1
|
Millington ME, Lawrence C, Sneddon LU, Allen C. Environmental enrichment for zebrafish. Zebrafish 2024:6-52. [DOI: 10.1079/9781800629431.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
2
|
Ma KG, Lieggi C, Lertpiriyapong K, Afolalu AA, Riedel ER, Lipman NS. Successful Rearing of Nutritionally Supplemented Rotifers ( Brachionus plicatilis) at Reduced Salinity for Zebrafish ( Danio rerio) Polyculture. Zebrafish 2023; 20:250-259. [PMID: 38117218 PMCID: PMC10733754 DOI: 10.1089/zeb.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Rotifers, Brachionus plicatilis, are a valuable first exogenous feed for zebrafish because they can provide continuous nutrition for growing zebrafish larvae when used in a rotifer-zebrafish polyculture. Typically cultured at high salinities (>10 ppt), B. plicatilis are temporarily immobilized when moved to lower salinities (5 ppt) used for polycultures, decreasing their accessibility and attractiveness to the larvae. The nutritional value of rotifers varies based on their diet, typically live algae, which has limited nutritional value and may pose biosecurity risks. After confirming that rotifers consume and can reproduce when fed an irradiated, processed larval fish diet (PD), they were reared at 5 or 15 ppt, and fed various combinations of an algae mix and/or PD. Population densities and percentages of egg-bearing rotifers were quantified daily until the population density plateaued, and then their nutritional value was assessed. Results indicated that rotifers thrived at both salinities. Those fed PD were successfully maintained at >500 rotifers per mL and contained a greater ω-6/ω-3 fatty acid ratio. Our findings indicate that enriching rotifers with PD raised at 5 ppt can potentially eliminate rotifer immobilization in polyculture, while providing a nutritious, attractive diet for zebrafish larvae and decreasing biosecurity risks.
Collapse
Affiliation(s)
- Kathleen G.L. Ma
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Christine Lieggi
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Kvin Lertpiriyapong
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Adedeji A. Afolalu
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Elyn R. Riedel
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Neil S. Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Komine T, Srivorakul S, Yoshida M, Tanaka Y, Sugimoto Y, Inohana M, Fukano H, Hoshino Y, Kurata O, Wada S. Core single nucleotide polymorphism analysis reveals transmission of Mycobacterium marinum between animal and environmental sources in two aquaria. JOURNAL OF FISH DISEASES 2023; 46:507-516. [PMID: 36727551 DOI: 10.1111/jfd.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Mycobacterium marinum is a slow-growing, photochromogenic nontuberculous mycobacterium, which can cause mycobacteriosis in various animals, including humans. Several cases of fish mycobacteriosis have been reported to date. Mycobacterium marinum has also been isolated from aquatic environmental sources such as water, sand, biofilms, and plants in the natural environments. Hence, we hypothesized that a wide variety of sources could be involved in the transmission of M. marinum. In this study, we tested this hypothesis by isolating M. marinum from various sources such as fish, invertebrates, seagrass, periphytons, biofilms, sand, and/or water in two aquaria in Japan and conducting a phylogenetic analysis based on single-nucleotide polymorphisms (SNPs) using whole-genome sequences of the isolated strains. The analysis revealed that the strains from animal and environmental sources belonged to the same clusters. This molecular-based study epidemiologically confirmed that various sources, including fish, invertebrates, and environmental sources, could be involved in transmission of M. marinum in a closed-rearing environment. This is the first report where M. marinum was isolated from different sources, and various transmission routes were confirmed in actual cases, which provided essential information to improve the epidemiology of M. marinum.
Collapse
Affiliation(s)
- Takeshi Komine
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Saralee Srivorakul
- Center of Veterinary Diagnosis and Technology Transfer, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mitsumi Yoshida
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | | | | | - Mari Inohana
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashi-Murayama, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashi-Murayama, Japan
| | - Osamu Kurata
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Shinpei Wada
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|
4
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
KOMINE T, IHARA H, ONO K, YOSHIDA M, SUGIMOTO Y, INOHANA M, FUKANO H, KURATA O, WADA S. A case of mycobacteriosis associated with Mycobacterium pseudoshottsii in aquarium-reared fish in Japan. J Vet Med Sci 2022; 84:1617-1620. [PMID: 36273872 PMCID: PMC9791231 DOI: 10.1292/jvms.22-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In 2019, several aquarium-reared fish died at a sea life park in Japan. Necropsy revealed micronodules on the spleen in the dotted gizzard shad (Konosirus punctatus). Seven of 16 fish exhibited microscopic multifocal granulomas associated with acid-fast bacilli in the spleen, kidney, liver, alimentary tract, mesentery, gills, and/or heart. Bacterial cultures yielded isolates from the dotted gizzard shad and a Japanese sardine (Sardinops melanostictus). Microbiological and molecular biological examinations revealed the isolates as Mycobacterium pseudoshottsii. To our knowledge, this is the first isolation of M. pseudoshottsii from aquarium-reared fish.
