1
|
Son K, Small M, Sehmi R, Janssen L. The eosinophil actin cytoskeleton undergoes rapid rearrangement in response to fluid shear stress. J Leukoc Biol 2020; 108:129-137. [PMID: 32349177 DOI: 10.1002/jlb.1ma0320-349rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
The regulatory processes involved in eosinophil trafficking into tissues are poorly understood; therefore, it is crucial to elucidate these mechanisms to advance the quality of clinical care for patients with eosinophil-mediated diseases. The complex interactions between eosinophil integrin receptors and their corresponding ligands on the post-capillary venules of the bronchial endothelium result in distinct modifications to the cytoskeletal architecture that occur in coordinated, temporally regulated sequences. The current study utilizes real-time confocal microscopy and time-based immunofluorescence staining to further characterize the effects of physiologically relevant fluid shear stress on this novel phenomenon of perfusion-induced calcium response. We found that the mere perfusion of fluid over adhered human eosinophils induced a release of intracellular calcium observed in conjunction with changes in cell morphology (flattening onto the coverslip surface, an increase in surface area, and a loss of circularity), suggesting a previously unknown mechanosensing aspect of eosinophil migration out of the vasculature. Although changes in morphology and degree of calcium release remained consistent across varying perfusion rates, the latency of the response was highly dependent on the degree of shear stresses. Eosinophils were fixed post-perfusion at specific timepoints for immunofluorescence staining to track proteins of interest over time. The distribution of proteins was diffuse throughout the cell prior to perfusion; however, they quickly localized to the periphery of the cell within 5 min. The actin cytoskeleton became markedly built up at the cell edges rapidly after stimulation, forming punctate dots by 4 min, suggesting a pivotal role in directed cell motility.
Collapse
Affiliation(s)
- Kiho Son
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mike Small
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Luke Janssen
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Babuta M, Kumar S, Gourinath S, Bhattacharya S, Bhattacharya A. Calcium-binding protein EhCaBP3 is recruited to the phagocytic complex of Entamoeba histolytica by interacting with Arp2/3 complex subunit 2. Cell Microbiol 2018; 20:e12942. [PMID: 30133964 DOI: 10.1111/cmi.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/07/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022]
Abstract
Phagocytosis is involved in invasive disease of the parasite Entamoeba histolytica. Upon binding of red blood cells, there is a sequential recruitment of EhC2PK, EhCaBP1, EhAK1, and Arp2/3 complex during the initiation phase. In addition, EhCaBP3 is also recruited to the site and, along with myosin 1B, is thought to be involved in progression of phagocytic cups from initiation to phagosome formation. However, it is not clear how EhCaBP3 gets recruited to the rest of the phagocytic machinery. Here, we show that EhARPC2, a subunit of Arp2/3 complex, interacts with EhCaBP3 in a Ca2+ -dependent manner both in vivo and in vitro. Imaging and pull down experiments suggest that interaction with EhARPC2 is required for the closure of cups and formation of phagosomes. Moreover, downregulation of EhARPC2 prevents localisation of EhCaBP3 to phagocytic cups, suggesting that EhCaBP3 is part of EhC2PK-EhCaBP1-EhAK1-Arp2/3 complex (EhARPC1) pathway. In conclusion, these results suggest that the EhCaBP3-EhARPC2 interaction helps to recruit EhCaBP3 along with myosin 1B to the phagocytic machinery that plays an indispensable role in E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sanjeev Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Yabuki Y, Katayama M, Kodama Y, Sakamoto A, Yatsuhashi A, Funato K, Mizuta K. Arp2/3 complex and Mps3 are required for regulation of ribosome biosynthesis in the secretory stress response. Yeast 2017; 34:155-163. [PMID: 27862269 DOI: 10.1002/yea.3221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 11/11/2022] Open
Abstract
Secretory defects cause transcriptional repression of ribosome biogenesis in Saccharomyces cerevisiae. However, the molecular mechanism underlying secretory defect-induced transcriptional repression of ribosome biogenesis remains to be fully elucidated. In this study, we demonstrated that the Arp2/3 complex was required for reduction of ribosome protein gene expression in response to defective secretion by addition of tunicamycin. Two cmd1 mutants, cmd1-228 and cmd1-239 that cause mislocalization of calmodulin and defective mitotic spindle formation, respectively, failed to interact with Arc35, a component of the Arp2/3 complex. These mutants also caused defects in the reduction of ribosome protein gene expression induced by secretory blockade. A mutation in TUB4 (tub4-1), whose product has an essential function in microtubule organization, showed a similar response. In addition, we showed that the response to a secretory defect required SUN protein Mps3, which was localized at the nuclear envelope and involved in spindle pole body assembly. These results suggest that the Arp2/3 complex is required to transmit signals resulting from secretory blockade, and that the spindle pole body functions as a transit point from cytoplasm to Mps3 at the nuclear envelope. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Masako Katayama
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Yushi Kodama
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Akiko Sakamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Ayumi Yatsuhashi
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
4
|
Myers MD, Ryazantsev S, Hicke L, Payne GS. Calmodulin Promotes N-BAR Domain-Mediated Membrane Constriction and Endocytosis. Dev Cell 2016; 37:162-73. [PMID: 27093085 DOI: 10.1016/j.devcel.2016.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 10/21/2022]
Abstract
Membrane remodeling by BAR (Bin, Amphiphysin, RVS) domain-containing proteins, such as endophilins and amphiphysins, is integral to the process of endocytosis. However, little is known about the regulation of endocytic BAR domain activity. We have identified an interaction between the yeast Rvs167 N-BAR domain and calmodulin. Calmodulin-binding mutants of Rvs167 exhibited defects in endocytic vesicle release. In vitro, calmodulin enhanced membrane tubulation and constriction by wild-type Rvs167 but not calmodulin-binding-defective mutants. A subset of mammalian N-BAR domains bound calmodulin, and co-expression of calmodulin with endophilin A2 potentiated tubulation in vivo. These studies reveal a conserved role for calmodulin in regulating the intrinsic membrane-sculpting activity of endocytic N-BAR domains.
