1
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Pham TT, Buysrogge L, Matthys P, Van den Steen PE. NK cells contribute to the resolution of experimental malaria-associated acute respiratory distress syndrome after antimalarial treatment. Front Immunol 2024; 15:1433904. [PMID: 39355242 PMCID: PMC11442241 DOI: 10.3389/fimmu.2024.1433904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
In both humans and mice, natural killer (NK) cells are important lymphocytes of the innate immune system. They are often considered pro-inflammatory effector cells but may also have a regulatory or pro-resolving function by switching their cytokine profile towards the production of anti-inflammatory cytokines, including interleukin-10 (IL-10) and transforming growth factor-β, and by killing pro-inflammatory immune cells. Here, the role of NK cells in the resolution of malaria lung pathology was studied. Malaria complications, such as malaria-associated acute respiratory distress syndrome (MA-ARDS), are often lethal despite the rapid and efficient killing of Plasmodium parasites with antimalarial drugs. Hence, studying the resolution and healing mechanisms involved in the recovery from these complications could be useful to develop adjunctive treatments. Treatment of Plasmodium berghei NK65-infected C57BL/6 mice with a combination of artesunate and chloroquine starting at the appearance of symptoms was used as a model to study the resolution of MA-ARDS. The role of NK cells was studied using anti-NK1.1 depletion antibodies and NK cell-deficient mice. Using both methods, NK cells were found to be dispensable in the development of MA-ARDS, as shown previously. In contrast, NK cells were crucial in the initiation of resolution upon antimalarial treatment, as survival was significantly decreased in the absence of NK cells. Considerably increased IL-10 expression by NK cells suggested an anti-inflammatory and pro-resolving phenotype. Despite the increase in Il10 expression in the NK cells, inhibition of the IL-10/IL-10R axis using anti-IL10R antibodies had no effect on the resolution for MA-ARDS, suggesting that the pro-resolving effect of NK cells cannot solely be attributed to their IL-10 production. In conclusion, NK cells contribute to the resolution of experimental MA-ARDS.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Laura Buysrogge
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Dong L, Cao Z, Chen M, Liu Y, Ma X, Lu Y, Zhang Y, Feng K, Zhang Y, Meng Z, Yang Q, Wang Y, Wu Z, Han W. Inhibition of glycosphingolipid synthesis with eliglustat in combination with immune checkpoint inhibitors in advanced cancers: preclinical evidence and phase I clinical trial. Nat Commun 2024; 15:6970. [PMID: 39138212 PMCID: PMC11322526 DOI: 10.1038/s41467-024-51495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Glycosphingolipids (GSLs) are abundantly expressed in cancer cells. The effects of GSL-targeted immunotherapies are not fully understood. Here, we show that the inhibition of GSL synthesis with the UDP-glucose ceramide glucosyltransferase inhibitor eliglustat can increase the exposure of the major histocompatibility complex (MHC) and tumour antigen peptides, enhancing the antitumour response of CD8+ T cells in a range of tumour models. We therefore conducted a proof-of-concept phase I trial on the combination of eliglustat and an anti-PD-1 antibody for the treatment of advanced cancers (NCT04944888). The primary endpoints were safety and feasibility, and the secondary endpoint was antitumor activity. All prespecified endpoints were met. Among the 31 enrolled patients, only 1 patient experienced a grade 3 adverse event (AE), and no grade 4 AEs were observed. The objective response rate was 22.6% and the disease control rate reached 71%. Of the 8 patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) colorectal cancer, one achieved complete response and two each had partial response and stable disease. In summary, inhibiting the synthesis of GSLs might represent an effective immunotherapy approach.
Collapse
Affiliation(s)
- Liang Dong
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhi Cao
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Meixia Chen
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xinran Ma
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yuting Lu
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kaichao Feng
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Zhang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhenzhen Meng
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qingming Yang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yao Wang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Zhiqiang Wu
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
- School of Medicine, Nankai University, Tianjin, China.
- Changping Laboratory, Beijing, China.
