1
|
Cauchois R, Lagarde M, Muller R, Faccini J, Leroyer A, Arnaud L, Poullin P, Dignat-George F, Kaplanski G, Tellier E. Vascular endothelial-cadherin is involved in endothelial cell detachment during thrombotic thrombocytopenic purpura. J Thromb Haemost 2024; 22:2879-2888. [PMID: 38950779 DOI: 10.1016/j.jtha.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Immune thrombotic thrombocytopenic purpura (i-TTP) is a life-threatening thrombotic microangiopathy linked to ADAMTS-13 deficiency. It has long been assumed that the activation of endothelial cells is the triggering factor for the thrombotic thrombocytopenic purpura crisis. Circulating endothelial cells (CECs) have been shown to be a biomarker of vascular damage and are associated with the clinical severity of i-TTP. However, the mechanisms leading to endothelial cell detachment remain unclear. OBJECTIVES We investigated junctional destabilization the mechanisms underlying cell detachment in thrombotic thrombocytopenic purpura. METHODS We quantified CECs in i-TTP patients and investigated the effect of plasmas in vitro by measuring phosphorylation and internalization of vascular endothelial (VE)-Cadherin and in vivo in a vascular permeability model. RESULTS In plasma from i-TTP patients, we show that CEC count is associated with severity and correlated to intracellular calcium influx (P < .01). In vitro, serum from i-TTP patients induced stronger detachment of human umbilical vein endothelial cells than serum from control patients (P < .001). Plasma from i-TTP patients induced a higher calcium-dependent phosphorylation (P < .05) and internalization (P < .05) of VE-cadherin compared with plasma from control patients. This effect could be reproduced by immunoglobulin (Ig)G fraction isolated from patient plasma and, in particular, by the F(ab)'2 fragments of the corresponding IgG. In addition, subcutaneous injection of i-TTP plasma into mice resulted in higher vascular permeability than plasma from control patients. An inhibitor of endothelial calcium influx, ITF1697, normalized this increase in permeability. CONCLUSION Our results suggest that plasma-induced endothelial activation also leads to an increase in vascular permeability. They contribute to the understanding of the mechanisms behind the presence of elevated CECs in patients' blood by linking endothelial activation to endothelial injury.
Collapse
Affiliation(s)
- Raphael Cauchois
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service de médecine interne et d'immunologie clinique, Marseille, France.
| | - Marie Lagarde
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Romain Muller
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service de médecine interne et d'immunologie clinique, Marseille, France
| | - Julien Faccini
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Aurélie Leroyer
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France
| | - Laurent Arnaud
- Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Département d'hématologie et de biologie vasculaire, Marseille, France
| | - Pascale Poullin
- French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service d'Hémaphérèse, Marseille, France
| | - Françoise Dignat-George
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Département d'hématologie et de biologie vasculaire, Marseille, France
| | - Gilles Kaplanski
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service de médecine interne et d'immunologie clinique, Marseille, France
| | - Edwige Tellier
- French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service de médecine interne et d'immunologie clinique, Marseille, France
| |
Collapse
|
2
|
Yang C, Robledo-Avila FH, Partida-Sanchez S, Montgomery CP. α-Hemolysin-mediated endothelial injury contributes to the development of Staphylococcus aureus-induced dermonecrosis. Infect Immun 2024; 92:e0013324. [PMID: 38953668 PMCID: PMC11320951 DOI: 10.1128/iai.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Staphylococcus aureus α-hemolysin (Hla) is a pore-forming toxin critical for the pathogenesis of skin and soft tissue infections, which causes the pathognomonic lesion of cutaneous necrosis (dermonecrosis) in mouse models. To determine the mechanism by which dermonecrosis develops during S. aureus skin infection, mice were given control serum, Hla-neutralizing antiserum, or an inhibitor of Hla receptor [A-disintegrin and metalloprotease 10 (ADAM10) inhibitor] followed by subcutaneous infection by S. aureus, and the lesions were evaluated using immunohistochemistry and immunofluorescence. Hla induced apoptosis in the vascular endothelium at 6 hours post-infection (hpi), followed by apoptosis in keratinocytes at 24 hpi. The loss of vascular endothelial (VE)-cadherin expression preceded the loss of epithelial-cadherin expression. Hla also induced hypoxia in the keratinocytes at 24 hpi following vascular injury. Treatment with Hla-neutralizing antibody or ADAM10 inhibitor attenuated early cleavage of VE-cadherin, cutaneous hypoxia, and dermonecrosis. These findings suggest that Hla-mediated vascular injury with cutaneous hypoxia underlies the pathogenesis of S. aureus-induced dermonecrosis.
Collapse
Affiliation(s)
- Ching Yang
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Frank H. Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Prabhakar A, Kumar R, Wadhwa M, Ghatpande P, Zhang J, Zhao Z, Lizama CO, Kharbikar BN, Gräf S, Treacy CM, Morrell NW, Graham BB, Lagna G, Hata A. Reversal of pulmonary veno-occlusive disease phenotypes by inhibition of the integrated stress response. NATURE CARDIOVASCULAR RESEARCH 2024; 3:799-818. [PMID: 39196173 PMCID: PMC11409862 DOI: 10.1038/s44161-024-00495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 08/29/2024]
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving vascular remodeling in PVOD. Here we show that administration of MMC in rats mediates activation of protein kinase R (PKR) and the integrated stress response (ISR), which leads to the release of the endothelial adhesion molecule vascular endothelial (VE) cadherin (VE-Cad) in complex with RAD51 to the circulation, disruption of endothelial barrier and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates VE-Cad depletion, elevation of vascular permeability and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of the receptor BMPR2, underscoring the role of deregulated bone morphogenetic protein signaling in the development of PVOD.
Collapse
Grants
- R01HL132058 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135872 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RG/19/3/34265 British Heart Foundation (BHF)
- R01HL164581 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153915 NHLBI NIH HHS
- R01HL153915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 28IR-0047 Tobacco-Related Disease Research Program (TRDRP)
- R01 HL135872 NHLBI NIH HHS
- 19CDA34730030 American Heart Association (American Heart Association, Inc.)
- R24 HL123767 NHLBI NIH HHS
- P01HL152961 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL164581 NHLBI NIH HHS
- P01 HL152961 NHLBI NIH HHS
- R01 HL132058 NHLBI NIH HHS
Collapse
Affiliation(s)
- Amit Prabhakar
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Rahul Kumar
- Lung Biology Center, Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Meetu Wadhwa
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jingkun Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ziwen Zhao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Carmen M Treacy
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Brian B Graham
- Lung Biology Center, Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Clapp A, Modiri O, Schonning M, Wu JK. Infantile Hemangiomas Lose Vascular Endothelial Cadherin During Involution: Potential Role in Cell Death? PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5832. [PMID: 38798935 PMCID: PMC11124740 DOI: 10.1097/gox.0000000000005832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Background Infantile hemangiomas (IHs) are benign endothelial cell (EC) tumors that undergo a predictable natural history, with rapid proliferation, stabilization, and involution. However, mechanisms regulating these transitions are not well understood. We have observed loss of vascular endothelial cadherin (VECAD) in involuting/involuted IHs. VECAD plays a critical role in angiogenesis, cell cycle progression, and EC survival. We hypothesize that loss of VECAD is associated with apoptosis occurring during IH involution. Methods Resected IH samples were clinically categorized as proliferating (n = 4), stable (n = 4), or involuting/involuted (n = 5). Neonatal dermal tissues were used as controls (n = 5). Immunohistochemistry was conducted on sectioned specimens using antibodies against EC markers VECAD and CD31. Apoptosis was assessed with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Results CD31 signal intensity in proliferating, stable, and involuting/involuted IH ECs was unchanged relative to each other and to control ECs. VECAD signal significantly and progressively diminished as IHs progressed from proliferation to involution. Involuting/involuted IHs had significantly reduced VECAD expression compared with control ECs (P < 0.0001), proliferating IHs (P < 0.0001), and stable IHs (P < 0.001). As expected, the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive ECs was significantly higher in involuting/involuted IHs (P < 0.05) relative to control ECs and proliferating IHs. Conclusions Loss of VECAD expression in IH endothelium corresponded to IH involution and increased apoptosis. It is unclear whether loss of VECAD is causative of IH involution; further studies are needed to elucidate the role of VECAD function in EC survival.