Collapse
Affiliation(s)
- Margaret D Myers
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sergey Ryazantsev
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linda Hicke
- Molecular Genetics and Microbiology, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. FRONTIERS IN PLANT SCIENCE 2015; 6:523. [PMID: 26236321 PMCID: PMC4500915 DOI: 10.3389/fpls.2015.00523] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.
Collapse
|
6
|
Wang F, Zhang L, Zhang GL, Wang ZB, Cui XS, Kim NH, Sun SC. WASH complex regulates Arp2/3 complex for actin-based polar body extrusion in mouse oocytes. Sci Rep 2014; 4:5596. [PMID: 24998208 PMCID: PMC4083260 DOI: 10.1038/srep05596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
Prior to their fertilization, oocytes undergo asymmetric division, which is regulated by actin filaments. Recently, WASH complex were identified as actin nucleation promoting factors (NPF) that activated Arp2/3 complex. However, the roles of WASH complex remain uncertain, particularly for oocyte polarization and asymmetric division. Here, we examined the functions of two important subunits of a WASH complex, WASH1 and Strumpellin, during mouse oocyte meiosis. Depleting WASH1 or disrupting Strumpellin activity by WASH1 morpholino (MO) injection or Strumpellin antibody injection decreased polar body extrusion and caused oocyte symmetric division, and this may have been due to spindle formation and migration defects. Time lapse microscopy showed that actin filaments distribution and relative amount at the membrane and in the cytoplasm of oocytes was significantly decreased after disrupting WASH complex. In addition, Arp2/3 complex expression was reduced after WASH1 depletion. Thus, our data indicated that WASH complex regulated Arp2/3 complex and were required for cytokinesis and following polar body extrusion during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang-Li Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Sun SC, Wang QL, Gao WW, Xu YN, Liu HL, Cui XS, Kim NH. Actin nucleator Arp2/3 complex is essential for mouse preimplantation embryo development. Reprod Fertil Dev 2013; 25:617-23. [PMID: 22951093 DOI: 10.1071/rd12011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/15/2012] [Indexed: 12/15/2022] Open
Abstract
The Arp2/3 complex is a critical actin nucleator, which promotes actin assembly and is widely involved in a diverse range of actin-related processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Previous studies showed that the Arp2/3 complex regulates spindle migration and asymmetric division during mouse oocyte maturation; however, the role of the Arp2/3 complex in early mouse embryo development is still unknown. The results of the present study show that the Arp2/3 complex is critical for cytokinesis during mouse embryo development. The Arp2/3 complex was concentrated at the cortex of each cell at the 2- to 8-cell stage and the peripheral areas of the morula and blastocyst. Inhibition of the Arp2/3 complex by the specific inhibitor CK666 at the zygote stage caused a failure in cell division; mouse embryos failed to undergo compaction and lost apical-basal polarity. The actin level decreased in the CK666-treated group, and two or more nuclei were observed within a single cell, indicating a failure of cell division. Addition of CK666 at the 8-cell stage caused a failure of blastocyst formation, and CDX2 staining confirmed the loss of embryo polarity and the failure of trophectoderm and inner cell mass formation. Taken together, these data suggest that the Arp2/3 complex may regulate mouse embryo development via its effect on cell division.
Collapse
Affiliation(s)
- Shao-Chen Sun
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu Z, Yang X, Chen C, Liu B, Ren B, Wang L, Zhao K, Yu S, Ming H. Expression of the Arp2/3 complex in human gliomas and its role in the migration and invasion of glioma cells. Oncol Rep 2013; 30:2127-36. [PMID: 23969835 DOI: 10.3892/or.2013.2669] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022] Open
Abstract
A hallmark of directional cell migration is localized actin polymerization at the leading protrusions of the cell. The Arp2/3 complex nucleates the formation of the dendritic actin network (lamellipodia) at the leading edge of motile cells. This study was designed to investigate the role of the Arp2/3 complex in the infiltrative behavior of glioma cells. Immunofluorescence and western blotting showed a positive correlation between the expression of Arp2/3 and the malignancy of glioma specimens (r=0.686, P=0.02) and confocal microscopy demonstrated localization of the Arp2/3 complex in lamellipodia of glioma cells. Furthermore, we examined the effects of Arp2/3 complex inhibition in U251, LN229 and SNB19 glioma cells using CK666, an Arp2/3 complex inhibitor. Glioma cells lost lamellipodia and cell polarity after treatment with CK666. Inhibition of the Arp2/3 complex significantly affected the ability of glioma cells to migrate and invade. In the wound-healing assay, CK666 markedly inhibited cell migration, U251 cell migration was inhibited to 38.73±3.45% of control, LN229 cells to 57.40±2.16% of control and SNB19 cells to 34.17±3.82% of control. Also, CK666 significantly impaired Transwell chamber invasion capability of U251, LN229 and SNB19 cells compared with DMSO control by 72.70±4.86, 39.12±8.42 and 41.41±4.66%, respectively. The Arp2/3 complex is, therefore, likely to be a crucial participant in glioma cell invasion and migration, and may represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhifeng Liu
- Neuro-Oncology Laboratory, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang QC, Liu J, Wang F, Duan X, Dai XX, Wang T, Liu HL, Cui XS, Sun SC, Kim NH. Role of nucleation-promoting factors in mouse early embryo development. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:559-564. [PMID: 23552571 DOI: 10.1017/s1431927613000032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.
Collapse
Affiliation(s)
- Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu J, Wang QC, Wang F, Duan X, Dai XX, Wang T, Liu HL, Cui XS, Kim NH, Sun SC. Nucleation promoting factors regulate the expression and localization of Arp2/3 complex during meiosis of mouse oocytes. PLoS One 2012; 7:e52277. [PMID: 23272233 PMCID: PMC3525642 DOI: 10.1371/journal.pone.0052277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.
