessment and strategy development for SARS-CoV-2 screening in wildlife: A review. Vet World 2023; 16:1193-1200. [PMID: 37577208 PMCID: PMC10421538 DOI: 10.14202/vetworld.2023.1193-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 08/15/2023] Open
Abstract
Coronaviruses (members of the Coronaviridae family) are prominent in veterinary medicine, with several known infectious agents commonly reported. In contrast, human medicine has disregarded coronaviruses for an extended period. Within the past two decades, coronaviruses have caused three major outbreaks. One such outbreak was the coronavirus disease 2019 (COVID-19) caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Over the 3-year COVID-19 outbreak, several instances of zooanthroponosis have been documented, which pose risks for virus modifications and possible re-emergence of the virus into the human population, causing a new epidemic and possible threats for vaccination or treatment failure. Therefore, widespread screening of animals is an essential technique for mitigating future risks and repercussions. However, mass detection of SARS-CoV-2 in wild animals might be challenging. In silico prediction modeling, experimental studies conducted on various animal species, and natural infection episodes recorded in various species might provide information on the potential threats to wildlife. They may be useful for diagnostic and mass screening purposes. In this review, the possible methods of wildlife screening, based on experimental data and environmental elements that might play a crucial role in its effective implementation, are reviewed.
Collapse
Affiliation(s)
- Jignesh Italiya
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| | - Tanvi Bhavsar
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| |
Collapse
|
11
|
Despres HW, Mills MG, Schmidt MM, Gov J, Perez Y, Jindrich M, Crawford AML, Kohl WT, Rosenblatt E, Kubinski HC, Simmons BC, Nippes MC, Goldenberg AJ, Murtha KE, Nicoloro S, Harris MJ, Feeley AC, Gelinas TK, Cronin MK, Frederick RS, Thomas M, Johnson ME, Murphy J, Lenzini EB, Carr PA, Berger DH, Mehta SP, Floreani CJ, Koval AC, Young AL, Fish JH, Wallace J, Chaney E, Ushay G, Ross RS, Vostal EM, Thisner MC, Gonet KE, Deane OC, Pelletiere KR, Rockafeller VC, Waterman M, Barry TW, Goering CC, Shipman SD, Shiers AC, Reilly CE, Duff AM, Shirley DJ, Jerome KR, Pérez-Osorio AC, Greninger AL, Fortin N, Mosher BA, Bruce EA. Surveillance of Vermont wildlife in 2021-2022 reveals no detected SARS-CoV-2 viral RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538264. [PMID: 37162835 PMCID: PMC10168257 DOI: 10.1101/2023.04.25.538264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes ( Vulpes vulples and Urocyon cineroargentus , respectively), fishers ( Martes pennati ), river otters ( Lutra canadensis ), coyotes ( Canis lantrans ), bobcats ( Lynx rufus rufus ), black bears ( Ursus americanus ), and white-tailed deer ( Odocoileus virginianus ). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Our results indicate that no sampled wildlife were positive for SARS-CoV-2. This finding is surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.
Collapse
Affiliation(s)
- Hannah W. Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Margaret G. Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Madaline M. Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Jolene Gov
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Yael Perez
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Mars Jindrich
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Allison M. L. Crawford
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Warren T. Kohl
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr Burlington, VT 05405, USA
| | - Hannah C. Kubinski
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Benjamin C. Simmons
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Miles C. Nippes
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Anne J. Goldenberg
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kristina E. Murtha
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Samantha Nicoloro
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Mia J. Harris
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Avery C. Feeley
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Taylor K. Gelinas
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Maeve K. Cronin
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Robert S. Frederick
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Matthew Thomas
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Meaghan E. Johnson
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - James Murphy
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Elle B. Lenzini
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Peter A. Carr
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Danielle H. Berger
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Soham P. Mehta
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Amelia C. Koval
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Aleah L. Young
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Jess H. Fish
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Jack Wallace
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Ella Chaney
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Grace Ushay
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Rebecca S. Ross
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Erin M. Vostal
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Maya C. Thisner
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kyliegh E. Gonet
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Owen C. Deane