Collapse
Affiliation(s)
- Averill Clapp
- From the Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, N.Y
| | - Omeed Modiri
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Calif
| | - Michael Schonning
- Clinical Trials Center, Cardiovascular Research Foundation, New York, N.Y
| | - June K. Wu
- From the Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, N.Y
| |
Collapse
|
5
|
Prabhakar A, Kumar R, Wadhwa M, Ghatpande P, Zhang J, Zhao Z, Lizama CO, Kharbikar BN, Gräf S, Treacy CM, Morrell NW, Graham BB, Lagna G, Hata A. Reversal of pulmonary veno-occlusive disease phenotypes by inhibition of the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568924. [PMID: 38076809 PMCID: PMC10705277 DOI: 10.1101/2023.11.27.568924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving the vascular remodeling in PVOD. We show that the administration of MMC in rats mediates the activation of protein kinase R (PKR) and the integrated stress response (ISR), which lead to the release of the endothelial adhesion molecule VE-Cadherin in the complex with Rad51 to the circulation, disruption of endothelial barrier, and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates the depletion of VE-Cadherin, elevation of vascular permeability, and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of BMPR2, underscoring the role of deregulated BMP signal in the development of PVOD.
Collapse
|
6
|
Elhadad S, Redmond D, Huang J, Tan A, Laurence J. MASP2 inhibition by narsoplimab suppresses endotheliopathies characteristic of transplant-associated thrombotic microangiopathy: in vitro and ex vivo evidence. Clin Exp Immunol 2023; 213:252-264. [PMID: 37191586 PMCID: PMC10361744 DOI: 10.1093/cei/uxad055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023] Open
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is an endotheliopathy complicating up to 30% of allogeneic hematopoietic stem cell transplants (alloHSCT). Positive feedback loops among complement, pro-inflammatory, pro-apoptotic, and coagulation cascade likely assume dominant roles at different disease stages. We hypothesized that mannose-binding lectin-associated serine protease 2 (MASP2), principal activator of the lectin complement system, is involved in the microvascular endothelial cell (MVEC) injury characteristic of TA-TMA through pathways that are susceptible to suppression by anti-MASP2 monoclonal antibody narsoplimab. Pre-treatment plasmas from 8 of 9 TA-TMA patients achieving a complete TMA response in a narsoplimab clinical trial activated caspase 8, the initial step in apoptotic injury, in human MVEC. This was reduced to control levels following narsoplimab treatment in 7 of the 8 subjects. Plasmas from 8 individuals in an observational TA-TMA study, but not 8 alloHSCT subjects without TMA, similarly activated caspase 8, which was blocked in vitro by narsoplimab. mRNA sequencing of MVEC exposed to TA-TMA or control plasmas with and without narsoplimab suggested potential mechanisms of action. The top 40 narsoplimab-affected transcripts included upregulation of SerpinB2, which blocks apoptosis by inactivating procaspase 3; CHAC1, which inhibits apoptosis in association with mitigation of oxidative stress responses; and pro-angiogenesis proteins TM4SF18, ASPM, and ESM1. Narsoplimab also suppressed transcripts encoding pro-apoptotic and pro-inflammatory proteins ZNF521, IL1R1, Fibulin-5, aggrecan, SLC14A1, and LOX1, and TMEM204, which disrupts vascular integrity. Our data suggest benefits to narsoplimab use in high-risk TA-TMA and provide a potential mechanistic basis for the clinical efficacy of narsoplimab in this disorder.
Collapse
Affiliation(s)
- Sonia Elhadad
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, New York, NY, USA
| | - Jenny Huang
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, New York, NY, USA
| | - Adrian Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey Laurence
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Boukenna M, Rougier JS, Aghagolzadeh P, Pradervand S, Guichard S, Hämmerli AF, Pedrazzini T, Abriel H. Multiomics uncover the proinflammatory role of Trpm4 deletion after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2023; 324:H504-H518. [PMID: 36800508 DOI: 10.1152/ajpheart.00671.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Upon myocardial infarction (MI), ischemia-induced cell death triggers an inflammatory response responsible for removing necrotic material and inducing tissue repair. TRPM4 is a Ca2+-activated ion channel permeable to monovalent cations. Although its role in cardiomyocyte-driven hypertrophy and arrhythmia post-MI has been established, no study has yet investigated its role in the inflammatory process orchestrated by endothelial cells, immune cells, and fibroblasts. This study aims to assess the role of TRPM4 in 1) survival and cardiac function, 2) inflammation, and 3) healing post-MI. We performed ligation of the left coronary artery or sham intervention on 154 Trpm4 WT or KO mice under isoflurane anesthesia. Survival and echocardiographic functions were monitored up to 5 wk. We collected serum during the acute post-MI phase to analyze proteomes and performed single-cell RNA sequencing on nonmyocytic cells of hearts after 24 and 72 h. Lastly, we assessed chronic fibrosis and angiogenesis. We observed no significant differences in survival or cardiac function, even though our proteomics data showed significantly decreased tissue injury markers (i.e., creatine kinase M and VE-cadherin) in KO serum after 12 h. On the other hand, inflammation, characterized by serum amyloid P component in the serum, higher number of recruited granulocytes, inflammatory monocytes, and macrophages, as well as expression of proinflammatory genes, was significantly higher in KO. This correlated with increased chronic cardiac fibrosis and angiogenesis. Since inflammation and fibrosis are closely linked to adverse remodeling, future therapeutic attempts at inhibiting TRPM4 will need to assess these parameters carefully before proceeding with translational studies.NEW & NOTEWORTHY Deletion of Trpm4 increases markers of cardiac and systemic inflammation within the first 24 h after MI, while inducing an earlier fibrotic transition at 72 h and more overall chronic fibrosis and angiogenesis at 5 wk. The descriptive, robust, and methodologically broad approach of this study sheds light on an important caveat that will need to be taken into account in all future therapeutic attempts to inhibit TRPM4 post-MI.
Collapse
Affiliation(s)
- Mey Boukenna
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jean-Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Parisa Aghagolzadeh
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Sylvain Pradervand
- Centre d'Oncologie de Précision, Département d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Anne-Flore Hämmerli
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Ivaldo C, Passalacqua M, Furfaro AL, d’Abramo C, Ruiz S, Chatterjee PK, Metz CN, Nitti M, Marambaud P. Oxidative stress-induced MMP- and γ-secretase-dependent VE-cadherin processing is modulated by the proteasome and BMP9/10. Sci Rep 2023; 13:597. [PMID: 36631513 PMCID: PMC9834263 DOI: 10.1038/s41598-022-27308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Classical cadherins, including vascular endothelial (VE)-cadherin, are targeted by matrix metalloproteinases (MMPs) and γ-secretase during adherens junction (AJ) disassembly, a mechanism that might have relevance for endothelial cell (EC) integrity and vascular homeostasis. Here, we show that oxidative stress triggered by H2O2 exposure induced efficient VE-cadherin proteolysis by MMPs and γ-secretase in human umbilical endothelial cells (HUVECs). The cytoplasmic domain of VE-cadherin produced by γ-secretase, VE-Cad/CTF2-a fragment that has eluded identification so far-could readily be detected after H2O2 treatment. VE-Cad/CTF2, released into the cytosol, was tightly regulated by proteasomal degradation and was sequentially produced from an ADAM10/17-generated C-terminal fragment, VE-Cad/CTF1. Interestingly, BMP9 and BMP10, two circulating ligands critically involved in vascular maintenance, significantly reduced VE-Cad/CTF2 levels during H2O2 challenge, as well as mitigated H2O2-mediated actin cytoskeleton disassembly during VE-cadherin processing. Notably, BMP9/10 pretreatments efficiently reduced apoptosis induced by H2O2, favoring endothelial cell recovery. Thus, oxidative stress is a trigger of MMP- and γ-secretase-mediated endoproteolysis of VE-cadherin and AJ disassembly from the cytoskeleton in ECs, a mechanism that is negatively controlled by the EC quiescence factors, BMP9 and BMP10.