Collapse
Affiliation(s)
- Jun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Xin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Teng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
11
|
Sun SC, Wang ZB, Xu YN, Lee SE, Cui XS, Kim NH. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PLoS One 2011; 6:e18392. [PMID: 21494665 PMCID: PMC3072972 DOI: 10.1371/journal.pone.0018392] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
Mammalian oocyte meiotic maturation involves oocyte polarization and a unique asymmetric division, but until now, the underlying mechanisms have been poorly understood. Arp2/3 complex has been shown to regulate actin nucleation and is widely involved in a diverse range of processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Whether Arp2/3 complex participates in oocyte polarization and asymmetric division is unknown. The present study investigated the expression and functions of Arp2/3 complex during mouse oocyte meiotic maturation. Immunofluorescent staining showed that the Arp2/3 complex was restricted to the cortex, with a thickened cap above the meiotic apparatus, and that this localization pattern was depended on actin. Disruption of Arp2/3 complex by a newly-found specific inhibitor CK666, as well as by Arpc2 and Arpc3 RNAi, resulted in a range of effects. These included the failure of asymmetric division, spindle migration, and the formation and completion of oocyte cytokinesis. The formation of the actin cap and cortical granule-free domain (CGFD) was also disrupted, which further confirmed the disruption of spindle migration. Our data suggest that the Arp2/3 complex probably regulates oocyte polarization through its effect on spindle migration, asymmetric division and cytokinesis during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Shao-Chen Sun
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong-Nan Xu
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Eun Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Lin MC, Galletta BJ, Sept D, Cooper JA. Overlapping and distinct functions for cofilin, coronin and Aip1 in actin dynamics in vivo. J Cell Sci 2010; 123:1329-42. [PMID: 20332110 DOI: 10.1242/jcs.065698] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-filament disassembly is crucial for actin-based motility, to control filament network architecture and to regenerate subunits for assembly. Here, we examined the roles of three actin cytoskeletal proteins, coronin, cofilin and Aip1, which have been suggested to combine in various ways to control actin dynamics by promoting or regulating disassembly. We studied their functions during the endocytosis process in budding yeast, where actin-filament dynamics at the cortical actin 'patch' contribute to the formation and movement of endocytic vesicles. We found that all three proteins were recruited during the late phase of the life of the actin patch. They all arrived at the same time, when actin and other actin-associated proteins were leaving the patch. Cofilin point mutations influenced the localization of coronin and Aip1, but the complete loss of coronin had no effect on localization of cofilin or Aip1. Using quantitative patch motion analysis and comparing mutant alleles, the phenotypes for mutations of the three genes showed some commonalities, but also some striking differences. Cofilin was clearly the most important; it displayed the most severe mutant phenotypes affecting actin-patch assembly and movement. Together, the results suggest that all three proteins work together to promote actin disassembly, but not in a simple way, and not with equal importance.
Collapse
Affiliation(s)
- Meng-Chi Lin
- Department of Cell Biology and Physiology, Washington University, Saint Louis, MO 63110, USA
| | | | | | | |
Collapse
|
13
|
Daugherty KM, Goode BL. Functional surfaces on the p35/ARPC2 subunit of Arp2/3 complex required for cell growth, actin nucleation, and endocytosis. J Biol Chem 2008; 283:16950-9. [PMID: 18381280 PMCID: PMC2423265 DOI: 10.1074/jbc.m800783200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/27/2008] [Indexed: 11/06/2022] Open
Abstract
The Arp2/3 complex is comprised of seven evolutionarily conserved subunits and upon activation by WASp or another nucleation promoting factor nucleates the formation of actin filaments. These events are critical for driving a wide range of cellular processes, including motility, endocytosis, and intracellular trafficking. However, an in depth understanding of the Arp2/3 complex activation and nucleation mechanism is still lacking. Here, we used a mutagenesis approach in Saccharomyces cerevisiae to dissect the structural and functional roles of the p35/ARPC2 subunit. Using integrated alleles that target conserved and solvent-exposed residues, we identified surfaces on p35/ARPC2 required for cell growth, actin organization, and endocytosis. In parallel, we purified the mutant Arp2/3 complexes and compared their actin assembly activities both in the presence and in the absence of WASp. The majority of alleles with defects mapped to one face of p35/ARPC2, where there was a close correlation between loss of actin nucleation and endocytosis. A second site required for nucleation and endocytosis was identified near the contact surface between p35/ARPC2 and p19/ARPC4. A third site was identified at a more distal conserved surface, which was critical for endocytosis but not nucleation. These findings pinpoint the key surfaces on p35/ARPC2 required for Arp2/3 complex-mediated actin assembly and cellular function and provide a higher resolution view of Arp2/3 structure and mechanism.
Collapse
Affiliation(s)
- Karen M. Daugherty
- Departments of Biochemistry
and Biology, Brandeis University and
the Rosenstiel Basic Medical Sciences Center, Waltham, Massachusetts
02454
| | - Bruce L. Goode
- Departments of Biochemistry
and Biology, Brandeis University and
the Rosenstiel Basic Medical Sciences Center, Waltham, Massachusetts
02454
| |
Collapse
|
14
|
Abstract
The cellular functions of the actin cytoskeleton require precise regulation of both the initiation of actin polymerization and the organization of the resulting filaments. The actin-related protein-2/3 (ARP2/3) complex is a central player in this regulation. A decade of study has begun to shed light on the molecular mechanisms by which this powerful machine controls the polymerization, organization and recycling of actin-filament networks, both in vitro and in the living cell.