Collapse
Affiliation(s)
- Takeshi KOMINE
- Laboratory of Aquatic Medicine, School of Veterinary
Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan,Correspondence to: Komine T: , Laboratory of Aquatic
Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University,
1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Hyogo IHARA
- Laboratory of Aquatic Medicine, School of Veterinary
Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro ONO
- Laboratory of Aquatic Medicine, School of Veterinary
Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Mitsumi YOSHIDA
- Laboratory of Aquatic Medicine, School of Veterinary
Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | - Mari INOHANA
- Laboratory of Aquatic Medicine, School of Veterinary
Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hanako FUKANO
- Department of Mycobacteriology, Leprosy Research Center,
National Institute of Infectious Diseases, Tokyo, Japan
| | - Osamu KURATA
- Laboratory of Aquatic Medicine, School of Veterinary
Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shinpei WADA
- Laboratory of Aquatic Medicine, School of Veterinary
Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
6
|
Mendoza G, Afolalu AA, Lertpiriyapong K, Lipman NS, Lieggi C. Evaluation of Media Conductivity and a Combination of Iodine and Sodium Hypochlorite Surface Disinfection on Zebrafish ( Danio rerio) Embryo Viability and Morphology. Zebrafish 2022; 19:190-199. [PMID: 36206234 PMCID: PMC9595623 DOI: 10.1089/zeb.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Embryo surface disinfection in either an iodine or sodium hypochlorite (NaOCl) solution is commonly performed on imported zebrafish embryos to decrease pathogen introduction into a facility. The impact of the consecutive use of these disinfectants and the conductivity of the culture media on embryo survival and development post-disinfection have not been evaluated. Iodine (12.5-25 ppm) is effective at eliminating several Mycobacterium species, whereas NaOCl (50-100 ppm) reduces the number of viable Pseudoloma neurophilia spores. Casper and T5D (tropical 5D wild type) embryos reared in media of differing conductivities (0-10, 100-200, 750-950, and 1500-2000 μS) with and without exposure to NaOCl 100 ppm at 6 h post-fertilization were evaluated for survival, hatching success, and morphological defects at 5 days post-fertilization. Additionally, the consecutive use of iodine (12.5 ppm for 2 min) followed by NaOCl (75 or 100 ppm for 10 min), as well as the inverse, was evaluated. Embryo survival was not impacted by embryo rearing media alone; however, survival significantly decreased when embryos were disinfected with 100 ppm NaOCl in media with a conductivity >750-950 μS. Iodine (12 ppm) and NaOCl (75 ppm) used sequentially resulted in >50% survival, whereas the use of 100 ppm NaOCl resulted in high levels of embryo mortality.
Collapse
Affiliation(s)
- Gerardo Mendoza
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Adedeji A. Afolalu
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Kvin Lertpiriyapong
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Neil S. Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Christine Lieggi
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
7
|
Draft Genome Sequences of 25 Mycobacterium marinum Strains Isolated from Animals and Environmental Components in Aquaria and an Aquaculture Farm. Microbiol Resour Announc 2022; 11:e0085122. [PMID: 36154152 PMCID: PMC9584300 DOI: 10.1128/mra.00851-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium marinum
is a ubiquitous nontuberculous
mycobacterium
that causes infections in various animals. Here, we report the annotated draft genome sequences of 25 strains isolated from vertebrates, invertebrates, and environmental components in aquaria and an aquaculture farm in Japan, sampled between 2015 and 2020.
Collapse
|
8
|
Mocho JP, von Krogh K. A FELASA Working Group Survey on Fish Species Used for Research, Methods of Euthanasia, Health Monitoring, and Biosecurity in Europe, North America, and Oceania. BIOLOGY 2022; 11:biology11091259. [PMID: 36138738 PMCID: PMC9495953 DOI: 10.3390/biology11091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary An international survey was conducted regarding species used for research, methods of euthanasia, health monitoring, and biosecurity in fish laboratories. A total of 145 facilities from 23 countries contributed. Over 80 different species were reported to be used for research, of which zebrafish (Danio rerio) was the most common by far. Anesthetic overdose was the preferred method for euthanasia for adults, fry, and larvae not capable of independent feeding. For all developmental stages, the most popular anesthetic compound was tricaine. Around half of the respondents did not perform a completion method to ensure death. One-quarter of the responding facilities did not have a health monitoring system in place. Only a small fraction reported quarantine routines to ensure reliable biological barriers. There was little consensus amongst facilities in how to perform biosecurity measures. Abstract An international survey was conducted regarding species used for research, methods of euthanasia, health monitoring, and biosecurity in fish laboratories. A total of 145 facilities from 23 countries contributed. Collectively, over 80 different species (or groups of species) were reported to be used for research, of which zebrafish (Danio rerio) was the most common by far. About half of the participating laboratories used multiple species. Anesthetic overdose was the preferred method for euthanasia for adult, fry (capable of independent feeding), and larval (not capable of independent feeding) fish. For all developmental stages, the most popular anesthetic compound was tricaine (MS-222), a substance associated with distress and aversion in several species. Moreover, around half of the respondents did not perform a completion method to ensure death. One-quarter of the responding facilities did not have a health monitoring system in place. While most respondents had some form of quarantine process for imported fish, only a small fraction reported quarantine routines that ensure reliable biological barriers. Furthermore, less than one in five screened fish for pathogens while in quarantine. In sum, there was little consensus amongst facilities in how to perform biosecurity measures. Regarding euthanasia, health monitoring, and biosecurity processes, there is a need for updated and universal guidelines and for many laboratories to adjust their practices.
Collapse
|
9
|
Narendrakumar L, Sudhagar A, Preena PG, Nithianantham SR, Mohandas SP, Swaminathan TR. Detection of Mycobacterium marinum and multidrug-resistant bacteria in a chronic progressive disease outbreak among Siamese fighting fish (Betta splendens) in India. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Murray KN, Clark TS, Kebus MJ, Kent ML. Specific Pathogen Free - A review of strategies in agriculture, aquaculture, and laboratory mammals and how they inform new recommendations for laboratory zebrafish. Res Vet Sci 2021; 142:78-93. [PMID: 34864461 PMCID: PMC9120263 DOI: 10.1016/j.rvsc.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Specific pathogen-free (SPF) animals are bred and managed to exclude pathogens associated with significant morbidity or mortality that may secondarily pose a risk to public health, food safety and food security, and research replicability. Generating and maintaining SPF animals requires detailed biosecurity planning for control of housing, environmental, and husbandry factors and a history of regimented pathogen testing. Successful programs involve comprehensive risk analysis and exclusion protocols that are rooted in a thorough understanding of pathogen lifecycle and modes of transmission. In this manuscript we review the current state of SPF in domestic agriculture (pigs and poultry), aquaculture (salmonids and shrimp), and small laboratory mammals. As the use of laboratory fish, especially zebrafish (Danio rerio), as models of human disease is expanding exponentially, it is prudent to define standards for SPF in this field. We use the guiding principles from other SPF industries and evaluate zebrafish pathogens against criteria to be on an SPF list, to propose recommendations for establishing and maintaining SPF laboratory zebrafish.