Collapse
Affiliation(s)
- Caterina Ivaldo
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy ,grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Mario Passalacqua
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy
| | - Anna Lisa Furfaro
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy
| | - Cristina d’Abramo
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Santiago Ruiz
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Prodyot K. Chatterjee
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Christine N. Metz
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132, Genova, Italy.
| | - Philippe Marambaud
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| |
Collapse
|
9
|
Kümper M, Hessenthaler S, Zamek J, Niland S, Pach E, Mauch C, Zigrino P. LOSS OF ENDOTHELIAL CELL MMP14 REDUCES MELANOMA GROWTH AND METASTASIS BY INCREASING TUMOR VESSEL STABILITY. J Invest Dermatol 2021; 142:1923-1933.e5. [DOI: 10.1016/j.jid.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
|
10
|
Harki O, Tamisier R, Pépin JL, Bailly S, Mahmani A, Gonthier B, Salomon A, Vilgrain I, Faury G, Briançon-Marjollet A. VE-cadherin cleavage in sleep apnoea: new insights into intermittent hypoxia-related endothelial permeability. Eur Respir J 2021; 58:13993003.04518-2020. [PMID: 33737411 DOI: 10.1183/13993003.04518-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) causes intermittent hypoxia that in turn induces endothelial dysfunction and atherosclerosis progression. We hypothesised that VE-cadherin cleavage, detected by its released extracellular fragment solubilised in the blood (sVE), may be an early indicator of emergent abnormal endothelial permeability. Our aim was to assess VE-cadherin cleavage in OSA patients and in in vivo and in vitro intermittent hypoxia models to decipher the cellular mechanisms and consequences. METHODS Sera from seven healthy volunteers exposed to 14 nights of intermittent hypoxia, 43 OSA patients and 31 healthy control subjects were analysed for their sVE content. Human aortic endothelial cells (HAECs) were exposed to 6 h of intermittent hypoxia in vitro, with or without an antioxidant or inhibitors of hypoxia-inducible factor (HIF)-1, tyrosine kinases or vascular endothelial growth factor (VEGF) pathways. VE-cadherin cleavage and phosphorylation were evaluated, and endothelial permeability was assessed by measuring transendothelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran flux. RESULTS sVE was significantly elevated in sera from healthy volunteers submitted to intermittent hypoxia and OSA patients before treatment, but conversely decreased in OSA patients after 6 months of continuous positive airway pressure treatment. OSA was the main factor accounting for sVE variations in a multivariate analysis. In in vitro experiments, cleavage and expression of VE-cadherin increased upon HAEC exposure to intermittent hypoxia. TEER decreased and FITC-dextran flux increased. These effects were reversed by all of the pharmacological inhibitors tested. CONCLUSIONS We suggest that in OSA, intermittent hypoxia increases endothelial permeability in OSA by inducing VE-cadherin cleavage through reactive oxygen species production, and activation of HIF-1, VEGF and tyrosine kinase pathways.
Collapse
Affiliation(s)
- Olfa Harki
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Renaud Tamisier
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Sébastien Bailly
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Anissa Mahmani
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Brigitte Gonthier
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Aude Salomon
- Université Grenoble Alpes, INSERM U1036, CEA, Grenoble, France
| | | | - Gilles Faury
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | | |
Collapse
|
11
|
How Does Endothelial Permeability Affect the Development of Juvenile Idiopathic Arthritis? Vascular Endothelial Cadherin as a Promising New Tool Helpful in the Diagnostic Process. DISEASE MARKERS 2020; 2020:8899061. [PMID: 33144896 PMCID: PMC7596436 DOI: 10.1155/2020/8899061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
Introduction Vascular endothelial cadherin (VE-cadherin) is a calcium-dependent protein essential for stabilization of the adherens junctions of the endothelial cells. Through vasculogenic mimicry, VE-cadherin may influence angiogenesis in synovial fibroblast-like cells. The soluble extracellular domain of VE-cadherin may be considered an indicator of endothelial dysfunction. Its potential as a diagnostic biomarker in rheumatic diseases, including juvenile idiopathic arthritis (JIA), needs to be investigated. Materials and Methods The study group included 80 patients diagnosed with JIA. In 53 individuals, blood samples were obtained twice with an average interval of 102.4 ± 4.6 days. Results from the study group were compared to 29 age- and sex-matched healthy children. Results Serum levels of VE-cadherin were significantly higher in JIA patients than in healthy controls. In such comparison, VE-cadherin had 87.5% sensitivity and 69.0% specificity for the cutoff level 4.36 ng/ml (Youden index 0.56, area under the curve 0.724). VE-cadherin concentrations negatively correlated with the disease activity score. However, such finding may be a false result because of the downregulation of VE-cadherin induced by glucocorticosteroids. Conclusions VE-cadherin may become a promising diagnostic biomarker of early stages of JIA. Its predictive significance may be decreased by utilization of glucocorticosteroids. A multicentre study including patients with other arthritides is recommended for further evaluation of this protein.
Collapse
|
12
|
Apoptotic Fragmentation of Tricellulin. Int J Mol Sci 2019; 20:ijms20194882. [PMID: 31581480 PMCID: PMC6801678 DOI: 10.3390/ijms20194882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/02/2023] Open
Abstract
Apoptotic extrusion of cells from epithelial cell layers is of central importance for epithelial homeostasis. As a prerequisite cell-cell contacts between apoptotic cells and their neighbors have to be dissociated. Tricellular tight junctions (tTJs) represent specialized structures that seal polarized epithelial cells at sites where three cells meet and are characterized by the specific expression of tricellulin and angulins. Here, we specifically addressed the fate of tricellulin in apoptotic cells. METHODS Apoptosis was induced by staurosporine or camptothecin in MDCKII and RT-112 cells. The fate of tricellulin was analyzed by Western blotting and immunofluorescence microscopy. Caspase activity was inhibited by Z-VAD-FMK or Z-DEVD-FMK. RESULTS Induction of apoptosis induces the degradation of tricellulin with time. Aspartate residues 487 and 441 were identified as caspase cleavage-sites in the C-terminal coiled-coil domain of human tricellulin. Fragmentation of tricellulin was inhibited in the presence of caspase inhibitors or when Asp487 or Asp441 were mutated to asparagine. Deletion of the tricellulin C-terminal amino acids prevented binding to lipolysis-stimulated lipoprotein receptor (LSR)/angulin-1 and thus should impair specific localization of tricellulin to tTJs. CONCLUSIONS Tricellulin is a substrate of caspases and its cleavage in consequence contributes to the dissolution of tTJs during apoptosis.
Collapse
|
13
|
Zakiyanov O, Kalousová M, Zima T, Tesař V. Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal. Kidney Blood Press Res 2019; 44:298-330. [PMID: 31185475 DOI: 10.1159/000499876] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases within the metzincin protein family that not only cleave extracellular matrix (ECM) components, but also process the non-ECM molecules, including various growth factors and their binding proteins. MMPs participate in cell to ECM interactions, and MMPs are known to be involved in cell proliferation mechanisms and most probably apoptosis. These proteinases are grouped into six classes: collagenases, gelatinases, stromelysins, matrilysins, membrane type MMPs, and other MMPs. Various mechanisms regulate the activity of MMPs, inhibition by tissue inhibitors of metalloproteinases being the most important. In the kidney, intrinsic glomerular cells and tubular epithelial cells synthesize several MMPs. The measurement of circulating MMPs can provide valuable information in patients with kidney diseases. They play an important role in many renal diseases, both acute and chronic. This review attempts to summarize the current knowledge of MMPs in the kidney and discusses recent data from patient and animal studies with reference to specific diseases. A better understanding of the MMPs' role in renal remodeling may open the way to new interventions favoring deleterious renal changes in a number of kidney diseases.