Collapse
Affiliation(s)
- Erin D Goley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
15
|
Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 2006; 70:605-45. [PMID: 16959963 PMCID: PMC1594590 DOI: 10.1128/mmbr.00013-06] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and The Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
16
|
Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1745:273-86. [PMID: 16046009 DOI: 10.1016/j.bbamcr.2005.06.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 01/06/2023]
Abstract
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added.
Collapse
Affiliation(s)
- Matthew Kirkham
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | | |
Collapse
|
17
|
Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1746:349-63. [PMID: 16440447 DOI: 10.1016/j.bbamcr.2005.11.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added.
Collapse
Affiliation(s)
- Matthew Kirkham
- Institute for Molecular Bioscience, University of Queensland, 4072, Australia
| | | |
Collapse
|
18
|
Smillie KJ, Evans GJO, Cousin MA. Developmental change in the calcium sensor for synaptic vesicle endocytosis in central nerve terminals. J Neurochem 2005; 94:452-8. [PMID: 15998295 PMCID: PMC2040260 DOI: 10.1111/j.1471-4159.2005.03213.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic vesicle endocytosis is stimulated by calcium influx in mature central nerve terminals via activation of the calcium-dependent protein phosphatase, calcineurin. However, in different neuronal preparations calcineurin activity is either inhibitory, stimulatory or irrelevant to the process. We addressed this inconsistency by investigating the requirement for calcineurin activity in synaptic vesicle endocytosis during development, using vesicle recycling assays in isolated nerve terminals. We show that endocytosis occurs independently of calcineurin activity in immature nerve terminals, and that a calcineurin requirement develops 2-4 weeks after birth. Calcineurin-independent endocytosis is not due to the absence of calcineurin activity, since calcineurin is present in immature nerve terminals and its substrate, dynamin I, is dephosphorylated on depolarization. Calcineurin-independent endocytosis is calcium-dependent, since substitution of the divalent cation, barium, inhibits the process. Finally, we demonstrated that in primary neuronal cultures derived from neonatal rats, endocytosis that was initially calcineurin-independent developed a calcineurin requirement on maturation in culture. Our data account for the apparent inconsistencies regarding the role of calcineurin in synaptic vesicle endocytosis, and we propose that an unidentified calcium sensor exists to couple calcium influx to endocytosis in immature nerve terminals.
Collapse
Affiliation(s)
| | | | - Michael A. Cousin
- Author to whom correspondence should be addressed, Membrane Biology Group, Division of Biomedical and Clinical Laboratory Sciences, George Square, University of Edinburgh, Edinburgh, UK, EH8 9XD, Tel - +44131 6503259, Fax - +44131 6506527, Email -
| |
Collapse
|
19
|
Canton DA, Litchfield DW. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 2005; 18:267-75. [PMID: 16126370 DOI: 10.1016/j.cellsig.2005.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/04/2005] [Accepted: 07/18/2005] [Indexed: 01/24/2023]
Abstract
Protein kinase CK2 is a highly conserved, pleiotropic, protein serine/threonine kinase that is essential for life in eukaryotes. CK2 has been implicated in diverse cellular processes such as cell cycle regulation, circadian rhythms, apoptosis, transformation and tumorigenesis. In addition, there is increasing evidence that CK2 is involved in the maintenance of cell morphology and cell polarity, and in the regulation of the actin and tubulin cytoskeletons. Accordingly, this review will highlight published evidence in experimental models ranging from yeast to mammals documenting the emerging roles of protein kinase CK2 in the regulation of cell polarity, cell morphology and the cytoskeleton.
Collapse
Affiliation(s)
- David A Canton
- Regulatory Biology and Functional Genomics Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
20
|
Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA. Endocytotic cycling of PM proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:221-51. [PMID: 15862095 DOI: 10.1146/annurev.arplant.56.032604.144150] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plasma membrane protein internalization and recycling mechanisms in plants share many features with other eukaryotic organisms. However, functional and structural differences at the cellular and organismal level mandate specialized mechanisms for uptake, sorting, trafficking, and recycling in plants. Recent evidence of plasma membrane cycling of members of the PIN auxin efflux facilitator family and the KAT1 inwardly rectifying potassium channel demonstrates that endocytotic cycling of some form occurs in plants. However, the mechanisms underlying protein internalization and the signals that stimulate endocytosis of proteins from the cell-environment interface are poorly understood. Here we summarize what is known of endocytotic cycling in animals and compare those mechanisms with what is known in plants. We discuss plant orthologs of mammalian-trafficking proteins involved in endocytotic cycling. The use of the styryl dye FM4-64 to define the course of endocytotic uptake and the fungal toxin brefeldin A to dissect the internalization pathways are particularly emphasized. Additionally, we discuss progress in identifying distinct endosomal populations marked by the small GTPases Ara6 and Ara7 as well as recently described examples of apparent cycling of plasma membrane proteins.
Collapse
Affiliation(s)
- Angus S Murphy
- Department of Horticulture, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
21
|
Brooks RA, Woodruff RI. Calmodulin transmitted through gap junctions stimulates endocytic incorporation of yolk precursors in insect oocytes. Dev Biol 2004; 271:339-49. [PMID: 15223338 DOI: 10.1016/j.ydbio.2004.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 03/17/2004] [Accepted: 03/17/2004] [Indexed: 10/26/2022]
Abstract
In ovarian follicles of Oncopeltus fasciatus, and of Xylocopa virginica, calmodulin (CaM) of epithelial cell origin is required by oocytes for endocytic uptake of yolk precursor molecules. Furthermore, this 17-19 kDa protein is normally transported to the oocytes via gap junctions. Downregulation of gap junctions by treatment with 1 mM octanol or separation of the epithelial cells from their oocytes terminated precursor uptake, and this activity could be rescued by microinjection of 60 microM CaM, but not by injections of incubation medium, nor solutions of other molecular species tested. That endogenous CaM is required was confirmed by incubating otherwise untreated follicles in physiological salt solution (PSS) containing either calmidazolium or W-7, both known antagonists of CaM. By radioimmunoprecipitation, we show that the epithelial cells surrounding an oocyte synthesized 15 times as much calmodulin as did the oocytes they encircled. Neither octanol-treated follicles nor denuded oocytes incubated in medium containing calmodulin were able to resume endocytosis, arguing against an extracellular route. However, fluorescently labeled calmodulin microinjected into oocytes is shown to have crossed through gap junctions, making epithelial cells distinctly fluorescent.