- National Clinical Research Centre for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Maurice NJ, Dalzell TS, Jarjour NN, DePauw TA, Jameson SC. Steady-state, therapeutic, and helminth-induced IL-4 compromise protective CD8 T cell bystander activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598293. [PMID: 38915668 PMCID: PMC11195063 DOI: 10.1101/2024.06.10.598293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Memory CD8 T cells (Tmem) can be activated into innate-like killers by cytokines like IL-12, IL-15, and/or IL-18; but mechanisms regulating this phenomenon (termed bystander activation) are not fully resolved. We found strain-intrinsic deficiencies in bystander activation using specific pathogen-free mice, whereby basal IL-4 signals antagonize IL-18 sensing. We show that therapeutic and helminth-induced IL-4 impairs protective bystander-mediated responses against pathogens. However, this IL-4/IL-18 axis does not completely abolish bystander activation but rather tunes the expression of direct versus indirect mediators of cytotoxicity (granzymes and interferon-γ, respectively). We show that antigen-experience overrides strain-specific deficiencies in bystander activation, leading to uniform IL-18 receptor expression and enhanced capacity for bystander activation/cytotoxicity. Our data highlight that bystander activation is not a binary process but tuned/deregulated by other cytokines that are elevated by contemporaneous infections. Further, our findings underscore the importance of antigen-experienced Tmem to dissect the contributions of bystander Tmem in health and disease.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Talia S Dalzell
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Nicholas N Jarjour
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Taylor A DePauw
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
4
|
Pollenus E, Prenen F, Possemiers H, Knoops S, Mitera T, Lamote J, De Visscher A, Vandermosten L, Pham TT, Matthys P, Van den Steen PE. Aspecific binding of anti-NK1.1 antibodies on myeloid cells in an experimental model for malaria-associated acute respiratory distress syndrome. Malar J 2024; 23:110. [PMID: 38637828 PMCID: PMC11025177 DOI: 10.1186/s12936-024-04944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Conventional natural killer (cNK) cells play an important role in the innate immune response by directly killing infected and malignant cells and by producing pro- and anti-inflammatory cytokines. Studies on their role in malaria and its complications have resulted in conflicting results. METHODS Using the commonly used anti-NK1.1 depletion antibodies (PK136) in an in-house optimized experimental model for malaria-associated acute respiratory distress syndrome (MA-ARDS), the role of cNK cells was investigated. Moreover, flow cytometry was performed to characterize different NK cell populations. RESULTS While cNK cells were found to be dispensable in the development of MA-ARDS, the appearance of a NK1.1+ cell population was observed in the lungs upon infection despite depletion with anti-NK1.1. Detailed characterization of the unknown population revealed that this population consisted of a mixture of monocytes and macrophages that bind the anti-NK1.1 antibody in an aspecific way. This aspecific binding may occur via Fcγ receptors, such as FcγR4. In contrast, in vivo depletion using anti-NK1.1 antibodies was proved to be specific for cNK cells. CONCLUSION cNK cells are dispensable in the development of experimental MA-ARDS. Moreover, careful flow cytometric analysis, with a critical mindset in relation to potential aspecific binding despite the use of commercially available Fc blocking reagents, is critical to avoid misinterpretation of the results.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jochen Lamote
- Laboratory for Molecular Cancer Biology, Department of Oncology, VIB, KU Leuven, Leuven, Belgium
| | - Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Currently at Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Ghilas S, Ambrosini M, Cancel JC, Brousse C, Massé M, Lelouard H, Dalod M, Crozat K. Natural killer cells and dendritic epidermal γδ T cells orchestrate type 1 conventional DC spatiotemporal repositioning toward CD8 + T cells. iScience 2021; 24:103059. [PMID: 34568787 PMCID: PMC8449251 DOI: 10.1016/j.isci.2021.103059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
Successful immune responses rely on a regulated delivery of the right signals to the right cells at the right time. Here we show that natural killer (NK) and dendritic epidermal γδ T cells (DETCs) use similar mechanisms to spatiotemporally orchestrate conventional type 1 dendritic cell (cDC1) functions in the spleen, skin, and its draining lymph nodes (dLNs). Upon MCMV infection in the spleen, cDC1 clusterize with activated NK cells in marginal zones. This XCR1-dependent repositioning of cDC1 toward NK cells allows contact delivery of IL-12 and IL-15/IL-15Rα by cDC1, which is critical for NK cell responses. NK cells deliver granulocyte-macrophage colony-stimulating factor (GM-CSF) to cDC1, guiding their CCR7-dependent relocalization into the T cell zone. In MCMV-infected skin, XCL1-secreting DETCs promote cDC1 migration from the skin to the dLNs. This XCR1-dependent licensing of cDC1 both in the spleen and skin accelerates antiviral CD8+ T cell responses, revealing an additional mechanism through which cDC1 bridge innate and adaptive immunity. Upon viral infection in the spleen, NK cells clusterize with cDC1 in the marginal zone This XCL1/XCR1-dependent interaction allows mutual delivery of activating signals NK cell GM-CSF directs cDC1 migration to T cell zone boosting CD8+ T cell priming In the skin, DETCs contact cDC1 via XCL1/XCR1 to promote antiviral CD8+ T cell priming
Collapse
Affiliation(s)
- Sonia Ghilas
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Ambrosini
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Jean-Charles Cancel
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Carine Brousse
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marion Massé
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Hugues Lelouard
