1
|
Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater 2024; 42:449-477. [PMID: 39308549 PMCID: PMC11415838 DOI: 10.1016/j.bioactmat.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Complete wound healing without scar formation has attracted increasing attention, prompting the development of various strategies to address this challenge. In clinical settings, there is a growing preference for emerging biomedical technologies that effectively manage fibrosis following skin injury, as they provide high efficacy, cost-effectiveness, and minimal side effects compared to invasive and costly surgical techniques. This review gives an overview of the latest developments in advanced biomedical technologies for scarless wound management. We first introduce the wound healing process and key mechanisms involved in scar formation. Subsequently, we explore common strategies for wound treatment, including their fabrication methods, superior performance and the latest research developments in this field. We then shift our focus to emerging biomedical technologies for scarless wound healing, detailing the mechanism of action, unique properties, and advanced practical applications of various biomedical technology-based therapies, such as cell therapy, drug therapy, biomaterial therapy, and synergistic therapy. Finally, we critically assess the shortcomings and potential applications of these biomedical technologies and therapeutic methods in the realm of scar treatment.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
2
|
Mehdipour chari K, Enderami SE, Mansour RN, Hasanzadeh E, Amini Mahabadi J, Abazari M, Asadi P, Hojjat A. Applications of blood plasma derivatives for cutaneous wound healing: A mini-review of clinical studies. Regen Ther 2024; 27:251-258. [PMID: 38596823 PMCID: PMC11002853 DOI: 10.1016/j.reth.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
Skin injuries are a global healthcare problem. Chronic ulcers do not heal in a timely fashion, so it is essential to help the body with skin repair. There are some treatments that have been applied to chronic ulcers. One of these treatments is growth factor (GF) therapy. Platelet-rich plasma (PRP) and Platelet-poor plasma (PPP) are two types of plasma derivatives containing many GFs important for wound healing. Several works have reported their application in wound healing and tissue regeneration. The use of autologous PRP is now an adequate alternative in regenerative medicine. It was also demonstrated that PPP is a hemostatic agent for wounds. This review has studied the latest clinical studies, which have applied PRP and PPP to patients with chronic wounds.
Collapse
Affiliation(s)
- Kayvan Mehdipour chari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reyhaneh Nassiri Mansour
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mohamadfoad Abazari
- Division of Medical Sciences, Island Medical Program, University of British Columbia, Victoria, BC, Canada
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Peyman Asadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atefeh Hojjat
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Zhang L, Liu R, Li M, Zhang G, Wang Z, Qin H. Integrating multiomics sequencing analyses uncover the key mechanisms related to oxidative stress, mitochondria, and immune cells in keloid. Gene 2024:149078. [PMID: 39489224 DOI: 10.1016/j.gene.2024.149078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND This study aimed to investigate the key molecular mechanisms underlying keloid pathogenesis by integrating oxidative stress, mitochondria, and immune cells. METHODS Transcriptome sequencing (mRNA, lncRNA, and circRNA expression data), proteomic sequencing, and small RNA sequencing analyses of lesional and non-lesional skin of patients with keloids and healthy control (normal) skin were conducted. By integrating mRNA and publicly available gene expression data (GSE158395), differentially expressed genes related to oxidative stress and mitochondrial function in keloids were identified. Hub genes were identified using various bioinformatics analyses such as immune infiltration analysis, weighted gene co-expression network analysis, machine learning, and expression validation using proteomics sequencing data. Moreover, a competing endogenous RNA (ceRNA) network of hub genes was constructed by combining miRNA, lncRNA, and circRNA expression data. Five hub genes were identified: MGST1, DHCR24, ALDH3A2, ADH1B, and FKBP5. RESULTS These hub genes had a high diagnostic value for keloids, with an AUC value > 0.8 each. In addition, five hub genes were associated with the infiltration of multiple immune cells. The immune cells with the strongest positive and negative correlations with hub genes were M0 and M1 macrophages. A ceRNA network was constructed, and several ceRNAs, such as AC005062.1/miR-134-5p/FKBP5 and BASP1-AS1/miR-503-5p/ADH1B, were identified. These five hub genes may contribute to keloid pathogenesis. CONCLUSION These genes and their related ceRNAs may serve as diagnostic biomarkers and therapeutic targets for keloids.
Collapse
Affiliation(s)
- Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ruizu Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingxi Li
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zichao Wang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Chen C, Amona FM, Chen J, Chen X, Ke Y, Tang S, Xu J, Chen X, Pang Y. Multifunctional SEBS/AgNWs Nanocomposite Films with Antimicrobial, Antioxidant, and Anti-Inflammatory Properties Promote Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39479988 DOI: 10.1021/acsami.4c15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Wound healing is a complex biological process that can trigger inflammation and oxidative stress and impair myofibrillogenesis and angiogenesis. Several advanced wound-dressing nanocomposite materials have been designed to address these issues. Here, we designed a new multifunctional styrene-ethylene-butylene-styrene/silver nanowire (SEBS/AgNWs)-based nanocomposite film with antimicrobial, antioxidant, and anti-inflammatory properties to promote wound healing. The porous morphological structure of SEBS/AgNWs enhances their antimicrobial, antioxidant, and anti-inflammatory properties. SEBS/AgNWs significantly inhibited the growth of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli strains, effectively wiping out ABTS•+, DPPH•, hydrogen peroxide (H2O2), and hydroxyl (•OH) radicals, showing their effective ROS-scavenging properties. It further showed significant antioxidant properties by increasing the levels of enzyme-like catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH), while decreasing malonaldehyde (MDA) levels. Additionally, SEBS/AgNWs reduced the expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), while increasing levels of transforming growth factor- β (TGF-β), vascular endothelial growth factor-A (VEGF), and CD31 in wound healing. This suggests that applying a multifunctional nanoplatform based on SEBS/AgNWs could enhance wound healing and improve patient outcomes in wound care management.
Collapse
Affiliation(s)
- Chen Chen
- College of Hydraulic Engineering Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shuangcheng Tang
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinming Xu
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
5
|
Liu Y, Chen W, Gao Y, Wei K. Anti-inflammatory dressing based on hyaluronic acid and hydroxyethyl starch for wound healing. Int J Biol Macromol 2024:137078. [PMID: 39481723 DOI: 10.1016/j.ijbiomac.2024.137078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Eliminating persistent inflammation and choosing dressings that provide the best healing environment is key to promoting wound healing. Dynamic and reversible hydrogels have attracted much attention because of their capacity to adapt to irregular wound surfaces. Herein, oxidized hydroxyethyl starch (OHES) and hyaluronic acid (HA-ADH) were crosslinked via the dynamic acylhydrazone bond to form an anti-inflammatory function hydrogel (HA-ADH/OHES@XT) that could release xanthatin (XT) slowly. The HA-ADH/OHES hydrogels showed an appropriate gelation time, notable water-retaining capacity, self-healing, suitable biodegradability, and good biocompatibility for wound healing applications. In vivo experiments demonstrated that HA-ADH/OHES@XT hydrogels promoted tissue regeneration and wound healing at a rate of approximately 89.1 % on day 20 by reducing inflammation, increasing collagen deposition, and promoting re-epithelialization, indicating their great potential as a wound dressing.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Wenyu Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yuanyuan Gao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Kandaswamy K, Prasad Panda S, Subramanian R, Khan H, Rafi Shaik M, Althaf Hussain S, Guru A, Arockiaraj J. Synergistic berberine chloride and Curcumin-Loaded nanofiber therapies against Methicillin-Resistant Staphylococcus aureus Infection: Augmented immune and inflammatory responses in zebrafish wound healing. Int Immunopharmacol 2024; 140:112856. [PMID: 39121609 DOI: 10.1016/j.intimp.2024.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Wound healing pivots on a finely orchestrated inflammatory cascade, critical for tissue repair. Chronic wounds, compounded by persistent inflammation and susceptibility to infection, pose formidable clinical challenges. Nanofiber dressings offer promising avenues for wound care, yet their interaction with inflammation and infection remains elusive. We aim to delineate the inflammatory cascade preceding wound closure and assess Cu@Bbc nanofibers' therapeutic efficacy in mitigating inflammation and combating infection. Their unique attributes suggest promise in modulating inflammation, fostering tissue regeneration, and preventing microbial colonization. Investigating the intricate interplay between nanofiber scaffolds, inflammation, and infection may unveil mechanisms of enhanced wound healing. Our findings could stimulate the development of tailored dressings, urgently needed for effective wound management amidst immune dysregulation, infection, and inflammation. METHODS In this investigation, we synthesized Cu@Bbc nanofibers, incorporating curcumin and berberine chloride, for wound healing applications. We evaluated their individual and combined antibacterial, anti-biofilm, and antioxidant activities, alongside binding affinity with pro-inflammatory cytokines through molecular docking. Morphological characterization was conducted via SEM, FTIR assessed functional groups, and wettability contact angle measured hydrophobic properties. The physical properties, including tensile strength, swelling behavior, and thermal stability, were evaluated using tensile testing, saline immersion method and thermogravimetric analysis. Biodegradability of the nanofibers was assessed through a soil burial test. Biocompatibility was determined via MTT assay, while wound healing efficacy was assessed with in vitro scratch assays. Controlled drug release and antibacterial activity against MRSA were examined, with in vivo assessment in a zebrafish model elucidating inflammatory responses and tissue remodeling. RESULTS In this study, the synergistic action of curcumin and berberine chloride exhibited potent antibacterial efficacy against MRSA, with significant anti-mature biofilm disruption. Additionally, the combination demonstrated heightened antioxidant potential. Molecular docking studies revealed strong binding affinity with pro-inflammatory cytokines, suggesting a role in expediting the inflammatory response crucial for wound healing. Morphological analysis confirmed nanofiber quality, with drug presence verified via FTIR spectroscopy. Cu@Bbc demonstrated higher tensile strength, optimal swelling behavior, and robust thermal stability as evaluated through tensile testing and thermogravimetric analysis. Additionally, the Cu@Bbc nanofiber showed enhanced biodegradability, as confirmed by the soil burial test. Biocompatibility assessments showed favorable compatibility, while in vitro studies demonstrated potent antibacterial activity. In vivo zebrafish experiments revealed accelerated wound closure, re-epithelialization, and heightened immune response, indicative of enhanced wound healing. CONCLUSION In summary, our investigation highlights the efficacy of Cu@Bbc nanofibers, laden with curcumin and berberine chloride, in displaying robust antibacterial and antioxidant attributes while also modulating immune responses and inflammatory cascades essential for wound healing. These results signify their potential as multifaceted wound dressings for clinical implementation.