Collapse
Affiliation(s)
- R Amy Brooks
- Department of Biology, West Chester University, West Chester, PA, 19383-2130, USA
| | | |
Collapse
|
22
|
Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, Garcia JGN. Pulmonary Endothelial Cell Barrier Enhancement by Sphingosine 1-Phosphate. J Biol Chem 2004; 279:24692-700. [PMID: 15056655 DOI: 10.1074/jbc.m313969200] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported the critical importance of Rac GTPase-dependent cortical actin rearrangement in the augmentation of pulmonary endothelial cell (EC) barrier function by sphingosine 1-phosphate (S1P). We now describe functional roles for the actin-binding proteins cortactin and EC myosin light chain kinase (MLCK) in mediating this response. Antisense down-regulation of cortactin protein expression significantly inhibits S1P-induced barrier enhancement in cultured human pulmonary artery EC as measured by transendothelial electrical resistance (TER). Immunofluorescence studies reveal rapid, Rac-dependent translocation of cortactin to the expanded cortical actin band following S1P challenge, where colocalization with EC MLCK occurs within 5 min. Adenoviral overexpression of a Rac dominant negative mutant attenuates TER elevation by S1P. S1P also induces a rapid increase in cortactin tyrosine phosphorylation (within 30 s) critical to subsequent barrier enhancement, since EC transfected with a tyrosine-deficient mutant cortactin exhibit a blunted TER response. Direct binding of EC MLCK to the cortactin Src homology 3 domain appears essential to S1P barrier regulation, since cortactin blocking peptide inhibits both S1P-induced MLC phosphorylation and peak S1P-induced TER values. These data support novel roles for the cytoskeletal proteins cortactin and EC MLCK in mediating lung vascular barrier augmentation evoked by S1P.
Collapse
Affiliation(s)
- Steven M Dudek
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Schaerer-Brodbeck C, Riezman H. Genetic and biochemical interactions between the Arp2/3 complex, Cmd1p, casein kinase II, and Tub4p in yeast. FEMS Yeast Res 2003; 4:37-49. [PMID: 14554195 DOI: 10.1016/s1567-1356(03)00110-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Arc35p, a component of the Arp2/3 complex, plays at least two distinct roles, regulating the actin cytoskeleton, but also microtubule function during cell division. Both functions involve calmodulin (CMD1). To investigate the pathway affecting microtubule function, we identified genes that are able to suppress the temperature-sensitive growth defect of the arc35-1 strain. Genes encoding gamma-tubulin (TUB4) or any subunit of casein kinase II (CKII) suppressed this growth defect, but did not suppress the growth defect of a mutant in another subunit of the Arp2/3 complex, arp2-1. We could also show a physical association of Arc35p with subunits of CKII, Cmd1p, and Tub4p. Based on the exclusive localization of Arc35p to the cytosolic Arp2/3 complex and on mutant phenotypes, we propose that the role of the Arc35p/CKII interaction might be to activate a cytosolic pool of gamma-tubulin, likely via calmodulin, for its nuclear and/or cytoplasmic functions.
Collapse
Affiliation(s)
- Claudia Schaerer-Brodbeck
- University of Geneva, Department of Biochemistry, Sciences II, 30, quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
24
|
Li S, Blanchoin L, Yang Z, Lord EM. The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. PLANT PHYSIOLOGY 2003; 132:2034-44. [PMID: 12913159 PMCID: PMC181288 DOI: 10.1104/pp.103.028563] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 06/15/2003] [Accepted: 06/16/2003] [Indexed: 05/17/2023]
Abstract
The evolutionarily conserved Arp2/3 complex has been shown to activate actin nucleation and branching in several eukaryotes, but its biological functions are not well understood in multicellular organisms. The model plant Arabidopsis provides many advantages for genetic dissection of the function of this conserved actin-nucleating machinery, yet the existence of this complex in plants has not been determined. We have identified Arabidopsis genes encoding homologs of all of the seven Arp2/3 subunits. The function of the putative Arabidopsis Arp2/3 complex has been studied using four homozygous T-DNA insertion mutants for ARP2, ARP3, and ARPC5/p16. All four mutants display identical defects in the development of jigsaw-shaped epidermal pavement cells and branched trichomes in the leaf. These loss-of-function mutations cause mislocalization of diffuse cortical F-actin to the neck region and inhibit lobe extension in pavement cells. The mutant trichomes resemble those treated with the actin-depolymerizing drug cytochalasin D, exhibiting stunted branches but dramatically enlarged stalks due to depolarized growth suggesting defects in the formation of a fine actin network. Our data demonstrate that the putative Arabidopsis Arp2/3 complex controls cell morphogenesis through its roles in cell polarity establishment and polar cell expansion. Furthermore, our data suggest a novel function for the putative Arp2/3 complex in the modulation of the spatial distribution of cortical F-actin and provide evidence that the putative Arp2/3 complex may activate the polymerization of some types of actin filaments in specific cell types.