Collapse
Affiliation(s)
- Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA.
| | - Tannia S Clark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron J Kebus
- Wisconsin Department of Agriculture, Trade and Consumer Protection, Madison, WI 53708, USA
| | - Michael L Kent
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA; Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Sabrautzki S, Miller M, Kague E, Brielmeier M. Welfare Assessment of Adult Laboratory Zebrafish: A Practical Guide. Zebrafish 2021; 18:282-292. [PMID: 34227898 DOI: 10.1089/zeb.2021.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Teleost fish such as Danio rerio (zebrafish) have been successfully used in biomedical research since decades. Genetically altered fish lines obtained by state-of-the-art genetic technologies are serving as well-known model organisms. In Europe, following Directive 2010/63/EU, generation, breeding, and husbandry of new genetically altered lines of laboratory animals require governmental state approval in case pain, suffering, distress, or long-lasting harm to the offspring derived by breeding of these lines cannot be excluded. The identification and assessment of pain, distress, or harm, according to a severity classification of mild, moderate, severe, or humane endpoint, became a new challenging task for all scientists, animal technicians, and veterinarians for daily work with laboratory zebrafish. In this study, we describe the performance of the assessment of welfare parameters of selected pathologic phenotypes and abnormalities frequently found in laboratory fish facilities based on veterinary, biological, and physiological aspects by using a dedicated score sheet. In a colony of zebrafish, we evaluated the frequency of genotype-independent abnormalities observed within 3 years. We give examples for severity classification and measures once an abnormality has been identified according to the 3Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
- Sibylle Sabrautzki
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Manuel Miller
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
12
|
Dyková I, Žák J, Reichard M, Součková K, Slabý O, Bystrý V, Blažek R. Histopathology of laboratory-reared Nothobranchius fishes: Mycobacterial infections versus neoplastic lesions. JOURNAL OF FISH DISEASES 2021; 44:1179-1190. [PMID: 33844322 DOI: 10.1111/jfd.13378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Short-lived killifishes of the genus Nothobranchius Peters, 1868 (Cyprinodontiformes) are considered promising model organisms for biomedical research on ageing and tumorigenesis. We conducted histopathological analysis of 411 adult individuals from three Nothobranchius species to study details on spontaneous age-related neoplastic lesions. Light microscopy based on H&E and toluidine blue-stained sections revealed (a) non-proliferative liver changes with pronounced vacuolation of hepatocytes; (b) proliferation of kidney haemopoietic tissue contributing to excretory system damage; (c) proliferation of splenic mononuclear haemoblasts accompanied by reduced erythropoiesis; (d) proliferation of mononuclear cell aggregates in the liver parenchyma; and (e) rare occurrence of hepatocellular adenomas. Ziehl-Neelsen (ZN) staining revealed that the proliferative lesions are a host defence response to mycobacterial infections manifested by activation of the mononuclear phagocytic system and atypical granulomatous inflammatory reaction. 16S rRNA analysis identified three species of Mycobacterium in our samples. Our findings turn attention to lesions which mimic neoplasms by their gross appearance and question the light microscopic interpretation of lesions unless differential ZN staining is included. Beyond the limitations of our morphological approach, the intensity of mycobacterial infections is a challenging opportunity for research into the molecular-genetic background of the mononuclear phagocytic system reaction in Nothobranchius killifish.
Collapse
Affiliation(s)
- Iva Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Žák
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Brno, Czech Republic
| | - Martin Reichard
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kamila Součková
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ondřej Slabý
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vojtěch Bystrý
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Radim Blažek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
13
|
Kent ML, Murray KN, Hobbs MR, Weiss LM, Spagnoli ST, Sanders JL. Intranuclear inclusions consistent with a Nucleospora sp. in a lymphoid lesion in a laboratory zebrafish, Danio rerio (Hamilton 1822). JOURNAL OF FISH DISEASES 2021; 44:107-112. [PMID: 33098687 PMCID: PMC7924166 DOI: 10.1111/jfd.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 05/06/2023]
Affiliation(s)
- Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Maurine R. Hobbs
- Centralized Zebrafish Animal Resource, University of Utah, Salt Lake City, UT, USA
| | | | - Sean T. Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Justin L. Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
14
|
Brenes-Soto A, Tye M, Esmail MY. The Role of Feed in Aquatic Laboratory Animal Nutrition and the Potential Impact on Animal Models and Study Reproducibility. ILAR J 2020; 60:197-215. [PMID: 33094819 DOI: 10.1093/ilar/ilaa006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Feed plays a central role in the physiological development of terrestrial and aquatic animals. Historically, the feeding practice of aquatic research species derived from aquaculture, farmed, or ornamental trades. These diets are highly variable, with limited quality control, and have been typically selected to provide the fastest growth or highest fecundity. These variations of quality and composition of diets may affect animal/colony health and can introduce confounding experimental variables into animal-based studies that impact research reproducibility.