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kari R. Pelletiere
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Madeline Waterman
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Tyler W. Barry
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Catriona C. Goering
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Sarah D. Shipman
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Allie C. Shiers
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Claire E. Reilly
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Alanna M. Duff
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Keith R. Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle WA 98109, USA
| | - Ailyn C. Pérez-Osorio
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle WA 98109, USA
| | - Nick Fortin
- Vermont Agency of Natural Resources, Fish & Wildlife Department, Rutland, VT 05701
| | - Brittany A. Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr Burlington, VT 05405, USA
| | - Emily A. Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| |
Collapse
|
12
|
White-tailed deer ( Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concern. Proc Natl Acad Sci U S A 2023; 120:e2215067120. [PMID: 36719912 PMCID: PMC9963525 DOI: 10.1073/pnas.2215067120] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (WTD) and its ability to transmit from deer to deer raised concerns about the role of WTD in the epidemiology and ecology of the virus. Here, we present a comprehensive cross-sectional study assessing the prevalence, genetic diversity, and evolution of SARS-CoV-2 in WTD in the State of New York (NY). A total of 5,462 retropharyngeal lymph node samples collected from free-ranging hunter-harvested WTD during the hunting seasons of 2020 (Season 1, September to December 2020, n = 2,700) and 2021 (Season 2, September to December 2021, n = 2,762) were tested by SARS-CoV-2 real-time RT-PCR (rRT-PCR). SARS-CoV-2 RNA was detected in 17 samples (0.6%) from Season 1 and in 583 samples (21.1%) from Season 2. Hotspots of infection were identified in multiple confined geographic areas of NY. Sequence analysis of SARS-CoV-2 genomes from 164 samples demonstrated the presence of multiple SARS-CoV-2 lineages and the cocirculation of three major variants of concern (VOCs) (Alpha, Gamma, and Delta) in WTD. Our analysis suggests the occurrence of multiple spillover events (human to deer) of the Alpha and Delta lineages with subsequent deer-to-deer transmission and adaptation of the viruses. Detection of Alpha and Gamma variants in WTD long after their broad circulation in humans in NY suggests that WTD may serve as a wildlife reservoir for VOCs no longer circulating in humans. Thus, implementation of continuous surveillance programs to monitor SARS-CoV-2 dynamics in WTD is warranted, and measures to minimize virus transmission between humans and animals are urgently needed.
Collapse
|
13
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Velarde A, Viltrop A, Winckler C, Adlhoch C, Aznar I, Baldinelli F, Boklund A, Broglia A, Gerhards N, Mur L, Nannapaneni P, Ståhl K. SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J 2023; 21:e07822. [PMID: 36860662 PMCID: PMC9968901 DOI: 10.2903/j.efsa.2023.7822] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.
Collapse
|
14
|
Saied AA, Metwally AA. SARS-CoV-2 variants of concerns in animals: An unmonitored rising health threat. Virusdisease 2022; 33:466-476. [PMID: 36405954 PMCID: PMC9648878 DOI: 10.1007/s13337-022-00794-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Recent findings have highlighted the urgency for rapidly detecting and characterizing SARS-CoV-2 variants of concern in companion and wild animals. The significance of active surveillance and genomic investigation on these animals could pave the way for more understanding of the viral circulation and how the variants emerge. It enables us to predict the next viral challenges and prepare for or prevent these challenges. Horrible neglect of this issue could make the COVID-19 pandemic a continuous threat. Continuing to monitor the animal-origin SARS-CoV-2, and tailoring prevention and control measures to avoid large-scale community transmission in the future caused by the virus leaping from animals to humans, is essential. The reliance on only developing vaccines with ignoring this strategy could cost us many lives. Here, we discuss the most recent data about the transmissibility of SARS-CoV-2 variants of concern (VOCs) among animals and humans.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- National Food Safety Authority (NFSA), Aswan Branch, 81511 Aswan, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, 81511 Aswan, Egypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, 81528 Aswan, Egypt
| |
Collapse
|
15
|
Marques AD, Sherrill-Mix S, Everett JK, Adhikari H, Reddy S, Ellis JC, Zeliff H, Greening SS, Cannuscio CC, Strelau KM, Collman RG, Kelly BJ, Rodino KG, Bushman FD, Gagne RB, Anis E. Multiple Introductions of SARS-CoV-2 Alpha and Delta Variants into White-Tailed Deer in Pennsylvania. mBio 2022; 13:e0210122. [PMID: 36000731 PMCID: PMC9600874 DOI: 10.1128/mbio.02101-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 pandemic began by viral spillover from animals to humans; today multiple animal species are known to be susceptible to infection. White-tailed deer, Odocoileus virginianus, are infected in North America at substantial levels, and genomic data suggests that a variant in deer may have spilled back to humans. Here, we characterize SARS-CoV-2 in deer from Pennsylvania (PA) sampled during fall and winter 2021. Of 123 nasal swab samples analyzed by RT-qPCR, 