Collapse
Affiliation(s)
- Shundai Li
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
25
|
Li S, Blanchoin L, Yang Z, Lord EM. The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. PLANT PHYSIOLOGY 2003. [PMID: 12913159 DOI: 10.1104/pp.103.028563.the] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The evolutionarily conserved Arp2/3 complex has been shown to activate actin nucleation and branching in several eukaryotes, but its biological functions are not well understood in multicellular organisms. The model plant Arabidopsis provides many advantages for genetic dissection of the function of this conserved actin-nucleating machinery, yet the existence of this complex in plants has not been determined. We have identified Arabidopsis genes encoding homologs of all of the seven Arp2/3 subunits. The function of the putative Arabidopsis Arp2/3 complex has been studied using four homozygous T-DNA insertion mutants for ARP2, ARP3, and ARPC5/p16. All four mutants display identical defects in the development of jigsaw-shaped epidermal pavement cells and branched trichomes in the leaf. These loss-of-function mutations cause mislocalization of diffuse cortical F-actin to the neck region and inhibit lobe extension in pavement cells. The mutant trichomes resemble those treated with the actin-depolymerizing drug cytochalasin D, exhibiting stunted branches but dramatically enlarged stalks due to depolarized growth suggesting defects in the formation of a fine actin network. Our data demonstrate that the putative Arabidopsis Arp2/3 complex controls cell morphogenesis through its roles in cell polarity establishment and polar cell expansion. Furthermore, our data suggest a novel function for the putative Arp2/3 complex in the modulation of the spatial distribution of cortical F-actin and provide evidence that the putative Arp2/3 complex may activate the polymerization of some types of actin filaments in specific cell types.
Collapse
Affiliation(s)
- Shundai Li
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Eukaryotic cells use actin polymerization to change shape, move, and internalize extracellular materials by phagocytosis and endocytosis, and to form contractile structures. In addition, several pathogens have evolved to use host cell actin assembly for attachment, internalization, and cell-to-cell spread. Although cells possess multiple mechanisms for initiating actin polymerization, attention in the past five years has focused on the regulation of actin nucleation-the formation of new actin filaments from actin monomers. The Arp2/3 complex and the multiple nucleation-promoting factors (NPFs) that regulate its activity comprise the only known cellular actin-nucleating factors and may represent a universal machine, conserved across eukaryotic phyla, that nucleates new actin filaments for various cellular structures with numerous functions. This review focuses on our current understanding of the mechanism of actin nucleation by the Arp2/3 complex and NPFs and how these factors work with other cytoskeletal proteins to generate structurally and functionally diverse actin arrays in cells.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular and Cell Biology, 301 LSA, University of California, Berkeley 94720-3200, USA.
| | | |
Collapse
|
27
|
Abstract
In this review we describe the potential roles of the actin cytoskeleton in receptor-mediated endocytosis in mammalian cells and summarize the efforts of recent years in establishing a relationship between these two cellular functions. With molecules such as dynamin, syndapin, HIP1R, Abp1, synaptojanin, N-WASP, intersectin, and cortactin a set of molecular links is now available and it is likely that their further characterization will reveal the basic principles of a functional interconnection between the membrane cytoskeleton and the vesicle-budding machinery. We will therefore discuss proteins involved in endocytic clathrin coat formation and accessory factors to control and regulate coated vesicle formation but we will also focus on actin cytoskeletal components such as the Arp2/3 complex, spectrin, profilin, and motor proteins involved in actin dynamics and organization. Additionally, we will discuss how phosphoinositides, such as PI(4,5)P2, small GTPases thought to control the actin cytoskeleton, such as Rho, Rac, and Cdc42, or membrane trafficking, such as Rab GTPases and ARF proteins, and different kinases may participate in the functional connection of actin and endocytosis. We will compare the concepts and different molecular mechanisms involved in mammalian cells with yeast as well as with specialized cells, such as epithelial cells and neurons, because different model organisms often offer complementary advantages for further studies in this thriving field of current cell biological research.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | |
Collapse
|
28
|
Abstract
The Arp2/3 complex is necessary for nucleating the formation of branched networks of actin filaments at the cell cortex, and an increasing number of proteins able to activate the Arp2/3 complex have been described. The Wiskott-Aldrich syndrome protein (WASP) family and cortactin comprise the large majority of the known activators. WASPs bind to Arp2/3 via an acidic (A) domain, and a WH2 domain appears to bring an actin monomer to Arp2/3, promoting the nucleation of the new filament. Cortactin also binds the Arp2/3 complex via an A domain; however, it also binds to actin filaments, which helps activate the Arp2/3 complex and stabilise the newly created branches between the filaments.
Collapse
Affiliation(s)
- Alissa M Weaver
- Department of Cell Biology, Washington University School of Medicine, St Louis, MO 63130, USA
| | | | | | | |
Collapse
|
29
|
Idrissi FZ, Wolf BL, Geli MI. Cofilin, but not profilin, is required for myosin-I-induced actin polymerization and the endocytic uptake in yeast. Mol Biol Cell 2002; 13:4074-87. [PMID: 12429847 PMCID: PMC133615 DOI: 10.1091/mbc.02-04-0052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutations in the budding yeast myosins-I (MYO3 and MYO5) cause defects in the actin cytoskeleton and in the endocytic uptake. Robust evidence also indicates that these proteins induce Arp2/3-dependent actin polymerization. Consistently, we have recently demonstrated, using fluorescence microscopy, that Myo5p is able to induce cytosol-dependent actin polymerization on the surface of Sepharose beads. Strikingly, we now observed that, at short incubation times, Myo5p induced the formation of actin foci that resembled the yeast cortical actin patches, a plasma membrane-associated structure that might be involved in the endocytic uptake. Analysis of the machinery required for the formation of the Myo5p-induced actin patches in vitro demonstrated that the Arp2/3 complex was necessary but not sufficient in the assay. In addition, we found that cofilin was directly involved in the process. Strikingly though, the cofilin requirement seemed to be independent of its ability to disassemble actin filaments and profilin, a protein that closely cooperates with cofilin to maintain a rapid actin filament turnover, was not needed in the assay. In agreement with these observations, we found that like the Arp2/3 complex and the myosins-I, cofilin was essential for the endocytic uptake in vivo, whereas profilin was dispensable.