Collapse
Affiliation(s)
- Andrea Brenes-Soto
- Department of Animal Science, University of Costa Rica, San José, Costa Rica
| | - Marc Tye
- Zebrafish Core Facility, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Michael Y Esmail
- Tufts Comparative Medicine Services, Tufts University Health Science Campus, Boston, Massachusetts
| |
Collapse
|
15
|
Pierson E, Wouters J. Biochemical characterization of phosphoserine phosphatase SerB2 from Mycobacterium marinum. Biochem Biophys Res Commun 2020; 530:739-744. [PMID: 32782143 DOI: 10.1016/j.bbrc.2020.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
SerB2 is an essential phosphoserine phosphatase (PSP) that has been shown to be involved in Mycobacterium tuberculosis (Mtb) immune evasion mechanisms, and a drug target for the development of new antitubercular agents. A highly similar (91.0%) orthologous enzyme exists in the surrogate organism Mycobacterium marinum (Mma) and could have acquired similar properties. By homology modeling, we show that the two PSPs are expected to exhibit almost identical architectures. MmaSerB2 folds into a homodimer formed by two intertwined subunits including two ACT regulatory domains followed by a catalytic core typical of HAD (haloacid dehalogenase) phosphatases. Their in vitro catalytic properties are closely related as MmaSerB2 also depends on Mg2+ for the dephosphorylation of its substrate, O-phospho-l-serine (PS), and is most active at neutral pH and temperatures around 40 °C. Moreover, an enzyme kinetics study revealed that the enzyme is inhibited by PS as well, but at lower concentrations than MtbSerB2. Substrate inhibition could occur through the binding of PS in the second active site and/or at the ACT domains interface. Finally, previously described beta-carboline MtbSerB2 inhibitors also decrease the phosphatase activity of MmaSerB2. Altogether, these results provide useful information when M.marinum is used as a model to study immune evasion in tuberculosis.
Collapse
Affiliation(s)
- Elise Pierson
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Medicine and Drug Innovation Center (NAMEDIC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), B-5000, Namur, Belgium.
| | - Johan Wouters
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Medicine and Drug Innovation Center (NAMEDIC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), B-5000, Namur, Belgium
| |
Collapse
|
16
|
Kent M, Sanders J, Spagnoli S, Al-Samarrie C, Murray K. Review of diseases and health management in zebrafish Danio rerio (Hamilton 1822) in research facilities. JOURNAL OF FISH DISEASES 2020; 43:637-650. [PMID: 32291793 PMCID: PMC7253333 DOI: 10.1111/jfd.13165] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 05/09/2023]
Abstract
The use of zebrafish (Danio rerio) in biomedical research has expanded at a tremendous rate over the last two decades. Along with increases in laboratories using this model, we are discovering new and important diseases. We review here the important pathogens and diseases based on some 20 years of research and findings from our diagnostic service at the NIH-funded Zebrafish International Resource Center. Descriptions of the present status of biosecurity programmes and diagnostic and treatment approaches are included. The most common and important diseases and pathogens are two parasites, Pseudoloma neurophilia and Pseudocapillaria tomentosa, and mycobacteriosis caused by Mycobacterium chelonae, M. marinum and M. haemophilum. Less common but deadly diseases are caused by Edwardsiella ictaluri and infectious spleen and kidney necrosis virus (ISKNV). Hepatic megalocytosis and egg-associated inflammation and fibroplasia are common, apparently non-infectious, in zebrafish laboratories. Water quality diseases include supersaturation and nephrocalcinosis. Common neoplasms are spindle cell sarcomas, ultimobranchial tumours, spermatocytic seminomas and a small-cell carcinoma that is caused by a transmissible agent. Despite the clear biosecurity risk, researchers continue to use fish from pet stores, and here, we document two novel coccidia associated with significant lesions in zebrafish from one of these stores.
Collapse
Affiliation(s)
- M.L Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - J.L. Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - S. Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - C.E. Al-Samarrie
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331
| | - K.N. Murray
- Zebrafish International Resource Center, Eugene, Oregon 97403
| |
Collapse
|
17
|
Kent ML, Sanders JL, Spagnoli S, Al-Samarrie CE, Murray KN. Review of diseases and health management in zebrafish Danio rerio (Hamilton 1822) in research facilities. JOURNAL OF FISH DISEASES 2020; 43:637-650. [PMID: 32291793 DOI: 10.1111/jfd.13165j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 05/22/2023]
Abstract
The use of zebrafish (Danio rerio) in biomedical research has expanded at a tremendous rate over the last two decades. Along with increases in laboratories using this model, we are discovering new and important diseases. We review here the important pathogens and diseases based on some 20 years of research and findings from our diagnostic service at the NIH-funded Zebrafish International Resource Center. Descriptions of the present status of biosecurity programmes and diagnostic and treatment approaches are included. The most common and important diseases and pathogens are two parasites, Pseudoloma neurophilia and Pseudocapillaria tomentosa, and mycobacteriosis caused by Mycobacterium chelonae, M. marinum and M. haemophilum. Less common but deadly diseases are caused by Edwardsiella ictaluri and infectious spleen and kidney necrosis virus (ISKNV). Hepatic megalocytosis and egg-associated inflammation and fibroplasia are common, apparently non-infectious, in zebrafish laboratories. Water quality diseases include supersaturation and nephrocalcinosis. Common neoplasms are spindle cell sarcomas, ultimobranchial tumours, spermatocytic seminomas and a small-cell carcinoma that is caused by a transmissible agent. Despite the clear biosecurity risk, researchers continue to use fish from pet stores, and here, we document two novel coccidia associated with significant lesions in zebrafish from one of these stores.