20 (16.3%) were positive for SARS-CoV-2. Seven whole genome sequences were obtained, together with six more partial spike gene sequences. These annotated as alpha and delta variants, the first reported observations of these lineages in deer, documenting multiple new jumps from humans to deer. The alpha lineage persisted in deer after its displacement by delta in humans, and deer-derived alpha variants diverged significantly from those in humans, consistent with a distinctive evolutionary trajectory in deer. IMPORTANCE Coronaviruses have been documented to replicate in numerous species of vertebrates, and multiple spillovers of coronaviruses from animals into humans have founded human epidemics. The COVID-19 epidemic likely derived from a spillover of SARS-CoV-2 from bats into humans, possibly via an intermediate host. There are now several examples of SARS-CoV-2 jumping from humans into other mammals, including mink and deer, creating the potential for new animal reservoirs from which spillback into humans could occur. For this reason, data on formation of new animal reservoirs is of great importance for understanding possible sources of future infection. Here, we identify extensive infection in white-tailed deer in Pennsylvania, including what appear to be multiple independent transmissions. Data further suggests possible transmission among deer. These data thus help identify a potential new animal reservoir and provide background information relevant to its management.
Collapse
Affiliation(s)
- Andrew D. Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hriju Adhikari
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie C. Ellis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Haley Zeliff
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Sabrina S. Greening
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Carolyn C. Cannuscio
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Family Medicine and Community Health, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine M. Strelau
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Family Medicine and Community Health, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania, USA
| | - Brendan J. Kelly
- Division of Infectious Diseases; Department of Medicine & Department of Biostatistics, Epidemiology, and Informatics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle G. Rodino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roderick B. Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Eman Anis
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| |
Collapse
|
16
|
Krupińska M, Borkowski J, Goll A, Nowicka J, Baranowicz K, Bourret V, Strandin T, Mäki S, Kant R, Sironen T, Grzybek M. Wild Red Deer ( Cervus elaphus) Do Not Play a Role as Vectors or Reservoirs of SARS-CoV-2 in North-Eastern Poland. Viruses 2022; 14:2290. [PMID: 36298844 PMCID: PMC9610727 DOI: 10.3390/v14102290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 07/24/2023] Open
Abstract
Several studies reported a high prevalence of SARS-CoV-2 among white-tailed deer in North America. Monitoring cervids in all regions to better understand SARS-CoV-2 infection and circulation in other deer populations has been urged. To evaluate deer exposure and/or infection to/by SARS-CoV-2 in Poland, we sampled 90 red deer shot by hunters in five hunting districts in north-eastern Poland. Serum and nasopharyngeal swabs were collected, and then an immunofluorescent assay (IFA) to detect anti-SARS-CoV-2 antibodies was performed as well as real-time PCR with reverse transcription for direct virus detection. No positive samples were detected. There is no evidence of spillover of SARS-CoV-2 from the human to deer population in Poland.
Collapse
Affiliation(s)
- Martyna Krupińska
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Jakub Borkowski
- Department of Forestry and Forest Ecology, University of Warmia and Mazury, 10-727 Olsztyn, Poland
| | - Aleksander Goll
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Joanna Nowicka
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Karolina Baranowicz
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Vincent Bourret
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
- INRAE-Université de Toulouse UR 0035 CEFS, 31326 Castanet Tolosan, France
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Sanna Mäki
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| |
Collapse
|
17
|
Davoust B, Guérin P, Orain N, Fligny C, Flirden F, Fenollar F, Mediannikov O, Edouard S. Evidence of antibodies against SARS-CoV-2 in wild mustelids from Brittany (France). Transbound Emerg Dis 2022; 69:e3400-e3407. [PMID: 35841263 PMCID: PMC9350122 DOI: 10.1111/tbed.14663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
In the French region of Brittany, mainly in the department of the Côtes d'Armor, during the first half of 2021, seropositivity for SARS-CoV-2 was detected in five wild mustelids out of 33 animals tested (15.6%). Anti-SARS-CoV-2 IgG was detected against at least four out of five recombinant viral proteins (S1 receptor binding domain, nucleocapsid, S1 subunit, S2 subunit and spike) in three pine martens (Martes martes) and in two badgers (Meles meles) using the automated western blot technique. An ELISA test also identified seropositive cases, although these did not align with western blot results. Although the 171 qPCRs carried out on samples from the 33 mustelids were all negative, these preliminary results from this observational study nevertheless bear witness to infections of unknown origin. The epidemiological surveillance of Covid-19 in wildlife must continue, in particular with effective serology tools.