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Karine Crozat
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
6
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
7
|
Jongsma MLM, de Waard AA, Raaben M, Zhang T, Cabukusta B, Platzer R, Blomen VA, Xagara A, Verkerk T, Bliss S, Kong X, Gerke C, Janssen L, Stickel E, Holst S, Plomp R, Mulder A, Ferrone S, Claas FHJ, Heemskerk MHM, Griffioen M, Halenius A, Overkleeft H, Huppa JB, Wuhrer M, Brummelkamp TR, Neefjes J, Spaapen RM. The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity 2021; 54:132-150.e9. [PMID: 33271119 PMCID: PMC8722104 DOI: 10.1016/j.immuni.2020.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Raaben
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - René Platzer
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Vincent A Blomen
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sophie Bliss
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Xiangrui Kong
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lennert Janssen
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Elmer Stickel
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Arend Mulder
- Department of Immunology, LUMC, Leiden, the Netherlands
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermen Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Johannes B Huppa
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Manfred Wuhrer
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Cancer Genomics Center, Amsterdam, the Netherlands
| | - Jacques Neefjes
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Judge SJ, Dunai C, Aguilar EG, Vick SC, Sturgill IR, Khuat LT, Stoffel KM, Van Dyke J, Longo DL, Darrow MA, Anderson SK, Blazar BR, Monjazeb AM, Serody JS, Canter RJ, Murphy WJ. Minimal PD-1 expression in mouse and human NK cells under diverse conditions. J Clin Invest 2020; 130:3051-3068. [PMID: 32134744 PMCID: PMC7260004 DOI: 10.1172/jci133353] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
PD-1 expression is a hallmark of both early antigen-specific T cell activation and later chronic stimulation, suggesting key roles in both naive T cell priming and memory T cell responses. Although significant similarities exist between T cells and NK cells, there are critical differences in their biology and functions reflecting their respective adaptive and innate immune effector functions. Expression of PD-1 on NK cells is controversial despite rapid incorporation into clinical cancer trials. Our objective was to stringently and comprehensively assess expression of PD-1 on both mouse and human NK cells under multiple conditions and using a variety of readouts. We evaluated NK cells from primary human tumor samples, after ex vivo culturing, and from multiple mouse tumor and viral models using flow cytometry, quantitative reverse-transcriptase PCR (qRT-PCR), and RNA-Seq for PD-1 expression. We demonstrate that, under multiple conditions, human and mouse NK cells consistently lack PD-1 expression despite the marked upregulation of other activation/regulatory markers, such as TIGIT. This was in marked contrast to T cells, which were far more prominent within all tumors and expressed PD-1. These data have important implications when attempting to discern NK from T cell effects and to determine whether PD-1 targeting can be expected to have direct effects on NK cell functions.
Collapse
Affiliation(s)
| | - Cordelia Dunai
- Department of Dermatology, UCD, Sacramento, California, USA
| | | | - Sarah C. Vick
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Lam T. Khuat
- Department of Dermatology, UCD, Sacramento, California, USA
| | | | | | - Dan L. Longo
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Morgan A. Darrow
- Department of Pathology and Laboratory Medicine, UCD, Sacramento, California, USA
| | - Stephen K. Anderson
- Molecular Immunology Section, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce R. Blazar
- Masonic Cancer Center and
- Division of Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, UCD, Sacramento, California, USA
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center and
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - William J. Murphy
- Department of Dermatology, UCD, Sacramento, California, USA
- Department of Medicine, UCD, Sacramento, California, USA
| |
Collapse
|
9
|
Bhat R, Farrag MA, Almajhdi FN. Double-edged role of natural killer cells during RSV infection. Int Rev Immunol 2020; 39:233-244. [PMID: 32469615 DOI: 10.1080/08830185.2020.1770748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer cells play a vital role in the rejection of tumors and pathogen-infected cells. NK cells are indispensable in the early immune response against viral infections by directly targeting infected cells. Furthermore, NK cells influence adaptive immunity by driving virus-specific T-cell responses. Respiratory syncytial virus, a highly contagious virus that causes bronchiolitis, is the main reason for mortality in infants and elderly patients. RSV infection triggers both innate and adaptive immune responses. However, immunity against RSV is ephemeral due to the impaired development of immunological memory. The role of NK cells during RSV infection remains ambiguous. NK cells play a dual role in RSV infection; initially, their role is a protective one as they utilize their intrinsic cytotoxicity, followed by a detrimental one that induces lung injury due to the inhibition of antibody responses and the secretion of pro-inflammatory factors. Noteworthy, IFN-γ released from NK cells play a critical role in promoting a shift to adaptive responses and inhibiting antibody responses in neonates. Indeed, NK cells have a pro-inflammatory and inhibitory role rather than a cytotoxic one that contributes to the severity of the disease. Therapeutic options, including DNA-protein-based vaccines, synthetic peptides, and attenuated strains, are presently under tests. However, there is a need for effective strategies to augment NK cell activity and circumvent the pro-inflammatory activity to benefit the host. In this review, we focused on the role played by NK cells in the immune response and its outcome on the immunopathogenesis of RSV disease.