Collapse
Affiliation(s)
- Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttarpradesh, India
| | - Raghunandhakumar Subramanian
- Cancer and Stem Cell Research Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077 Tamil Nadu, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03538-1. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
8
|
Chen Y, Murphy EJ, Cao Z, Buckley C, Cortese Y, Chee BS, Scheibel T. Electrospinning Recombinant Spider Silk Fibroin-Reinforced PLGA Membranes: A Biocompatible Scaffold for Wound Healing Applications. ACS Biomater Sci Eng 2024. [PMID: 39435963 DOI: 10.1021/acsbiomaterials.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Polylactide-polyglycolide (PLGA) is one of the most attractive polymeric biomaterials used to fabricate medical devices for drug delivery and tissue engineering applications. Nevertheless, the utilization of PLGA in load-bearing applications is restricted due to its inadequate mechanical properties. This study examines the potential of recombinant silk fibroin (eADF4), a readily producible biomaterial, as a reinforcing agent for PLGA. The PLGA/eADF4 composite membranes were developed by using the process of electrospinning. The spinnability of the electrospinning solutions and the physicochemical, mechanical, and thermal properties of the composite membranes were characterized. The addition of eADF4 increased the viscosity of the electrospinning solutions and enhanced both the mechanical characteristics and the thermal stability of the composites. This study demonstrates that PLGA membranes reinforced with recombinant spider silk fibroin are noncytotoxic, significantly enhance cell migration and wound closure, and do not trigger an inflammatory response, making them ideal candidates for advanced wound healing applications.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Emma J Murphy
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Zhi Cao
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Ciara Buckley
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Yvonne Cortese
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Bor Shin Chee
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, Bayreuth 95447, Germany
| |
Collapse
|
9
|
Clayton SW, Walk RE, Mpofu L, Easson GWD, Tang SY. Sex-specific divergences in the types and timing of infiltrating immune cells during the intervertebral disc acute injury response and their associations with degeneration. Osteoarthritis Cartilage 2024:S1063-4584(24)01426-2. [PMID: 39426787 DOI: 10.1016/j.joca.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Inadequate repair of the intervertebral disc (IVD) contributes to low back pain. Infiltrating immune cells into damaged tissues are critical mediators of repair, yet little is known about the identities, roles, and temporal regulation following IVD injury. By analyzing transcripts of immune cell markers, histopathologic analysis, immunofluorescence, and flow cytometry, we aimed to define the temporal cascade of infiltrating immune cells and their associations with IVD degeneration. METHODS Caudal IVDs from 12-week-old C57BL6/J mice were injured and monitored for 42 days post-injury. Transcriptional markers identifying myeloid, B, and T immune cells, and angiogenic factors were measured from the IVDs every 2-3 days. Histopathologic degeneration of the IVD was measured throughout. Flow cytometry and immunofluorescence were used to identify and localize cells including B, T, natural killer T (NKT) cells, monocytes, neutrophils, macrophages, eosinophils, and dendritic cells. RESULTS The injured IVD revealed distinct phases of inflammation and proliferation. Robust temporal oscillation in the myeloid and T cell transcripts was observed in females. Cd3+ T cells were more abundant in females than in males. The Cd3+Cd4-Cd8- T cells that dominate the female cascade contain rare γδ T cells. Injury-mediated degeneration was prevalent in both sexes but more severe in males. CONCLUSIONS This study defines the coordinated infiltration of immune cells in the IVD following injury. We report the discovery of γδ T cells in the female IVD, and this was associated with less severe degeneration. γδ T cells have potent anti-inflammatory roles and may suppress degeneration following IVD injury.
Collapse
Affiliation(s)
| | - Remy E Walk
- Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Mpofu
- Washington University in St. Louis, St. Louis, MO, USA
| | | | - Simon Y Tang
- Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
10
|
Mottaghitalab F, Farokhi M. Stimulus-responsive biomacromolecule wound dressings for enhanced drug delivery in chronic wound healing: A review. Int J Biol Macromol 2024; 281:136496. [PMID: 39419149 DOI: 10.1016/j.ijbiomac.2024.136496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Addressing the challenge of poor wound healing in chronic wounds remains complex, as the underlying physiological mechanisms are still not fully understood. Traditional wound dressings often fail to meet the specific needs of the chronic wound healing process. Recently, considerable interest has shifted toward employing biomacromolecule-based smart wound dressings to facilitate wound healing. These stimuli-responsive dressings have undergone substantial development to manage local drug delivery, demonstrating promising therapeutic effects in treating chronic wound defects. They have displayed improved drug release profiles both in vitro and in vivo. Recently, there have been advancements in the development of innovative dual and multi-stimuli responsive dressings that react to combinations of signals including pH-temperature, pH-enzyme, pH-ROS, pH-glucose, pH-NIR, and multiple stimuli. This paper offers an in-depth review of recent progress in responsive wound dressings based on biomacromolecules, with a specific focus on their design, drug release capabilities, and therapeutic advantages.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Park YJ, Pang WK, Hwang SM, Ryu DY, Rahman MS, Pang MG. Establishment of tumor microenvironment following bisphenol A exposure in the testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117071. [PMID: 39303638 DOI: 10.1016/j.ecoenv.2024.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks. Following the LOAEL exposure, the expression of immune response-associated transcripts was upregulated in the testis. Moreover, BPA switch the testicular microenvironment to tumor friendly through the recruitment of tumor associated macrophages (TAMs), which can produce both anti- and pro-inflammatory cytokines, such as TNF-α, TLR2, IL-10, and CXCL9. Number of testicular blood vessels were approximately 2-times increased by upregulation of matrix metallopeptidase 2 in TAMs and upregulation of AR expression in the nucleus of Leydig cells. Moreover, we found that the tumor-supportive environment can also be generated even though NOAEL BPA concentration due to the individual's variability in cancer susceptibility.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Soo-Min Hwang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
12
|
Gomes Daré R, Beatriz Chieco Costa A, Silva Martins T, Lopes LB. Simvastatin and adenosine-co-loaded nanostructured lipid carriers for wound healing: Development, characterization and cell-based investigation. Eur J Pharm Biopharm 2024:114533. [PMID: 39414092 DOI: 10.1016/j.ejpb.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Chronic wounds represent a significant global health burden, characterized by delayed skin healing and associated comorbidities. The present study aimed to develop nanostructured lipid carriers (NLCs) as a topical delivery system for the co-administration of simvastatin and adenosine to address chronic wound management. The rationale behind the co-delivery approach was to mitigate the cytotoxicity associated with high-dose simvastatin, while preserving its therapeutic benefits through a potential synergistic or additive effect. A significant challenge in the development of these NLCs was the encapsulation of the highly hydrophilic adenosine within the hydrophobic lipid matrix. The NLCs were prepared using a hot homogenization-sonication method with a double emulsion technique and optimized through a series of formulation trials, employing various surfactants, solid and liquid lipids, to achieve efficient drug encapsulation, particularly for the hydrophilic adenosine. Optimized formulations F5- and F10-S/A 0.6 %/2 % (containing 0.6 % simvastatin and 2 % adenosine), exhibited promising physicochemical properties. The main difference was the liquid lipid used: F5 containing Miglyol 810 N, while F10 Capmul MCM C-8. Both formulations displayed a mean particle size below 230 nm, a polydispersity index (PDI) of approximately 0.2, and a zeta potential of around -22 mV. While simvastatin association efficiency (AE) was nearly 100 %, adenosine AE was higher for F10 (24 %), compared to F5 (13.5 %). F5 demonstrated superior stability compared to F10, maintaining consistent particle size and PDI over a 60-day period. Formulation F5 also demonstrated superior cell-based in vitro performance compared to F10, with higher cell viability (MTT assay), greater cell proliferation induction (SRB assay), and enhanced cell proliferation and migration in the wound-scratch assay. While F10 displayed higher adenosine AE, F5 excelled in terms of stability and biological activity. The slightly increase in intracellular reactive oxygen species levels observed with F5 may contribute to its enhanced proliferative effects. In-depth characterization revealed that F5 comprised spherical nanoparticles, and thermal analysis indicated no significant changes in the nanocarrier structure upon drug encapsulation. Additionally, ex vivo permeability study demonstrated superior skin retention of both simvastatin and adenosine for F5 compared to an emulsion control. Overall, the F5 nanocarrier demonstrated suitable physicochemical properties, cellular biocompatibility, induction of cell proliferation and migration events, and drug retention capacity in the skin layers, indicating its potential as a promising topical treatment for difficult-to-heal wounds.
Collapse
Affiliation(s)
- Regina Gomes Daré
- Institute of Biomedical Sciences, University of São Paulo, 1524 Professor Lineu Prestes Avenue, 05508-000 São Paulo, SP, Brazil.
| | - Ana Beatriz Chieco Costa
- Institute of Biomedical Sciences, University of São Paulo, 1524 Professor Lineu Prestes Avenue, 05508-000 São Paulo, SP, Brazil
| | - Tereza Silva Martins
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 210 São Nicolau Street, 09913-030 Diadema, SP, Brazil
| | - Luciana B Lopes
- Institute of Biomedical Sciences, University of São Paulo, 1524 Professor Lineu Prestes Avenue, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Guth C, Limjunyawong N, Pundir P. The evolving role of mast cells in wound healing: insights from recent research and diverse models. Immunol Cell Biol 2024. [PMID: 39377394 DOI: 10.1111/imcb.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Chronic wounds significantly burden health care systems worldwide, requiring novel strategies to ease their impact. Many physiological processes underlying wound healing are well studied but the role of mast cells remains controversial. Mast cells are innate immune cells and play an essential role in barrier function by inducing inflammation to defend the host against chemical irritants and infections, among others. Many mast cell-derived mediators have proposed roles in wound healing; however, in vivo evidence using mouse models has produced conflicting results. Recently, studies involving more complex wound models such as infected wounds, diabetic wounds and wounds healing under psychological stress suggest that mast cells play critical roles in these processes. This review briefly summarizes the existing literature regarding mast cells in normal wounds and the potential reasons for the contradictory results. Focus will be placed on examining more recent work emerging in the last 5 years that explores mast cells in more complex systems of wound healing, including infection, psychological stress and diabetes, with a discussion of how these discoveries may inspire future work in the field.
