1
|
Osawa MT, Fujita Y, Kagami K, Ito M, Tamura Y, Tateishi S, Take J, Hirose F, Hagiwara H, Imai K, Yoshinaga D, Baba S, Osawa M, Harashima H, Murayama K, Akioka Y, Ohtake A, Suzuki I, Adachi T, Yamazaki T, Arai S, Matsumoto S, Kitaguchi T, Saito MK, Ohsawa I, Nonoyama S. Cardiac dysfunction due to mitochondrial impairment assessed by human iPS cells caused by DNM1L mutations. Pediatr Res 2025:10.1038/s41390-025-04045-6. [PMID: 40269254 DOI: 10.1038/s41390-025-04045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND DNM1L encodes dynamin-related protein 1, which plays an important role in mitochondrial and peroxisomal division. The DNM1L mutation leads to cardiac dysfunction in patients and animal models. However, the mechanism of cardiac dysfunction caused by DNM1L mutation has not been elucidated clearly at least in the studies of human cardiomyocytes. METHODS We established human induced pluripotent stem cells (hiPSCs) from two pediatric patients with DNM1L mutation. The hiPSCs were differentiated into hiPSC-derived cardiomyocytes (hiPS-CMs). Mitochondrial morphology and function, cardiomyocyte Ca2+ dynamics, and contractile and diastolic function of hiPS-CMs were analyzed. RESULTS The morphology of the mitochondria was abnormally elongated in patient-derived hiPS-CMs. The mitochondrial membrane potential and oxygen consumption rate were significantly decreased, resulting in reduced ATP production. In the analysis of Ca2+ dynamics, the 50% time to decay was significantly longer in patient-derived hiPS-CMs than in healthy control. High-precision live-imaging system analysis revealed that contractile and diastolic function was significantly impaired under isoproterenol stimulation. CONCLUSION DNM1L mutations cause mitochondrial impairment with less production of ATP in cardiomyocytes. This leads to abnormal intracellular Ca2+ dynamics, resulting in contractile and diastolic dysfunction. IMPACT DNM1L mutations was identified in two pediatric patients who developed cardiac dysfunction and human induced pluripotent stem cells (hiPSCs) were established from these two patients and differentiated into hiPSC-derived cardiomyocytes (hiPS-CMs). DNM1L mutations induced abnormal mitochondrial morphology, mitochondrial dysfunction, and insufficient ATP production in hiPS-CMs. In addition, hiPS-CMs with DNM1L mutation showed abnormal Ca2+ kinetics and impaired contractile and diastolic function. This is the first study that elucidate the mechanism of cardiac dysfunction caused by DNM1L mutations by using hiPSCs.
Collapse
Affiliation(s)
- Madori T Osawa
- Department of Pediatrics, National Defense Medical College, Saitama, Japan.
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan.
| | - Yasunori Fujita
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kazuki Kagami
- Department of Cardiovascular Medicine, National Defense Medical College, Saitama, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Saitama, Japan
| | - Yoshiteru Tamura
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Shoichiro Tateishi
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Junya Take
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Fumi Hirose
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Hidetoshi Hagiwara
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Daisuke Yoshinaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hiroko Harashima
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kei Murayama
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Yuko Akioka
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Miyagi, Japan
| | - Takeshi Adachi
- Department of Cardiovascular Medicine, National Defense Medical College, Saitama, Japan
| | - Takeru Yamazaki
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Satoshi Arai
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Shiro Matsumoto
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
2
|
Millot P, Duquesne L, San C, Porte B, Pujol C, Hosten B, Hugon J, Paquet C, Mouton-Liger F. Non-canonical STAT3 pathway induces alterations of mitochondrial dynamic proteins in the hippocampus of an LPS-induced murine neuroinflammation model. Neurochem Int 2025; 186:105979. [PMID: 40209854 DOI: 10.1016/j.neuint.2025.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The activation of STAT3 is a crossroads of cellular regulation, induced in its canonical pathway by phosphorylation on a critical tyrosine residue (Y705). The existence of a STAT3 non-canonical signaling mechanisms, induced by phosphorylation at serine 727 (S727), has been recently identified in vitro. After cytoplasmic activation, non-canonical STAT3 could move to the level of mitochondria-endoplasmic reticulum contacts (MERCs). We have previously shown that LPS injections in mouse model induce STAT3 canonical pathway, leading to its nuclear translocation and to neuroinflammation. However, the effects of LPS on activation of the non-canonical pathway and its consequences on protein complexes of MERCs remain to be determined. In an in vivo LPS mouse model, we found that systemic inflammation induces in hippocampus the non-canonical STAT3 pathway. LPS-induced STAT3 affects specifically MERC protein BAP31, and that of a mitochondrial membrane protein known to interact with it, TOM40. These findings shed light on the role of STAT3 on mitochondrial - endoplasmic reticulum interaction under inflammatory conditions, offering new perspectives for targeting mitochondrial function and STAT3 activation in disease contexts.
Collapse
Affiliation(s)
- Périne Millot
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM OTEN, UMRS 1144, CNRS, Fondation Pour l'Audition, IHU reConnect, F-75006, Paris, France
| | - Laurine Duquesne
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM OTEN, UMRS 1144, CNRS, Fondation Pour l'Audition, IHU reConnect, F-75006, Paris, France
| | - Carine San
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM OTEN, UMRS 1144, CNRS, Fondation Pour l'Audition, IHU reConnect, F-75006, Paris, France; Unité Claude Kellershohn, Institut de Recherche Saint-Louis, APHP Nord Université de Paris Cité, Saint Louis Hospital, Paris, France
| | - Baptiste Porte
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM OTEN, UMRS 1144, CNRS, Fondation Pour l'Audition, IHU reConnect, F-75006, Paris, France
| | - Claire Pujol
- Mitochondrial Biology Group, Institut Pasteur, CNRS UMR 3691, 75015, Paris, France
| | - Benoit Hosten
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM OTEN, UMRS 1144, CNRS, Fondation Pour l'Audition, IHU reConnect, F-75006, Paris, France; Unité Claude Kellershohn, Institut de Recherche Saint-Louis, APHP Nord Université de Paris Cité, Saint Louis Hospital, Paris, France
| | - Jacques Hugon
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM OTEN, UMRS 1144, CNRS, Fondation Pour l'Audition, IHU reConnect, F-75006, Paris, France; Centre de Neurologie Cognitive, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Claire Paquet
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM OTEN, UMRS 1144, CNRS, Fondation Pour l'Audition, IHU reConnect, F-75006, Paris, France; Centre de Neurologie Cognitive, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - François Mouton-Liger
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM OTEN, UMRS 1144, CNRS, Fondation Pour l'Audition, IHU reConnect, F-75006, Paris, France.
| |
Collapse
|
3
|
Shengmiao L, Xin D, Yue L, Lihua Y, Xiwang K, Yuhu Z. Genome-wide identification of the NAC family genes of adzuki bean and their roles in rust resistance through jasmonic acid signaling. BMC Genomics 2025; 26:283. [PMID: 40121461 PMCID: PMC11929360 DOI: 10.1186/s12864-025-11478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Adzuki bean (Vigna angularis) rust, caused by the fungus Uromyces vignae, is an important disease affecting adzuki bean yield and quality. Previously, several NAC transcription factors (TFs) were induced by rust infection in a resistant adzuki bean variety, suggesting that NAC TF members may play important roles in rust resistance. RESULTS To further explore the functions of NAC TFs in rust resistance and to provide a reference for resistant varietal breeding, 101 NAC TFs were identified from the adzuki bean genome. The synteny analysis revealed 25 pairs of VaNACs in the genome, which exhibited whole-genome/segmental duplication. Based on the phylogenetic relationships and conserved motif characteristics, the NAC TFs of V. angularis can be divided into 16 subfamilies. Previous transcriptome data showed that nine VaNACs are significantly induced by rust infection. Here, a cis-acting element analysis of these nine genes revealed that most contain hormone responsive elements, such as abscisic acid and methyl jasmonate (MeJA). The expression levels of these nine VaNACs were dynamically regulated in response to exogenous MeJA treatment, as revealed by quantitative real-time PCR analysis. Among them, seven VaNACs exhibited significantly upregulated expression, peaking at 12 h post treatment (hpt) and remaining significantly higher than that of the untreated control group for 48 hpt. These results suggest that these VaNACs are responsive to MeJA signaling and may play roles in the early and sustained transcriptional regulation of stress-related pathways. The exogenous MeJA decreased rust severity on adzuki bean leaves by 45.68%. Additionally, the expression levels of these nine genes in adzuki bean leaves in response to rust infection after pretreatment with MeJA were investigated. The expression of VaNAC002 rapidly peaked at 24 h post inoculation (hpi) and remained significantly higher than the control from 120 to 192 hpi. Subsequently, transient overexpression of VaNAC002 significantly enhanced the resistance of tobacco to Botrytis cinerea, indicating that VaNAC002 positively regulates plant disease resistance. CONCLUSION These findings suggest that adzuki bean NAC family members may play important roles in disease resistance through JA signaling, with VaNAC002 having a positive regulatory role in plant immunity.