Collapse
Affiliation(s)
- Rauf Bhat
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Farrag
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad N Almajhdi
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 2019; 10:90. [PMID: 30761148 PMCID: PMC6361815 DOI: 10.3389/fimmu.2019.00090] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Stier MT, Goleniewska K, Cephus JY, Newcomb DC, Sherrill TP, Boyd KL, Bloodworth MH, Moore ML, Chen K, Kolls JK, Peebles RS. STAT1 Represses Cytokine-Producing Group 2 and Group 3 Innate Lymphoid Cells during Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:510-519. [PMID: 28576981 PMCID: PMC5505788 DOI: 10.4049/jimmunol.1601984] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/08/2017] [Indexed: 11/19/2022]
Abstract
The appropriate orchestration of different arms of the immune response is critical during viral infection to promote efficient viral clearance while limiting immunopathology. However, the signals and mechanisms that guide this coordination are not fully understood. IFNs are produced at high levels during viral infection and have convergent signaling through STAT1. We hypothesized that STAT1 signaling during viral infection regulates the balance of innate lymphoid cells (ILC), a diverse class of lymphocytes that are poised to respond to environmental insults including viral infections with the potential for both antiviral or immunopathologic functions. During infection with respiratory syncytial virus (RSV), STAT1-deficient mice had reduced numbers of antiviral IFN-γ+ ILC1 and increased numbers of immunopathologic IL-5+ and IL-13+ ILC2 and IL-17A+ ILC3 compared with RSV-infected wild-type mice. Using bone marrow chimeric mice, we found that both ILC-intrinsic and ILC-extrinsic factors were responsible for this ILC dysregulation during viral infection in STAT1-deficient mice. Regarding ILC-extrinsic mechanisms, we found that STAT1-deficient mice had significantly increased expression of IL-33 and IL-23, cytokines that promote ILC2 and ILC3, respectively, compared with wild-type mice during RSV infection. Moreover, disruption of IL-33 or IL-23 signaling attenuated cytokine-producing ILC2 and ILC3 responses in STAT1-deficient mice during RSV infection. Collectively, these data demonstrate that STAT1 is a key orchestrator of cytokine-producing ILC responses during viral infection via ILC-extrinsic regulation of IL-33 and IL-23.
Collapse
Affiliation(s)
- Matthew T Stier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jacqueline Y Cephus
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dawn C Newcomb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taylor P Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Melissa H Bloodworth
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Martin L Moore
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322; and
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
12
|
Natural Killer Cell Reduction and Uteroplacental Vasculopathy. Hypertension 2016; 68:964-73. [DOI: 10.1161/hypertensionaha.116.07800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/31/2016] [Indexed: 01/02/2023]
Abstract
Uterine natural killer cells are important for uteroplacental development and pregnancy maintenance. Their role in pregnancy disorders, such as preeclampsia, is unknown. We reduced the number of natural killer cells by administering rabbit anti-asialo GM1 antiserum in an established rat preeclamptic model (female human angiotensinogen×male human renin) and evaluated the effects at the end of pregnancy (day 21), compared with preeclamptic control rats receiving normal rabbit serum. In 100% of the antiserum-treated, preeclamptic rats (7/7), we observed highly degenerated vessel cross sections in the mesometrial triangle at the end of pregnancy. This maternal uterine vasculopathy was characterized by a total absence of nucleated/living cells in the vessel wall and perivascularly and prominent presence of fibrosis. Furthermore, there were no endovascular trophoblast cells within the vessel lumen. In the control, normal rabbit serum–treated, preeclamptic rats, only 20% (1/5) of the animals displayed such vasculopathy. We confirmed the results in healthy pregnant wild-type rats: after anti-asialo GM1 treatment, 67% of maternal rats displayed vasculopathy at the end of pregnancy compared with 0% in rabbit serum–treated control rats. This vasculopathy was associated with a significantly lower fetal weight in wild-type rats and deterioration of fetal brain/liver weight ratio in preeclamptic rats. Anti-asialo GM1 application had no influence on maternal hypertension and albuminuria during pregnancy. Our results show a new role of natural killer cells during hypertensive pregnancy in maintaining vascular integrity. In normotensive pregnancy, this integrity seems important for fetal growth.