Collapse
Affiliation(s)
- Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Nathachit Limjunyawong
- Research Department, Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Hosseini SF, Galefi A, Hosseini S, Shaabani A, Farrokhi N, Jahanfar M, Nourany M, Homaeigohar S, Alipour A, Shahsavarani H. Magnesium oxide nanoparticle reinforced pumpkin-derived nanostructured cellulose scaffold for enhanced bone regeneration. Int J Biol Macromol 2024; 281:136303. [PMID: 39370065 DOI: 10.1016/j.ijbiomac.2024.136303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Considering global surge in bone fracture prevalence, limitation in use of traditional healing approaches like bone grafts highlights the need for innovative regenerative strategies. Here, a novel green fabrication approach has reported for reinforcement of physicochemical performances of sustainable bioinspired extracellular matrix (ECM) based on decellularized pumpkin tissue coated with Magnesium oxide nanoparticles (hereafter called DM-Pumpkin) for enhanced bone regeneration. Compared to uncoated scaffold, DM-Pumpkin exhibited significantly improved surface roughness, mechanical stiffness, porosity, hydrophilicity, swelling, and biodegradation rate. Obtained nanoporous structure provides an ideal three-dimensional microenvironment for the attachment, migration and osteo-induction in human adipose-derived mesenchymal stem cells (h- AdMSCs). Calcium deposition and mineralization, alkaline phosphatase activity, and SEM imaging of the cells as well as increased expression of bone-related genes after 21 days incubation confirmed capability of DM-Pumpkin in mimicking the biological properties of bone tissue. The presence of MgONPs had a silencing effect on inflammatory factors and improved wound closure, verified by in vivo studies. Increased expression of collagen type I and osteocalcin in the h- AdMSCs cultured on DM-Pumpkin compared to control further corroborated gained results. Altogether, boosting physicochemical and biological properties of DM-Pumpkin due to surface modification is a promising approach for guided bone regeneration.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Hosseini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Galefi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, GC, 1983969411 Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mehdi Jahanfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mohammad Nourany
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran.
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
15
|
V G R, Ellur G, A Gaber A, Govindappa PK, Elfar JC. 4-aminopyridine attenuates inflammation and apoptosis and increases angiogenesis to promote skin regeneration following a burn injury in mice. Cell Death Discov 2024; 10:428. [PMID: 39366954 PMCID: PMC11452548 DOI: 10.1038/s41420-024-02199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Severe thermal skin burns are complicated by inflammation and apoptosis, which delays wound healing and contributes to significant morbidity. Diverse treatments demonstrate limited success in mitigating these processes to accelerate healing. Agents that alter cell behavior to improve healing would alter treatment paradigms. We repurposed 4-aminopyridine (4-AP), a drug approved by the US FDA for multiple sclerosis, to treat severe burns in mice (10-week-old C57BL/6 J male mice weighing 25 ± 3 g). We found that 4-AP, in the early stages of burn healing, significantly reduced the expression of pro-inflammatory cytokines IL1β and TNFα while increasing the expression of anti-inflammatory markers CD206, ARG-1, and IL10. We demonstrated increased intracellular calcium effects of 4-AP through Orai1-pSTAT6 signaling, where 4-AP significantly mitigated inflammatory effects by promoting M2 macrophage differentiation in in-vitro macrophages and post-skin burn tissues. 4-AP attenuated apoptosis, with decreases in apoptotic markers BAX, caspase-9, and caspase-3 and increases in anti-apoptotic markers BCL2 and BCL-XL. Furthermore, 4-AP promoted angiogenesis through increases in the expression of CD31, VEGF, and eNOS. Together, these likely contributed to accelerated burn wound closure, as demonstrated in increased keratinocyte proliferation (K14) and differentiation (K10) markers. In the later stages of burn healing, 4-AP increased TGFβ and FGF levels, which are known to mark the transformation of fibroblasts to myofibroblasts. This was further demonstrated by an increased expression of α-SMA and vimentin, as well as higher levels of collagen I and III, MMP 3, and 9 in mice treated with 4-AP. Our findings support the idea that 4-AP may have a novel, clinically relevant therapeutic use in promoting burn wound healing.
Collapse
Affiliation(s)
- Rahul V G
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Govindaraj Ellur
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Amir A Gaber
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| | - John C Elfar
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| |
Collapse
|
16
|
Manoharan S, Balakrishnan P, Sellappan LK. Fabrication of highly flexible biopolymeric chitosan/agarose based bioscaffold with Matricaria recutita herbal extract for antimicrobial wound dressing applications. Int J Biol Macromol 2024; 281:136195. [PMID: 39362441 DOI: 10.1016/j.ijbiomac.2024.136195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
A flexible biopolymer-based antimicrobial wound dressing has the potential to alleviate the burden of bacterial infections in wounds by enhancing antimicrobial effectiveness and promoting faster wound healing. This study focuses on the development of a highly flexible chitosan-agarose (CS-AG) bioscaffold, incorporating Matricaria recutita chamomile flower extract (CH) through a conventional casting method. The flexible CS-AG bioscaffold's physiochemical properties were confirmed by FTIR, indicating secondary interactions, and XRD, showing its crystalline structure. The addition of CH to the optimized CS-AG bioscaffold resulted in significant tensile strength (17.28 ± 0.33 MPa), distinctive structural morphology (SEM), surface roughness (AFM), contact angle, improved thermal properties (DSC), and enhanced thermal stability (TGA). Furthermore, the CH-infused bioscaffold significantly increased swelling capacity (~81.09 ± 1.74 % over 48 h), and degradation profile (~52 % over 180 h). The release studies of CS-AG-CH bioscaffold demonstrate controlled release of CH with in the bioscaffold at different pH conditions. The bioscaffold demonstrated effective antibacterial activity against S. aureus and E. coli strains. Additionally, cytotoxicity assays indicated that the bioscaffold supports better cell viability and proliferation in fibroblast (NIH 3T3) cell lines. Consequently, this antimicrobial bioscaffold shows promise as a drug release system and biocompatible wound dressing suitable for tissue engineering applications.
Collapse
Affiliation(s)
- Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India; Department of Biomedical Engineering, PSG College of Technology, Coimbatore 641004, India.
| | | | - Logesh Kumar Sellappan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
| |
Collapse
|
17
|
Gil J, Solis M, Strong R, Cassagnol R, Jozic I, Davis SC. Antimicrobial effects of a multimodal wound matrix against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in an in vitro and an in vivo porcine wound model. Int Wound J 2024; 21:e70059. [PMID: 39359044 PMCID: PMC11447198 DOI: 10.1111/iwj.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
Chronic non-healing wounds pose significant challenges due to an elevated inflammatory response caused in part by bacterial contamination (Physiol Rev. 2019;99:665). These wounds lead to billions being spent in the health care system worldwide (N Engl J Med. 2017;376:2367, Int J Pharm. 2014;463:119). We studied the in-vitro and in-vivo antimicrobial effects of a multimodal wound matrix (MWM) against two common wound pathogens, Methicillin-Resistant Staphylococcus aureus (MRSA USA300) and Pseudomonas aeruginosa ATCC 27312 (PA27312) (Int Wound J. 2019;16:634). The in-vitro study conducted was a zone of inhibition test with the two microbes at 104 Log CFU/mL inoculated on Tryptic soy agar with 5% sheep blood (TSAII) plates. Treatments used were MWM, Mupirocin (Positive control for MRSA), Silver Sulfadiazine (Positive Control for PA), Petrolatum and Sterile Saline (both serving as Negative Controls). Treatments were allowed to diffuse into the agar for 3 h and then were incubated for 24 h at 37°C. The in-vivo study utilized a deep dermal porcine wound model (22 × 22 × 3 mm) created on six animals. Three animals were inoculated with MRSA USA300 and the other three with PA27312 with each allowing a 72-h biofilm formation. After 72 h, baseline wounds were assessed for bacterial concentration and all remaining wounds were treated with either MWM alone, Silver Treatment or Untreated Control. Wounds were assessed on days 4, 8 and 12 after treatment application for microbiological analysis. In-vitro, MWM exhibited significant inhibition of MRSA USA300 and PA27312 growth when compared to negative controls (p ≤ 0.05). Likewise, in-vivo, the MWM-treated wounds exhibited a significant (p ≤ 0.05) bacterial reduction compared to all other treatment groups, especially on days 8 and 12 for both pathogens. MWM demonstrated promise in addressing colonized wounds with biofilms. Additional studies on MWM's benefits and comparisons with existing treatments are warranted to optimize wound care strategies (Adv Wound Care. 2021;10:281).
Collapse
Affiliation(s)
- Joel Gil
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Michael Solis
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Ryan Strong
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Roger Cassagnol
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Ivan Jozic
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Stephen C. Davis
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
18
|
Summer M, Ali S, Fiaz U, Hussain T, Khan RRM, Fiaz H. Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol 2024; 55:637-654. [PMID: 39120834 DOI: 10.1007/s10735-024-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | | | - Hashim Fiaz
- Ammer-ud-Din Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
19
|
Emiroglu DB, Singh A, Marco-Dufort B, Speck N, Rivano PG, Oakey JS, Nakatsuka N, deMello AJ, Labouesse C, Tibbitt MW. Granular Biomaterials as Bioactive Sponges for the Sequestration and Release of Signaling Molecules. Adv Healthc Mater 2024; 13:e2400800. [PMID: 38808536 DOI: 10.1002/adhm.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Indexed: 05/30/2024]
Abstract
A major challenge for the regeneration of chronic wounds is an underlying dysregulation of signaling molecules, including inflammatory cytokines and growth factors. To address this, it is proposed to use granular biomaterials composed of jammed microgels, to enable the rapid uptake and delivery of biomolecules, and provide a strategy to locally sequester and release biomolecules. Sequestration assays on model biomolecules of different sizes demonstrate that granular hydrogels exhibit faster transport than comparable bulk hydrogels due to enhanced surface area and decreased diffusion lengths. To demonstrate the potential of modular granular hydrogels to modulate local biomolecule concentrations, microgel scaffolds are engineered that can simultaneously sequester excess pro-inflammatory factors and release pro-healing factors. To target specific biomolecules, microgels are functionalized with affinity ligands that bind either to interleukin 6 (IL-6) or to vascular endothelial growth factor A (VEGF-A). Finally, disparate microgels are combined into a single granular biomaterial for simultaneous sequestration of IL-6 and release of VEGF-A. Overall, the potential of modular granular hydrogels is demonstrated to locally tailor the relative concentrations of pro- and anti-inflammatory factors.
Collapse
Affiliation(s)
- Dilara Börte Emiroglu
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- deMello Laboratory, Department of Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg, 1-5/10, Zurich, 8093, Switzerland
| | - Apoorv Singh
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Noël Speck
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Pier Giuseppe Rivano
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - John S Oakey
- Department of Chemical & Biological Engineering, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Andrew J deMello
- deMello Laboratory, Department of Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg, 1-5/10, Zurich, 8093, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
20
|
Wu Y, Wang M, Wang H, Ban C, Tang X, Luo Y. Comprehensive Interventional treatment for severe central airway collapse caused by Relapsing Polychondritis: A case report. Heliyon 2024; 10:e37680. [PMID: 39315186 PMCID: PMC11417259 DOI: 10.1016/j.heliyon.2024.e37680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Relapsing Polychondritis (RP) is a rare systemic inflammatory disease. One major cause of death for patients with RP is severe tracheobronchial tree collapse. Treatment guidelines for RP are mainly based on case reports. We report a rare and challenging case of RP in a patient who experienced asphyxia due to severe central airway collapse. The patient had previously been misdiagnosed with refractory asthma due to recurrent wheezing. Following interventions including bronchoscopic laser tracheobronchoplasty, stent placement, corticosteroid therapy, and both invasive and non-invasive mechanical ventilation, the patient was successfully stabilized and subsequently discharged from the hospital. Notably, after discharge, the patient did not require rehospitalisation for worsening respiratory symptoms and was managed with only a gradually tapering glucocorticoid regimen. In our case report, stent placement rapidly relieved asphyxia due to severe tracheobronchial stenosis, and laser tracheobronchoplasty may be a potential cure for diffuse airway collapse due to RP.