Collapse
Affiliation(s)
- Liu Shengmiao
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Ding Xin
- Institute of Economic Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150000, China
| | - Li Yue
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yin Lihua
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Ke Xiwang
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zuo Yuhu
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
4
|
Li X, Zhao X, Qin Z, Li J, Sun B, Liu L. Regulation of calcium homeostasis in endoplasmic reticulum-mitochondria crosstalk: implications for skeletal muscle atrophy. Cell Commun Signal 2025; 23:17. [PMID: 39789595 PMCID: PMC11721261 DOI: 10.1186/s12964-024-02014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction. The sarcoendoplasmic reticulum calcium ATPase (SERCA) pump plays a key role in recapturing calcium, enabling the muscle to return to a relaxed state. A pivotal aspect of calcium homeostasis involves the dynamic interaction between mitochondria and the ER. This interaction includes local calcium signaling facilitated by RYRs and a "quasi-synaptic" mechanism formed by the IP3R-Grp75-VDAC/MCU axis, allowing rapid calcium uptake by mitochondria with minimal interference at the cytoplasmic level. Disruption of calcium transport can lead to mitochondrial calcium overload, triggering the opening of the mitochondrial permeability transition pore and subsequent release of reactive oxygen species and cytochrome C, ultimately resulting in muscle damage and atrophy. This review explores the complex relationship between the ER and mitochondria and how these organelles regulate calcium levels in skeletal muscle, aiming to provide valuable perspectives for future research on the pathogenesis of muscle diseases and the development of prevention strategies.
Collapse
Affiliation(s)
- Xuexin Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xin Zhao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zhengshan Qin
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jie Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Bowen Sun
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
5
|
Couto-Lima CA, Machado MCR, Anhezini L, Oliveira MT, Molina RADS, da Silva RR, Lopes GS, Trinca V, Colón DF, Peixoto PM, Monesi N, Alberici LC, Ramos RGP, Espreafico EM. EMC1 Is Required for the Sarcoplasmic Reticulum and Mitochondrial Functions in the Drosophila Muscle. Biomolecules 2024; 14:1258. [PMID: 39456191 PMCID: PMC11506464 DOI: 10.3390/biom14101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
EMC1 is part of the endoplasmic reticulum (ER) membrane protein complex, whose functions include the insertion of transmembrane proteins into the ER membrane, ER-mitochondria contact, and lipid exchange. Here, we show that the Drosophila melanogaster EMC1 gene is expressed in the somatic musculature and the protein localizes to the sarcoplasmic reticulum (SR) network. Muscle-specific EMC1 RNAi led to severe motility defects and partial late pupae/early adulthood lethality, phenotypes that are rescued by co-expression with an EMC1 transgene. Motility impairment in EMC1-depleted flies was associated with aberrations in muscle morphology in embryos, larvae, and adults, including tortuous and misaligned fibers with reduced size and weakness. They were also associated with an altered SR network, cytosolic calcium overload, and mitochondrial dysfunction and dysmorphology that impaired membrane potential and oxidative phosphorylation capacity. Genes coding for ER stress sensors, mitochondrial biogenesis/dynamics, and other EMC components showed altered expression and were mostly rescued by the EMC1 transgene expression. In conclusion, EMC1 is required for the SR network's mitochondrial integrity and influences underlying programs involved in the regulation of muscle mass and shape. We believe our data can contribute to the biology of human diseases caused by EMC1 mutations.
Collapse
Affiliation(s)
- Carlos Antonio Couto-Lima
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Maiaro Cabral Rosa Machado
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Lucas Anhezini
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
| | - Marcos Túlio Oliveira
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Roberto Augusto da Silva Molina
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo Ribeiro da Silva
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Vitor Trinca
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - David Fernando Colón
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Pablo M. Peixoto
- Baruch College and Graduate Center, The City University of New York, New York, NY 10010, USA
| | - Nadia Monesi
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ricardo Guelerman P. Ramos
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
6
|
Guo L. F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions: New insight and implications. Pharmacol Res 2024; 208:107393. [PMID: 39233058 DOI: 10.1016/j.phrs.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca2+ uptake contributes to Ca2+ storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate. Organelle communications are mediated by Ca2+/ROS signals, vesicle transport and membrane contact sites. The permeability transition pore (PTP) is an unselective channel that provides a release pathway for Ca2+/ROS, mtDNA and metabolites. F-ATP synthase inhibitory factor 1 (IF1) participates in regulation of PTP opening and is required for the translocation of transcriptional factors c-Myc/PGC1α to mitochondria to stimulate metabolic switch. IF1, a mitochondrial specific protein, has been suggested to regulate other organelles including nucleus, endoplasmic reticulum and lysosomes. IF1 may be able to mediate mitochondria-organelle interactions and cellular physiology through regulation of PTP activity.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
7
|
Liang Y, Li Y, Jiao Q, Wei M, Wang Y, Cui A, Li Z, Li G. Axonal mitophagy in retinal ganglion cells. Cell Commun Signal 2024; 22:382. [PMID: 39075570 PMCID: PMC11285280 DOI: 10.1186/s12964-024-01761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Neurons, exhibiting unique polarized structures, rely primarily on the mitochondrial production of ATP to maintain their hypermetabolic energy requirements. To maintain a normal energy supply, mitochondria are transported to the distal end of the axon. When mitochondria within the axon are critically damaged beyond their compensatory capacity, they are cleared via autophagosomal phagocytosis, and the degradation products are recycled to replenish energy. When the mitochondria are dysfunctional or their transport processes are blocked, axons become susceptible to degeneration triggered by energy depletion, resulting in neurodegenerative diseases. As the final checkpoint for mitochondrial quality control, axonal mitophagy is vital for neuronal growth, development, injury, and regeneration. Furthermore, abnormal axonal mitophagy is crucial in the pathogenesis of optic nerve-related diseases such as glaucoma. We review recent studies on axonal mitophagy and summarize the progress of research on axonal mitophagy in optic nerve-related diseases to provide insights into diseases associated with axonal damage in optic ganglion cells.
Collapse
Affiliation(s)
- Yang Liang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yulin Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Qing Jiao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Muyang Wei
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yan Wang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Aoteng Cui
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihui Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
8
|
Colpman P, Dasgupta A, Archer SL. The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: Implications for Dynamin-Related Protein 1 and Mitofusin2 in Hyperproliferative Diseases. Cells 2023; 12:1897. [PMID: 37508561 PMCID: PMC10378656 DOI: 10.3390/cells12141897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Mitochondria, which generate ATP through aerobic respiration, also have important noncanonical functions. Mitochondria are dynamic organelles, that engage in fission (division), fusion (joining) and translocation. They also regulate intracellular calcium homeostasis, serve as oxygen-sensors, regulate inflammation, participate in cellular and organellar quality control and regulate the cell cycle. Mitochondrial fission is mediated by the large GTPase, dynamin-related protein 1 (Drp1) which, when activated, translocates to the outer mitochondrial membrane (OMM) where it interacts with binding proteins (Fis1, MFF, MiD49 and MiD51). At a site demarcated by the endoplasmic reticulum, fission proteins create a macromolecular ring that divides the organelle. The functional consequence of fission is contextual. Physiological fission in healthy, nonproliferating cells mediates organellar quality control, eliminating dysfunctional portions of the mitochondria via mitophagy. Pathological fission in somatic cells generates reactive oxygen species and triggers cell death. In dividing cells, Drp1-mediated mitotic fission is critical to cell cycle progression, ensuring that daughter cells receive equitable distribution of mitochondria. Mitochondrial fusion is regulated by the large GTPases mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), which fuse the OMM, and optic atrophy 1 (OPA-1), which fuses the inner mitochondrial membrane. Mitochondrial fusion mediates complementation, an important mitochondrial quality control mechanism. Fusion also favors oxidative metabolism, intracellular calcium homeostasis and inhibits cell proliferation. Mitochondrial lipids, cardiolipin and phosphatidic acid, also regulate fission and fusion, respectively. Here we review the role of mitochondrial dynamics in health and disease and discuss emerging concepts in the field, such as the role of central versus peripheral fission and the potential role of dynamin 2 (DNM2) as a fission mediator. In hyperproliferative diseases, such as pulmonary arterial hypertension and cancer, Drp1 and its binding partners are upregulated and activated, positing mitochondrial fission as an emerging therapeutic target.
Collapse
Affiliation(s)
- Pierce Colpman
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
9
|
Podinić T, Werstuck G, Raha S. The Implications of Cannabinoid-Induced Metabolic Dysregulation for Cellular Differentiation and Growth. Int J Mol Sci 2023; 24:11003. [PMID: 37446181 DOI: 10.3390/ijms241311003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The endocannabinoid system (ECS) governs and coordinates several physiological processes through an integrated signaling network, which is responsible for inducing appropriate intracellular metabolic signaling cascades in response to (endo)cannabinoid stimulation. This intricate cellular system ensures the proper functioning of the immune, reproductive, and nervous systems and is involved in the regulation of appetite, memory, metabolism, and development. Cannabinoid receptors have been observed on both cellular and mitochondrial membranes in several tissues and are stimulated by various classes of cannabinoids, rendering the ECS highly versatile. In the context of growth and development, emerging evidence suggests a crucial role for the ECS in cellular growth and differentiation. Indeed, cannabinoids have the potential to disrupt key energy-sensing metabolic signaling pathways requiring mitochondrial-ER crosstalk, whose functioning is essential for successful cellular growth and differentiation. This review aims to explore the extent of cannabinoid-induced cellular dysregulation and its implications for cellular differentiation.