Collapse
|
13
|
Schepens B, Sedeyn K, Vande Ginste L, De Baets S, Schotsaert M, Roose K, Houspie L, Van Ranst M, Gilbert B, van Rooijen N, Fiers W, Piedra P, Saelens X. Protection and mechanism of action of a novel human respiratory syncytial virus vaccine candidate based on the extracellular domain of small hydrophobic protein. EMBO Mol Med 2015; 6:1436-54. [PMID: 25298406 PMCID: PMC4237470 DOI: 10.15252/emmm.201404005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infections with human respiratory syncytial virus (HRSV) occur globally in all age groups and can have devastating consequences in young infants. We demonstrate that a vaccine based on the extracellular domain (SHe) of the small hydrophobic (SH) protein of HRSV, reduced viral replication in challenged laboratory mice and in cotton rats. We show that this suppression of viral replication can be transferred by serum and depends on a functional IgG receptor compartment with a major contribution of FcγRI and FcγRIII. Using a conditional cell depletion method, we provide evidence that alveolar macrophages are involved in the protection by SHe-specific antibodies. HRSV-infected cells abundantly express SH on the cell surface and are likely the prime target of the humoral immune response elicited by SHe-based vaccination. Finally, natural infection of humans and experimental infection of mice or cotton rats does not induce a strong immune response against HRSV SHe. Using SHe as a vaccine antigen induces immune protection against HRSV by a mechanism that differs from the natural immune response and from other HRSV vaccination strategies explored to date. Hence, HRSV vaccine candidates that aim at inducing protective neutralizing antibodies or T-cell responses could be complemented with a SHe-based antigen to further improve immune protection.
Collapse
Affiliation(s)
- Bert Schepens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Koen Sedeyn
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Liesbeth Vande Ginste
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah De Baets
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael Schotsaert
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lieselot Houspie
- Laboratory of Clinical Virology, Rega Institute for Medical Research KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Rega Institute for Medical Research KU Leuven, Leuven, Belgium
| | - Brian Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Walter Fiers
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pedro Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xavier Saelens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Yang Y, Li D, Katirai F, Zhang B, Xu Y, Xiong P, Gong F, Zheng F. Basophil activation through ASGM1 stimulation triggers PAF release and anaphylaxis-like shock in mice. Eur J Immunol 2014; 44:2468-77. [DOI: 10.1002/eji.201344144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Yang
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Laboratory of Infection and Immunity; Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - Daling Li
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Department of Anesthesiology; Wuhan Central Hospital; Wuhan China
| | - Foad Katirai
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Clinical Medical School; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Bin Zhang
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yong Xu
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ping Xiong
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Feili Gong
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Fang Zheng
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
15
|
Bi J, Zhang Q, Liang D, Xiong L, Wei H, Sun R, Tian Z. T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology 2014; 59:1715-25. [PMID: 24319005 DOI: 10.1002/hep.26968] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED Uncontrolled natural killer (NK) cell activation during the early response to acute viral infection can lead to severe immunopathology, and the mechanisms NK cells use to achieve self-tolerance in such contexts are currently unclear. Here, NK cells up-regulated a coinhibitory receptor, T-cell Ig and ITIM domain (TIGIT), during challenge with the viral double-stranded RNA (dsRNA) analog poly I:C. Blocking TIGIT by antibody treatment in vivo or a genetic deficiency in Tigit enhanced NK cell activation and aggravated liver injury in a poly I:C/D-GalN-induced model of acute fulminant hepatitis, suggesting that TIGIT is normally required for protecting against NK cell-mediated liver injury. Furthermore, adoptively transferring Tigit(-/-) NK cells into NK cell-deficient Nfil3(-/-) mice also resulted in elevated liver injury. Reconstituting Kupffer cell-depleted mice with poliovirus receptor (PVR/CD155, a TIGIT ligand)-silenced Kupffer cells led to aggravated liver injury in a TIGIT-dependent manner. Blocking TIGIT in an NK-Kupffer cell coculture in vitro enhanced NK cell activation and interferon-gamma (IFN-γ) production in a PVR-dependent manner. We also found that TIGIT was up-regulated selectively on NK cells and protected against liver injury in an acute adenovirus infection model in both an NK cell- and Kupffer cell-dependent manner. Knocking down PVR in Kupffer cells resulted in aggravated liver injury in response to adenovirus infection in a TIGIT-dependent manner. CONCLUSION TIGIT negatively regulates NK-Kupffer cell crosstalk and alleviates liver injury in response to poly I:C/D-GalN challenge or acute adenovirus infection, suggesting a novel mechanism of NK cell self-tolerance in liver homeostasis during acute viral infection.