Collapse
Affiliation(s)
- Bernard Davoust
- Aix Marseille Univ, IRD, AP‐HM, MEPHIMarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| | | | | | - Camille Fligny
- Aix Marseille Univ, IRD, AP‐HM, MEPHIMarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| | - Fabien Flirden
- Aix Marseille Univ, IRD, AP‐HM, MEPHIMarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| | - Florence Fenollar
- IHU Méditerranée InfectionMarseilleFrance
- Aix Marseille Univ, IRD, AP‐HM, SSA, VITROMEMarseilleFrance
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, AP‐HM, MEPHIMarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| | - Sophie Edouard
- Aix Marseille Univ, IRD, AP‐HM, MEPHIMarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| |
Collapse
|
18
|
Bosco-Lauth AM, Porter SM, Fox KA, Wood ME, Neubaum D, Quilici M. Experimental Infection of Brazilian Free-Tailed Bats (Tadarida brasiliensis) with Two Strains of SARS-CoV-2. Viruses 2022; 14:v14081809. [PMID: 36016431 PMCID: PMC9412320 DOI: 10.3390/v14081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presumed to have originated from wildlife and shares homology with other bat coronaviruses. Determining the susceptibility of North American bat species to SARS-CoV-2 is of utmost importance for making decisions regarding wildlife management, public health, and conservation. In this study, Brazilian free-tailed bats (Tadarida brasiliensis) were experimentally infected with two strains of SARS-CoV-2 (parental WA01 and Delta variant), evaluated for clinical disease, sampled for viral shedding and antibody production, and analyzed for pathology. None of the bats (n = 18) developed clinical disease associated with infection, shed infectious virus, or developed histopathological lesions associated with SARS-CoV-2 infection. All bats had low levels of viral RNA in oral swabs, six bats had low levels of viral RNA present in the lungs during acute infection, and one of the four bats that were maintained until 28 days post-infection developed a neutralizing antibody response. These findings suggest that Brazilian free-tailed bats are permissive to infection by SARS-CoV-2, but they are unlikely to contribute to environmental maintenance or transmission.
Collapse
Affiliation(s)
- Angela M. Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence:
| | - Stephanie M. Porter
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO 80523, USA
| | - Karen A. Fox
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Mary E. Wood
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Daniel Neubaum
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Marissa Quilici
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
19
|
Hamer SA, Nunez C, Roundy CM, Tang W, Thomas L, Richison J, Benn JS, Auckland LD, Hensley T, Cook WE, Pauvolid-Corrêa A, Hamer GL. Persistence of SARS-CoV-2 neutralizing antibodies longer than 13 months in naturally-infected, captive white-tailed deer ( Odocoileus virginianus), Texas. Emerg Microbes Infect 2022; 11:2112-2115. [PMID: 35950943 PMCID: PMC9448430 DOI: 10.1080/22221751.2022.2112913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
After identifying a captive herd of white-tailed deer in central Texas with >94% seroprevalence with SARS-CoV-2 neutralizing antibodies in September 2021, we worked retrospectively through archived serum samples of 21 deer and detected seroconversion of all animals between December 2020 and January 2021. We then collected prospective samples to conclude that the duration of persistence of neutralizing antibodies is at least 13 months for 19 (90.5%) of the animals, with two animals converting to seronegative after six and eight months. Antibody titres generally waned over this time frame, but three deer had a temporary 4- to 8-fold increases in plaque reduction neutralization test titres over a month after seroconversion; anamnestic response cannot be ruled out.