Collapse
Affiliation(s)
- Tina Podinić
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Geoff Werstuck
- Department of Medicine and the Thrombosis and Atherosclerosis Research Institute, David Braley Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Sandeep Raha
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
10
|
Bauer BL, Rochon K, Liu JC, Ramachandran R, Mears JA. Disease-associated mutations in Drp1 have fundamentally different effects on the mitochondrial fission machinery. Hum Mol Genet 2023; 32:1975-1987. [PMID: 36795043 PMCID: PMC10244223 DOI: 10.1093/hmg/ddad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Patient mutations have been identified throughout dynamin-related protein 1 (Drp1), the key protein mediator of mitochondrial fission. These changes generally impact young children and often result in severe neurological defects and, in some instances, death. Until now, the underlying functional defect leading to patient phenotypes has been largely speculative. We therefore analyzed six disease-associated mutations throughout the GTPase and middle domains (MD) of Drp1. The MD plays a role in Drp1 oligomerization, and three mutations in this region were predictably impaired in self-assembly. However, another mutant in this region (F370C) retained oligomerization capability on pre-curved membranes despite being assembly-limited in solution. Instead, this mutation impaired membrane remodeling of liposomes, which highlights the importance of Drp1 in generating local membrane curvature before fission. Two GTPase domain mutations were also observed in different patients. The G32A mutation was impaired in GTP hydrolysis both in solution and in the presence of lipid but remains capable of self-assembly on these lipid templates. The G223V mutation also exhibited decreased GTPase activity and was able to assemble on pre-curved lipid templates; however, this change impaired membrane remodeling of unilamellar liposomes similar to F370C. This demonstrates that the Drp1 GTPase domain also contributes to self-assembly interactions that drive membrane curvature. Overall, the functional defects caused by mutations in Drp1 are highly variable even for mutations that reside within the same functional domain. This study provides a framework for characterizing additional Drp1 mutations to provide a comprehensive understanding of functional sites within this essential protein.
Collapse
Affiliation(s)
- Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kristy Rochon
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jasmine C Liu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| |
Collapse
|
11
|
Song M, Fan X. Systemic Metabolism and Mitochondria in the Mechanism of Alzheimer's Disease: Finding Potential Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098398. [PMID: 37176104 PMCID: PMC10179273 DOI: 10.3390/ijms24098398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Elderly people over the age of 65 are those most likely to experience Alzheimer's disease (AD), and aging and AD are associated with apparent metabolic alterations. Currently, there is no curative medication against AD and only several drugs have been approved by the FDA, but these drugs can only improve the symptoms of AD. Many preclinical and clinical trials have explored the impact of adjusting the whole-body and intracellular metabolism on the pathogenesis of AD. The most recent evidence suggests that mitochondria initiate an integrated stress response to environmental stress, which is beneficial for healthy aging and neuroprotection. There is also an increasing awareness of the differential risk and potential targeting strategies related to the metabolic level and microbiome. As the main participants in intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been regarded as potential therapeutic targets for AD. This review summarizes and highlights these advances.
Collapse
Affiliation(s)
- Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
12
|
Yasuda T, Ishihara T, Ichimura A, Ishihara N. Mitochondrial dynamics define muscle fiber type by modulating cellular metabolic pathways. Cell Rep 2023; 42:112434. [PMID: 37097817 DOI: 10.1016/j.celrep.2023.112434] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
Skeletal muscle is highly developed after birth, consisting of glycolytic fast-twitch and oxidative slow-twitch fibers; however, the mechanisms of fiber-type-specific differentiation are poorly understood. Here, we found an unexpected role of mitochondrial fission in the differentiation of fast-twitch oxidative fibers. Depletion of the mitochondrial fission factor dynamin-related protein 1 (Drp1) in mouse skeletal muscle and cultured myotubes results in specific reduction of fast-twitch muscle fibers independent of respiratory function. Altered mitochondrial fission causes activation of the Akt/mammalian target of rapamycin (mTOR) pathway via mitochondrial accumulation of mTOR complex 2 (mTORC2), and rapamycin administration rescues the reduction of fast-twitch fibers in vivo and in vitro. Under Akt/mTOR activation, the mitochondria-related cytokine growth differentiation factor 15 is upregulated, which represses fast-twitch fiber differentiation. Our findings reveal a crucial role of mitochondrial dynamics in the activation of mTORC2 on mitochondria, resulting in the differentiation of muscle fibers.
Collapse
Affiliation(s)
- Tatsuki Yasuda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takaya Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Ayaka Ichimura
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan.
| |
Collapse
|
13
|
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:9. [PMID: 36742465 PMCID: PMC9894375 DOI: 10.20517/jca.2022.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a holistic perspective on the bi-directional relationship between cardiac mitochondrial dysfunction and myocardial structural remodeling in the context of metabolic heart disease, natural cardiac aging, and heart failure. First, a review of the physiologic and molecular drivers of cardiac mitochondrial dysfunction across a range of increasingly prevalent conditions such as metabolic syndrome and cardiac aging is presented, followed by a general review of the mechanisms of mitochondrial quality control (QC) in the heart. Several important mechanisms by which cardiac mitochondrial dysfunction triggers or contributes to structural remodeling of the heart are discussed: accumulated metabolic byproducts, oxidative damage, impaired mitochondrial QC, and mitochondrial-mediated cell death identified as substantial mechanistic contributors to cardiac structural remodeling such as hypertrophy and myocardial fibrosis. Subsequently, the less studied but nevertheless important reverse relationship is explored: the mechanisms by which cardiac structural remodeling feeds back to further alter mitochondrial bioenergetic function. We then provide a condensed pathogenesis of several increasingly important clinical conditions in which these relationships are central: diabetic cardiomyopathy, age-associated declines in cardiac function, and the progression to heart failure, with or without preserved ejection fraction. Finally, we identify promising therapeutic opportunities targeting mitochondrial function in these conditions.
Collapse
Affiliation(s)
- Benjamin Werbner
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
O'Reilly CL, Miller BF, Lewis TL. Exercise and mitochondrial remodeling to prevent age-related neurodegeneration. J Appl Physiol (1985) 2023; 134:181-189. [PMID: 36519568 PMCID: PMC9829476 DOI: 10.1152/japplphysiol.00611.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Healthy brain activity requires precise ion and energy management creating a strong reliance on mitochondrial function. Age-related neurodegeneration leads to a decline in mitochondrial function and increased oxidative stress, with associated declines in mitochondrial mass, respiration capacity, and respiration efficiency. The interdependent processes of mitochondrial protein turnover and mitochondrial dynamics, known together as mitochondrial remodeling, play essential roles in mitochondrial health and therefore brain function. This mini-review describes the role of mitochondria in neurodegeneration and brain health, current practices for assessing both aspects of mitochondrial remodeling, and how exercise mitigates the adverse effects of aging in the brain. Exercise training elicits functional adaptations to improve brain health, and current literature strongly suggests that mitochondrial remodeling plays a vital role in these positive adaptations. Despite substantial implications that the two aspects of mitochondrial remodeling are interdependent, very few investigations have simultaneously measured mitochondrial dynamics and protein synthesis. An improved understanding of the partnership between mitochondrial protein turnover and mitochondrial dynamics will provide a better understanding of their role in both brain health and disease, as well as how they induce protection following exercise.
Collapse
Affiliation(s)
- Colleen L O'Reilly
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Association, Oklahoma City, Oklahoma
| | - Tommy L Lewis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
15
|
Bera A, Lavanya G, Reshmi R, Dev K, Kumar R. Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer's disease. Eur J Neurosci 2022; 56:5516-5531. [PMID: 35078269 DOI: 10.1111/ejn.15611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Two major pathological hallmarks have been identified for AD: extracellular amyloid plaques and intracellular neurofibrillary tangles (NFT). Recently, dynamin-related protein 1 (Drp1) was recognized to contribute significantly towards the pathogenesis of AD. Drp1 is primarily located in the cytosol, from where it translocates to the mitochondrial outer membrane and drives the mitochondrial fission via GTP hydrolysis. Drp1 interacts with Aβ and phosphorylated tau, leading to excessive mitochondrial fragmentation, which in turn results in synaptic dysfunction, neuronal damage and cognitive decline. Several studies suggest an increase in the level of Drp1 in the post-mortem brain specimen collected from the AD patients and murine models of AD. Interestingly, heterozygous deletion of Drp1 in the transgenic murine model of AD ameliorates the mitochondrial dysfunction, improving learning and memory. The current review article discusses the possible mechanistic pathways by which Drp1 can influence the pathogenesis of AD. Besides, it will describe various inhibitors for Drp1 and their potential role as therapeutics for AD in the future.
Collapse
Affiliation(s)
- Arpita Bera
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Gantyada Lavanya
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Ravada Reshmi
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| |
Collapse
|
16
|
Pozo Devoto VM, Onyango IG, Stokin GB. Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci 2022; 16:959598. [PMID: 35990893 PMCID: PMC9389222 DOI: 10.3389/fncel.2022.959598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.