Collapse
Affiliation(s)
- Youqiang Wu
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Mingzhe Wang
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongwu Wang
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chengjun Ban
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xuechun Tang
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yi Luo
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
21
|
Fajardo JB, Vianna MH, Polo AB, Cordeiro Comitre MR, de Oliveira DA, Ferreira TG, de Oliveira Lemos AS, Souza TDF, Campos LM, de Lima Paula P, Barbosa AF, Geraldo de Carvalho M, Machado Resende Guedes MC, Coimbra ES, da Costa Macedo G, Tavares GD, Barradas TN, Fabri RL. Insights into the bioactive potential of the Amazonian species Acmella oleracea leaves extract: A focus on wound healing applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118866. [PMID: 39357584 DOI: 10.1016/j.jep.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea is traditionally used by Amazonian folks to treat skin and mucous wounds, influenza, cough, toothache, bacterial and fungal infections. Its phytoconstituents, such as alkylamides, phenolic compounds, and terpenes, are reported to produce therapeutic effects, which justify the medicinal use of A. oleracea extracts. However, the scientific evidence supporting the application A. oleracea bioactive products for wound treatment of remains unexplored so far. OBJECTIVE This work aimed to characterize the phytochemical composition of methanolic extract of A. oleracea leaves (AOM) and to investigate their antioxidant, anti-inflammatory, antimicrobial and healing potential focusing on its application for wound healing. MATERIAL AND METHODS The dried leaves from A. oleracea submitted to static maceration in methanol for 40 days. The phytochemical constitution of AOM was analyzed based on the total phenolic dosage method and by UFLC-QTOF-MS analysis. Antioxidant activity was assessed by DPPH and NO scavenging activities, as well as MDA formation, evaluation of ROS levels, and phosphomolybdenum assays. In vitro anti-inflammatory activities were assessed by reduction of NO, IL-6, and TNF-α production and accumulation of LDs in peritoneal macrophages cells. Antimicrobial activity was evaluated by determining MIC and MBC/MFC values against P. aeruginosa, E. coli, S. epidermidis, S. aureus and C. albicans, bacterial killing assay, and biofilm adhesion assessment. In vitro wound healing activity was determined by means of the scratch assay with L929 fibroblasts. RESULTS Vanillic acid, quercetin, and seven other alkamides, including spilanthol, were detected in the UFLC-QTOF-MS spectrum of AOM. Regarding the biocompatibility, AOM did not induce cytotoxicity in L929 fibroblasts and murine macrophages. The strong anti-inflammatory activity was evidenced by the fact that AOM reduced the cellular production of inflammatory mediators IL-6, TNF-α, NO, and LDs in macrophages by 100%, 96.66 ± 1.95%, 99.21 ± 3.82%, and 67.51 ± 0.72%, respectively. The antioxidant effects were confirmed, since AOM showed IC50 values of 44.50 ± 4.46 and 127.60 ± 14.42 μg/mL in the DPPH and NO radical inhibition assays, respectively. Additionally, AOM phosphomolybdenium reducing power was 63.56 ± 13.01 (RAA% of quercetin) and 104.01 ± 21.29 (RAA% of rutin). Finally, in the MDA quantification assay, AOM showed 63,69 ± 3.47% of lipid peroxidation inhibition. It was also observed that the production of ROS decreased by 69.03 ± 3.85%. The MIC values of AOM ranged from 1000 to 125 μg/mL. Adhesion of S. aureus, P. Aeruginosa, and mixed biofilms was significantly reduced by 44.71 ± 4.44%, 95.50 ± 6.37 %, and 51.83 ± 1.50%, respectively. AOM also significantly inhibited the growth of S. aureus (77.17 ± 1.50 %) and P. aeruginosa (62.36 ± 1.01%). Furthermore, AOM significantly enhanced the in vitro migration of L929 fibroblasts by 97.86 ± 0.82% compared to the control (P < 0.05). CONCLUSIONS This study is the first to report total antioxidant capacity and intracellular LD reduction by AOM. The results clearly demonstrated that AOM exerts potent anti-inflammatory, antioxidant, antimicrobial, and wound healing effects, encouraging its further investigation and promising application in wound treatment.
Collapse
Affiliation(s)
- Júlia Bertolini Fajardo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Hauck Vianna
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ana Barbara Polo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariane Rocha Cordeiro Comitre
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Débora Almeida de Oliveira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thayná Gomes Ferreira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thalita de Freitas Souza
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lara Melo Campos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila de Lima Paula
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Alan Franco Barbosa
- Federal Institute of Education, Science and Technology of Mato Grosso, Sorriso, MG, Brazil
| | - Mário Geraldo de Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Maria Clara Machado Resende Guedes
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gilson da Costa Macedo
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Rodrigo Luiz Fabri
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Asl ZR, Rezaee K, Ansari M, Zare F, Roknabadi MHA. A review of biopolymer-based hydrogels and IoT integration for enhanced diabetes diagnosis, management, and treatment. Int J Biol Macromol 2024; 280:135988. [PMID: 39322132 DOI: 10.1016/j.ijbiomac.2024.135988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of diabetes has been increasing globally, necessitating innovative approaches beyond conventional blood sugar monitoring and insulin control. Diabetes is associated with complex health complications, including cardiovascular diseases. Continuous Glucose Monitoring (CGM) devices, though automated, have limitations such as irreversibility and interference with bodily fluids. Hydrogel technologies provide non-invasive alternatives to traditional methods, addressing the limitations of current approaches. This review explores hydrogels as macromolecular biopolymeric materials capable of absorbing and retaining a substantial amount of water within their structure. Due to their high-water absorption properties, these macromolecules are utilized as coating materials for wound care and diabetes management. The study emphasizes the need for early diagnosis and monitoring, especially during the COVID-19 pandemic, where heightened attention to diabetic patients is crucial. Additionally, the article examines the role of the Internet of Things (IoT) and machine learning-based systems in enhancing diabetes management effectiveness. By leveraging these technologies, there is potential to revolutionize diabetes care, providing more personalized and proactive solutions. This review explores cutting-edge hydrogel-based systems as a promising avenue for diabetes diagnosis, management, and treatment, highlighting key biopolymers and technological integrations.
Collapse
Affiliation(s)
- Zahra Rahmani Asl
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Khosro Rezaee
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
23
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Dong Y, Wang M, Wang Q, Cao X, Chen P, Gong Z. Single-cell RNA-seq in diabetic foot ulcer wound healing. Wound Repair Regen 2024. [PMID: 39264020 DOI: 10.1111/wrr.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
Diabetic foot ulcer (DFU) is a chronic and serious complication of diabetes mellitus. It is mainly caused by hyperglycaemia, diabetic peripheral vasculopathy and diabetic peripheral neuropathy. These conditions result in ulceration of foot tissues and chronic wounds. If left untreated, DFU can lead to amputation or even endanger the patient's life. Single-cell RNA sequencing (scRNA-seq) is a technique used to identify and characterise transcriptional subpopulations at the single-cell level. It provides insight into cellular function and the molecular drivers of disease. The objective of this paper is to examine the subpopulations, genes and molecules of cells associated with chronic wounds of diabetic foot by using scRNA-seq. The paper aims to explore the wound-healing mechanism of DFU from three aspects: inflammation, angiogenesis and extracellular matrix remodelling. The goal is to gain a better understanding of the mechanism of DFU wound healing and identify possible DFU therapeutic targets, providing new insights for the application of DFU personalised therapy.
Collapse
Affiliation(s)
- Yan Dong
- Medical School, Nantong University, Nantong, China
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Mengting Wang
- Medical School, Nantong University, Nantong, China
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Qianqian Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Xiaoliang Cao
- Medical School, Nantong University, Nantong, China
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Peng Chen
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Zhenhua Gong
- Medical School, Nantong University, Nantong, China
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
- Nantong Clinical Medical College, Kangda College of Nanjing Medical University, Nantong, China
| |
Collapse
|
25
|
Park DJ, Choi W, Sayeed S, Dorschner RA, Rainaldi J, Ho K, Kezios J, Nolan JP, Mali P, Costantini T, Eliceiri BP. Defining the activity of pro-reparative extracellular vesicles in wound healing based on miRNA payloads and cell type-specific lineage mapping. Mol Ther 2024; 32:3059-3079. [PMID: 38379282 PMCID: PMC11403212 DOI: 10.1016/j.ymthe.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Wooil Choi
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Sakeef Sayeed
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert A Dorschner
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kayla Ho
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Jenny Kezios
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Todd Costantini
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Aw YB, Chen S, Yeo A, Dangerfield JA, Mok P. Development and functional testing of a novel in vitro delayed scratch closure assay. Histochem Cell Biol 2024; 162:245-255. [PMID: 38713267 PMCID: PMC11322216 DOI: 10.1007/s00418-024-02292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
As the development of chronic wound therapeutics continues to expand, the demand for advanced assay systems mimicking the inflammatory wound microenvironment in vivo increases. Currently, this is performed in animal models or in in vitro cell-based models such as cell culture scratch assays that more closely resemble acute wounds. Here, we describe for the first time a delayed scratch closure model that mimics some features of a chronic wound in vitro. Chronic wounds such as those suffered by later stage diabetic patients are characterised by degrees of slowness to heal caused by a combination of continued localised physical trauma and pro-inflammatory signalling at the wound. To recreate this in a cell-based assay, a defined physical scratch was created and stimulated by combinations of pro-inflammatory factors, namely interferon, the phorbol ester PMA, and lipopolysaccharide, to delay scratch closure. The concentrations of these factors were characterised for commonly used human keratinocyte (HaCaT) and dermal fibroblast (HDF) cell lines. These models were then tested for scratch closure responsiveness to a proprietary healing secretome derived from human Wharton's jelly mesenchymal stem cells (MSCs) previously validated and shown to be highly effective on closure of acute wound models both in vitro and in vivo. The chronically open scratches from HaCaT cells showed closure after exposure to the MSC secretome product. We propose this delayed scratch closure model for academic and industrial researchers studying chronic wounds looking for responsiveness to drugs or biological treatments prior to testing on explanted patient material or in vivo.