Collapse
Affiliation(s)
- Oskar Zakiyanov
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia,
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
14
|
Mundi S, Massaro M, Scoditti E, Carluccio MA, van Hinsbergh VWM, Iruela-Arispe ML, De Caterina R. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res 2019; 114:35-52. [PMID: 29228169 DOI: 10.1093/cvr/cvx226] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Early atherosclerosis features functional and structural changes in the endothelial barrier function that affect the traffic of molecules and solutes between the vessel lumen and the vascular wall. Such changes are mechanistically related to the development of atherosclerosis. Proatherogenic stimuli and cardiovascular risk factors, such as dyslipidaemias, diabetes, obesity, and smoking, all increase endothelial permeability sharing a common signalling denominator: an imbalance in the production/disposal of reactive oxygen species (ROS), broadly termed oxidative stress. Mostly as a consequence of the activation of enzymatic systems leading to ROS overproduction, proatherogenic factors lead to a pro-inflammatory status that translates in changes in gene expression and functional rearrangements, including changes in the transendothelial transport of molecules, leading to the deposition of low-density lipoproteins (LDL) and the subsequent infiltration of circulating leucocytes in the intima. In this review, we focus on such early changes in atherogenesis and on the concept that proatherogenic stimuli and risk factors for cardiovascular disease, by altering the endothelial barrier properties, co-ordinately trigger the accumulation of LDL in the intima and ultimately plaque formation.
Collapse
Affiliation(s)
- Santa Mundi
- Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Maria Annunziata Carluccio
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat, NL-1081 BT, Amsterdam, The Netherlands
| | - Marial Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, 610 Charles E Young Dr S, 90095, Los Angeles, USA; and
| | - Raffaele De Caterina
- Department of Neuroscience, Imaging and Clinical Science and Institute of Advanced Biomedical Technologies, University G. D'Annunzio, via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
15
|
Razvi SS, Choudhry H, Hasan MN, Hassan MA, Moselhy SS, Abualnaja KO, Zamzami MA, Kumosani TA, Al-Malki AL, Halwani MA, Ibrahim A, Hamiche A, Bronner C, Asami T, Alhosin M. Identification of Deregulated Signaling Pathways in Jurkat Cells in Response to a Novel Acylspermidine Analogue-N 4-Erucoyl Spermidine. Epigenet Insights 2018; 11:2516865718814543. [PMID: 30515476 PMCID: PMC6262497 DOI: 10.1177/2516865718814543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Natural polyamines such as putrescine, spermidine, and spermine are crucial in the cell proliferation and maintenance in all the eukaryotes. However, the requirement of polyamines in tumor cells is stepped up to maintain tumorigenicity. Many synthetic polyamine analogues have been designed recently to target the polyamine metabolism in tumors to induce apoptosis. N4-Erucoyl spermidine (designed as N4-Eru), a novel acylspermidine derivative, has been shown to exert selective inhibitory effects on both hematological and solid tumors, but its mechanisms of action are unknown. In this study, RNA sequencing was performed to investigate the anticancer mechanisms of N4-Eru-treated T-cell acute lymphoblastic leukemia (ALL) cell line (Jurkat cells), and gene expression was examined through different tools. We could show that many key oncogenes including NDRG1, CACNA1G, TGFBR2, NOTCH1,2,3, UHRF1, DNMT1,3, HDAC1,3, KDM3A, KDM4B, KDM4C, FOS, and SATB1 were downregulated, whereas several tumor suppressor genes such as CDKN2AIPNL, KISS1, DDIT3, TP53I13, PPARG, FOXP1 were upregulated. Data obtained through RNA-Seq further showed that N4-Eru inhibited the NOTCH/Wnt/JAK-STAT axis. This study also indicated that N4-Eru-induced apoptosis could involve several key signaling pathways in cancer. Altogether, our results suggest that N4-Eru is a promising drug to treat ALL.
Collapse
Affiliation(s)
- Syed Shoeb Razvi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Nihal Hasan
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A Hassan
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine and Health Sciences, Hadhramout University, Mukalla, Yemen
| | - Said Salama Moselhy
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Khalid Omer Abualnaja
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha Abduallah Kumosani
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Labeed Al-Malki
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed A Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Tadao Asami
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mahmoud Alhosin
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Liberale L, Diaz-Cañestro C, Bonetti NR, Paneni F, Akhmedov A, Beer JH, Montecucco F, Lüscher TF, Camici GG. Post-ischaemic administration of the murine Canakinumab-surrogate antibody improves outcome in experimental stroke. Eur Heart J 2018; 39:3511-3517. [DOI: 10.1093/eurheartj/ehy286] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, Italy
| | - Candela Diaz-Cañestro
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
| | - Nicole R Bonetti
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Im Ergel 1, Baden, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Im Ergel 1, Baden, Switzerland
| | - Fabrizio Montecucco
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
- Ospedale Policlinico San Martino 10 Largo Benzi, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, Schlieren, Switzerland
- Zurich Neuroscience Center, University of Zurich, Winterthurer Strasse 190, Zurich, Switzerland
| |
Collapse
|
17
|
Sulkowska M, Famulski W, Wincewicz A, Moniuszko T, Kedra B, Koda M, Zalewski B, Baltaziak M, Sulkowski S. Levels of Ve-Cadherin Increase Independently of Vegf in Preoperative Sera of Patients with Colorectal Cancer. TUMORI JOURNAL 2018; 92:67-71. [PMID: 16683386 DOI: 10.1177/030089160609200111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS AND BACKGROUND Vascular endothelial cadherin (VE-cadherin) preserves the tightness of the mature vascular network as a component of endothelial adherens junctions. Vascular endothelial growth factor (VEGF) makes VE-cadherin dissociate from complexes with beta-catenin, so that endothelial cells can loosely proliferate and migrate. We searched for relationships between VEGF and VE-cadherin levels in preoperative sera of patients with colorectal cancer (CRC). We also compared VE-cadherin levels of control and preoperative CRC sera in relation to clinicopathological features. METHODS We measured with an ELISA kit the serum levels of the proteins in preoperative samples from 125 CRC patients and in samples from 16 healthy volunteers. RESULTS Serum VE-cadherin was about fourfold higher in CRC patients than in controls (P < 0.00001), with similar results being found in subgroups with different clinicopathological features versus controls. VE-cadherin was not correlated with VEGF in the entire group of CRC patients nor in the subgroups of node-positive and node-negative patients, different grades of histological differentiation (G2 or G3), extent of tumor growth (pT1+pT2 or pT3+pT4), histopathological type (adenocarcinoma or mucinous carcinoma), sex, age, and tumor site (colon or rectum). However, the serum levels of VE-cadherin and VEGF in CRC patients, which were higher than the mean values of controls, tended towards a negative correlation in node-positive patients (P = 0.078, r = -0.279). CONCLUSIONS VEGF and VE-cadherin seem to be independent markers of angiogenesis in CRC with no significant correlation between their serum levels.
Collapse
Affiliation(s)
- Mariola Sulkowska
- Department of Pathology, Collegium Pathologicum, Medical University of Bialystok, Bialystok, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Larvae are a diverse set of postembryonic life forms distinct from juveniles or adults that have evolved in many animal phyla. Echinoids (sea urchins and sand dollars) generate rapidly developing, morphologically simple, and optically transparent larvae and are a well-established model system supported by a broad array of genomic resources, experimental approaches, and imaging techniques. As such, they provide a unique opportunity to study postembryonic processes such as endocrine signaling, immunity, host-microbe interactions, and regeneration. Here we review a broad array of literature focusing on these important processes in sea urchin larvae, providing support for the claim that they represent excellent experimental study systems. Specifically, there is strong evidence emerging that endocrine signaling, immunity, and host-microbe interactions play major roles in larval development and physiology. Future research should take advantage of sea urchin larvae as a model to study these processes in more detail.
Collapse
|
19
|
Hong Y, Koh I, Park K, Kim P. On-Chip Fabrication of a Cell-Derived Extracellular Matrix Sheet. ACS Biomater Sci Eng 2017; 3:3546-3552. [DOI: 10.1021/acsbiomaterials.7b00613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yoonmi Hong
- Department
of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ilkyoo Koh
- Department
of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kwideok Park
- Center
for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Pilnam Kim
- Department
of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Rezaei M, Cao J, Friedrich K, Kemper B, Brendel O, Grosser M, Adrian M, Baretton G, Breier G, Schnittler HJ. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions. Histochem Cell Biol 2017; 149:15-30. [PMID: 29143117 DOI: 10.1007/s00418-017-1619-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 01/19/2023]
Abstract
The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.