Collapse
Affiliation(s)
- Victorio M. Pozo Devoto
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Gorazd B. Stokin
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
- Division of Neurology, University Medical Centre, Ljubljana, Slovenia
- Department of Neurosciences, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022; 110:1899-1923. [PMID: 35429433 PMCID: PMC9233091 DOI: 10.1016/j.neuron.2022.03.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria generate ATP essential for neuronal growth, function, and regeneration. Due to their polarized structures, neurons face exceptional challenges to deliver mitochondria to and maintain energy homeostasis throughout long axons and terminal branches where energy is in high demand. Chronic mitochondrial dysfunction accompanied by bioenergetic failure is a pathological hallmark of major neurodegenerative diseases. Brain injury triggers acute mitochondrial damage and a local energy crisis that accelerates neuron death. Thus, mitochondrial maintenance defects and axonal energy deficits emerge as central problems in neurodegenerative disorders and brain injury. Recent studies have started to uncover the intrinsic mechanisms that neurons adopt to maintain (or reprogram) axonal mitochondrial density and integrity, and their bioenergetic capacity, upon sensing energy stress. In this review, we discuss recent advances in how neurons maintain a healthy pool of axonal mitochondria, as well as potential therapeutic strategies that target bioenergetic restoration to power neuronal survival, function, and regeneration.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
18
|
Norizuki T, Minamino N, Sato M, Tsukaya H, Ueda T. Dynamic rearrangement and autophagic degradation of mitochondria during spermiogenesis in the liverwort Marchantia polymorpha. Cell Rep 2022; 39:110975. [PMID: 35705033 DOI: 10.1016/j.celrep.2022.110975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria change their morphology in response to developmental and environmental cues. During sexual reproduction, bryophytes produce spermatozoids with two mitochondria in the cell body. Although intensive morphological analyses have been conducted, how this fixed number of mitochondria is realized remains poorly understood. Here, we investigate how mitochondria are reorganized during spermiogenesis in Marchantia polymorpha. We find that the mitochondrial number is reduced to one through fission followed by autophagic degradation during early spermiogenesis, and then the posterior mitochondrion arises by fission of the anterior mitochondrion. Autophagy is also responsible for the removal of other organelles, including peroxisomes, but these other organelles are removed at distinct developmental stages from mitochondrial degradation. We also find that spermiogenesis involves nonautophagic organelle degradation. Our findings highlight the dynamic reorganization of mitochondria, which is regulated distinctly from that of other organelles, and multiple degradation mechanisms operate in organelle remodeling during spermiogenesis in M. polymorpha.
Collapse
Affiliation(s)
- Takuya Norizuki
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
19
|
Mechanisms of Mitochondrial Malfunction in Alzheimer’s Disease: New Therapeutic Hope. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4759963. [PMID: 35607703 PMCID: PMC9124149 DOI: 10.1155/2022/4759963] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria play a critical role in neuron viability or death as it regulates energy metabolism and cell death pathways. They are essential for cellular energy metabolism, reactive oxygen species production, apoptosis, Ca++ homeostasis, aging, and regeneration. Mitophagy and mitochondrial dynamics are thus essential processes in the quality control of mitochondria. Improvements in several fundamental features of mitochondrial biology in susceptible neurons of AD brains and the putative underlying mechanisms of such changes have made significant progress. AD's etiology has been reported by mitochondrial malfunction and oxidative damage. According to several recent articles, a continual fusion and fission balance of mitochondria is vital in their normal function maintenance. As a result, the shape and function of mitochondria are inextricably linked. This study examines evidence suggesting that mitochondrial dysfunction plays a significant early impact on AD pathology. Furthermore, the dynamics and roles of mitochondria are discussed with the link between mitochondrial malfunction and autophagy in AD has also been explored. In addition, recent research on mitochondrial dynamics and mitophagy in AD is also discussed in this review. It also goes into how these flaws affect mitochondrial quality control. Furthermore, advanced therapy techniques and lifestyle adjustments that lead to improved management of the dynamics have been demonstrated, hence improving the conditions that contribute to mitochondrial dysfunction in AD.
Collapse
|
20
|
Hunt EG, Andrews AM, Larsen SR, Thaxton JE. The ER-Mitochondria Interface as a Dynamic Hub for T Cell Efficacy in Solid Tumors. Front Cell Dev Biol 2022; 10:867341. [PMID: 35573704 PMCID: PMC9091306 DOI: 10.3389/fcell.2022.867341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
The endoplasmic reticulum (ER) is a large continuous membranous organelle that plays a central role as the hub of protein and lipid synthesis while the mitochondria is the principal location for energy production. T cells are an immune subset exhibiting robust dependence on ER and mitochondrial function based on the need for protein synthesis and secretion and metabolic dexterity associated with foreign antigen recognition and cytotoxic effector response. Intimate connections exist at mitochondrial-ER contact sites (MERCs) that serve as the structural and biochemical platforms for cellular metabolic homeostasis through regulation of fission and fusion as well as glucose, Ca2+, and lipid exchange. Work in the tumor immunotherapy field indicates that the complex interplay of nutrient deprivation and tumor antigen stimulation in the tumor microenvironment places stress on the ER and mitochondria, causing dysfunction in organellar structure and loss of metabolic homeostasis. Here, we assess prior literature that establishes how the structural interface of these two organelles is impacted by the stress of solid tumors along with recent advances in the manipulation of organelle homeostasis at MERCs in T cells. These findings provide strong evidence for increased tumor immunity using unique therapeutic avenues that recharge cellular metabolic homeostasis in T cells.
Collapse
Affiliation(s)
- Elizabeth G. Hunt
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Alex M. Andrews
- Hollings Cancer Center, Charleston, SC, United States,Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - Jessica E. Thaxton
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States,*Correspondence: Jessica E. Thaxton,
| |
Collapse
|
21
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
22
|
Fernández-Alvarez AJ, Thomas MG, Pascual ML, Habif M, Pimentel J, Corbat AA, Pessoa JP, La Spina PE, Boscaglia L, Plessis A, Carmo-Fonseca M, Grecco HE, Casado M, Boccaccio GL. Smaug1 membrane-less organelles respond to AMPK/mTOR and affect mitochondrial function‡. J Cell Sci 2021; 135:273619. [PMID: 34859817 DOI: 10.1242/jcs.253591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule FISH assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial Complex I inhibition by rotenone -but not strong mitochondrial uncoupling by CCCP- rapidly induced Smaug1 MLOs dissolution. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMPK. Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK/mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins.
Collapse
Affiliation(s)
- Ana J Fernández-Alvarez
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - María Gabriela Thomas
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Malena L Pascual
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Martín Habif
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - Jerónimo Pimentel
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Agustín A Corbat
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - João P Pessoa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pablo E La Spina
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | | | - Anne Plessis
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hernán E Grecco
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - Marta Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia 46010, Spain, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Graciela L Boccaccio
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina.,Department of Molecular and Cellular Biology and Physiology (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
23
|
Yu R, Jin SB, Ankarcrona M, Lendahl U, Nistér M, Zhao J. The Molecular Assembly State of Drp1 Controls its Association With the Mitochondrial Recruitment Receptors Mff and MIEF1/2. Front Cell Dev Biol 2021; 9:706687. [PMID: 34805137 PMCID: PMC8602864 DOI: 10.3389/fcell.2021.706687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Drp1 is a central player in mitochondrial fission and is recruited to mitochondria by Mff and MIEFs (MIEF1 and MIEF2), but little is known about how its assembly state affects Drp1 mitochondrial recruitment and fission. Here, we used in vivo chemical crosslinking to explore the self-assembly state of Drp1 and how it regulates the association of Drp1 with MIEFs and Mff. We show that in intact mammalian cells Drp1 exists as a mixture of multiple self-assembly forms ranging from the minimal, probably tetrameric, self-assembly subunit to several higher order oligomers. Precluding mitochondria-bound Drp1 in Mff/MIEF1/2-deficient cells does not affect the oligomerization state of Drp1, while conversely forced recruitment of Drp1 to mitochondria by MIEFs or Mff facilitates Drp1 oligomerization. Mff preferentially binds to higher order oligomers of Drp1, whereas MIEFs bind to a wider-range of Drp1 assembly subunits, including both lower and higher oligomeric states. Mff only recruits active forms of Drp1, while MIEFs are less selective and recruit both active and inactive Drp1 as well as oligomerization- or GTPase-deficient Drp1 mutants to mitochondria. Moreover, all the fission-incompetent Drp1 mutants tested (except the monomeric mutant K668E) affect Drp1-driven mitochondrial dynamics via incorporation of the mutants into the native oligomers to form function-deficient Drp1 assemblies. We here confirm that MIEFs also serve as a platform facilitating the binding of Drp1 to Mff and loss of MIEFs severely impairs the interaction between Drp1 and Mff. Collectively, our findings suggest that Mff and MIEFs respond differently to the molecular assembly state of Drp1 and that the extent of Drp1 oligomerization regulates mitochondrial dynamics.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Karolinska University Hospital Solna, Solna, Sweden
| | - Shao-Bo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Karolinska University Hospital Solna, Solna, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Karolinska University Hospital Solna, Solna, Sweden
| |
Collapse
|
24
|
Role of ERLINs in the Control of Cell Fate through Lipid Rafts. Cells 2021; 10:cells10092408. [PMID: 34572057 PMCID: PMC8470593 DOI: 10.3390/cells10092408] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
ER lipid raft-associated protein 1 (ERLIN1) and 2 (ERLIN2) are 40 kDa transmembrane glycoproteins belonging to the family of prohibitins, containing a PHB domain. They are generally localized in the endoplasmic reticulum (ER), where ERLIN1 forms a heteroligomeric complex with its closely related ERLIN2. Well-defined functions of ERLINS are promotion of ER-associated protein degradation, mediation of inositol 1,4,5-trisphosphate (IP3) receptors, processing and regulation of lipid metabolism. Until now, ERLINs have been exclusively considered protein markers of ER lipid raft-like microdomains. However, under pathophysiological conditions, they have been described within mitochondria-associated endoplasmic reticulum membranes (MAMs), tethering sites between ER and mitochondria, characterized by the presence of specialized raft-like subdomains enriched in cholesterol and gangliosides, which play a key role in the membrane scrambling and function. In this context, it is emerging that ER lipid raft-like microdomains proteins, i.e., ERLINs, may drive mitochondria-ER crosstalk under both physiological and pathological conditions by association with MAMs, regulating the two main processes underlined, survival and death. In this review, we describe the role of ERLINs in determining cell fate by controlling the “interchange” between apoptosis and autophagy pathways, considering that their alteration has a significant impact on the pathogenesis of several human diseases.