Collapse
Affiliation(s)
- Yi Bing Aw
- Celligenics Pte Ltd, Singapore, Singapore
| | - Sixun Chen
- Celligenics Pte Ltd, Singapore, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Aimin Yeo
- Celligenics Pte Ltd, Singapore, Singapore
| | - John A Dangerfield
- Celligenics Pte Ltd, Singapore, Singapore
- Austrianova Singapore Pte Ltd, Singapore, Singapore
| | - Pamela Mok
- Celligenics Pte Ltd, Singapore, Singapore.
| |
Collapse
|
27
|
Doshi RB, Vakil D, Molley TG, Islam MS, Kilian KA, Cunningham C, Sidhu KS. Mesenchymal stem cell-secretome laden photopolymerizable hydrogels for wound healing. J Biomed Mater Res A 2024; 112:1484-1493. [PMID: 38487991 DOI: 10.1002/jbm.a.37697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 07/12/2024]
Abstract
Mesenchymal stem cell-derived secretome represents an emerging acellular therapeutic which possess significant opportunity for clinical applications due to its anti-inflammatory, immunomodulatory, and wound healing properties. However, maintaining therapeutic efficacy and ensuring stability of cell-based products is challenging, requiring a robust delivery method. Therefore, we designed a hydrogel-based scaffold loaded with CK Cell Technologies' proprietary Mesenchymal stem cell-secretome for controlled release treatment of acute and chronic wounds. We incorporated both conditioned media (CM) and extracellular vesicles (EVs) into gelatin methacryloyl (GelMA) hydrogels and demonstrated how we can tune the diffusive release of the EVs from them. To demonstrate viability of the approach, we developed a wound healing scratch assay where we see in situ release of CM and EVs promote enhanced migration of human dermal fibroblasts (hDFs). We see the colocalization of these EVs in the fibroblasts using fluorescent microscopy. Finally, as a surrogate for in vivo neovascularization, we conducted an in vitro tube formation assay for the MSC-secretome using matrigel-embedded human microvascular endothelial cells. By adding CM and EVs, we observe an increase in tubulogenesis. Collectively, our data demonstrates by tuning the GelMA properties, we can influence the controlled release of the MSC-secretome for a wound dressing and bandage application for chronic and acute wounds.
Collapse
Affiliation(s)
- Riddhesh B Doshi
- R & D, CK Cell Technologies Pty Ltd, Sydney, New South Wales, Australia
- School of Chemistry, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Devashree Vakil
- R & D, CK Cell Technologies Pty Ltd, Sydney, New South Wales, Australia
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales (UNSW), Sydney, New South Wales, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Corey Cunningham
- R & D, CK Cell Technologies Pty Ltd, Sydney, New South Wales, Australia
| | - Kuldip S Sidhu
- R & D, CK Cell Technologies Pty Ltd, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Aydin Acar C, Pehlivanoglu S, Yesilot S, Tasdemir HI. The Effect of Breast Milk from Different Lactation Stages on in Vitro Wound Healing. Breastfeed Med 2024; 19:698-706. [PMID: 38853683 DOI: 10.1089/bfm.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Objective: Wound healing is a complex and dynamic process essential for restoring tissue integrity and homeostasis. It is thought that breast milk contributes positively to the wound healing process, thanks to the components it contains. The aim of this study is to compare the effects of breast milk on the wound healing process at different lactation stages and to evaluate the underlying mechanism(s). Materials and Methods: The effects of breast milk from different lactation stages (colostrum, transitional, and mature milk) on wound healing were determined by in vitro scratch assay in L929 fibroblast cells. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), total oxidant, and antioxidant capacity were used to confirm antioxidant effects. The effect of breast milk on netrin-1 levels in L929 cells was elucidated by ELISA. Results: Breast milk at different lactation stages promoted wound healing. While the wound closure percentage was determined as 48.7% in the control group, this rate was determined to be the highest at 81.6% in the mature milk group (p:0.0002). The free radical scavenging capacity of colostrum, transitional, and mature milk with DPPH was determined as 49.69%, 60.64%, and 80.85%, respectively, depending on the lactation stages. Netrin-1 levels detected by ELISA were determined as 490.1 ± 6.5 pg/mL in the control group, while the lowest level was determined as 376.6 ± 4.5 pg/mL in mature milk (p:0.0003). Conclusions: Breast milk, especially mature milk, promoted wound healing on L929 cells by suppressing netrin-1 levels and scavenging free radicals.
Collapse
Affiliation(s)
- Cigdem Aydin Acar
- Bucak School of Health, Department of Nursing, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Suray Pehlivanoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Sukriye Yesilot
- Bucak School of Health, Department of Nursing, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Halil Ibrahim Tasdemir
- Bucak School of Health, Department of Nursing, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
29
|
Lambrou I, Mantzoros I, Ioannidis O, Tatsis D, Anestiadou E, Bisbinas V, Pramateftakis MG, Kotidis E, Driagka B, Kerasidou O, Symeonidis S, Bitsianis S, Sifaki F, Angelopoulos K, Demetriades H, Angelopoulos S. Effect of growth hormone on colonic anastomosis after intraperitoneal administration of 5-fluorouracil, bleomycin and cisplatin: An experimental study. World J Gastrointest Surg 2024; 16:2679-2688. [PMID: 39220091 PMCID: PMC11362934 DOI: 10.4240/wjgs.v16.i8.2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Growth hormone (GH) plays a crucial role in wound healing and tissue repair in postoperative patients. In particular, colonic anastomosis healing following colorectal surgery is impaired by numerous chemotherapy agents. AIM To investigate whether GH can improve the healing of a colonic anastomosis following the adverse effects of intraperitoneal administration of 5-fluorouracil (5-FU), bleomycin and cisplatin. METHODS Eighty Wistar rats underwent laparotomy and a 1 cm-resection of the transverse colon, followed by an end-to-end anastomosis under general anesthesia. The rats were blindly allocated into four equal groups and administered a different daily intraperitoneal therapeutic regimen for 6 days. The control group (A) received normal saline. Group B received chemotherapy with 5-FU (20 mg/kg), bleomycin (4 mg/kg) and cisplatin (0.7 mg/kg). Group C received GH (2 mg/kg), and group D received the aforementioned combination chemotherapy and GH, as described. The rats were sacrificed on the 7th postoperative day and the anastomoses were macroscopically and microscopically examined. Body weight, bursting pressure, hydroxyproline levels and inflammation markers were measured. RESULTS All rats survived until the day of sacrifice, with no infections or other complications. A decrease in the body weight of group D rats was observed, not statistically significant compared to group A (P = 1), but significantly different to groups C (P = 0.001) and B (P < 0.01). Anastomotic dehiscence rate was not statistically different between the groups. Bursting pressure was not significantly different between groups A and D (P = 1.0), whereas group B had a significantly lower bursting pressure compared to group D (P < 0.001). All groups had significantly more adhesions than group A. Hydroxyproline, as a measurement of collagen deposition, was significantly higher in group D compared to group B (P < 0.05), and higher, but not statistically significant, compared to group A. Significant changes in group D were recorded, compared to group A regarding inflammation (3.450 vs 2.900, P = 0.016) and fibroblast activity (2.75 vs 3.25, P = 0.021). Neoangiogenesis and collagen deposition were not significantly different between groups A and D. Collagen deposition was significantly increased in group D compared to group B (P < 0.001). CONCLUSION Intraperitoneal administration of chemotherapy has an adverse effect on the healing process of colonic anastomosis. However, GH can inhibit the deleterious effect of administered chemotherapy agents and induce colonic healing in rats.
Collapse
Affiliation(s)
- Ioannis Lambrou
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Ioannis Mantzoros
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Orestis Ioannidis
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Dimitrios Tatsis
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Elissavet Anestiadou
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Vasiliki Bisbinas
- Department of ENT, Royal Cornwall Hospitals NHS Trust, Cornwall TR1 3LJ, United Kingdom
| | | | - Efstathios Kotidis
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Barbara Driagka
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Ourania Kerasidou
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Savvas Symeonidis
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Stefanos Bitsianis
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Freideriki Sifaki
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Konstantinos Angelopoulos
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Haralabos Demetriades
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Stamatios Angelopoulos
- Fourth Department of Surgery, Medical School, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| |
Collapse
|
30
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
31
|
Qi Y, Ma G. Comprehensive bioinformatic analysis reveals a fibroblast-related gene signature for the diagnosis of keloids. Heliyon 2024; 10:e35011. [PMID: 39157347 PMCID: PMC11327581 DOI: 10.1016/j.heliyon.2024.e35011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Aim A keloid is a fibroproliferative cutaneous disorder secondary to skin injury, caused by an imbalance in fibroblast proliferation and apoptosis. However, the pathogenesis is not fully understood. In this study, candidate genes for keloid were identified and used to construct a diagnostic model. Methods Three datasets related to keloids were downloaded from NCBI Gene Expression Omnibus. Fibroblast-related genes were screened, and fibroblast scores for the samples were determined. Then, a weighted gene co-expression network analysis (WGCNA) was used to identify modules and genes associated with keloids and the fibroblast score. Differentially expressed genes (DEGs) between keloid and control samples were identified and compared with fibroblast-related genes and genes in the modules. Overlapping genes were evaluated using functional enrichment analyses. Signature genes were further screened, and a diagnostic model was constructed. Finally, correlations between immune cell frequences and signature genes were analyzed. Results In total, 124 fibroblast-related genes were obtained, and the fibroblast score was an effective indicator of the sample type. WGCNA revealed five modules that were significantly correlated with both the disease state and fibroblast scores, including 1760 genes. Additionally, 589 DEGs were identified, including 16 that overlapped with fibroblast-related genes and genes identified in the WGCNA. These genes were related to cell proliferation and apoptosis and were involved in FoxO, Rap1, p53, Ras, MAPK, and PI3K-Akt pathways. Finally, a six fibroblast-related gene signature (CCNB1, EGFR, E2F8, BTG1, TP63, and IGF1) was identified and used for diagnostic model construction. The proportions of regulatory T cells and macrophages were significantly higher in keloid tissues than in controls. Conclusion The established model based on CCNB1, EGFR, E2F8, BTG1, TP63, and IGF1 showed good performance and may be useful for keloid diagnosis.