Collapse
Affiliation(s)
- Maryam Rezaei
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Katrin Friedrich
- Institute of Pathology, Medical Faculty Dresden, Dresden, Germany
| | - Björn Kemper
- Biomedical Technology Center, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Oliver Brendel
- Institute of Pathology, Medical Faculty Dresden, Dresden, Germany
| | - Marianne Grosser
- Institute of Pathology, Medical Faculty Dresden, Dresden, Germany
| | - Manuela Adrian
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Gustavo Baretton
- Institute of Pathology, Medical Faculty Dresden, Dresden, Germany
| | - Georg Breier
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany.
| |
Collapse
|
21
|
Blaha L, Zhang C, Cabodi M, Wong JY. A microfluidic platform for modeling metastatic cancer cell matrix invasion. Biofabrication 2017; 9:045001. [PMID: 28812983 DOI: 10.1088/1758-5090/aa869d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Invasion of the extracellular matrix is a critical step in the colonization of metastatic tumors. The invasion process is thought to be driven by both chemokine signaling and interactions between invading cancer cells and physical components of the metastatic niche, including endothelial cells that line capillary walls and serve as a barrier to both diffusion and invasion of the underlying tissue. Transwell chambers, a tool for generating artificial chemokine gradients to induce cell migration, have facilitated recent work to investigate the chemokine contributions to matrix invasion. These chambers, however, are poorly designed for imaging, which limits their use in investigating the physical cell-cell and cell-matrix interactions driving matrix invasion. Microfluidic devices offer a promising model in which the invasion process can be imaged. Many current designs, however, have limited surface areas and possess intricate geometries that preclude the use of standard staining protocols to visualize cells and matrix proteins. In this work, we present a novel microfluidic platform for imaging cell-cell and cell-matrix interactions driving metastatic cancer cell matrix invasion. Our model is applied to investigate how endothelial cell-secreted matrix proteins and the physical endothelial monolayer itself interact with invading metastatic breast cancer cells to facilitate invasion of an underlying type I collagen gel. The results show that matrix invasion of metastatic breast cancer cells is significantly enhanced in the presence of live endothelial cells. Probing this interaction further, our platform revealed that, while the fibronectin-rich matrix deposited by endothelial cells was not sufficient to drive invasion alone, metastatic breast cancer cells were able to exploit components of energetically inactivated endothelial cells to gain entry into the underlying matrix. These findings reveal novel cell-cell interactions driving a key step in the colonization of metastatic tumors and have important implications for designing drugs targeted at preventing cancer metastasis.
Collapse
Affiliation(s)
- Laura Blaha
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | | | | | | |
Collapse
|
22
|
DPP-4 inhibition protects human umbilical vein endothelial cells from hypoxia-induced vascular barrier impairment. J Pharmacol Sci 2017; 135:29-36. [PMID: 28923269 DOI: 10.1016/j.jphs.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are relatively new class of anti-diabetic drugs. Some protective effects of DPP-4 on cardiovascular disease have been described independently from glucose-lowering effect. However, the detailed mechanisms by which DPP-4 inhibitors exert on endothelial cells remain elusive. The purpose of this research was to determine the effects of DPP-4 inhibitor on endothelial barrier function. Human umbilical vein endothelial cells (HUVECs) were cultured and exposed to hypoxia in the presence or absence of Diprotin A, a DPP-4 inhibitor. Immunocytochemistry of vascular endothelial (VE-) cadherin showed that jagged VE-cadherin staining pattern induced by hypoxia was restored by treatment with Diprotin A. The increased level of cleaved β-catenin in response to hypoxia was significantly attenuated by Diprotin A, suggesting that DPP-4 inhibition protects endothelial adherens junctions from hypoxia. Subsequently, we found that Diprotin A inhibited hypoxia-induced translocation of NF-κB from cytoplasm to nucleus through decreasing TNF-α expression level. Furthermore, the tube formation assay showed that Diprotin A significantly restored hypoxia-induced decrease in number of tubes by HUVECs. These results suggest that DPP-4 inhibitior protects HUVECs from hypoxia-induced barrier impairment.
Collapse
|
23
|
HUCMNCs protect vascular endothelium and prevent ISR after endovascular interventional therapy for vascular diseases in T2DM rabbits. Mol Cell Biochem 2017; 433:161-167. [PMID: 28474283 DOI: 10.1007/s11010-017-3024-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
The therapeutic effect of transplantation of human umbilical cord blood cell-derived mononuclear cells (HUCMNCs) on treating in-stent restenosis (ISR) after endovascular interventional therapy (EIT) was evaluated in preclinical rabbit model of type 2 diabetes mellitus (T2DM)-related peripheral artery disease (PAD). HUCMNCs were transplanted to T2DM rabbits subjected to femoral artery occlusion surgery and received EIT. Serum concentration of soluble vascular endothelial cadherin (VE-cad) and plasma concentration of lipoprotein-associated phospholipase A2 (Lp-PLA2) were determined with enzyme-linked immunosorbent assay before and after the transplantation. The injury and the recovery of right femoral artery at stenting site were evaluated with Hematoxylin and Eosin (HE) staining. HUCMNCs purified from umbilical cord blood were 100% CD45+ and 96.5% CD34- with round or oval morphology and adherent growth pattern. The soluble VE-cad and Lp-PLA2 were significantly attenuated after HUCMNC transplantation. The intimal area and the ratio between intimal area and medium film area in the dilated occlusion site were also dramatically decreased 4 weeks after receiving HUCMNCs. HUCMNC transplantation is effective in protecting vascular endothelial function and preventing ISR after EIT in T2DM rabbits suffering from PAD.
Collapse
|
24
|
Zakharova VV, Pletjushkina OY, Galkin II, Zinovkin RA, Chernyak BV, Krysko DV, Bachert C, Krysko O, Skulachev VP, Popova EN. Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:968-977. [PMID: 28131916 DOI: 10.1016/j.bbadis.2017.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/30/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial dysfunctions occur in many diseases linked to the systemic inflammatory response syndrome (SIRS). Mild uncoupling of oxidative phosphorylation is known to rescue model animals from pathologies related to mitochondrial dysfunctions and overproduction of reactive oxygen species (ROS). To study the potential of SIRS therapy by uncoupling, we tested protonophore dinitrophenol (DNP) and a free fatty acid (FFA) anion carrier, lipophilic cation dodecyltriphenylphosphonium (C12TPP) in mice and in vitro models of SIRS. DNP and C12TPP prevented the body temperature drop and lethality in mice injected with high doses of a SIRS inducer, tumor necrosis factor (TNF). The mitochondria-targeted antioxidant plastoquinonyl decyltriphenylphosphonium (SkQ1) which also catalyzes FFA-dependent uncoupling revealed similar protective effects and downregulated expression of the NFκB-regulated genes (VCAM1, ICAM1, MCP1, and IL-6) involved in the inflammatory response of endothelium in aortas of the TNF-treated mice. In vitro mild uncoupling rescued from TNF-induced endothelial permeability, disassembly of cell contacts and VE-cadherin cleavage by the matrix metalloprotease 9 (ММР9). The uncouplers prevented TNF-induced expression of MMP9 via inhibition of NFκB signaling. Water-soluble antioxidant Trolox also prevented TNF-induced activation and permeability of endothelium in vitro via inhibition of NFκB signaling, suggesting that the protective action of the uncouplers is linked to their antioxidant potential.