Collapse
Affiliation(s)
- Fatima-Zahra Idrissi
- Biochemiezentrum of the University of Heidelberg (BZH), D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Eitzen G, Wang L, Thorngren N, Wickner W. Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 2002; 158:669-79. [PMID: 12177043 PMCID: PMC2174018 DOI: 10.1083/jcb.200204089] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin B or jasplakinolide, antibody to the actin regulatory proteins Las17p (yeast Wiskott-Aldrich syndrome protein) or Arp2/3, or deletion of actin regulatory genes. On docked vacuoles, actin is enriched at the "vertex ring" membrane microdomain where fusion occurs and is required for the terminal steps leading to membrane fusion. This role for actin may extend to other trafficking systems.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| | | | | | | |
Collapse
|
31
|
Henry KR, D'Hondt K, Chang J, Newpher T, Huang K, Hudson RT, Riezman H, Lemmon SK. Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of sla2p in yeast. Mol Biol Cell 2002; 13:2607-25. [PMID: 12181333 PMCID: PMC117929 DOI: 10.1091/mbc.e02-01-0012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but an scd5-Delta338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Delta338 affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Delta338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars. scd5-Delta338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression of SCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Delta338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.
Collapse
Affiliation(s)
- Kenneth R Henry
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H. Multiple functions of sterols in yeast endocytosis. Mol Biol Cell 2002; 13:2664-80. [PMID: 12181337 PMCID: PMC117933 DOI: 10.1091/mbc.e02-04-0186] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sterols are essential factors for endocytosis in animals and yeast. To investigate the sterol structural requirements for yeast endocytosis, we created a variety of ergDelta mutants, each accumulating a distinct set of sterols different from ergosterol. Mutant erg2Deltaerg6Delta and erg3Deltaerg6Delta cells exhibit a strong internalization defect of the alpha-factor receptor (Ste2p). Specific sterol structures are necessary for pheromone-dependent receptor hyperphosphorylation, a prerequisite for internalization. The lack of phosphorylation is not due to a defect in Ste2p localization or in ligand-receptor interaction. Contrary to most known endocytic factors, sterols seem to function in internalization independently of actin. Furthermore, sterol structures are required at a postinternalization step of endocytosis. ergDelta cells were able to take up the membrane marker FM4-64, but exhibited defects in FM4-64 movement through endosomal compartments to the vacuole. Therefore, there are at least two roles for sterols in endocytosis. Based on sterol analysis, the sterol structural requirements for these two processes were different, suggesting that sterols may have distinct functions at different places in the endocytic pathway. Interestingly, sterol structures unable to support endocytosis allowed transport of the glycosylphosphatidylinositol-anchored protein Gas1p from the endoplasmic reticulum to Golgi compartment.
Collapse
|
33
|
Abstract
Calmodulin, a small, ubiquitous Ca2+-binding protein, regulates a wide variety of proteins and processes in all eukaryotes. CMD1, the single gene encoding calmodulin in S. cerevisiae, is essential, and this review discusses studies that identified many of calmodulin's physiological targets and their functions in yeast cells. Calmodulin performs essential roles in mitosis, through its regulation of Nuf1p/Spc110p, a component of the spindle pole body, and in bud growth, by binding Myo2p, an unconventional class V myosin required for polarized secretion. Surprisingly, mutant calmodulins that fail to bind Ca2+ can perform these essential functions. Calmodulin is also required for endocytosis in yeast and participates in Ca2+-dependent, stress-activated signaling pathways through its regulation of a protein phosphatase, calcineurin, and the protein kinases, Cmk1p and Cmk2p. Thus, calmodulin performs important physiological functions in yeast cells in both its Ca2+-bound and Ca2+-free form.
Collapse
Affiliation(s)
- M S Cyert
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
34
|
Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol 2001; 314:1053-66. [PMID: 11743722 DOI: 10.1006/jmbi.2000.5219] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complexity of biological systems provides for a great diversity of relationships between genes. The current analysis of whole-genome expression data focuses on relationships based on global correlation over a whole time-course, identifying clusters of genes whose expression levels simultaneously rise and fall. There are, of course, other potential relationships between genes, which are missed by such global clustering. These include activation, where one expects a time-delay between related expression profiles, and inhibition, where one expects an inverted relationship. Here, we propose a new method, which we call local clustering, for identifying these time-delayed and inverted relationships. It is related to conventional gene-expression clustering in a fashion analogous to the way local sequence alignment (the Smith-Waterman algorithm) is derived from global alignment (Needleman-Wunsch). An integral part of our method is the use of random score distributions to assess the statistical significance of each cluster. We applied our method to the yeast cell-cycle expression dataset and were able to detect a considerable number of additional biological relationships between genes, beyond those resulting from conventional correlation. We related these new relationships between genes to their similarity in function (as determined from the MIPS scheme) or their having known protein-protein interactions (as determined from the large-scale two-hybrid experiment); we found that genes strongly related by local clustering were considerably more likely than random to have a known interaction or a similar cellular role. This suggests that local clustering may be useful in functional annotation of uncharacterized genes. We examined many of the new relationships in detail. Some of them were already well-documented examples of inhibition or activation, which provide corroboration for our results. For instance, we found an inverted expression profile relationship between genes YME1 and YNT20, where the latter has been experimentally documented as a bypass suppressor of the former. We also found new relationships involving uncharacterized yeast genes and were able to suggest functions for many of them. In particular, we found a time-delayed expression relationship between J0544 (which has not yet been functionally characterized) and four genes associated with the mitochondria. This suggests that J0544 may be involved in the control or activation of mitochondrial genes. We have also looked at other, less extensive datasets than the yeast cell-cycle and found further interesting relationships. Our clustering program and a detailed website of clustering results is available at http://www.bioinfo.mbb.yale.edu/expression/cluster (or http://www.genecensus.org/expression/cluster).