Collapse
|
25
|
Aksu-Menges E, Eylem CC, Nemutlu E, Gizer M, Korkusuz P, Topaloglu H, Talim B, Balci-Hayta B. Reduced mitochondrial fission and impaired energy metabolism in human primary skeletal muscle cells of Megaconial Congenital Muscular Dystrophy. Sci Rep 2021; 11:18161. [PMID: 34518586 PMCID: PMC8438035 DOI: 10.1038/s41598-021-97294-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Megaconial Congenital Muscular Dystrophy (CMD) is a rare autosomal recessive disorder characterized by enlarged mitochondria located mainly at the periphery of muscle fibers and caused by mutations in the Choline Kinase Beta (CHKB) gene. Although the pathogenesis of this disease is not well understood, there is accumulating evidence for the presence of mitochondrial dysfunction. In this study, we aimed to investigate whether imbalanced mitochondrial dynamics affects mitochondrial function and bioenergetic efficiency in skeletal muscle cells of Megaconial CMD. Immunofluorescence, confocal and transmission electron microscopy studies revealed impaired mitochondrial network, morphology, and localization in primary skeletal muscle cells of Megaconial CMD. The organelle disruption was specific only to skeletal muscle cells grown in culture. The expression levels of mitochondrial fission proteins (DRP1, MFF, FIS1) were found to be decreased significantly in both primary skeletal muscle cells and tissue sections of Megaconial CMD by Western blotting and/or immunofluorescence analysis. The metabolomic and fluxomic analysis, which were performed in Megaconial CMD for the first time, revealed decreased levels of phosphonucleotides, Krebs cycle intermediates, ATP, and altered energy metabolism pathways. Our results indicate that reduced mitochondrial fission and altered mitochondrial energy metabolism contribute to mitochondrial dysmorphology and dysfunction in the pathogenesis of Megaconial CMD.
Collapse
Affiliation(s)
- Evrim Aksu-Menges
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Cemil Can Eylem
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Merve Gizer
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Haluk Topaloglu
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Department of Pediatrics, Yeditepe University, Istanbul, Turkey
| | - Beril Talim
- Department of Pediatrics, Pathology Unit, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
26
|
HSPA9/Mortalin mediates axo-protection and modulates mitochondrial dynamics in neurons. Sci Rep 2021; 11:17705. [PMID: 34489498 PMCID: PMC8421332 DOI: 10.1038/s41598-021-97162-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.
Collapse
|
27
|
Madec AM, Perrier J, Panthu B, Dingreville F. Role of mitochondria-associated endoplasmic reticulum membrane (MAMs) interactions and calcium exchange in the development of type 2 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:169-202. [PMID: 34392929 DOI: 10.1016/bs.ircmb.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucotoxicity-induced β-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Mitochondria and ER form a network in cells that controls cell function and fate. Mitochondria of the pancreatic β cell play a central role in the secretion of insulin in response to glucose through their ability to produce ATP. Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. Here, we review MAM functions in the cell and we focus on the crosstalk between the ER and Mitochondria in the context of T2D, highlighting the pivotal role played by MAMs especially in β cells through inter-organelle calcium exchange and glucotoxicity-associated β cell dysfunction.
Collapse
Affiliation(s)
| | - Johan Perrier
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon, France
| | | | | |
Collapse
|
28
|
Kedra J, Lin S, Pacheco A, Gallo G, Smith GM. Axotomy Induces Drp1-Dependent Fragmentation of Axonal Mitochondria. Front Mol Neurosci 2021; 14:668670. [PMID: 34149354 PMCID: PMC8209475 DOI: 10.3389/fnmol.2021.668670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
It is well established that CNS axons fail to regenerate, undergo retrograde dieback, and form dystrophic growth cones due to both intrinsic and extrinsic factors. We sought to investigate the role of axonal mitochondria in the axonal response to injury. A viral vector (AAV) containing a mitochondrially targeted fluorescent protein (mitoDsRed) as well as fluorescently tagged LC3 (GFP-LC3), an autophagosomal marker, was injected into the primary motor cortex, to label the corticospinal tract (CST), of adult rats. The axons of the CST were then injured by dorsal column lesion at C4-C5. We found that mitochondria in injured CST axons near the injury site are fragmented and fragmentation of mitochondria persists for 2 weeks before returning to pre-injury lengths. Fragmented mitochondria have consistently been shown to be dysfunctional and detrimental to cellular health. Inhibition of Drp1, the GTPase responsible for mitochondrial fission, using a specific pharmacological inhibitor (mDivi-1) blocked fragmentation. Additionally, it was determined that there is increased mitophagy in CST axons following Spinal cord injury (SCI) based on increased colocalization of mitochondria and LC3. In vitro models revealed that mitochondrial divalent ion uptake is necessary for injury-induced mitochondrial fission, as inhibiting the mitochondrial calcium uniporter (MCU) using RU360 prevented injury-induced fission. This phenomenon was also observed in vivo. These studies indicate that following the injury, both in vivo and in vitro, axonal mitochondria undergo increased fission, which may contribute to the lack of regeneration seen in CNS neurons.
Collapse
Affiliation(s)
- Joseph Kedra
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shen Lin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Almudena Pacheco
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Longo M, Meroni M, Paolini E, Macchi C, Dongiovanni P. Mitochondrial dynamics and nonalcoholic fatty liver disease (NAFLD): new perspectives for a fairy-tale ending? Metabolism 2021; 117:154708. [PMID: 33444607 DOI: 10.1016/j.metabol.2021.154708] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a broad spectrum of liver dysfunctions and it is predicted to become the primary cause of liver failure and hepatocellular carcinoma. Mitochondria are highly dynamic organelles involved in multiple metabolic/bioenergetic pathways in the liver. Emerging evidence outlined that hepatic mitochondria adapt in number and functionality in response to external cues, as high caloric intake and obesity, by modulating mitochondrial biogenesis, and maladaptive mitochondrial response has been described from the early stages of NAFLD. Indeed, mitochondrial plasticity is lost in progressive NAFLD and these organelles may assume an aberrant phenotype to drive or contribute to hepatocarcinogenesis. Severe alimentary regimen and physical exercise represent the cornerstone for NAFLD care, although the low patients' compliance is urging towards the discovery of novel pharmacological treatments. Mitochondrial-targeted drugs aimed to recover mitochondrial lifecycle and to modulate oxidative stress are becoming attractive molecules to be potentially introduced for NAFLD management. Although the path guiding the switch from bench to bedside remains tortuous, the study of mitochondrial dynamics is providing intriguing perspectives for future NAFLD healthcare.
Collapse
Affiliation(s)
- Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
30
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
31
|
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell 2021; 56:881-905. [PMID: 33662258 DOI: 10.1016/j.devcel.2021.02.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Timothy Wai
- Institut Pasteur CNRS UMR 3691, 25-28 Rue du Docteur Roux, Paris, France.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
32
|
Simpson CL, Tokito MK, Uppala R, Sarkar MK, Gudjonsson JE, Holzbaur ELF. NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Rep 2021; 34:108689. [PMID: 33535046 PMCID: PMC7888979 DOI: 10.1016/j.celrep.2021.108689] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
The epidermis regenerates continually to maintain a protective barrier at the body’s surface composed of differentiating keratinocytes. Maturation of this stratified tissue requires that keratinocytes undergo wholesale organelle degradation upon reaching the outermost tissue layers to form compacted, anucleate cells. Through live imaging of organotypic cultures of human epidermis, we find that regulated breakdown of mitochondria is critical for epidermal development. Keratinocytes in the upper layers initiate mitochondrial fragmentation, depolarization, and acidification upon upregulating the mitochondrion-tethered autophagy receptor NIX. Depleting NIX compromises epidermal maturation and impairs mitochondrial elimination, whereas ectopic NIX expression accelerates keratinocyte differentiation and induces premature mitochondrial fragmentation via the guanosine triphosphatase (GTPase) DRP1. We further demonstrate that inhibiting DRP1 blocks NIX-mediated mitochondrial breakdown and disrupts epidermal development. Our findings establish mitochondrial degradation as a key step in terminal keratinocyte differentiation and define a pathway operating via the mitophagy receptor NIX in concert with DRP1 to drive epidermal morphogenesis. Using live microscopy of human organotypic epidermis, Simpson et al. demonstrate how keratinocytes degrade their mitochondria in the upper tissue layers during their final stage of differentiation. By upregulating expression of the mitophagy receptor NIX, keratinocytes initiate DRP1- dependent mitochondrial fragmentation, a process critical for epidermal tissue maturation.