Collapse
Affiliation(s)
- Vlada V Zakharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Yu Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitri V Krysko
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium; Molecular Signalling and Cell Death Unit, VIB-UGent Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent Belgium
| | - Olga Krysko
- Upper Airways Research Laboratory, Ghent University, Ghent Belgium
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
25
|
Galkin II, Pletjushkina OY, Zinovkin RA, Zakharova VV, Chernyak BV, Popova EN. Mitochondria-Targeted Antioxidant SkQR1 Reduces TNF-Induced Endothelial Permeability in vitro. BIOCHEMISTRY (MOSCOW) 2017; 81:1188-1197. [PMID: 27908243 DOI: 10.1134/s0006297916100163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prolonged or excessive increase in the circulatory level of proinflammatory tumor necrosis factor (TNF) leads to abnormal activation and subsequent damage to endothelium. TNF at high concentrations causes apoptosis of endothelial cells. Previously, using mitochondria-targeted antioxidants of SkQ family, we have shown that apoptosis of endothelial cells is dependent on the production of reactive oxygen species (ROS) in mitochondria (mito-ROS). Now we have found that TNF at low concentrations does not cause cell death but activates caspase-3 and caspase-dependent increase in endothelial permeability in vitro. This effect is probably due to the cleavage of β-catenin - an adherent junction protein localized in the cytoplasm. We have also shown that extracellular matrix metalloprotease 9 (MMP9) VE-cadherin shedding plays a major role in the TNF-induced endothelial permeability. The mechanisms of the caspase-3 and MMP9 activation are probably not related to each other since caspase inhibition did not affect VE-cadherin cleavage and MMP9 inhibition had no effect on the caspase-3 activation. Mitochondria-targeted antioxidant SkQR1 inhibited TNF-induced increase in endothelial permeability. SkQR1 also inhibited caspase-3 activation, β-catenin cleavage, and MMP9-dependent VE-cadherin shedding. The data suggest that mito-ROS are involved in the increase in endothelial permeability due to the activation of both caspase-dependent cleavage of intracellular proteins and of MMP9-dependent cleavage of the transmembrane cell-to-cell contact proteins.
Collapse
Affiliation(s)
- I I Galkin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
26
|
Mikus M, Drobin K, Gry M, Bachmann J, Lindberg J, Yimer G, Aklillu E, Makonnen E, Aderaye G, Roach J, Fier I, Kampf C, Göpfert J, Perazzo H, Poynard T, Stephens C, Andrade RJ, Lucena MI, Arber N, Uhlén M, Watkins PB, Schwenk JM, Nilsson P, Schuppe‐Koistinen I. Elevated levels of circulating CDH5 and FABP1 in association with human drug-induced liver injury. Liver Int 2017; 37:132-140. [PMID: 27224670 PMCID: PMC5215406 DOI: 10.1111/liv.13174] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 05/13/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS The occurrence of drug-induced liver injury (DILI) is a major issue in all phases of drug development. To identify novel biomarker candidates associated with DILI, we utilised an affinity proteomics strategy, where antibody suspension bead arrays were applied to profile plasma and serum samples from human DILI cases and controls. METHODS An initial screening was performed using 4594 randomly selected antibodies, representing 3450 human proteins. Resulting candidate proteins together with proposed DILI biomarker candidates generated a DILI array of 251 proteins for subsequent target analysis and verifications. In total, 1196 samples from 241 individuals across four independent cohorts were profiled: healthy volunteers receiving acetaminophen, patients with human immunodeficiency virus and/or tuberculosis receiving treatment, DILI cases originating from a wide spectrum of drugs, and healthy volunteers receiving heparins. RESULTS We observed elevated levels of cadherin 5, type 2 (CDH5) and fatty acid-binding protein 1 (FABP1) in DILI cases. In the two longitudinal cohorts, CDH5 was elevated already at baseline. FABP1 was elevated after treatment initiation and seemed to respond more rapidly than alanine aminotransferase (ALT). The elevations were verified in the DILI cases treated with various drugs. In the heparin cohort, CDH5 was stable over time whereas FABP1 was elevated. CONCLUSIONS These results suggest that CDH5 may have value as a susceptibility marker for DILI. FABP1 was identified as a biomarker candidate with superior characteristics regarding tissue distribution and kinetics compared to ALT but likely with limited predictive value for the development of severe DILI. Further studies are needed to determine the clinical utility of the proposed markers.
Collapse
Affiliation(s)
- Maria Mikus
- Affinity proteomicsSciLifeLabSchool of BiotechnologyKTH‐Royal Institute of TechnologyStockholmSweden
| | - Kimi Drobin
- Affinity proteomicsSciLifeLabSchool of BiotechnologyKTH‐Royal Institute of TechnologyStockholmSweden
| | - Marcus Gry
- Global Safety AssessmentMolecular ToxicologyFormer AstraZeneca R&DSödertäljeSweden
| | - Julie Bachmann
- Affinity proteomicsSciLifeLabSchool of BiotechnologyKTH‐Royal Institute of TechnologyStockholmSweden
| | - Johan Lindberg
- Global Safety AssessmentMolecular ToxicologyFormer AstraZeneca R&DSödertäljeSweden
| | - Getnet Yimer
- Department of PharmacologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Eleni Aklillu
- Division of Clinical PharmacologyKarolinska InstitutetStockholmSweden
| | - Eyasu Makonnen
- Department of PharmacologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Getachew Aderaye
- Department of Internal MedicineAddis Ababa UniversityAddis AbabaEthiopia
| | | | - Ian Fier
- Momenta PharmaceuticalsCambridgeMAUSA
| | - Caroline Kampf
- Department of Immunology, Genetics and PathologySciLifeLabUppsala UniversityUppsalaSweden
| | - Jens Göpfert
- Biochemistry DepartmentNatural and Medical Sciences Institute at the University of TuebingenReutlingenGermany
| | - Hugo Perazzo
- Hepatology DepartmentHôpital Pitié‐SalpêtrièreParisFrance
| | | | - Camilla Stephens
- UGC Gastroenterologia y Hepatologia y Serv Farmacología ClínicaIBIMA, Hospital U Virgen de la VictoriaUniversity of MalagaMálagaSpain
| | - Raúl J. Andrade
- UGC Gastroenterologia y Hepatologia y Serv Farmacología ClínicaIBIMA, Hospital U Virgen de la VictoriaUniversity of MalagaMálagaSpain
| | - M Isabel Lucena
- UGC Gastroenterologia y Hepatologia y Serv Farmacología ClínicaIBIMA, Hospital U Virgen de la VictoriaUniversity of MalagaMálagaSpain
| | - Nadir Arber
- The Integrated Cancer Prevention CenterTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Mathias Uhlén
- Affinity proteomicsSciLifeLabSchool of BiotechnologyKTH‐Royal Institute of TechnologyStockholmSweden
| | - Paul B. Watkins
- Schools of MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Jochen M. Schwenk
- Affinity proteomicsSciLifeLabSchool of BiotechnologyKTH‐Royal Institute of TechnologyStockholmSweden
| | - Peter Nilsson
- Affinity proteomicsSciLifeLabSchool of BiotechnologyKTH‐Royal Institute of TechnologyStockholmSweden
| | - Ina Schuppe‐Koistinen
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden,AstraZeneca R&DInnovative Medicines Personalised Healthcare & BiomarkersSciLifeLabStockholmSweden
| |
Collapse
|
27
|
Endothelial tyrosine kinase receptor B prevents VE-cadherin cleavage and protects against atherosclerotic lesion development in ApoE-/- mice. Oncotarget 2016; 6:30640-9. [PMID: 26431274 PMCID: PMC4741558 DOI: 10.18632/oncotarget.5855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/06/2015] [Indexed: 11/30/2022] Open
Abstract
Tyrosine kinase receptor B (TrkB) is a high-affinity receptor for brain-derived neurotrophic factor (BDNF). In addition to its nervous system functions, TrkB is also expressed in the aortic endothelium. However, the effects of endothelial TrkB signaling on atherosclerosis remained unknown. Immunofluorescence analysis revealed that TrkB expression is downregulated in the endothelium of atherosclerotic lesions from ApoE−/− mice compared with the atheroma-free aorta of WT mice. Endothelial TrkB knockdown led to increased lesion size, lipid deposition and inflammatory responses in the atherosclerotic lesions of the ApoE−/− mice compared with the control mice. Mechanistic studies showed that TrkB activation prevented VE-cadherin shedding by enhancing the interaction between vascular endothelial protein tyrosine phosphatase and VE-cadherin, maintaining VE-cadherin in a dephosphorylated state. Our data demonstrate that TrkB is an endothelial injury-response molecule in atherogenesis. Endothelial BDNF/TrkB signaling reduces VE-cadherin shedding and protects against atherosclerotic lesion development in ApoE−/− mice.