Collapse
Affiliation(s)
- J Qian
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, PO Box 208114, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
35
|
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M. Global analysis of protein activities using proteome chips. Science 2001; 293:2101-5. [PMID: 11474067 DOI: 10.1126/science.1062191] [Citation(s) in RCA: 1380] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and phospholipid-interacting proteins; a common potential binding motif was identified for many of the calmodulin-binding proteins. Thus, microarrays of an entire eukaryotic proteome can be prepared and screened for diverse biochemical activities. The microarrays can also be used to screen protein-drug interactions and to detect posttranslational modifications.
Collapse
Affiliation(s)
- H Zhu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Munn AL. Molecular requirements for the internalisation step of endocytosis: insights from yeast. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:236-57. [PMID: 11278164 DOI: 10.1016/s0925-4439(01)00028-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular genetic studies of endocytosis using the unicellular eukaryote Saccharomyces cerevisiae (budding yeast) have led to the identification of many cellular components, both proteins and lipids, required for this process. While initially, many of these requirements (e.g. for actin, various actin-associated proteins, the ubiquitin conjugation system, and for ergosterol and sphingolipids) appeared to differ from known requirements for endocytosis in higher eukaryotes (e.g. clathrin, AP-2, dynamin), it now seems that endocytosis in higher and lower eukaryotes share many requirements. Often, what were initially identified as actin cytoskeleton-associated proteins in S. cerevisiae, are now revealing themselves as clathrin-coated pit- and vesicle-associated proteins in higher eukaryotes. So rather than delineating two endocytic pathways, one actin-based and one clathrin-based, the combined studies on higher and lower eukaryotes are revealing interesting interplay in both systems between the actin cytoskeleton, clathrin coats, and lipids in the formation of endocytic vesicles at the plasma membrane. Recent results from the yeast system show that the Arp2/3p complex, Wiskott-Aldrich syndrome protein (WASP), and WASP-interacting protein (WIP), proteins involved in the nucleation step of actin filament assembly, play a major role in the formation of endocytic vesicles. This discovery suggests models whereby endocytic vesicles may be actively pushed from the plasma membrane and into the cell by newly forming and rapidly extending actin filaments.
Collapse
Affiliation(s)
- A L Munn
- Laboratory of Yeast Cell Biology, Institute of Molecular Agrobiology, 1 Research Link, National University of Singapore, 117604, Singapore.
| |
Collapse
|
37
|
Zhao X, Yang Z, Qian M, Zhu X. Interactions among subunits of human Arp2/3 complex: p20-Arc as the hub. Biochem Biophys Res Commun 2001; 280:513-7. [PMID: 11162547 DOI: 10.1006/bbrc.2000.4151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Arp2/3 complex is critical for nucleation and crosslinking of actin filaments. To gain insight into its subunit topology and assembly pathway, we systematically examined interactions among subunits of human Arp2/3 complex by yeast two-hybrid assays. It was shown that p20-Arc was able to interact with p21-Arc, p34-Arc, and p16-Arc, respectively. In contrast, p41-Arc only interacted with p20-Arc/p16-Arc heterodimer. In addition, we found that structural integrity was important for association between p20-Arc and p21-Arc, while the N-terminal half of p34-Arc was dispensable for its binding to p20-Arc. Our data suggest a key role of p20-Arc and a multistep pathway for the complex formation.
Collapse
Affiliation(s)
- X Zhao
- Shanghai Research Center of Life Sciences and Open Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | | | | | |
Collapse
|
38
|
Geli MI, Lombardi R, Schmelzl B, Riezman H. An intact SH3 domain is required for myosin I-induced actin polymerization. EMBO J 2000; 19:4281-91. [PMID: 10944111 PMCID: PMC302045 DOI: 10.1093/emboj/19.16.4281] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The yeast type I myosins (MYO3 and MYO5) are involved in endocytosis and in the polarization of the actin cytoskeleton. The tail of these proteins contains a Tail Homology 2 (TH2) domain that constitutes a putative actin-binding site. Because of the important mechanistic implications of a second ATP-independent actin-binding site, we analyzed its functional relevance in vivo. Even though the myosin tail interacts with actin, and this interaction seems functionally important, deletion of a major portion of the TH2 domain did not abolish interaction. In contrast, we found that the SH3 domain of Myo5p significantly contributes to this interaction, implicating other proteins. We found that Vrp1p, the yeast homolog of WIP [Wiskott-Aldrich syndrome protein (WASP)-interacting protein], seems necessary to sustain the Myo5p tail-F-actin interaction. Consistent with recent results implicating the yeast type I myosins in regulating actin polymerization in vivo, we demonstrate that the C-terminal domain of Myo5p is able to induce cytosol-dependent actin polymerization in vitro, and that this activity requires both an intact Myo5p SH3 domain and Vrp1p.
Collapse
Affiliation(s)
- M I Geli
- Biochemie Zentrum, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
39
|
Abstract
The functions of Ca2+ are many and varied within cells, but in the nerve terminals of neurons it has had a very defined role. That is, the influx of extracellular Ca2+ through voltage-dependent Ca2+ channels stimulates neurotransmitter release by exocytosis. For years this was assumed to be the main role for Ca2+ in this specialized subcellular region. However recent studies have shown that Ca2+ also has multiple roles in synaptic-vesicle endocytosis. This review will present evidence for three Ca2+-dependent and -independent steps; a high-affinity Ca2+-dependent triggering step, a Ca2+-independent maintenance phase, and a low-affinity Ca2+-dependent inhibition step. How the control of endocytosis by Ca2+ might impact on different neuronal functions such as synaptic transmission, the nucleation of SV endocytosis, and the repair of damaged membrane is then discussed.
Collapse
Affiliation(s)
- M A Cousin
- Division of Biomechanical and Clinical Laboratory Sciences, University of Edinburgh
| |
Collapse
|