Collapse
Affiliation(s)
- Jiacheng Bi
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Romero I, Garrido C, Algarra I, Collado A, Garrido F, Garcia-Lora AM. T lymphocytes restrain spontaneous metastases in permanent dormancy. Cancer Res 2014; 74:1958-68. [PMID: 24531750 DOI: 10.1158/0008-5472.can-13-2084] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor dormancy is a clinical phenomenon related to immune equilibrium during cancer immunoediting. The mechanisms involved in dormant metastases are poorly understood due to the lack of preclinical models. Here, we present a nontransgenic mouse model in which spontaneous metastases remain in permanent immunomediated dormancy with no additional antitumor treatment. After the injection of a GR9-B11 mouse fibrosarcoma clone into syngeneic BALB/c mice, all animals remained free of spontaneous metastases at the experimental endpoints (3-8 months) but also as long as 24 months after tumor cell injection. Strikingly, when tumor-bearing mice were immunodepleted of T lymphocytes or asialo GM1-positive cells, the restraint on dormant disseminated metastatic cells was relieved and lung metastases progressed. Immunostimulation was documented at both local and systemic levels, with results supporting the evidence that the immune system was able to restrain spontaneous metastases in permanent dormancy. Notably, the GR9-B11 tumor clone did not express MHC class I molecules on the cell surface, yet all metastases in immunodepleted mice were MHC class I-positive. This model system may be valuable for more in-depth analyses of metastatic dormancy, offering new opportunities for immunotherapeutic management of metastatic disease.
Collapse
Affiliation(s)
- Irene Romero
- Authors' Affiliations: Dept. Analisis Clinicos e Inmunologia, UGC Laboratorio Clínico; Unidad de Investigación, Hospital Universitario Virgen de las Nieves, Granada; Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada; and Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Delayed sequelae of neonatal respiratory syncytial virus infection are dependent on cells of the innate immune system. J Virol 2013; 88:604-11. [PMID: 24173217 PMCID: PMC3911760 DOI: 10.1128/jvi.02620-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infection with respiratory syncytial virus (RSV) in neonatal mice leads to exacerbated disease if mice are reinfected with the same virus as adults. Both T cells and the host major histocompatibility complex genotype contribute to this phenomenon, but the part played by innate immunity has not been defined. Since macrophages and natural killer (NK) cells play key roles in regulating inflammation during RSV infection of adult mice, we studied the role of these cells in exacerbated inflammation following neonatal RSV sensitization/adult reinfection. Compared to mice undergoing primary infection as adults, neonatally sensitized mice showed enhanced airway fluid levels of interleukin-6 (IL-6), alpha interferon (IFN-α), CXCL1 (keratinocyte chemoattractant/KC), and tumor necrosis factor alpha (TNF-α) at 12 to 24 h after reinfection and IL-4, IL-5, IFN-γ, and CCL11 (eotaxin) at day 4 after reinfection. Weight loss during reinfection was accompanied by an initial influx of NK cells and granulocytes into the airways and lungs, followed by T cells. NK cell depletion during reinfection attenuated weight loss but did not alter T cell responses. Depletion of alveolar macrophages with inhaled clodronate liposomes reduced both NK and T cell numbers and attenuated weight loss. These findings indicate a hitherto unappreciated role for the innate immune response in governing the pathogenic recall responses to RSV infection.
Collapse
|
18
|
Michael HT, Ito D, McCullar V, Zhang B, Miller JS, Modiano JF. Isolation and characterization of canine natural killer cells. Vet Immunol Immunopathol 2013; 155:211-7. [PMID: 23876304 DOI: 10.1016/j.vetimm.2013.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
NK cells are non-T, non-B lymphocytes that kill target cells without previous activation. The immunophenotype and function of these cells in humans and mice are well defined, but canine NK cells remain incompletely characterized. Our objectives were to isolate and culture canine peripheral blood NK cells, and to define their immunophenotype and killing capability. PBMC were obtained from healthy dogs and T cells were depleted by immunomagnetic separation. The residual cells were cultured in media supplemented with IL-2, IL-15 or both, or with mouse embryonic liver (EL) feeder cells. Non-T, non-B lymphocytes survived and expanded in these cultures. IL-2 was necessary and sufficient for survival; the addition of IL-15 was necessary for expansion, but IL-15 alone did not support survival. Culture with EL cells and IL-2 also fostered survival and expansion. The non-T, non-B lymphocytes uniformly expressed CD45, MHC I, and showed significant cytotoxic activity against CTAC targets. Expression of MHC II, CD11/18 was restricted to subsets of these cells. The data show that cells meeting the criteria for NK cells in other species, i.e., non-T, non-B lymphocytes with cytotoxic activity, can be expanded from canine PBMC by T-cell depletion and culture with cytokines or feeder cells.