Collapse
Affiliation(s)
- M L Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | - J L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | - S Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | - C E Al-Samarrie
- Department of Microbiology, Oregon State University, Corvallis, Oregon
| | - K N Murray
- Zebrafish International Resource Center, Eugene, Oregon
| |
Collapse
|
18
|
Drakou A, Psifis M, Mitrou A, Zygoggianis K, Argyropoulou O. Unresolved swelling of the hand: Think of Mycobacterium marinum infection. Trauma Case Rep 2020; 26:100283. [PMID: 32021897 PMCID: PMC6994711 DOI: 10.1016/j.tcr.2020.100283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2020] [Indexed: 12/03/2022] Open
Abstract
The surgical intervention and adjuvant locally applied measures to reduce the impact of a severe cutaneous hand infection caused by Mycobacterium marinum in a 48-year-old diver, receiving anti-TNFa (anti-tumor necrosis factor αlpha) treatment are presented herein. Careful surgical intervention- considered controversial so far-and lateral thinking are essential for the outcome of musculoskeletal infections caused by M marinum. Locally applied disinfection strategies inspired from fields other than medical (e.g. environmental biology) and clearly set surgery goals - aiming at optimizing tissue sampling, antibiotic penetration, decompression while preventing iatrogenic spread are discussed.
Collapse
Affiliation(s)
- A Drakou
- Orthopaedic Department, Laiko Hospital University of Athens, Greece
| | - M Psifis
- Orthopaedic Department, Laiko Hospital University of Athens, Greece
| | - A Mitrou
- Orthopaedic Department, Laiko Hospital University of Athens, Greece
| | - K Zygoggianis
- Orthopaedic Department, Laiko Hospital University of Athens, Greece
| | - Ourania Argyropoulou
- University Department of Pathologic Physiology, Kapodistrian University of Athens, Laiko Hospital University of Athens, Greece
| |
Collapse
|
19
|
Kan Y, Meng L, Xie L, Liu L, Dong W, Feng J, Yan Y, Zhao C, Peng G, Wang D, Lu M, Yang C, Niu C. Temporal modulation of host aerobic glycolysis determines the outcome of Mycobacterium marinum infection. FISH & SHELLFISH IMMUNOLOGY 2020; 96:78-85. [PMID: 31775059 DOI: 10.1016/j.fsi.2019.11.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Macrophages are the first-line host defense that the invading Mycobacterium tuberculosis (Mtb) encounters. It has been recently reported that host aerobic glycolysis was elevated post the infection by a couple of virulent mycobacterial species. However, whether this metabolic transition is required for host defense against intracellular pathogens and the underlying mechanisms remain to be further investigated. A pathogenic mycobacterial species, M. marinum, is genetically close to Mtb and was utilized in this study. Through analyzing cellular carbon metabolism of RAW 264.7 (a murine macrophage-like cell line) post M. marinum infection, a strong elevation of glycolysis was observed. Next, three glycolysis inhibitors were examined for their ability to inhibit mycobacterial proliferation inside RAW264.7 macrophages. Among them, a glucose analog, 2-deoxyglucose (2-DG) displayed a protective role against mycobacterial infection. Treatment with 2-DG at concentrations of 0.5 or 1 mM significantly induced autophagy and decreased the phagocytosis of M. marinum by macrophages. Moreover, 2-DG pre-treatment exerted a significantly protective effect on zebrafish larvae by limiting the proliferation of M. marinum, and such effect was correlated to tumor necrosis factor alpha (TNF-α) as the 2-DG pre-treatment increased the expression of TNF-α in both mouse peritoneal macrophages and zebrafish. On the contrary, the 2-DG treatment post infection did not restrain proliferation of M. marinum in WT zebrafish, and even accelerated bacterial replication in TNF-α-/- zebrafish. Together, modulation of glycolysis prior to infection boosts host immunity against M. marinum infection, indicating a potential intervention strategy to control mycobacterial infection.
Collapse
Affiliation(s)
- Yuanqing Kan
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Meng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, China
| | - Lingling Xie
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixia Liu
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Wenyue Dong
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Jintao Feng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Yan
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Zhao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gang Peng
- Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, 443002, China
| | - Mingfang Lu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Yang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Chen Niu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
O'Rourke DP, Baccanale CL, Stoskopf MK. Nontraditional Laboratory Animal Species (Cephalopods, Fish, Amphibians, Reptiles, and Birds). ILAR J 2019; 59:168-176. [PMID: 30462255 DOI: 10.1093/ilar/ily003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Aquatic vertebrates and cephalopods, amphibians, reptiles, and birds offer unique safety and occupational health challenges for laboratory animal personnel. This paper discusses environmental, handling, and zoonotic concerns associated with these species.
Collapse
Affiliation(s)
- Dorcas P O'Rourke
- Dorcas P. O'Rourke, DVM, MS, DACLAM, is Professor and Chair of the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Cecile L. Baccanale, DVM, is Associate Professor in the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Michael K. Stoskopf, DVM, PhD, DACZM, is Professor in the Department of Clinical Sciences, at the College of Veterinary Medicine as well as the Colleges of Natural Resources, Science, and Engineering at North Carolina State University in Raleigh, North Carolina
| | - Cecile L Baccanale
- Dorcas P. O'Rourke, DVM, MS, DACLAM, is Professor and Chair of the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Cecile L. Baccanale, DVM, is Associate Professor in the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Michael K. Stoskopf, DVM, PhD, DACZM, is Professor in the Department of Clinical Sciences, at the College of Veterinary Medicine as well as the Colleges of Natural Resources, Science, and Engineering at North Carolina State University in Raleigh, North Carolina
| | - Michael K Stoskopf
- Dorcas P. O'Rourke, DVM, MS, DACLAM, is Professor and Chair of the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Cecile L. Baccanale, DVM, is Associate Professor in the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Michael K. Stoskopf, DVM, PhD, DACZM, is Professor in the Department of Clinical Sciences, at the College of Veterinary Medicine as well as the Colleges of Natural Resources, Science, and Engineering at North Carolina State University in Raleigh, North Carolina
| |
Collapse
|
21
|
Miller M, Sabrautzki S, Beyerlein A, Brielmeier M. Combining fish and environmental PCR for diagnostics of diseased laboratory zebrafish in recirculating systems. PLoS One 2019; 14:e0222360. [PMID: 31513657 PMCID: PMC6742364 DOI: 10.1371/journal.pone.0222360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
Precise knowledge of the health status of experimental fish is crucial to obtain high scientific and ethical standards in biomedical research. In addition to the use of sentinel fish, the examination of diseased fish is a fundamental part of all health monitoring concepts. PCR assays offer excellent sensitivity and the ability to test a broad variety of pathogenic agents in different sample types. Recently, it was shown that analysis of environmental samples such as water, sludge or detritus from static tanks can complement PCR analysis of fish and is actually more reliable for certain pathogens. In our study, we investigated whether the analysis of filtered water mixed with detritus of tanks including fish showing clinical signs of illness is suitable to complement health monitoring programs in recirculating systems. The obtained data indicate that pathogens such as Pseudoloma neurophilia or Myxidium streisingeri were exclusively or mainly found in fish, while mycobacteria were predominantly present in environmental samples. A combination of both sample types seems to be required for the detection of a broad range of infectious agents in zebrafish colonies using real-time PCR technology.