Collapse
Affiliation(s)
- Sarah A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Chase Nunez
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | | - Wendy Tang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Logan Thomas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Jack Richison
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Jamie S Benn
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Lisa D Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Terry Hensley
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Walter E Cook
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Doliff R, Martens P. Cats and SARS-CoV-2: A Scoping Review. Animals (Basel) 2022; 12:1413. [PMID: 35681877 PMCID: PMC9179433 DOI: 10.3390/ani12111413] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, various animal species were found to be susceptible to SARS-CoV-2 infection. The close contact that exists between humans and cats warrants special attention to the role of this species. Therefore, a scoping review was performed to obtain a comprehensive overview of the existing literature, and to map key concepts, types of research, and possible gaps in the research. A systematic search of the databases PubMed, Google Scholar, and Scopus and the preprint servers medRxiv and bioRxiv was performed. After a two-step screening process, 27 peer-reviewed articles, 8 scientific communication items, and 2 unpublished pre-prints were included. The main themes discussed were susceptibility to SARS-CoV-2, induced immunity, prevalence of infection, manifestation of infection, interspecies transmission between humans and cats, and lastly, intraspecies transmission between cats. The main gaps in the research identified were a lack of large-scale studies, underrepresentation of stray, feral, and shelter cat populations, lack of investigation into cat-to-cat transmissions under non-experimental conditions, and the relation of cats to other animal species regarding SARS-CoV-2. Overall, cats seemingly play a limited role in the spread of SARS-CoV-2. While cats are susceptible to the virus and reverse zoonotic transmission from humans to cats happens regularly, there is currently no evidence of SARS-CoV-2 circulation among cats.
Collapse
Affiliation(s)
| | - Pim Martens
- University College Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
21
|
Higgs S, Huang YJS, Hettenbach SM, Vanlandingham DL. SARS-CoV-2 and Arthropods: A Review. Viruses 2022; 14:v14050985. [PMID: 35632727 PMCID: PMC9144246 DOI: 10.3390/v14050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that led to the unprecedented COVID-19 pandemic exemplifies how a lack of understanding and preparedness for emerging viruses can result in consequences on a global scale. Statements that SARS-CoV-2 could not be transmitted by arthropod vectors were made without experimental support. Here we review laboratory-based research, field studies, and environmental studies to evaluate the potential for the virus to be transmitted either biologically or mechanically by arthropods. Based on these data, we conclude that transmission by arthropods is highly unlikely to play a significant epidemiological role in the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Stephen Higgs
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.H.); (Y.-J.S.H.); (S.M.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.H.); (Y.-J.S.H.); (S.M.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Susan M. Hettenbach
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.H.); (Y.-J.S.H.); (S.M.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.H.); (Y.-J.S.H.); (S.M.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
- Correspondence:
| |
Collapse
|
22
|
Holding M, Otter AD, Dowall S, Takumi K, Hicks B, Coleman T, Hemingway G, Royds M, Findlay-Wilson S, Curran-French M, Vipond R, Sprong H, Hewson R. Screening of wild deer populations for exposure to SARS-CoV-2 in the United Kingdom, 2020-2021. Transbound Emerg Dis 2022; 69:e3244-e3249. [PMID: 35338581 PMCID: PMC9115462 DOI: 10.1111/tbed.14534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Following findings in Northern America of SARS‐CoV‐2 infections in white‐tailed deer, there is concern of similar infections in European deer and their potential as reservoirs of SARS‐CoV‐2 including opportunities for the emergence of new variants. UK deer sera were collected in 2020–2021 from 6 species and a hybrid with 1748 tested using anti‐spike and anti‐nucleocapsid serology assays. No samples were positive on both assays nor by surrogate neutralization testing. There is no evidence that spill‐over infections of SARS‐CoV‐2 occurred from the human population to UK deer or that SARS‐CoV‐2 has been circulating in UK deer (over the study period). Although it cannot be ruled out, study results indicate that spill‐over infections followed by circulation of SARS‐CoV‐2 to the most common European deer species is small.