Collapse
Affiliation(s)
- Helen T Michael
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1352 Boyd Avenue, St. Paul, MN 55108, United States.
| | | | | | | | | | | |
Collapse
|
19
|
Puryear WB, Gummuluru S. Role of glycosphingolipids in dendritic cell-mediated HIV-1 trans-infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 762:131-53. [PMID: 22975874 PMCID: PMC3686569 DOI: 10.1007/978-1-4614-4433-6_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) are components of the cell membrane that comprise a membrane bound lipid, ceramide, coupled to an extracellular carbohydrate. GSLs impact numerous aspects of membrane biology, including membrane fluidity, curvature, and organization. The role of these molecules in both chronic inflammation and infectious disease and underlying pathogenic mechanisms are just starting to be recognized. As a component of the cell membrane, GSLs are also incorporated into lipid bilayers of diverse enveloped viruses as they bud out from the host cell and can go on to have a significant influence on viral pathogenesis. Dendritic cell (DC) subsets located in the peripheral mucosal tissues are proposed to be one of the earliest cell types that encounter transmitted viruses and help initiate adaptive immune responses against the invading pathogen by interacting with T cells. In turn, viruses, as obligatory intracellular parasites, rely on host cells for completing their replication cycle, and not surprisingly, HIV has evolved to exploit DC biology for the initial transmission event as well as for its dissemination and propagation within the infected host. In this review, we describe the mechanisms by which GSLs impact DC-mediated HIV trans-infection by either modulating virus infectivity, serving as a direct virus particle-associated host-derived ligand for specific interactions with DCs, or modulating the T cell membrane in such a way as to impact viral entry and thereby productive infection of CD4(+) T cells.
Collapse
Affiliation(s)
- Wendy Blay Puryear
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
20
|
Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J Virol 2011; 86:2251-8. [PMID: 22171263 DOI: 10.1128/jvi.06209-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is known that respiratory syncytial virus (RSV) is the main cause of bronchiolitis and pneumonia in young children. RSV infection often leads to severe acute lung immunopathology, but the underlying immune mechanisms are not yet fully elucidated. Here, we found that RSV infection induced severe acute lung immune injury and promoted the accumulation and activation of lung natural killer (NK) cells at the early stage of infection in BALB/c mice. Activated lung NK cells highly expressed activating receptors NKG2D and CD27 and became functional NK cells by producing a large amount of gamma interferon (IFN-γ), which was responsible for acute lung immune injury. NK cell depletion significantly attenuated lung immune injury and reduced infiltration of total inflammatory cells and production of IFN-γ in bronchoalveolar lavage fluid (BALF). These data show that NK cells are involved in exacerbating the lung immune injury at the early stage of RSV infection via IFN-γ secretion.
Collapse
|
21
|
Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011:245090. [PMID: 22191032 PMCID: PMC3235436 DOI: 10.1155/2011/245090] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022] Open
Abstract
Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.
Collapse
|
22
|
Trandaburu I, Oswald IP, Trandaburu T. The immunohistochemical localization of the glycosphingolipid asialo-GM1 in the intestine of weaned piglets. Acta Histochem 2011; 113:103-8. [PMID: 19740529 DOI: 10.1016/j.acthis.2009.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 11/30/2022]
Abstract
The duodenum, jejunum, ileum, cecum and colon of three male hybrid piglets, 4 weeks old just after weaning, were investigated for the immunohistochemical localization of the asialoganglioside, GM1 (asialo-GM1). The study revealed various degrees of labelling for this acid glycosphingolipid in neural, epithelial and blood elements in all the gut segments. The immunolabelled neural structures, represented by ganglionic perikarya and nerve fibers, were distributed throughout the intestinal wall and showed quantitative variations in the various regions. In contrast the numerical evaluation of labelled epithelial cells was encountered only in the terminal jejunum and along the entire ileum, cecum and large intestine. In addition, a heterogeneous population of immunolabelled leukocytes was spread randomly in the lamina propria and submucosa of the entire intestine and did not show any apparent quantitative fluctuations between the different parts. The observations regarding the typical distribution patterns of the asialoganglioside GM1 in ganglionic perikarya and epithelial cells of weaned piglets are discussed in relation to their possible functional significance in the intestine and other mammalian organs.