Collapse
Affiliation(s)
- Yue Qi
- Plastic Surgery Hospital Chinese Academy of Medical Sciences, 33rd BaDaChu Street, Beijing, 100144, China
| | - GuiE Ma
- Plastic Surgery Hospital Chinese Academy of Medical Sciences, 33rd BaDaChu Street, Beijing, 100144, China
| |
Collapse
|
32
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Low-Molecular Weight Branched Polyethylenimine Reduces Cytokine Secretion from Human Immune System Monocytes Stimulated with Bacterial and Fungal PAMPs. ChemMedChem 2024; 19:e202400011. [PMID: 38740551 PMCID: PMC11463166 DOI: 10.1002/cmdc.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The innate immune system is an evolutionarily conserved pathogen recognition mechanism that serves as the first line of defense against tissue damage or pathogen invasion. Unlike the adaptive immunity that recruits T-cells and specific antibodies against antigens, innate immune cells express pathogen recognition receptors (PRRs) that can detect various pathogen-associated molecular patterns (PAMPs) released by invading pathogens. Microbial molecular patterns, such as lipopolysaccharide (LPS) from Gram-negative bacteria, trigger signaling cascades in the host that result in the production of pro-inflammatory cytokines. LPS stimulation produces a strong immune response and excessive LPS signaling leads to dysregulation of the immune response. However, dysregulated inflammatory response during wound healing often results in chronic non-healing wounds that are difficult to control. In this work, we present data demonstrating partial neutralization of anionic LPS molecules using cationic branched polyethylenimine (BPEI). The anionic sites on the LPS molecules from Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the lipid A moiety and BPEI binding create steric factors that hinder the binding of PRR signaling co-factors. This reduces the production of pro-inflammatory TNF-α cytokines. However, the anionic sites of Pseudomonas aeruginosa (P. aeruginosa) LPS are in the O-antigen region and subsequent BPEI binding slightly reduces TNF-α cytokine production. Fortunately, BPEI can reduce TNF-α cytokine expression in response to stimulation by intact P. aeruginosa bacterial cells and fungal zymosan PAMPs. Thus low-molecular weight (600 Da) BPEI may be able to counter dysregulated inflammation in chronic wounds and promote successful repair following tissue injury.
Collapse
Affiliation(s)
- Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Chase Roedl
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tra D. Nguyen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
33
|
Govindappa PK, V G R, Ellur G, Gaber AA, Elfar J. 4-aminopyridine attenuates inflammation and apoptosis and increases angiogenesis to promote skin regeneration following a burn injury. RESEARCH SQUARE 2024:rs.3.rs-4669610. [PMID: 39149501 PMCID: PMC11326401 DOI: 10.21203/rs.3.rs-4669610/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Severe thermal skin burns are complicated by inflammation and apoptosis, which delays wound healing and contributes to significant morbidity. Diverse treatments demonstrate limited success with mitigating these processes to accelerate healing. Agents that alter cell behavior to improve healing would alter treatment paradigms. We repurposed 4-aminopyridine (4-AP), a drug approved by the US FDA for multiple sclerosis, to treat severe burns. We found that 4-AP, in the early stages of burn healing, significantly reduced the expression of pro-inflammatory cytokines IL1β and TNFα while increasing the expression of anti-inflammatory markers CD206, ARG-1, and IL10. 4-AP attenuated apoptosis, with decreases in apoptotic markers BAX, caspase-9, and caspase-3 and increases in anti-apoptotic markers BCL2 and BCL-XL. Furthermore, 4-AP promoted angiogenesis through increases in the expression of CD31, VEGF, and eNOS. Together, these likely contributed to accelerated burn wound closure, as demonstrated in increased keratinocyte proliferation (K14) and differentiation (K10) markers. In the later stages of burn healing, 4-AP increased TGFβ and FGF levels, which are known to mark the transformation of fibroblasts to myofibroblasts. This was further demonstrated by an increased expression of α-SMA and vimentin, as well as higher levels of collagen I and III, MMP 3, and 9 in animals treated with 4-AP. Our findings support the idea that 4-AP may have a novel, clinically relevant therapeutic use in promoting burn wound healing.
Collapse
Affiliation(s)
| | - Rahul V G
- The University of Arizona College of Medicine
| | | | | | | |
Collapse
|
34
|
Bernardelli de Mattos I, Tuca AC, Kukla F, Lemarchand T, Markovic D, Kamolz LP, Funk M. A Highly Standardized Pre-Clinical Porcine Wound Healing Model Powered by Semi-Automated Histological Analysis. Biomedicines 2024; 12:1697. [PMID: 39200162 PMCID: PMC11351733 DOI: 10.3390/biomedicines12081697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
The wound-healing process is a physiological response that begins after a disruption to the integrity of tissues present in the skin. To understand the intricacies involved in this process, many groups have tried to develop different in vitro models; however, the lack of a systemic response has, until this day, been the major barrier to the establishment of these models as the main study platform. Therefore, in vivo models are still the most common system for studying healing responses following different treatments, especially porcine models, which share several morphological similarities to the human skin. In this work, we developed a porcine excisional wound model and used semi-automated software as a strategy to generate quantitative morphometric results of healing responses by specific tissues and compartments. Our aim was to extract the most information from the model while producing reliable, reproducible, and standardized results. In order to achieve this, we established a 7-day treatment using a bacterial cellulose dressing as our standard for all the analyzed wounds. The thickness of the residual dermis under the wound (DUtW) bed was shown to influence the healing outcome, especially for the regeneration of epidermal tissue, including the wound closure rate. The analysis of the DUtW throughout the entire dorsal region of the animals opened up the possibility of establishing a map that will facilitate the experimental design of future works, increasing their standardization and reproducibility and ultimately reducing the number of animals needed. Thus, the developed model, together with the automated morphometric analysis approach used, offers the possibility to generate robust quantitative results with a rapid turnaround time while allowing the study of multiple extra morphometric parameters, creating a more holistic analysis.
Collapse
Affiliation(s)
- Ives Bernardelli de Mattos
- Department of Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97080 Würzburg, Germany;
- EVOMEDIS GmbH, 8036 Graz, Austria;
| | - Alexandru C. Tuca
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Fabian Kukla
- TPL Path Labs GmbH, A Stagebio Company, 79111 Freiburg, Germany; (F.K.); (T.L.)
| | - Thomas Lemarchand
- TPL Path Labs GmbH, A Stagebio Company, 79111 Freiburg, Germany; (F.K.); (T.L.)
| | - Danijel Markovic
- Department of Biomedical Research, Medical University of Graz, 8036 Graz, Austria;
| | - Lars P. Kamolz
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036 Graz, Austria;
- Joanneum Research Forschungsgesellschaft mbH, COREMED, 8036 Graz, Austria
| | | |
Collapse
|
35
|
Souza ILM, Suzukawa AA, Josino R, Marcon BH, Robert AW, Shigunov P, Correa A, Stimamiglio MA. Cellular In Vitro Responses Induced by Human Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Obtained from Suspension Culture. Int J Mol Sci 2024; 25:7605. [PMID: 39062847 PMCID: PMC11277484 DOI: 10.3390/ijms25147605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production. Isolated ADMSC-EVs were added into cultured human dermal fibroblasts (NHDF-1), keratinocytes (HaCat), endothelial cells (HUVEC), and THP-1 cell-derived macrophages to evaluate cellular responses (i.e., cell proliferation, cell migration, angiogenesis induction, and macrophage phenotype-switching). ADMSC viability and phenotype were assessed during cell culture and isolated ADMSC-EVs were monitored by nanotracking particle analysis, electron microscopy, and immunophenotyping. We observed an enhancement of HaCat proliferation; NHDF-1 and HaCat migration; endothelial tube formation on HUVEC; and the expression of inflammatory cytokines in THP-1-derived macrophages. The increased expression of TGF-β and IL-1β was observed in M1 macrophages treated with higher doses of ADMSC-EVs. Hence, EVs from microcarrier-cultivated ADMSCs are shown to modulate cell behavior, being able to induce skin tissue related cells to migrate and proliferate as well as stimulate angiogenesis and cause balance between pro- and anti-inflammatory responses in macrophages. Based on these findings, we suggest that the isolation of EVs from ADMSC suspension cultures makes it possible to induce in vitro cellular responses of interest and obtain sufficient particle numbers for the development of in vivo concept tests for tissue regeneration studies.
Collapse
Affiliation(s)
- Ingrid L. M. Souza
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Andreia A. Suzukawa
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Raphaella Josino
- Albert Einstein Israelite Hospital, São Paulo 05652-900, SP, Brazil
| | - Bruna H. Marcon
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
- Confocal and Electronic Microscopy Facility (RPT07C), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil
| | - Anny W. Robert
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
- Confocal and Electronic Microscopy Facility (RPT07C), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil
| | - Patrícia Shigunov
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Marco A. Stimamiglio
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| |
Collapse
|
36
|
Lopes FB, Sarandy MM, Novaes RD, Valacchi G, Gonçalves RV. OxInflammatory Responses in the Wound Healing Process: A Systematic Review. Antioxidants (Basel) 2024; 13:823. [PMID: 39061892 PMCID: PMC11274091 DOI: 10.3390/antiox13070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Significant sums are spent every year to find effective treatments to control inflammation and speed up the repair of damaged skin. This study investigated the main mechanisms involved in the skin wound cure. Consequently, it offered guidance to develop new therapies to control OxInflammation and infection and decrease functional loss and cost issues. This systematic review was conducted using the PRISMA guidelines, with a structured search in the MEDLINE (PubMed), Scopus, and Web of Science databases, analyzing 23 original studies. Bias analysis and study quality were assessed using the SYRCLE tool (Prospero number is CRD262 936). Our results highlight the activation of membrane receptors (IFN-δ, TNF-α, toll-like) in phagocytes, especially macrophages, during early wound healing. The STAT1, IP3, and NF-kβ pathways are positively regulated, while Ca2+ mobilization correlates with ROS production and NLRP3 inflammasome activation. This pathway activation leads to the proteolytic cleavage of caspase-1, releasing IL-1β and IL-18, which are responsible for immune modulation and vasodilation. Mediators such as IL-1, iNOS, TNF-α, and TGF-β are released, influencing pro- and anti-inflammatory cascades, increasing ROS levels, and inducing the oxidation of lipids, proteins, and DNA. During healing, the respiratory burst depletes antioxidant defenses (SOD, CAT, GST), creating a pro-oxidative environment. The IFN-δ pathway, ROS production, and inflammatory markers establish a positive feedback loop, recruiting more polymorphonuclear cells and reinforcing the positive interaction between oxidative stress and inflammation. This process is crucial because, in the immune system, the vicious positive cycle between ROS, the oxidative environment, and, above all, the activation of the NLRP3 inflammasome inappropriately triggers hypoxia, increases ROS levels, activates pro-inflammatory cytokines and inhibits the antioxidant action and resolution of anti-inflammatory cytokines, contributing to the evolution of chronic inflammation and tissue damage.