Collapse
Affiliation(s)
- Cory L Simpson
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariko K Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Sargent D, Moore DJ. Mechanisms of VPS35-Mediated Neurodegeneration in Parkinson's Disease. INTERNATIONAL REVIEW OF MOVEMENT DISORDERS 2021; 2:221-244. [PMID: 35497708 DOI: 10.1016/bs.irmvd.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson's disease is a sporadic and common neurodegenerative movement disorder resulting from the complex interplay between genetic risk, aging and environmental exposure. Familial forms of PD account for ~10% of cases and are known to result from the inheritance of mutations in at least 15 genes. Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant familial PD. VPS35 is a key suunit of the pentameric retromer complex that plays a role in the retrograde sorting and recycling of transmembrane cargo proteins from endosomes to the plasma membrane and trans-Golgi network. A single heterozygous Asp620Asn (D620N) mutation in VPS35 has been identified in multiple families that segregates with PD, and a number of experimental cellular and animal models have been developed to understand its pathogenic effects. At the molecular level, the D620N mutation has been shown to impair the interaction of VPS35 with the WASH complex, that plays an accessory function in retromer-dependent sorting. In addition, the D620N mutation has been linked to the abnormal sorting of retromer cargo, including CI-M6PR, AMPA receptor subunits, MUL1, LAMP2a and ATG9A, as well as to LRRK2 hyperactivation. At the cellular level, data support an impact of D620N VPS35 on mitochondrial function, the autophagy-lysosomal pathway, Wnt signaling and neurotransmission via altered endosomal sorting. The relevance of abnormal retromer sorting and cellular pathways to PD-related neurodegenerative phenotypes induced by D620N VPS35 in rodent models is not yet clear. There is also uncertainty regarding the mechanism-of-action of the D620N mutation and whether it manifests pathogenic effects in animal models and PD through a gain-of-function and/or a partial dominant-negative mechanism. Here, we discuss the emerging molecular and cellular mechanisms underlying PD induced by familial VPS35 mutations, going from structure to cellular function to neuropathology. We further discuss studies linking reduced retromer function to other neurodegenerative diseases and potential therapeutic strategies to normalize retromer function to mitigate disease.
Collapse
Affiliation(s)
- Dorian Sargent
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
34
|
Chen S, Liu S, Wang J, Wu Q, Wang A, Guan H, Zhang Q, Zhang D, Wang X, Song H, Qin J, Zou J, Jiang Z, Ouyang S, Feng XH, Liang T, Xu P. TBK1-Mediated DRP1 Targeting Confers Nucleic Acid Sensing to Reprogram Mitochondrial Dynamics and Physiology. Mol Cell 2020; 80:810-827.e7. [PMID: 33171123 DOI: 10.1016/j.molcel.2020.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
Abstract
Mitochondrial morphology shifts rapidly to manage cellular metabolism, organelle integrity, and cell fate. It remains unknown whether innate nucleic acid sensing, the central and general mechanisms of monitoring both microbial invasion and cellular damage, can reprogram and govern mitochondrial dynamics and function. Here, we unexpectedly observed that upon activation of RIG-I-like receptor (RLR)-MAVS signaling, TBK1 directly phosphorylated DRP1/DNM1L, which disabled DRP1, preventing its high-order oligomerization and mitochondrial fragmentation function. The TBK1-DRP1 axis was essential for assembly of large MAVS aggregates and healthy antiviral immunity and underlay nutrient-triggered mitochondrial dynamics and cell fate determination. Knockin (KI) strategies mimicking TBK1-DRP1 signaling produced dominant-negative phenotypes reminiscent of human DRP1 inborn mutations, while interrupting the TBK1-DRP1 connection compromised antiviral responses. Thus, our findings establish an unrecognized function of innate immunity governing both morphology and physiology of a major organelle, identify a lacking loop during innate RNA sensing, and report an elegant mechanism of shaping mitochondrial dynamics.
Collapse
Affiliation(s)
- Shasha Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxian Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qirou Wu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ailian Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongxin Guan
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaojian Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, Institutes of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
35
|
Shi L, Liu J, Peng Y, Zhang J, Dai X, Zhang S, Wang Y, Liu J, Long J. Deubiquitinase OTUD6A promotes proliferation of cancer cells via regulating Drp1 stability and mitochondrial fission. Mol Oncol 2020; 14:3169-3183. [PMID: 33070427 PMCID: PMC7718948 DOI: 10.1002/1878-0261.12825] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/13/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Dynamin‐related protein 1 (Drp1) is a cytosolic protein responsible for mitochondrial fission and is essential in the initiation and development of several human diseases, including cancer. However, the regulation of Drp1, especially of its ubiquitination, remains unclear. In this study, we report that the ovarian tumor‐associated protease deubiquitinase 6A (OTUD6A) deubiquitylates and stabilizes Drp1, thereby facilitating regulation of mitochondrial morphology and tumorigenesis. OTUD6A is upregulated in human patients with colorectal cancer. The depletion of OTUD6A leads to lower Drp1 levels and suppressed mitochondrial fission, and the affected cells are consequently less prone to tumorigenesis. Conversely, the overexpression of OTUD6A increases Drp1 levels and its protein half‐life and enhances cancer cell growth. Therefore, our results reveal a novel upstream protein of Drp1, and its role in tumorigenesis that is played, in part, through the activation of mitochondrial fission mediated by Drp1.
Collapse
Affiliation(s)
- Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Jinfang Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| |
Collapse
|
36
|
Montecinos-Franjola F, Bauer BL, Mears JA, Ramachandran R. GFP fluorescence tagging alters dynamin-related protein 1 oligomerization dynamics and creates disassembly-refractory puncta to mediate mitochondrial fission. Sci Rep 2020; 10:14777. [PMID: 32901052 PMCID: PMC7479153 DOI: 10.1038/s41598-020-71655-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
Green fluorescent protein (GFP)-tagging is the prevalent strategy to monitor protein dynamics in living cells. However, the consequences of appending the bulky GFP moiety to the protein of interest are rarely investigated. Here, using a powerful combination of quantitative fluorescence spectroscopic and imaging techniques, we have examined the oligomerization dynamics of the GFP-tagged mitochondrial fission GTPase dynamin-related protein 1 (Drp1) both in vitro and in vivo. We find that GFP-tagged Drp1 exhibits impaired oligomerization equilibria in solution that corresponds to a greatly diminished cooperative GTPase activity in comparison to native Drp1. Consequently, GFP-tagged Drp1 constitutes aberrantly stable, GTP-resistant supramolecular assemblies both in vitro and in vivo, neither of which reflects a more dynamic native Drp1 oligomerization state. Indeed, GFP-tagged Drp1 is detected more frequently per unit length over mitochondria in Drp1-null mouse embryonic fibroblasts (MEFs) compared to wild-type (wt) MEFs, indicating that the drastically reduced GTP turnover restricts oligomer disassembly from the mitochondrial surface relative to mixed oligomers comprising native and GFP-tagged Drp1. Yet, GFP-tagged Drp1 retains the capacity to mediate membrane constriction in vitro and mitochondrial division in vivo. These findings suggest that instead of robust assembly-disassembly dynamics, persistent Drp1 higher-order oligomerization over membranes is sufficient for mitochondrial fission.
Collapse
Affiliation(s)
- Felipe Montecinos-Franjola
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
37
|
Takai A, Yamaguchi M, Yoshida H, Chiyonobu T. Investigating Developmental and Epileptic Encephalopathy Using Drosophila melanogaster. Int J Mol Sci 2020; 21:ijms21176442. [PMID: 32899411 PMCID: PMC7503973 DOI: 10.3390/ijms21176442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are the spectrum of severe epilepsies characterized by early-onset, refractory seizures occurring in the context of developmental regression or plateauing. Early infantile epileptic encephalopathy (EIEE) is one of the earliest forms of DEE, manifesting as frequent epileptic spasms and characteristic electroencephalogram findings in early infancy. In recent years, next-generation sequencing approaches have identified a number of monogenic determinants underlying DEE. In the case of EIEE, 85 genes have been registered in Online Mendelian Inheritance in Man as causative genes. Model organisms are indispensable tools for understanding the in vivo roles of the newly identified causative genes. In this review, we first present an overview of epilepsy and its genetic etiology, especially focusing on EIEE and then briefly summarize epilepsy research using animal and patient-derived induced pluripotent stem cell (iPSC) models. The Drosophila model, which is characterized by easy gene manipulation, a short generation time, low cost and fewer ethical restrictions when designing experiments, is optimal for understanding the genetics of DEE. We therefore highlight studies with Drosophila models for EIEE and discuss the future development of their practical use.