Collapse
|
28
|
The first EGF domain of coagulation factor IX attenuates cell adhesion and induces apoptosis. Biosci Rep 2016; 36:BSR20160098. [PMID: 27129300 PMCID: PMC5293593 DOI: 10.1042/bsr20160098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022] Open
Abstract
Coagulation factor IX (FIX) is an essential plasma protein for blood coagulation. The first epidermal growth factor (EGF) motif of FIX (EGF-F9) has been reported to attenuate cell adhesion to the extracellular matrix (ECM). The purpose of the present study was to determine the effects of this motif on cell adhesion and apoptosis. Treatment with a recombinant EGF-F9 attenuated cell adhesion to the ECM within 10 min. De-adhesion assays with native FIX recombinant FIX deletion mutant proteins suggested that the de-adhesion activity of EGF-F9 requires the same process of FIX activation as that which occurs for coagulation activity. The recombinant EGF-F9 increased lactate dehydrogenase (LDH) activity release into the medium and increased the number of cells stained with annexin V and activated caspase-3, by 8.8- and 2.7-fold respectively, indicating that EGF-F9 induced apoptosis. Activated caspase-3 increased very rapidly after only 5 min of administration of recombinant EGF-F9. Treatment with EGF-F9 increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), but not that of phosphorylated MAPK 44/42 or c-Jun N-terminal kinase (JNK). Inhibitors of caspase-3 suppressed the release of LDH. Caspase-3 inhibitors also suppressed the attenuation of cell adhesion and phosphorylation of p38 MAPK by EGF-F9. Our data indicated that EGF-F9 activated signals for apoptosis and induced de-adhesion in a caspase-3 dependent manner.
Collapse
|
29
|
Cipriani P, Di Benedetto P, Ruscitti P, Liakouli V, Berardicurti O, Carubbi F, Ciccia F, Guggino G, Zazzeroni F, Alesse E, Triolo G, Giacomelli R. Perivascular Cells in Diffuse Cutaneous Systemic Sclerosis Overexpress Activated ADAM12 and Are Involved in Myofibroblast Transdifferentiation and Development of Fibrosis. J Rheumatol 2016; 43:1340-9. [DOI: 10.3899/jrheum.150996] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
Objective.Microvascular damage is pivotal in the pathogenesis of systemic sclerosis (SSc), preceding fibrosis, and whose trigger is not still fully understood. Perivascular progenitor cells, with profibrotic activity and function, are identified by the expression of the isoform 12 of ADAM (ADAM12) and this molecule may be upregulated by transforming growth factor-β (TGF-β). The goal of this work was to evaluate whether pericytes in the skin of patients with diffuse cutaneous SSc (dcSSc) expressed ADAM12, suggesting their potential contribution to the fibrotic process, and whether TGF-β might modulate this molecule.Methods.After ethical approval, mesenchymal stem cells (MSC) and fibroblasts (FB) were isolated from bone marrow and skin samples collected from 20 patients with dcSSc. ADAM12 expression was investigated in the skin and in isolated MSC and FB treated with TGF-β by immunofluorescence, quantitative real-time PCR, and western blot. Further, we silenced ADAM12 expression in both dcSSc-MSC and -FB to confirm the TGF-β modulation.Results.Pericytes and FB of dcSSc skin showed an increased expression of ADAM12 when compared with healthy control skin. TGF-β in vitro treatment induced a significant increase of ADAM12 in both SSc-MSC and -FB, with the higher levels observed in dcSSc cells. After ADAM12 silencing, the TGF-β ability to upregulate α-smooth muscle actin in both SSc-MSC and SSc-FB was inhibited.Conclusion.Our results suggest that in SSc, pericytes that transdifferentiate toward activated FB are present in the vascular tree, and TGF-β, while increasing ADAM12 expression, may modulate this transdifferentiation.
Collapse
|
30
|
Demyanenko IA, Popova EN, Zakharova VV, Ilyinskaya OP, Vasilieva TV, Romashchenko VP, Fedorov AV, Manskikh VN, Skulachev MV, Zinovkin RA, Pletjushkina OY, Skulachev VP, Chernyak BV. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice. Aging (Albany NY) 2016; 7:475-85. [PMID: 26187706 PMCID: PMC4543037 DOI: 10.18632/aging.100772] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlier in vitro. The Transforming Growth Factor beta (TGFβ)produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.
Collapse
Affiliation(s)
- Ilya A Demyanenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Vlada V Zakharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Olga P Ilyinskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Valeria P Romashchenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Yu Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
31
|
Pichler Hefti J, Leichtle A, Stutz M, Hefti U, Geiser T, Huber AR, Merz TM. Increased endothelial microparticles and oxidative stress at extreme altitude. Eur J Appl Physiol 2016; 116:739-48. [DOI: 10.1007/s00421-015-3309-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
|
32
|
Daniel AE, Timmerman I, Kovacevic I, Hordijk PL, Adriaanse L, Paatero I, Belting HG, van Buul JD. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking. PLoS One 2015; 10:e0145684. [PMID: 26714278 PMCID: PMC4694698 DOI: 10.1371/journal.pone.0145684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact. METHODOLOGY/PRINCIPAL FINDINGS We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC) monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus. CONCLUSIONS/SIGNIFICANCE Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.
Collapse
Affiliation(s)
- Anna E. Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter L. Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Luc Adriaanse
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilkka Paatero
- Department of Cell Biology, Biozentrum der Universität Basel, Basel, Switzerland
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum der Universität Basel, Basel, Switzerland
| | - Jaap D. van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Lemaire M, Negro Silva LF, Lemarié CA, Bolt AM, Flores Molina M, Krohn RM, Smits JE, Lehoux S, Mann KK. Arsenic Exposure Increases Monocyte Adhesion to the Vascular Endothelium, a Pro-Atherogenic Mechanism. PLoS One 2015; 10:e0136592. [PMID: 26332580 PMCID: PMC4557830 DOI: 10.1371/journal.pone.0136592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/05/2015] [Indexed: 01/24/2023] Open
Abstract
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.
Collapse
Affiliation(s)
- Maryse Lemaire
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Luis Fernando Negro Silva
- Division of Experimental Medicine, Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Catherine A. Lemarié
- Division of Experimental Medicine, Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Alicia M. Bolt
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Manuel Flores Molina
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Regina M. Krohn
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Judit E. Smits
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stéphanie Lehoux
- Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Koren K. Mann
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
34
|
Suh MJ, Tovchigrechko A, Thovarai V, Rolfe MA, Torralba MG, Wang J, Adkins JN, Webb-Robertson BJM, Osborne W, Cogen FR, Kaplowitz PB, Metz TO, Nelson KE, Madupu R, Pieper R. Quantitative Differences in the Urinary Proteome of Siblings Discordant for Type 1 Diabetes Include Lysosomal Enzymes. J Proteome Res 2015; 14:3123-35. [PMID: 26143644 DOI: 10.1021/acs.jproteome.5b00052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Individuals with type 1 diabetes (T1D) often have higher than normal blood glucose levels, causing advanced glycation end product formation and inflammation and increasing the risk of vascular complications years or decades later. To examine the urinary proteome in juveniles with T1D for signatures indicative of inflammatory consequences of hyperglycemia, we profiled the proteome of 40 T1D patients with an average of 6.3 years after disease onset and normal or elevated HbA1C levels, in comparison with a cohort of 41 healthy siblings. Using shotgun proteomics, 1036 proteins were identified, on average, per experiment, and 50 proteins showed significant abundance differences using a Wilcoxon signed-rank test (FDR q-value ≤ 0.05). Thirteen lysosomal proteins were increased in abundance in the T1D versus control cohort. Fifteen proteins with functional roles in vascular permeability and adhesion were quantitatively changed, including CD166 antigen and angiotensin-converting enzyme 2. α-N-Acetyl-galactosaminidase and α-fucosidase 2, two differentially abundant lysosomal enzymes, were detected in western blots with often elevated quantities in the T1D versus control cohort. Increased release of proteins derived from lysosomes and vascular epithelium into urine may result from hyperglycemia-associated inflammation in the kidney vasculature.