Collapse
Affiliation(s)
- Maya Holding
- Virology and Pathogenesis group, UK Health Security Agency, Porton Down, United Kingdom.,National Institute for HealthS Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Ashley David Otter
- SARS-CoV-2 Serosurveillance laboratory, UK Health Security Agency, Porton Down, United Kingdom
| | - Stuart Dowall
- Virology and Pathogenesis group, UK Health Security Agency, Porton Down, United Kingdom
| | - Katsuhisa Takumi
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bethany Hicks
- SARS-CoV-2 Serosurveillance laboratory, UK Health Security Agency, Porton Down, United Kingdom
| | - Tom Coleman
- SARS-CoV-2 Serosurveillance laboratory, UK Health Security Agency, Porton Down, United Kingdom
| | - Georgia Hemingway
- SARS-CoV-2 Serosurveillance laboratory, UK Health Security Agency, Porton Down, United Kingdom
| | - Matthew Royds
- SARS-CoV-2 Serosurveillance laboratory, UK Health Security Agency, Porton Down, United Kingdom
| | | | - Mollie Curran-French
- Virology and Pathogenesis group, UK Health Security Agency, Porton Down, United Kingdom
| | - Richard Vipond
- Virology and Pathogenesis group, UK Health Security Agency, Porton Down, United Kingdom.,National Institute for HealthS Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Roger Hewson
- Virology and Pathogenesis group, UK Health Security Agency, Porton Down, United Kingdom.,National Institute for HealthS Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom.,London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom
| |
Collapse
|
23
|
High Seroprevalence of SARS-CoV-2 in White-Tailed Deer (Odocoileus virginianus) at One of Three Captive Cervid Facilities in Texas. Microbiol Spectr 2022; 10:e0057622. [PMID: 35319276 PMCID: PMC9045306 DOI: 10.1128/spectrum.00576-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Free-ranging white-tailed deer (Odocoileus virginianus) across the United States are increasingly recognized for infection and transmission of SARS-CoV-2. Through a cross-sectional study of 80 deer at three captive cervid facilities in central and southern Texas, we provide evidence of 34 of 36 (94.4%) white-tailed deer at a single captive cervid facility seropositive for SARS-CoV-2 by neutralization assay (PRNT90), with endpoint titers as high as 1,280. In contrast, all tested white-tailed deer and axis deer (Axis axis) at two other captive cervid facilities were seronegative, and SARS-CoV-2 RNA was not detected in respiratory swabs from deer at any of the three facilities. These data support transmission among captive deer that cannot be explained by human contact for each infected animal, as only a subset of the seropositive does had direct human contact. The facility seroprevalence was more than double of that reported from wild deer, suggesting that the confined environment may facilitate transmission. Further exploration of captive cervids and other managed animals for their role in the epizootiology of SARS-CoV-2 is critical for understanding impacts on animal health and the potential for spillback transmission to humans or other animal taxa. IMPORTANCE As SARS-CoV-2 vaccine coverage of the human population increases and variants of concern continue to emerge, identification of the epidemiologic importance of animal virus reservoirs is critical. We found that nearly all (94.4%) of the captive white-tailed deer at a cervid facility in central Texas had neutralizing antibodies for SARS-CoV-2. This seroprevalence is over double than that which has been reported from free-ranging deer from other regions of the United States. Horizontal transmission among deer may be facilitated in confinement. Tracking new infections among wild and confined deer is critical for understanding the importance of animal reservoirs for both veterinary and human health.
Collapse
|
24
|
Martins M, Boggiatto PM, Buckley A, Cassmann ED, Falkenberg S, Caserta LC, Fernandes MHV, Kanipe C, Lager K, Palmer MV, Diel DG. From Deer-to-Deer: SARS-CoV-2 is efficiently transmitted and presents broad tissue tropism and replication sites in white-tailed deer. PLoS Pathog 2022; 18:e1010197. [PMID: 35312736 PMCID: PMC8970504 DOI: 10.1371/journal.ppat.1010197] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/31/2022] [Accepted: 03/10/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection/exposure rates approaching 30-40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans, at the human-WTD interface during hunting or venison farming, and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2 B.1 lineage, WTD fawns (~8-month-old) shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD (3-4 years of age). Infectious virus was detected up to day 6 pi in nasal secretions, and from various respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.