Collapse
Affiliation(s)
- Akari Takai
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto 619-0237, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
- Correspondence:
| |
Collapse
|
38
|
DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. J Anim Sci Biotechnol 2020; 11:77. [PMID: 32782788 PMCID: PMC7409671 DOI: 10.1186/s40104-020-00489-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background Environmental pollution induces oxidative stress and apoptosis in mammalian oocytes, which can cause defects in reproduction; however, the molecular regulation of oxidative stress in oocytes is still largely unknown. In the present study, we identified that dynamin-related protein 1 (DRP1) is an important molecule regulating oocyte mitochondrial function and preventing oxidative stress/apoptosis. DRP1 is a member of the dynamin GTPase superfamily localized at the mitochondrial-endoplasmic reticulum interaction site, where it regulates the fission of mitochondria and other related cellular processes. Results Our results show that DRP1 was stably expressed during different stages of porcine oocyte meiosis, and might have a potential relationship with mitochondria as it exhibited similar localization. Loss of DRP1 activity caused failed porcine oocyte maturation and cumulus cell expansion, as well as defects in polar body extrusion. Further analysis indicated that a DRP1 deficiency caused mitochondrial dysfunction and induced oxidative stress, which was confirmed by increased reactive oxygen species levels. Moreover, the incidence of early apoptosis increased as detected by positive Annexin-V signaling. Conclusions Taken together, our results indicate that DRP1 is essential for porcine oocyte maturation and that a DRP1 deficiency could induce mitochondrial dysfunction, oxidative stress, and apoptosis.
Collapse
|
39
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Silva-Palacios A, Zazueta C, Pedraza-Chaverri J. ER membranes associated with mitochondria: Possible therapeutic targets in heart-associated diseases. Pharmacol Res 2020; 156:104758. [PMID: 32200027 DOI: 10.1016/j.phrs.2020.104758] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular system cell biology is tightly regulated and mitochondria play a relevant role in maintaining heart function. In recent decades, associations between such organelles and the sarco/endoplasmic reticulum (SR) have been raised great interest. Formally identified as mitochondria-associated SR membranes (MAMs), these structures regulate different cellular functions, including calcium management, lipid metabolism, autophagy, oxidative stress, and management of unfolded proteins. In this review, we highlight MAMs' alterations mainly in cardiomyocytes, linked with cardiovascular diseases, such as cardiac ischemia-reperfusion, heart failure, and dilated cardiomyopathy. We also describe proteins that are part of the MAMs' machinery, as the FUN14 domain containing 1 (FUNDC1), the sigma 1 receptor (Sig-1R) and others, which might be new molecular targets to preserve the function and structure of the heart in such diseases. Understanding the machinery of MAMs and its function demands our attention, as such knowledge might contribute to strengthen the role of these relative novel structures in heart diseases.
Collapse
Affiliation(s)
- Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology-Ignacio Chávez, Mexico City, Mexico.
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology-Ignacio Chávez, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Circuito Exterior S/N, C. U., 04510, Mexico City, Mexico.
| |
Collapse
|
41
|
Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:676-686. [PMID: 33715815 PMCID: PMC7193959 DOI: 10.1194/jlr.tr119000383] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael J Thomas
- Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mary G Sorci-Thomas
- Department of Medicine, Division of Endocrinology and Molecular Medicine,Medical College of Wisconsin, Milwaukee, WI 53226; Cardiovascular Center,Medical College of Wisconsin, Milwaukee, WI 53226; Department of Pharmacology and Toxicology,Medical College of Wisconsin, Milwaukee, WI 53226. mailto:
| |
Collapse
|
42
|
Li X, Yang L, Mao Z, Pan X, Zhao Y, Gu X, Eckel-Mahan K, Zuo Z, Tong Q, Hartig SM, Cheng X, Du G, Moore DD, Bellen HJ, Sesaki H, Sun K. Novel role of dynamin-related-protein 1 in dynamics of ER-lipid droplets in adipose tissue. FASEB J 2020; 34:8265-8282. [PMID: 32294302 DOI: 10.1096/fj.201903100rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Dynamin-Related-Protein 1 (DRP1) critically regulates mitochondrial and peroxisomal fission in multicellular organisms. However, the impact of DRP1 on other organelles, especially its direct influence on ER functions remains largely unclear. Here, we report that DRP1 translocates to endoplasmic reticulum (ER) in response to β-adrenergic stimulation. To further investigate the function of DRP1 on ER-lipid droplet (LD) dynamics and the metabolic subsequences, we generated an adipose tissue-specific DRP1 knockout model (Adipo-Drp1flx/flx ). We found that the LDs in adipose tissues of Adipo-Drp1flx/flx mice exhibited more unilocular morphology with larger sizes, and formed less multilocular structures upon cold exposure. Mechanistically, we discovered that abnormal LD morphology occurs because newly generated micro-LDs fail to dissociate from the ER due to DRP1 ablation. Conversely, the ER retention of LDs can be rescued by the overexpressed DRP1 in the adipocytes. The alteration of LD dynamics, combined with abnormal mitochondrial and autophagy functions in adipose tissue, ultimately lead to abnormalities in lipid metabolism in Adipo-Drp1flx/flx mice.
Collapse
Affiliation(s)
- Xin Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Li Yang
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhengmei Mao
- Microscopy Core, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Yueshui Zhao
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xue Gu
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
43
|
Gulbrandsen TR, Hulick RM, Polk AJ, Weldy JM, Howell KL, Spitler CA, Crist BD. Does surgical approach affect sagittal plane alignment and pilon fracture outcomes? Injury 2020; 51:750-758. [PMID: 32008815 DOI: 10.1016/j.injury.2020.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/07/2020] [Accepted: 01/19/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE Sagittal plane alignment beyond articular reduction and its effect on clinical outcomes has not been emphasized. Surgical approach may influence a surgeon's ability to correct the sagittal plane alignment. The purpose of our study was to evaluate how surgical approach impacts anterior distal tibial angle (ADTA) and lateral talar station (LTS). Our hypothesis was that the anterolateral (AL) approach would improve the sagittal plane parameters due to the primary plate placement. PATIENTS AND METHODS A retrospective review was performed on patients who underwent operative management for pilon fractures at 2 ACS Level 1 Academic Trauma Centers. Clinical data points including demographics, comorbidities, AO/OTA classification, surgical approach, and complications were recorded. Quality of reduction was measured using the ADTA, lateral distal tibia angle (LDTA), and lateral talar station (LTS) from radiographs. RESULTS 580 pilon fractures met inclusion criteria. When compared to the AL approach, the modified anteromedial (AM) approach had decreased rates of local wound care, and unplanned reoperations. The AM approach had increased rates of superficial infection, deep infection, non-union, and amputations. There was no difference in ADTA, LDTA, or LTS between the AM and AL approach (P = 0.49, P = 0.41, P = 0.85). There was a difference in LTS with tobacco users (P = 0.02). CONCLUSIONS The sagittal plane alignment does not appear to be affected by the surgical approach. Therefore, the surgical approach to pilon fractures should be based on the fracture pattern and the patient's soft tissue envelope. This study shows that the AM is a relatively safe and effective approach to complex fractures and the surgeon should consider the specific fracture pattern and patient soft tissue envelope when choosing the specific approach.
Collapse
Affiliation(s)
- Trevor R Gulbrandsen
- University of Iowa Hospitals and Clinics, Department of Orthopedic Surgery, Iowa City, IA, United States
| | - Robert M Hulick
- University of Mississippi Medical Center, Department of Orthopaedic Surgery, Jackson, MS, United States
| | - Andrew J Polk
- University of Missouri School of Medicine, Columbia, MO, United States
| | - John M Weldy
- University of Mississippi Medical Center, Department of Orthopaedic Surgery, Jackson, MS, United States
| | - Kathryn L Howell
- Tulane University, Department of Orthopaedic Surgery, New Orleans, LA, United States
| | - Clay A Spitler
- University of Mississippi Medical Center, Department of Internal Medicine, Jackson, MS, United States; University of Alabama-Birmingham, Department of Orthopaedic Surgery, Birmingham, AL, United States
| | - Brett D Crist
- University of Missouri, Department of Orthopaedic Surgery, Columbia, MO, United States.
| |
Collapse
|
44
|
Restelli LM, Oettinghaus B, Halliday M, Agca C, Licci M, Sironi L, Savoia C, Hench J, Tolnay M, Neutzner A, Schmidt A, Eckert A, Mallucci G, Scorrano L, Frank S. Neuronal Mitochondrial Dysfunction Activates the Integrated Stress Response to Induce Fibroblast Growth Factor 21. Cell Rep 2020; 24:1407-1414. [PMID: 30089252 PMCID: PMC6092266 DOI: 10.1016/j.celrep.2018.07.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/23/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Stress adaptation is essential for neuronal health. While the fundamental role of mitochondria in neuronal development has been demonstrated, it is still not clear how adult neurons respond to alterations in mitochondrial function and how neurons sense, signal, and respond to dysfunction of mitochondria and their interacting organelles. Here, we show that neuron-specific, inducible in vivo ablation of the mitochondrial fission protein Drp1 causes ER stress, resulting in activation of the integrated stress response to culminate in neuronal expression of the cytokine Fgf21. Neuron-derived Fgf21 induction occurs also in murine models of tauopathy and prion disease, highlighting the potential of this cytokine as an early biomarker for latent neurodegenerative conditions. Neuronal Drp1 ablation is sensed by branches of the integrated stress response (ISR) Activation of the ISR induces catabolic cytokine Fgf21 in the brain Brain Fgf21 induced in neurodegeneration models may be a potential biomarker
Collapse
Affiliation(s)
- Lisa Michelle Restelli
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland; University of Basel, Basel 4001, Switzerland
| | - Björn Oettinghaus
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Mark Halliday
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Cavit Agca
- Departments of Biomedicine and Ophthalmology, University Hospital Basel, Basel 4031, Switzerland
| | - Maria Licci
- Department of Neurosurgery, University Hospital Basel, Basel 4031, Switzerland
| | - Lara Sironi
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland; University of Basel, Basel 4001, Switzerland
| | - Claudia Savoia
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Jürgen Hench
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Markus Tolnay
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Albert Neutzner
- Departments of Biomedicine and Ophthalmology, University Hospital Basel, Basel 4031, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Anne Eckert
- University Psychiatric Clinics, Basel 4025, Switzerland
| | - Giovanna Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK; UK Dementia Research Institute at the University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua 35121, Italy; Venetian Institute of Molecular Medicine, Padua 35129, Italy
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland.
| |
Collapse
|
45
|
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells 2020; 9:cells9010214. [PMID: 31952189 PMCID: PMC7016592 DOI: 10.3390/cells9010214] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.