Collapse
Affiliation(s)
- Fernanda Barbosa Lopes
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Mariáurea Matias Sarandy
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
37
|
Wang D, Shimamura N, Miwa N, Xiao L. Combined use of hydrogen-rich water and enzyme-digested edible bird's nest improves PMA/LPS-impaired wound healing in human inflammatory gingival tissue equivalents. Hum Cell 2024; 37:997-1007. [PMID: 38679666 DOI: 10.1007/s13577-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Gingival wound healing plays a critical role in maintaining oral health. However, this process can be delayed by oxidative stress and excessive inflammatory responses. In this study, we established a human inflammatory gingival tissue equivalent (iGTE) to investigate the inhibitory effects of hydrogen-rich water (HW), enzyme-digested edible bird's nest (EBND) and sialic acid (SA) on PMA (an inducer of oxidative free radicals)- and LPS (an inflammatory stimulus)-impaired wound healing. The iGTE was constructed by human gingival fibroblasts (hGFs), keratinocytes and macrophages under three-dimensional conditions. Wounds in the iGTE and hGF/keratinocyte monolayers were created by mechanical injury. Tissues and cells were pretreated with HW, EBND, and SA, and then exposed to the inflammatory and oxidative environment induced by PMA (10 ng/mL) and LPS (250 ng/mL). The inflammatory cytokines IL-6 and IL-8 were quantitatively analyzed by ELISA. Histopathological image analysis was performed by HE and immunofluorescence staining. In the iGTE, PMA/LPS significantly reduced the epithelial thickness while causing a decrease in K8/18, E-cadherin, laminin and elastin expression and an increase in COX-2 expression along with ulcer-like lesions. In mechanically scratched hGFs and keratinocyte monolayers, PMA/LPS significantly impaired wound healing, and promoted the secretion of IL-6 and IL-8. Pretreatment of HW, EBND, and SA significantly suppressed PMA/LPS-induced wound healing delay and inflammatory responses in cell monolayers, as well as in the iGTE. Remarkably, the combined use of HW and EBND exhibited particularly robust results. Combined use of HW and EBND may be applied for the prevention and treatment of wound healing delay.
Collapse
Affiliation(s)
- Dongliang Wang
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Bazhou Economic Development Zone, Langfang, 065700, China
| | - Naohiro Shimamura
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Nobuhiko Miwa
- Prefectural University of Hiroshima, Faculty of Life Sciences, Hiroshima, 727-0023, Japan
- Incorporated Association Hydrogen Medical Institute, Minatojima Minamicho 1-6-4, ChuOh-Ku, Kobe, 650-0047, Japan
| | - Li Xiao
- Department of Physiology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-Ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
38
|
Zhao X, Chen Z, Zhang S, Hu Z, Shan J, Wang M, Chen XL, Wang X. Application of metal-organic frameworks in infectious wound healing. J Nanobiotechnology 2024; 22:387. [PMID: 38951841 PMCID: PMC11218092 DOI: 10.1186/s12951-024-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiyuan Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China.
| |
Collapse
|
39
|
Chen J, Zhang T, Liu D, Yang F, Feng Y, Wang A, Wang Y, He X, Luo F, Li J, Tan H, Jiang L. General Semi-Solid Freeze Casting for Uniform Large-Scale Isotropic Porous Scaffolds: An Application for Extensive Oral Mucosal Reconstruction. SMALL METHODS 2024; 8:e2301518. [PMID: 38517272 DOI: 10.1002/smtd.202301518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Ice-templated porous biomaterials possess transformative potential in regenerative medicine; yet, scaling up ice-templating processes for broader applications-owing to inconsistent pore formation-remains challenging. This study reports an innovative semi-solid freeze-casting technique that draws inspiration from semi-solid metal processing (SSMP) combined with ice cream-production routines. This versatile approach allows for the large-scale assembly of various materials, from polymers to inorganic particles, into isotropic 3D scaffolds featuring uniformly equiaxed pores throughout the centimeter scale. Through (cryo-)electron microscopy, X-ray tomography, and finite element modeling, the structural evolution of ice grains/pores is elucidated, demonstrating how the method increases the initial ice nucleus density by pre-fabricating a semi-frozen slurry, which facilitates a transition from columnar to equiaxed grain structures. For a practical demonstration, as-prepared scaffolds are integrated into a bilayer tissue patch using biodegradable waterborne polyurethane (WPU) for large-scale oral mucosal reconstruction in minipigs. Systematic analyses, including histology and RNA sequencing, prove that the patch modulates the healing process toward near-scarless mucosal remodeling via innate and adaptive immunomodulation and activation of pro-healing genes converging on matrix synthesis and epithelialization. This study not only advances the field of ice-templating fabrication but sets a promising precedent for scaffold-based large-scale tissue regeneration.
Collapse
Affiliation(s)
- Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| | - Xueling He
- Editorial Board of Journal of Sichuan University (Medical Sciences), Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
40
|
Benavides-Lara J, Siegel AP, Tsoukas MM, Avanaki K. High-frequency photoacoustic and ultrasound imaging for skin evaluation: Pilot study for the assessment of a chemical burn. JOURNAL OF BIOPHOTONICS 2024; 17:e202300460. [PMID: 38719468 DOI: 10.1002/jbio.202300460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 07/13/2024]
Abstract
Skin architecture and its underlying vascular structure could be used to assess the health status of skin. A non-invasive, high resolution and deep imaging modality able to visualize skin subcutaneous layers and vasculature structures could be useful for determining and characterizing skin disease and trauma. In this study, a multispectral high-frequency, linear array-based photoacoustic/ultrasound (PAUS) probe is developed and implemented for the imaging of rat skin in vivo. The study seeks to demonstrate the probe capabilities for visualizing the skin and its underlying structures, and for monitoring changes in skin structure and composition during a 5-day course of a chemical burn. We analayze composition of lipids, water, oxy-hemoglobin, and deoxy-hemoglobin (for determination of oxygen saturation) in the skin tissue. The study successfully demonstrated the high-frequency PAUS imaging probe was able to provide 3D images of the rat skin architecture, underlying vasculature structures, and oxygen saturation, water, lipids and total hemoglobin.
Collapse
Affiliation(s)
- Juliana Benavides-Lara
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amanda P Siegel
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Maria M Tsoukas
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Golebiowska AA, Jala VR, Nukavarapu SP. Decellularized Tissue-Induced Cellular Recruitment for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2024; 52:1835-1847. [PMID: 36952144 DOI: 10.1007/s10439-023-03182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
42
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
43
|
Lee JS, Oh E, Oh H, Kim S, Ok S, Sa J, Lee JH, Shin YC, Bae YS, Choi CY, Lee S, Kwon HK, Yang S, Choi WI. Tacrolimus-loaded chitosan-based nanoparticles as an efficient topical therapeutic for the effective treatment of atopic dermatitis symptoms. Int J Biol Macromol 2024; 273:133005. [PMID: 38866268 DOI: 10.1016/j.ijbiomac.2024.133005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Atopic dermatitis (AD) is a chronic cutaneous disease with a complex underlying mechanism, and it cannot be completely cured. Thus, most treatment strategies for AD aim at relieving the symptoms. Although corticosteroids are topically applied to alleviate AD, adverse side effects frequently lead to the withdrawal of AD therapy. Tacrolimus (TAC), a calcineurin inhibitor, has been used to treat AD, but its high molecular weight and insolubility in water hinder its skin permeability. Herein, we developed and optimized TAC-loaded chitosan-based nanoparticles (TAC@CNPs) to improve the skin permeability of TAC by breaking the tight junctions in the skin. The prepared nanoparticles were highly loadable and efficient and exhibited appropriate characteristics for percutaneous drug delivery. TAC@CNP was stable for 4 weeks under physiological conditions. CNP released TAC in a controlled manner, with enhanced skin penetration observed. In vitro experiments showed that CNP was non-toxic to keratinocyte (HaCaT) cells, and TAC@CNP dispersed in an aqueous solution was as anti-proliferative as TAC solubilized in a good organic solvent. Importantly, an in vivo AD mouse model revealed that topical TAC@CNP containing ~1/10 of the dose of TAC found in commercially used Protopic® Ointment exhibited similar anti-inflammatory activity to that of the commercial product. TAC@CNP represents a potential therapeutic strategy for the management of AD.
Collapse
Affiliation(s)
- Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro, 123, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eunjeong Oh
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro, 123, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Subin Ok
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junseo Sa
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Yong Chul Shin
- SKINMED Co Ltd., Daejeon 34028, Republic of Korea; Amicogen Inc, 64 Dongburo 1259, Jinsung, Jinju 52621, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
44
|
Dutra FA, Francisco CS, Carneiro Pires B, Borges MM, Torres ALH, Resende VA, Mateus MF, Cipriano DF, Miguez FB, Freitas JCC, Teixeira J, Borges WDS, Guimarães L, da Cunha EF, Ramalho TDC, Nascimento CS, De Sousa FB, Costa RA, Lacerda V, Borges KB. Coumarin/β-Cyclodextrin Inclusion Complexes Promote Acceleration and Improvement of Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30900-30914. [PMID: 38848495 PMCID: PMC11194811 DOI: 10.1021/acsami.4c05069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Coumarins have great pharmacotherapeutic potential, presenting several biological and pharmaceutical applications, like antibiotic, fungicidal, anti-inflammatory, anticancer, anti-HIV, and healing activities, among others. These molecules are practically insoluble in water, and for biological applications, it became necessary to complex them with cyclodextrins (CDs), which influence their bioavailability in the target organism. In this work, we studied two coumarins, and it was possible to conclude that there were structural differences between 4,7-dimethyl-2H-chromen-2-one (DMC) and 7-methoxy-4-methyl-2H-chromen-2-one (MMC)/β-CD that were solubilized in ethanol, frozen, and lyophilized (FL) and the mechanical mixtures (MM). In addition, the inclusion complex formation improved the solubility of DMC and MMC in an aqueous medium. According to the data, the inclusion complexes were formed and are more stable at a molar ratio of 2:1 coumarin/β-CD, and hydrogen bonds along with π-π stacking interactions are responsible for the better stability, especially for (MMC)2@β-CD. In vivo wound healing studies in mice showed faster re-epithelialization and the best deposition of collagen with the (DMC)2@β-CD (FL) and (MMC)2@β-CD (FL) inclusion complexes, demonstrating clearly that they have potential in wound repair. Therefore, (DMC)2@β-CD (FL) deserves great attention because it presented excellent results, reducing the granulation tissue and mast cell density and improving collagen remodeling. Finally, the protein binding studies suggested that the anti-inflammatory activities might exert their biological function through the inhibition of MEK, providing the possibility of development of new MEK inhibitors.