Collapse
Affiliation(s)
- Manuel Miller
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- * E-mail:
| | - Sibylle Sabrautzki
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Beyerlein
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
22
|
Chang CT, Lewis J, Whipps CM. Source or Sink: Examining the Role of Biofilms in Transmission of Mycobacterium spp. in Laboratory Zebrafish. Zebrafish 2019; 16:197-206. [PMID: 30835168 DOI: 10.1089/zeb.2018.1689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zebrafish health is a primary research concern because diseases can have unintended impacts on experimental endpoints. Ideally, research would be conducted using disease-free fish or fish with known disease status. Mycobacteriosis is a common bacterial disease in wild and captive fishes, including zebrafish. Despite its prevalence, the dynamics of transmission and potential sources of mycobacterial infections in zebrafish are only partially understood. One suspected natural infection source is surface biofilms on tanks and other system components. This study investigates the role that tank biofilms play in mycobacteriosis in laboratory zebrafish by evaluating the establishment of biofilms from bacteria shed from fish, and conversely, the acquisition of infections in fish from surface biofilms. We found that zebrafish infected with Mycobacterium chelonae shed bacteria through feces, and bacteria are transmitted to tank biofilms from one to 16 weeks postinfection. We also found that zebrafish acquire M. chelonae infections as soon as 2 weeks when introduced to tanks with established M. chelonae biofilms. The results from this study highlight the role that tank biofilms play as both a reservoir and source of mycobacterial infections in zebrafish. Results support the inclusion of biofilm surveillance and prevention as part of a disease control program in zebrafish research facilities.
Collapse
Affiliation(s)
- Carolyn T Chang
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| | - Jet'aime Lewis
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| | - Christopher M Whipps
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| |
Collapse
|
23
|
Rácz A, Dwyer T, Killen SS. Overview of a Disease Outbreak and Introduction of a Step-by-Step Protocol for the Eradication of Mycobacterium haemophilum in a Zebrafish System. Zebrafish 2018; 16:77-86. [PMID: 30358522 PMCID: PMC6357262 DOI: 10.1089/zeb.2018.1628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In 2017, the zebrafish unit at University of Glasgow experienced a detrimental outbreak of pathogenic bacterium, Mycobacterium haemophilum. The presence of other bacterial species was also confirmed by bacteriology growth in the same unit. The affected individuals composed of a wild-origin parental population sourced from India and their F1 offspring generation. Bacteria were diagnostically confirmed to be present systemically in fish and within the water and biofilm of the recirculating zebrafish system. In the absence of a publicly accessible step-by-step disinfectant protocol for these difficult-to-eliminate pathogens, we devised a successful procedure to eradicate mycobacteria and Aeromonas species after colony removal using Cleanline Chlorine tablets (active ingredient Sodium dichloroisocyanurate) and Virkon Aquatic®. Postdisinfection diagnostics did not detect pathogens in the system or in the new fish inhabiting the system that were tested. Newly established fish colonies have not shown similar clinical signs or disease-induced mortality in the 1-year period following system disinfection and repopulation. We present a historical background of the bacterial outbreak and a disinfection method which can be replicated in other zebrafish facilities—at small or large scales—for reliable mycobacterium removal. This procedure can be implemented as a disinfection protocol before the introduction of a new fish population to a previously contaminated system.
Collapse
Affiliation(s)
- Anita Rácz
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Toni Dwyer
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,2 Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Shaun S Killen
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
López V, Risalde MA, Contreras M, Mateos-Hernández L, Vicente J, Gortázar C, de la Fuente J. Heat-inactivated Mycobacterium bovis protects zebrafish against mycobacteriosis. JOURNAL OF FISH DISEASES 2018; 41:1515-1528. [PMID: 29956837 DOI: 10.1111/jfd.12847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Control of mycobacterial infection constitutes a priority for human and animal health worldwide. However, effective vaccines are needed for the control of human and animal tuberculosis (TB). Adult zebrafish have become a useful model for studying the pathophysiology of mycobacterial infection and for the development of novel interventions for TB control and prevention. Recently, parenteral and oral immunization with the heat-inactivated Mycobacterium bovis vaccine (M. bovis IV) protected wild boar against TB. The objectives of this study were to provide additional support for the role of M. bovis IV in TB control using the zebrafish model and to conduct the first trial with this vaccine for the control of fish mycobacteriosis. The results showed that M. bovis IV protected zebrafish against mycobacteriosis caused by low and high infection doses of Mycobacterium marinum and provided evidence suggesting that the protective mechanism elicited by M. bovis IV in zebrafish as in other species is based on the activation of the innate immune response through the C3 pathway, with a role for the regulatory protein Akr2 in this process. These results encourage the use of M. bovis IV for TB control in different species.