Collapse
Affiliation(s)
- Andrew R. Kulek
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anthony Anzell
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Joseph M. Wider
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-9047
| |
Collapse
|
46
|
Dong L, Li P, Yang K, Liu L, Gao H, Zhou G, Zhao Q, Xia T, Wang A, Zhang S. Promotion of mitochondrial fusion protects against developmental PBDE-47 neurotoxicity by restoring mitochondrial homeostasis and suppressing excessive apoptosis. Am J Cancer Res 2020; 10:1245-1261. [PMID: 31938063 PMCID: PMC6956817 DOI: 10.7150/thno.40060] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs)-induced neurotoxicity is closely associated with mitochondrial abnormalities. Mitochondrial fusion and fission dynamics are required for the maintenance of mitochondrial homeostasis. However, little is known about how PBDEs disrupt this dynamics and whether such disruption contributes to impaired neurodevelopment. Methods: We investigated the effects of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47), the dominant congener in human samples, on mitochondrial fusion and fission dynamics using PC12 cells, a well-defined in vitro neurodevelopmental model. We also evaluated the effects of perinatal low-dose PBDE-47 exposure on hippocampal mitochondrial dynamics and its association with neurobehavioral changes in adult Sprague-Dawley rats. Results: In vitro, PBDE-47 disrupted mitochondrial dynamics by inhibiting mitochondrial fusion and fission simultaneously, accompanied by mitochondrial fragmentation, membrane potential dissipation, ATP loss, and apoptosis activation. Specifically, enhancing mitochondrial fusion by the chemical promoter M1 or adenovirus-mediated mitofusin 2 (Mfn2) overexpression rescued PBDE-47-caused mitochondrial dynamic, morphological and functional impairments, prevented the resultant apoptosis and promoted neuronal survival. Unexpectedly, either stimulating mitochondrial fission by adenovirus-mediated fission protein 1 (Fis1) overexpression or suppressing mitochondrial fission by the mitochondrial division inhibitor-1 (Mdivi-1) failed to reverse whereas aggravated PBDE-47-induced mitochondrial damage and neuronal death. Importantly, promoting mitochondrial fusion by Mfn2 overexpression neutralized the detrimental effects elicited by Fis1 overexpression after PBDE-47 treatment. Finally, perinatal oral administration of PBDE-47 elicited neurobehavioral deficits and hippocampal neuronal loss via apoptosis in adult rats, which were associated with mitochondrial dynamics alterations manifested as a fragmented phenotype. Conclusion: Our results suggest that PBDE-47 disrupts mitochondrial dynamics to induce mitochondrial abnormalities, triggering apoptosis and thus contributing to neuronal loss and subsequent neurobehavioral deficits. Targeting mitochondrial fusion may be a promising therapeutic intervention against PBDE-47 neurotoxicity.
Collapse
|
47
|
Yu R, Lendahl U, Nistér M, Zhao J. Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Front Endocrinol (Lausanne) 2020; 11:374. [PMID: 32595603 PMCID: PMC7300174 DOI: 10.3389/fendo.2020.00374] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are highly dynamic organelles and important for a variety of cellular functions. They constantly undergo fission and fusion events, referred to as mitochondrial dynamics, which affects the shape, size, and number of mitochondria in the cell, as well as mitochondrial subcellular transport, mitochondrial quality control (mitophagy), and programmed cell death (apoptosis). Dysfunctional mitochondrial dynamics is associated with various human diseases. Mitochondrial dynamics is mediated by a set of mitochondria-shaping proteins in both yeast and mammals. In this review, we describe recent insights into the potential molecular mechanisms underlying mitochondrial fusion and fission, particularly highlighting the coordinating roles of different mitochondria-shaping proteins in the processes, as well as the roles of the endoplasmic reticulum (ER), the actin cytoskeleton and membrane phospholipids in the regulation of mitochondrial dynamics. We particularly focus on emerging roles for the mammalian mitochondrial proteins Fis1, Mff, and MIEFs (MIEF1 and MIEF2) in regulating the recruitment of the cytosolic Drp1 to the surface of mitochondria and how these proteins, especially Fis1, mediate crosstalk between the mitochondrial fission and fusion machineries. In summary, this review provides novel insights into the molecular mechanisms of mammalian mitochondrial dynamics and the involvement of these mechanisms in apoptosis and autophagy.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Monica Nistér
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Jian Zhao
| |
Collapse
|
48
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
49
|
Morales PE, Arias-Durán C, Ávalos-Guajardo Y, Aedo G, Verdejo HE, Parra V, Lavandero S. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 2019; 71:100822. [PMID: 31587811 DOI: 10.1016/j.mam.2019.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Healthy mitochondrial function is imperative for most tissues, but especially those with a high energy demand. Robust evidence linking mitochondrial dysfunction with cardiovascular disease has demonstrated that mitochondrial activity is highly relevant to cardiac muscle performance. Mitochondrial homeostasis is maintained through coordination among the processes that comprise the so-called mitochondrial dynamics machinery. The most-studied elements of cardiac mitochondrial dynamics are mitochondrial fission and fusion, biogenesis and degradation. Selective autophagic removal of mitochondria (mitophagy) is essential for clearing away defective mitochondria but can lead to cell damage and death if not tightly controlled. In cardiovascular cells such as cardiomyocytes and cardiac fibroblasts, mitophagy is involved in metabolic activity, cell differentiation, apoptosis and other physiological processes related to major phenotypic changes. Modulation of mitophagy has detrimental and/or beneficial outcomes in various cardiovascular diseases, suggesting that a deeper understanding of the mechanisms underlying mitochondrial degradation in the heart could provide valuable clinical insights. Here, we discuss current evidence supporting the role of mitophagy in cardiac pathophysiology, with an emphasis on different research models and their interpretations; basic concepts related to this selective autophagy; and the most commonly used experimental approaches for studying this mechanism. Finally, we provide a comprehensive literature analysis on the role of mitophagy in heart failure, ischemia/reperfusion, diabetic cardiomyopathy and other cardiovascular diseases, as well as its potential biomedical applications.
Collapse
Affiliation(s)
- Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carla Arias-Durán
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile
| | - Yáreni Ávalos-Guajardo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Geraldine Aedo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
50
|
Yu R, Liu T, Ning C, Tan F, Jin SB, Lendahl U, Zhao J, Nistér M. The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. J Biol Chem 2019; 294:17262-17277. [PMID: 31533986 DOI: 10.1074/jbc.ra119.008202] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
Recruitment of the GTPase dynamin-related protein 1 (Drp1) to mitochondria is a central step required for mitochondrial fission. Reversible Drp1 phosphorylation has been implicated in the regulation of this process, but whether Drp1 phosphorylation at Ser-637 determines its subcellular localization and fission activity remains to be fully elucidated. Here, using HEK 293T cells and immunofluorescence, immunoblotting, RNAi, subcellular fractionation, co-immunoprecipitation assays, and CRISPR/Cas9 genome editing, we show that Drp1 phosphorylated at Ser-637 (Drp1pS637) resides both in the cytosol and on mitochondria. We found that the receptors mitochondrial fission factor (Mff) and mitochondrial elongation factor 1/2 (MIEF1/2) interact with and recruit Drp1pS637 to mitochondria and that elevated Mff or MIEF levels promote Drp1pS637 accumulation on mitochondria. We also noted that protein kinase A (PKA), which mediates phosphorylation of Drp1 on Ser-637, is partially present on mitochondria and interacts with both MIEFs and Mff. PKA knockdown did not affect the Drp1-Mff interaction, but slightly enhanced the interaction between Drp1 and MIEFs. In Drp1-deficient HEK 293T cells, both phosphomimetic Drp1-S637D and phospho-deficient Drp1-S637A variants, like wild-type Drp1, located to the cytosol and to mitochondria and rescued a Drp1 deficiency-induced mitochondrial hyperfusion phenotype. However, Drp1-S637D was less efficient than Drp1-WT and Drp1-S637A in inducing mitochondrial fission. In conclusion, the Ser-637 phosphorylation status in Drp1 is not a determinant that controls Drp1 recruitment to mitochondria.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tong Liu
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Chenfei Ning
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fei Tan
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Shao-Bo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|