Collapse
Affiliation(s)
- Ioana Trandaburu
- Center of Cytobiology, Institute of Biology, Spl Independentei 296, Bucharest, Romania.
| | | | | |
Collapse
|
23
|
CD4+ and CD8+ T cells can act separately in tumour rejection after immunization with murine pneumotropic virus chimeric Her2/neu virus-like particles. PLoS One 2010; 5:e11580. [PMID: 20657846 PMCID: PMC2906518 DOI: 10.1371/journal.pone.0011580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/10/2010] [Indexed: 01/21/2023] Open
Abstract
Background Immunization with murine pneumotropic virus virus-like particles carrying Her2/neu (Her2MPtVLPs) prevents tumour outgrowth in mice when given prophylactically, and therapeutically if combined with the adjuvant CpG. We investigated which components of the immune system are involved in tumour rejection, and whether long-term immunological memory can be obtained. Methodology and Results During the effector phase in BALB/c mice, only depletion of CD4+ and CD8+ in combination, with or without NK cells, completely abrogated tumour protection. Depletion of single CD4+, CD8+ or NK cell populations only had minor effects. During the immunization/induction phase, combined depletion of CD4+ and CD8+ cells abolished protection, while depletion of each individual subset had no or negligible effect. When tumour rejection was studied in knock-out mice with a C57Bl/6 background, protection was lost in CD4−/−CD8−/− and CD4−/−, but not in CD8−/− mice. In contrast, when normal C57Bl/6 mice were depleted of different cell types, protection was lost irrespective of whether only CD4+, only CD8+, or CD4+ and CD8+ cells in combination were eradicated. No anti-Her2/neu antibodies were detected but a Her2/neu-specific IFNγ response was seen. Studies of long-term memory showed that BALB/c mice could be protected against tumour development when immunized together with CpG as long as ten weeks before challenge. Conclusion Her2MPtVLP immunization is efficient in stimulating several compartments of the immune system, and induces an efficient immune response including long-term memory. In addition, when depleting mice of isolated cellular compartments, tumour protection is not as efficiently abolished as when depleting several immune compartments together.
Collapse
|
24
|
Abstract
The lungs are a major site of entry of pathogens into the body and thus require rapid and effective innate responses to prevent pathogens establishing infection and to limit their spread. Additionally, the immune response in the lung must be tightly regulated such that pathogens are cleared, but immunopathology and chronic inflammation are prevented. In this review, I consider the role of natural killer (NK) cells in pulmonary infection and inflammation, specifically their contributions to influenza, tuberculosis, asthma and chronic obstructive pulmonary disease (COPD), which are major causes of morbidity and mortality world-wide. Despite evidence of the importance of NK cells in these diseases, there are still major gaps in our understanding of how their function is regulated in this unique tissue environment. Understanding how different beneficial and detrimental effector functions of NK cells are triggered will be crucial if NK cells are to be exploited therapeutically in respiratory disease.
Collapse
Affiliation(s)
- Fiona J Culley
- Respiratory Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W21PG, UK.
| |
Collapse
|
25
|
Van Slambrouck S, Hilkens J, Bisoffi M, Steelant WFA. AsialoGM1 and integrin alpha2beta1 mediate prostate cancer progression. Int J Oncol 2009; 35:693-9. [PMID: 19724904 DOI: 10.3892/ijo_00000381] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The most lethal aspect of cancer is the metastatic spread of primary tumors to distant sites. Any mechanism revealed is a target for therapy. In our previous studies, we reported that the invasive activity of the bone metastatic C4-2B prostate cancer cells could be ascribed to the reorganization of the alpha2beta1 integrin receptor and the alpha2 subunit-mediated association and activation of downstream signaling towards the activation of MMPs. In the present study, we demonstrate that expression of asialoGM1 in C4-2B cells correlates with cancer progression by influencing adhesion, migration and invasion, via reorganization of asialoGM1 and colocalization with integrin alpha2beta1. These observations reveal an uncharacterized complex of asialoGM1 with the integrin alpha2beta1 receptor promoting cancer metastatic potential through the previously identified integrin-mediated signaling pathway. The present findings promote further understanding of mechanisms by which glycosphingolipids modulate malignant properties and the results obtained here propose novel directions for future study.
Collapse
Affiliation(s)
- Severine Van Slambrouck
- Department of Chemistry, Laboratory of Biochemical and Biomedical Research, New Mexico Tech, Socorro, NM 87801, USA.
| | | | | | | |
Collapse
|