Collapse
Affiliation(s)
- Flávia
Viana Avelar Dutra
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Carla Santana Francisco
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Bruna Carneiro Pires
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Marcella Matos
Cordeiro Borges
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Ana Luiza Horta Torres
- Departamento
de Medicina, Universidade Federal de São
João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João
del-Rei, Minas Gerais, Brazil
| | - Vivian Alexandra Resende
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Marcella Fernandes
Mano Mateus
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Daniel Fernandes Cipriano
- Departamento
de Física, Universidade Federal do
Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Flávio Bastos Miguez
- Instituto
de Física e Química, Universidade
Federal de Itajubá, 37500-903 Itajubá, Minas Gerais, Brazil
| | - Jair Carlos Checon
de Freitas
- Departamento
de Física, Universidade Federal do
Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Jéssika
Poliana Teixeira
- Departamento
de Química, Universidade Federal
de Lavras, Campus Universitário, 37200-900 Lavras, Minas Gerais, Brazil
| | - Warley de Souza Borges
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Luciana Guimarães
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | | | - Teodorico de Castro Ramalho
- Departamento
de Química, Universidade Federal
de Lavras, Campus Universitário, 37200-900 Lavras, Minas Gerais, Brazil
| | - Clebio Soares Nascimento
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Frederico Barros De Sousa
- Instituto
de Física e Química, Universidade
Federal de Itajubá, 37500-903 Itajubá, Minas Gerais, Brazil
| | - Raquel Alves Costa
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Valdemar Lacerda
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Keyller Bastos Borges
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| |
Collapse
|
45
|
Indrakumar S, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Fibroin and Its Nanocomposites for Wound Care: A Comprehensive Review. ACS POLYMERS AU 2024; 4:168-188. [PMID: 38882037 PMCID: PMC11177305 DOI: 10.1021/acspolymersau.3c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/18/2024]
Abstract
For most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor. This is particularly true in cases of long-term wound treatment and management, such as chronic wounds and infections. Silk fibroin (SF) and its nanocomposites have emerged as promising biomaterials with potent wound-healing activity. Driven by this motivation, this Review presents a critical overview of the recent advancements in different aspects of wound care using SF and SF-based nanocomposites. In this context, we explore various formats of hemostats and assess their suitability for different bleeding situations. The subsequent sections discuss the primary causes of nonhealing wounds, i.e., prolonged inflammation and infections. Herein, different treatment strategies to achieve immunomodulatory and antibacterial properties in a wound dressing were reviewed. Despite exhibiting excellent pro-healing properties, few silk-based products reach the market. This Review concludes by highlighting the bottlenecks in translating silk-based products into the market and the prospects for the future.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
46
|
Liu X, Xiong J, Li X, Pan H, Osama H. Meta-analysis study of small extracellular vesicle nursing application therapies for healing of wounds and skin regeneration. Arch Dermatol Res 2024; 316:346. [PMID: 38849563 DOI: 10.1007/s00403-024-02992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024]
Abstract
We designed and performed this meta-analysis to investigate the impact of the application of extracellular small vesicle therapies on regeneration of skin and wound healing. The findings of this study were computed using fixed or random effect models. The mean differences (MDs), and odds ratio (ORs) with their 95% confidence intervals (CIs) were calculated. In this study, 43 publications were included, encompassing 530 animals with artificial wounds. Small extracellular vesicle therapy had a significant greater rate of wound closure (MD, 24.0; 95% CI, 19.98-28.02, P < 0.001), lower scar width (MD, -191.33; 95%CI, -292.26--90.4, P < 0.001), and higher blood vessel density (MD,36.11; 95%CI, 19.02-53.20, P < 0.001) compared to placebo. Our data revealed that small extracellular vesicle therapy had a significantly higher regeneration of skin and healing of wounds based on the results of wound closure rate, lower scar width, and higher blood vessel density compared to placebo. Future studies with larger sample size are needed.
Collapse
Affiliation(s)
- Xianping Liu
- Department of NeuroSurgery, The Affiliated Chengdu 363Hospital of Southwest Medical University, No.550, Campus Road, Pi Du District, Chengdu, 611730, Sichuan, China
| | - Jianping Xiong
- Department of NeuroSurgery, The Affiliated Chengdu 363Hospital of Southwest Medical University, No.550, Campus Road, Pi Du District, Chengdu, 611730, Sichuan, China
| | - Xia Li
- Department of NeuroSurgery, The Affiliated Chengdu 363Hospital of Southwest Medical University, No.550, Campus Road, Pi Du District, Chengdu, 611730, Sichuan, China
| | - Haipeng Pan
- Department of NeuroSurgery, The Affiliated Chengdu 363Hospital of Southwest Medical University, No.550, Campus Road, Pi Du District, Chengdu, 611730, Sichuan, China
| | - Hasnaa Osama
- Department of Clinical Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
47
|
Chansoria P, Chaudhari A, Etter EL, Bonacquisti EE, Heavey MK, Le J, Maruthamuthu MK, Kussatz CC, Blackwell J, Jasiewicz NE, Sellers RS, Maile R, Wallet SM, Egan TM, Nguyen J. Instantly adhesive and ultra-elastic patches for dynamic organ and wound repair. Nat Commun 2024; 15:4720. [PMID: 38830847 PMCID: PMC11148085 DOI: 10.1038/s41467-024-48980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.
Collapse
Affiliation(s)
- Parth Chansoria
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ameya Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emma L Etter
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiayan Le
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John Blackwell
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rani S Sellers
- Pathology and Laboratory Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shannon M Wallet
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas M Egan
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
48
|
Ghelich P, Samandari M, Hassani Najafabadi A, Tanguay A, Quint J, Menon N, Ghanbariamin D, Saeedinejad F, Alipanah F, Chidambaram R, Krawetz R, Nuutila K, Toro S, Barnum L, Jay GD, Schmidt TA, Tamayol A. Dissolvable Immunomodulatory Microneedles for Treatment of Skin Wounds. Adv Healthc Mater 2024; 13:e2302836. [PMID: 38299437 DOI: 10.1002/adhm.202302836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Sustained inflammation can halt or delay wound healing, and macrophages play a central role in wound healing. Inflammatory macrophages are responsible for the removal of pathogens, debris, and neutrophils, while anti-inflammatory macrophages stimulate various regenerative processes. Recombinant human Proteoglycan 4 (rhPRG4) is shown to modulate macrophage polarization and to prevent fibrosis and scarring in ear wound healing. Here, dissolvable microneedle arrays (MNAs) carrying rhPRG4 are engineered for the treatment of skin wounds. The in vitro experiments suggest that rhPRG4 modulates the inflammatory function of bone marrow-derived macrophages. Degradable and detachable microneedles are developed from gelatin methacryloyl (GelMA) attach to a dissolvable gelatin backing. The developed MNAs are able to deliver a high dose of rhPRG4 through the dissolution of the gelatin backing post-injury, while the GelMA microneedles sustain rhPRG4 bioavailability over the course of treatment. In vivo results in a murine model of full-thickness wounds with impaired healing confirm a decrease in inflammatory biomarkers such as TNF-α and IL-6, and an increase in angiogenesis and collagen deposition. Collectively, these results demonstrate rhPRG4-incorporating MNA is a promising platform in skin wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Alireza Hassani Najafabadi
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Adam Tanguay
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Nikhil Menon
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Fatemeh Alipanah
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ramaswamy Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Roman Krawetz
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Surgery, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kristo Nuutila
- US Army Institute of Surgical Research, Fort Sam Houston, Texas, 78234, USA
| | - Steven Toro
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Lindsay Barnum
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Gregory D Jay
- Emergency Medicine, Brown University, Providence, RI, 02908, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
49
|
Zhou P, Jiang Y, Liu AY, Chen XL, Wang F. Patients with hypertrophic scars following severe burn injury express different long noncoding RNAs. Burns 2024; 50:1247-1258. [PMID: 38503573 DOI: 10.1016/j.burns.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE Research indicates that long noncoding RNAs (lncRNAs) contribute significantly to fibrotic diseases. Although lncRNAs may play a role in hypertrophic scars after burns, its mechanisms remain poorly understood. METHODS Using chip technology, we compared the lncRNA expression profiles of burn patients and healthy controls (HCs). Microarray results were examined by quantitative reverse-transcription polymerase chain reaction (RT-PCR) to verify their reliability. The biological functions of differentially expressed mRNAs and the relationships between genes and signaling pathways were investigated by Gene Ontology (GO) and pathway analyses, respectively. RESULTS In contrast with HCs, it was found that 2738 lncRNAs (1628 upregulated) and 2166 mRNAs (1395 upregulated) were differentially expressed in hypertrophic scars after burn. Results from RT-PCR were consistent with those from microarray. GO and pathway analyses revealed that the differentially expressed mRNAs are mainly associated with processes related to cytokine secretion in the immune system, notch signaling, and MAPK signaling. CONCLUSION The lncRNA expression profiles of hypertrophic scars after burn changed significantly compared with HCs. It was believed that the transcripts could be used as potential targets for inhibiting abnormal scar formation in burn patients.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yan Jiang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ao-Ya Liu
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xu-Lin Chen
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Fei Wang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
50
|
Abo-Salem HM, Ali EA, Abdelmegeed H, El Souda SSM, Abdel-Aziz MS, Ahmed KM, Fawzy NM. Chitosan nanoparticles of new chromone-based sulfonamide derivatives as effective anti-microbial matrix for wound healing acceleration. Int J Biol Macromol 2024; 272:132631. [PMID: 38810852 DOI: 10.1016/j.ijbiomac.2024.132631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
A new series of chromone and furochromone-based sulfonamide Schiff's base derivatives 3-12 were synthesized and evaluated for their antimicrobial activity against S. aureus, E. coli, C. albicans, and A. niger using agar diffusion method. Compound 3a demonstrated potent antimicrobial activities with MIC values of 9.76 and 19.53 μg/mL against S. aureus, E. coli and C. albicans, which is 2-fold and 4-fold more potent than neomycin (MIC = 19.53, 39.06 μg/mL respectively). To improve the effectiveness of 3a, it was encapsulated into chitosan nanoparticles (CS-3aNPs). The CS-3aNPs size was 32.01 nm, as observed by transmission electron microscope (TEM) images and the zeta potential value was 14.1 ± 3.07 mV. Encapsulation efficiency (EE) and loading capacity (LC) were 91.5 % and 1.6 %, respectively as indicated by spectral analysis. The CS-3aNPs extremely inhibited bacterial growth utilizing the colony-forming units (CFU). The ability of CS-3aNPs to protect skin wounds was evaluated in vivo. CS-3aNPs showed complete wound re-epithelialization, hyperplasia of the epidermis, well-organized granulation tissue formation, and reduced signs of wound infection, as seen through histological assessment which showed minimal inflammatory cells in comparison with untreated wound. Overall, these findings suggest that CS-3aNPs has a positive impact on protecting skin wounds from infection due to their antimicrobial activity.
Collapse
Affiliation(s)
- Heba M Abo-Salem
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Heba Abdelmegeed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Sahar S M El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Khadiga M Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Nagwa M Fawzy
- Chemistry of Natural and Microbial Products Department, National Research Center, 12622 Dokki, Giza, Egypt.
| |
Collapse
|