Collapse
Affiliation(s)
- Vladimir López
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - María Angeles Risalde
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Marinela Contreras
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Joaquin Vicente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, SaBio, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
25
|
Sunil V, Harris AW, Sine B, Holt AM, Noseworthy AL, Sider D, Jamieson FB, White S, Johnston C, Spohn O. Investigation of a community cluster of cutaneous Mycobacterium marinum infection, an emerging zoonotic pathogen in aquaculture industry, Haliburton, Kawartha, Pine Ridge District Health Unit, Ontario, Canada, July-August 2015. Zoonoses Public Health 2018; 66:164-168. [PMID: 30144283 DOI: 10.1111/zph.12521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 08/05/2018] [Indexed: 11/29/2022]
Abstract
In July 2015, a cluster of five suspect cases of clinically diagnosed Mycobacterium marinum (M. marinum) skin infections were reported to the Haliburton, Kawartha, Pine Ridge District Health Unit (HKPRDHU), Ontario, Canada, with two additional cases subsequently identified through case finding. All seven cases presented with cutaneous lesions located on the finger, hand and/or elbow regions typical of M. marinum infection. Specimens were collected by skin biopsy for two of the seven cases; both cases tested positive for M. marinum by molecular detection (hsp65 gene amplification and sequencing), and one was confirmed positive for M. marinum by culture. All seven cases reported handling raw shrimp from an aquaculture facility in the Health Unit's jurisdiction. M. marinum is not a reportable disease in Ontario, and there are no known previous reports of a cluster of M. marinum reported in Ontario, Canada. A cluster investigation working group was struck that included representation from various agencies including Public Health Ontario (PHO), Public Health Ontario Laboratories (PHOL), Ontario Ministry of Agriculture and Rural Affairs (OMAFRA) and the two health units involved in case investigations. Several public health and aquaculture farming recommendations were made to mitigate further risks associated with handling of raw shrimp from the facility. Several challenges were faced during the investigation process. The paper discusses these challenges and public health recommendations made in order to mitigate occupational and public health risks related to the hazard identified.
Collapse
Affiliation(s)
- Vidya Sunil
- Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Andrew W Harris
- Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Bob Sine
- Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Anne Marie Holt
- Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - A Lynn Noseworthy
- Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Doug Sider
- Public Health Ontario, Toronto, Ontario, Canada
| | | | - Shelley White
- Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Cassandra Johnston
- Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| | - Olivia Spohn
- Haliburton, Kawartha, Pine Ridge District Health Unit, Port Hope, Ontario, Canada
| |
Collapse
|
26
|
Varga ZM, Lawrence C, Ekker SC, Eisen JS. Universal Healthcare for Zebrafish. Zebrafish 2018; 13 Suppl 1:S1-4. [PMID: 27351616 DOI: 10.1089/zeb.2016.1311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zoltán M Varga
- 1 Zebrafish International Resource Center, University of Oregon , Eugene, Oregon
| | - Christian Lawrence
- 2 Aquatic Resources Program, Boston Children's Hospital, Boston, Massachusetts
| | - Stephen C Ekker
- 3 Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center , Rochester, Minnesota
| | - Judith S Eisen
- 4 Institute of Neuroscience, University of Oregon , Eugene, Oregon
| |
Collapse
|
27
|
Mocho JP, Martin DJ, Millington ME, Saavedra Torres Y. Environmental Screening of Aeromonas hydrophila, Mycobacterium spp., and Pseudocapillaria tomentosa in Zebrafish Systems. J Vis Exp 2017. [PMID: 29286459 PMCID: PMC5755534 DOI: 10.3791/55306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Health monitoring systems are developed and used in zebrafish research facilities because pathogens of Danio rerio such as Aeromonas hydrophila, Mycobacterium spp., and Pseudocapillaria tomentosa have the potential to impair animal welfare and research. The fish are typically analyzed post mortem to detect microbes. The use of sentinels is a suggested way to improve the sensitivity of the surveillance and to reduce the number of animals to sample. The setting of a pre-filtration sentinel tank out of a recirculating system is described. The technique is developed to prevent water pollution and to represent the fish population by a careful selection of age, gender, and strains. In order to use the minimum number of animals, techniques to screen the environment are also detailed. Polymerase Chain Reaction (PCR) on surface sump swabs is used to significantly improve the detection of some prevalent and pathogenic mycobacterial species such as Mycobacterium fortuitum, Mycobacterium haemophilum, and Mycobacterium chelonae. Another environmental method consists of processing the sludge at the bottom of a holding tank or sump to look for P. tomentosa eggs. This is a cheap and fast technique that can be applied in quarantine where a breeding device is submerged into the holding tank of imported animals. Finally, PCR is applied to the sludge sample and A. hydrophila is detected at the sump's bottom and surface. Generally, these environmental screening techniques applied to these specific pathogens have led to an increased sensitivity compared to the testing of pre-filtration sentinels.
Collapse
|
28
|
Tsang B, Zahid H, Ansari R, Lee RCY, Partap A, Gerlai R. Breeding Zebrafish: A Review of Different Methods and a Discussion on Standardization. Zebrafish 2017; 14:561-573. [PMID: 28873037 DOI: 10.1089/zeb.2017.1477] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, a rapidly increasing number of scientific papers have been published that utilize zebrafish (Danio rerio) as an alternative model organism in the study of a wide range of biological phenomena from cancer to behavior. This is, in large part, due to the prolific nature, relative ease of maintenance, and sufficiently high genetic homology of zebrafish to humans. With the surge of zebrafish use in animal research, the variations in methodologies of breeding and husbandry of this species have also increased. Investigators usually focus on the development and implementation of rigorous laboratory control that is specific to their studies. We suggest that the same scrutiny and attention may be required for the methods of breeding and housing of zebrafish. This article reviews a variety of zebrafish husbandry and breeding techniques and conditions employed around the world. It discusses factors ranging from numerous aspects of rearing/housing conditions through the sex ratio of the breeding group to the composition of the diet of zebrafish that may vary across laboratories. It provides some feedback on the potential pros and cons of the different methods. It argues that there is a substantial need for systematic analysis of these methods, that is, the effects of environmental factors on zebrafish health and breeding. It also discusses the question as to whether some degree of standardization of these methods is needed to enhance cross-laboratory comparability of results.