Collapse
Affiliation(s)
- Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, United States of America
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, United States of America
| | - Eric D. Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, United States of America
| | - Shollie Falkenberg
- Ruminant Disease and Immunology Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, United States of America
| | - Leonardo C. Caserta
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Maureen H. V. Fernandes
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Carly Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, United States of America
| | - Kelly Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, United States of America
| | - Mitchell V. Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, United States of America
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
25
|
Vandegrift KJ, Yon M, Surendran-Nair M, Gontu A, Amirthalingam S, Nissly RH, Levine N, Stuber T, DeNicola AJ, Boulanger JR, Kotschwar N, Aucoin SG, Simon R, Toal K, Olsen RJ, Davis JJ, Bold D, Gaudreault NN, Richt JA, Musser JM, Hudson PJ, Kapur V, Kuchipudi SV. Detection of SARS-CoV-2 Omicron variant (B.1.1.529) infection of white-tailed deer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.04.479189. [PMID: 35169802 PMCID: PMC8845426 DOI: 10.1101/2022.02.04.479189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
White-tailed deer ( Odocoileus virginianus ) are highly susceptible to infection by SARS-CoV-2, with multiple reports of widespread spillover of virus from humans to free-living deer. While the recently emerged SARS-CoV-2 B.1.1.529 Omicron variant of concern (VoC) has been shown to be notably more transmissible amongst humans, its ability to cause infection and spillover to non-human animals remains a challenge of concern. We found that 19 of the 131 (14.5%; 95% CI: 0.10-0.22) white-tailed deer opportunistically sampled on Staten Island, New York, between December 12, 2021, and January 31, 2022, were positive for SARS-CoV-2 specific serum antibodies using a surrogate virus neutralization assay, indicating prior exposure. The results also revealed strong evidence of age-dependence in antibody prevalence. A significantly (χ 2 , p < 0.001) greater proportion of yearling deer possessed neutralizing antibodies as compared with fawns (OR=12.7; 95% CI 4-37.5). Importantly, SARS-CoV-2 nucleic acid was detected in nasal swabs from seven of 68 (10.29%; 95% CI: 0.0-0.20) of the sampled deer, and whole-genome sequencing identified the SARS-CoV-2 Omicron VoC (B.1.1.529) is circulating amongst the white-tailed deer on Staten Island. Phylogenetic analyses revealed the deer Omicron sequences clustered closely with other, recently reported Omicron sequences recovered from infected humans in New York City and elsewhere, consistent with human to deer spillover. Interestingly, one individual deer was positive for viral RNA and had a high level of neutralizing antibodies, suggesting either rapid serological conversion during an ongoing infection or a "breakthrough" infection in a previously exposed animal. Together, our findings show that the SARS-CoV-2 B.1.1.529 Omicron VoC can infect white-tailed deer and highlights an urgent need for comprehensive surveillance of susceptible animal species to identify ecological transmission networks and better assess the potential risks of spillback to humans. KEY FINDINGS These studies provide strong evidence of infection of free-living white-tailed deer with the SARS-CoV-2 B.1.1.529 Omicron variant of concern on Staten Island, New York, and highlight an urgent need for investigations on human-to-animal-to-human spillovers/spillbacks as well as on better defining the expanding host-range of SARS-CoV-2 in non-human animals and the environment.
Collapse
Affiliation(s)
- Kurt J. Vandegrift
- The Center for Infectious Disease Dynamics, Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michele Yon
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Meera Surendran-Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Abhinay Gontu
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Saranya Amirthalingam
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Nicole Levine
- Department of Animal Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tod Stuber
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | | | | | | | - Sarah Grimké Aucoin
- City of New York Parks & Recreation, 1234 5 Avenue, 5 Floor, New York, NY 10029, USA
| | - Richard Simon
- City of New York Parks & Recreation, 1234 5 Avenue, 5 Floor, New York, NY 10029, USA
| | - Katrina Toal
- City of New York Parks & Recreation, 1234 5 Avenue, 5 Floor, New York, NY 10029, USA
| | - Randall J. Olsen
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX 77030, USA
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, NY 10021, USA
| | - James J. Davis
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago and Division of Data Science and Learning, Argonne National Laboratory, Argonne, Illinois, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - James M. Musser
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX 77030, USA
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, NY 10021, USA
| | - Peter J. Hudson
- The Center for Infectious Disease Dynamics, Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vivek Kapur
- Department of Animal Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| |
Collapse
|
26
|
First Evidence of Natural SARS-CoV-2 Infection in Domestic Rabbits. Vet Sci 2022; 9:vetsci9020049. [PMID: 35202302 PMCID: PMC8876202 DOI: 10.3390/vetsci9020049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
We tested 144 pet rabbits sampled in France between November 2020 and June 2021 for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by microsphere immunoassay. We reported the first evidence of a natural SARS-CoV-2 infection in rabbits with a low observed seroprevalence between 0.7% and 1.4%.
Collapse
|