Collapse
Affiliation(s)
- Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| | - Hifsa Zahid
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| | - Rida Ansari
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| | | | - Aman Partap
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| |
Collapse
|
29
|
Lidster K, Readman GD, Prescott MJ, Owen SF. International survey on the use and welfare of zebrafish Danio rerio in research. JOURNAL OF FISH BIOLOGY 2017; 90:1891-1905. [PMID: 28220489 DOI: 10.1111/jfb.13278] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
A survey was conducted regarding zebrafish Danio rerio use for scientific research with a focus on: anaesthesia and euthanasia; housing and husbandry; breeding and production; refinement opportunities. A total of 98 survey responses were received from laboratories in 22 countries in Europe, North America, South America, Asia and Australia. There appears a clear and urgent need to identify the most humane methods of anaesthesia and euthanasia. Aversive responses to MS-222 were widely observed raising concerns about the use of this anaesthetic for D. rerio. The use of anaesthesia in fin clipping for genetic identification is widely practised and there appears to be an opportunity to further develop less invasive methods and refine this process. Optimization (and potentially standardization) of feeding is an area for further investigation. Given that diet and body condition can have such profound effects on results of experiments, differences in practice could have significant scientific implications. Further research into transition between dark and light phases in the laboratory appears to represent an opportunity to establish best practice. Plants and gravel were not considered practical by many laboratories. The true value and benefits need to be established and communicated. Overproduction is a concern both from ethical and financial viewpoints. There is an opportunity to further reduce wastage of D. rerio. There are clear concerns and opportunities for the scientific community to work together to further improve the welfare of these important laboratory models.
Collapse
Affiliation(s)
- K Lidster
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, U.K
| | - G D Readman
- University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, U.K
| | - M J Prescott
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, U.K
| | - S F Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, U.K
| |
Collapse
|
30
|
Meritet DM, Mulrooney DM, Kent ML, Löhr CV. Development of Quantitative Real-Time PCR Assays for Postmortem Detection of Mycobacterium spp. Common in Zebrafish ( Danio rerio) Research Colonies. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2017; 56:131-141. [PMID: 28315641 PMCID: PMC5361037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Mycobacterium spp. infections are common in zebrafish kept in research facilities. These comorbidities can substantially modulate the responses of these fish to external and internal stimuli. Therefore, diagnostic tests to detect Mycobacterium spp. infections in zebrafish colonies prove essential. Here, we outline the development of quantitative simplex real-time PCR assays to detect the 3 Mycobacterium species most commonly identified in laboratory zebrafish. The assays targeted the heatshock protein 65 gene of M. marinum, M. chelonae, and M. haemophilum. The assays are both highly specific and sensitive for fresh-frozen samples and highly specific and moderately sensitive for formalin-fixed paraffin-embedded (FFPE) samples. Two sampling techniques for FFPE samples of sagittally sectioned zebrafish were evaluated. Both paraffin cores targeting granulomas containing bacteria and scrolls from the entire fish yielded DNA of equivalent quantity and purity. The diagnostic sensitivity of cores was superior to that of scrolls for M. chelonae and M. haemophilum but not M. marinum. The assays are cost-effective and ideally suited to diagnosing common Mycobacterium spp. infections in zebrafish.
Collapse
Affiliation(s)
- Danielle M Meritet
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Donna M Mulrooney
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Michael L Kent
- Department of Biomedical Sciences, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon
| | - Christiane V Löhr
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon;,
| |
Collapse
|
31
|
Melancon E, De La Torre Canny SG, Sichel S, Kelly M, Wiles T, Rawls J, Eisen J, Guillemin K. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol 2017; 138:61-100. [PMID: 28129860 PMCID: PMC5568843 DOI: 10.1016/bs.mcb.2016.11.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All animals are ecosystems with resident microbial communities, referred to as microbiota, which play profound roles in host development, physiology, and evolution. Enabled by new DNA sequencing technologies, there is a burgeoning interest in animal-microbiota interactions, but dissecting the specific impacts of microbes on their hosts is experimentally challenging. Gnotobiology, the study of biological systems in which all members are known, enables precise experimental analysis of the necessity and sufficiency of microbes in animal biology by deriving animals germ-free (GF) and inoculating them with defined microbial lineages. Mammalian host models have long dominated gnotobiology, but we have recently adapted gnotobiotic approaches to the zebrafish (Danio rerio), an important aquatic model. Zebrafish offer several experimental attributes that enable rapid, large-scale gnotobiotic experimentation with high replication rates and exquisite optical resolution. Here we describe detailed protocols for three procedures that form the foundation of zebrafish gnotobiology: derivation of GF embryos, microbial association of GF animals, and long-term, GF husbandry. Our aim is to provide sufficient guidance in zebrafish gnotobiotic methodology to expand and enrich this exciting field of research.
Collapse
Affiliation(s)
- E. Melancon
- University of Oregon, Eugene, OR, Unites States
| | | | - S. Sichel
- University of Oregon, Eugene, OR, Unites States
| | - M. Kelly
- University of Oregon, Eugene, OR, Unites States
| | - T.J. Wiles
- University of Oregon, Eugene, OR, Unites States
| | - J.F. Rawls
- Duke University, Durham, NC, United States
| | - J.S. Eisen
- University of Oregon, Eugene, OR, Unites States
| | - K. Guillemin
- University of Oregon, Eugene, OR, Unites States
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|