Collapse
Affiliation(s)
- Moo-Jin Suh
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Andrey Tovchigrechko
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Vishal Thovarai
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Melanie A Rolfe
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Manolito G Torralba
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Junmin Wang
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Joshua N Adkins
- ‡Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Bobbie-Jo M Webb-Robertson
- ‡Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Whitney Osborne
- §Children's National Medical Center, 111 Michigan Avenue North West, Washington, DC 20010, United States
| | - Fran R Cogen
- §Children's National Medical Center, 111 Michigan Avenue North West, Washington, DC 20010, United States
| | - Paul B Kaplowitz
- §Children's National Medical Center, 111 Michigan Avenue North West, Washington, DC 20010, United States
| | - Thomas O Metz
- ‡Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Karen E Nelson
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ramana Madupu
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rembert Pieper
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
35
|
Santha S, Viswakarma N, Das S, Rana A, Rana B. Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-Troglitazone-induced Apoptosis in Prostate Cancer Cells Involve AMP-activated Protein Kinase. J Biol Chem 2015. [PMID: 26198640 DOI: 10.1074/jbc.m115.663526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men with limited treatment options for the hormone-resistant forms. Development of novel therapeutic options is critically needed to target advanced forms. Here we demonstrate that combinatorial treatment with the thiazolidinedione troglitazone (TZD) and TNF-related apoptosis-inducing ligand (TRAIL) can induce significant apoptosis in various PCa cells independent of androgen receptor status. Because TZD is known to activate AMP-activated protein kinase (AMPK), we determined whether AMPK is a molecular target mediating this apoptotic cascade by utilizing PCa cell lines stably overexpressing AMPKα1 dominant negative (C4-2-DN) or empty vector (C4-2-EV). Our results indicated a significantly higher degree of apoptosis with TRAIL-TZD combination in C4-2-EV cells compared with C4-2-DN cells. Similarly, results from a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a larger reduction of viability of C4-2-EV cells compared with C4-2-DN cells when treated with TRAIL-TZD, thus suggesting that C4-2-DN cells were more apoptosis-resistant. Additionally, siRNA-mediated knockdown of endogenous AMPKα1 expression showed a reduction of TRAIL-TZD-induced apoptosis, further confirming the participation of AMPK in mediating this apoptosis. Apoptosis induction by this combinatorial treatment was also associated with a cleavage of β-catenin that was inhibited in both C4-2-DN cells and those cells in which AMPKα1 was knocked down. In addition, time course studies showed an increase in pACC(S79) (AMPK target) levels coinciding with the time of apoptosis. These studies indicate the involvement of AMPK in TRAIL-TZD-mediated apoptosis and β-catenin cleavage and suggest the possibility of utilizing AMPK as a therapeutic target in apoptosis-resistant prostate cancer.
Collapse
Affiliation(s)
- Sreevidya Santha
- From the Department of Medicine, Division of Gastroenterology & Nutrition and
| | - Navin Viswakarma
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Subhasis Das
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Ajay Rana
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and the Hines VA Medical Center, Hines, Illinois 60141
| | - Basabi Rana
- From the Department of Medicine, Division of Gastroenterology & Nutrition and the Hines VA Medical Center, Hines, Illinois 60141
| |
Collapse
|
36
|
Flemming S, Burkard N, Renschler M, Vielmuth F, Meir M, Schick MA, Wunder C, Germer CT, Spindler V, Waschke J, Schlegel N. Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis. Cardiovasc Res 2015; 107:32-44. [DOI: 10.1093/cvr/cvv144] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
37
|
Kim JH, Kim HJ, Kim JK, Ahn EK, Ko HJ, Cho YR, Lee SJ, Bae GU, Kim YK, Park JW, Oh JS, Seo DW. Ligularia fischeri inhibits endothelial cell proliferation, invasion and tube formation through the inactivation of mitogenic signaling pathways and regulation of vascular endothelial cadherin distribution and matrix metalloproteinase expression. Oncol Rep 2015; 34:221-6. [PMID: 25998480 DOI: 10.3892/or.2015.4000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/04/2015] [Indexed: 11/05/2022] Open
Abstract
Ligularia fischeri (LF) has been used as an edible herb and traditional medicine for the treatment of inflammatory and infectious diseases. In the present study, we report the effects and molecular mechanism of the ethanolic extract of LF on cell proliferation, invasion and tube formation in human umbilical vein endothelial cells (HUVECs). LF-mediated inhibition of cell proliferation was accompanied by reduced expression of cell cycle-related proteins such as cyclin-dependent kinases (Cdks) and cyclins, leading to pRb hypophosphorylation and G1 phase cell cycle arrest. We also show that LF treatment inhibited cell invasion and tube formation in HUVECs. These anti-angiogenic activities of LF were associated with the inactivation of mitogenic signaling pathways, induction of vascular endothelial (VE)-cadherin distribution at cell-cell contacts and inhibition of matrix metalloproteinase (MMP) expression. Collectively, our findings demonstrate the pharmacological functions and molecular mechanisms of LF in regulating endothelial cell fates, and support further development as a potential therapeutic agent for the treatment and prevention of angiogenesis-related disorders including cancer.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hyeon-Ju Kim
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jin-Kyu Kim
- Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443‑270, Republic of Korea
| | - Eun-Kyung Ahn
- Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443‑270, Republic of Korea
| | - Hye-Jin Ko
- Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443‑270, Republic of Korea
| | - Young-Rak Cho
- Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443‑270, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Yong Kee Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jong Woo Park
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
38
|
Luyet C, Schulze K, Sayar BS, Howald D, Müller EJ, Galichet A. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris. PLoS One 2015; 10:e0119809. [PMID: 25748204 PMCID: PMC4352034 DOI: 10.1371/journal.pone.0119809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients' biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including cancer.
Collapse
Affiliation(s)
- Camille Luyet
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katja Schulze
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beyza S. Sayar
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Denise Howald
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J. Müller
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Arnaud Galichet
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Jiang H, Huang S, Li X, Li X, Zhang Y, Chen ZY. Tyrosine Kinase Receptor B Protects Against Coronary Artery Disease and Promotes Adult Vasculature Integrity by Regulating Ets1-Mediated VE-Cadherin Expression. Arterioscler Thromb Vasc Biol 2015; 35:580-8. [DOI: 10.1161/atvbaha.114.304405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective—
Tyrosine kinase receptor B (TrkB) is a high-affinity receptor for brain-derived neurotrophic factor. In addition to its nervous system functions, TrkB is also expressed in the cardiovascular system. However, the association of TrkB and coronary artery disease (CAD) remains unknown. We investigated the role of TrkB in the development of CAD and its mechanism.
Approach and Results—
We performed a case–control study in 2 independent cohort of Chinese subjects and found –69C>G polymorphisms of TrkB gene significantly associated with CAD. TrkB –69C homozygotes, which corresponded to decreased TrkB expression by luciferase reporter assay, showed increased risk for CAD. Immunofluorescence analysis revealed that TrkB was expressed in the aortic endothelium in atherosclerotic lesions in humans and ApoE
–/–
mice. TrkB knockdown in the aortic endothelium resulted in vascular leakage in ApoE
–/–
mice. Mechanistic studies showed that TrkB regulated vascular endothelial cadherin (VE-cadherin) expression through induction and activation of Ets1 transcriptional factor. Importantly, TrkB activation attenuated proatherosclerotic factors induced-endothelial hyperpermeability in human vascular endothelial cells.
Conclusions—
Our data demonstrate that TrkB protects endothelial integrity during atherogenesis by promoting Ets1-mediated VE-cadherin expression and plays a previously unknown protective role in the development of CAD.
Collapse
Affiliation(s)
- Hong Jiang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital (H.J., X.L., Y.Z.), and Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine (S.H., X.L., Z.-Y.C), Shandong University, Jinan, Shandong, China
| | - Shuhong Huang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital (H.J., X.L., Y.Z.), and Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine (S.H., X.L., Z.-Y.C), Shandong University, Jinan, Shandong, China
| | - Xinyun Li
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital (H.J., X.L., Y.Z.), and Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine (S.H., X.L., Z.-Y.C), Shandong University, Jinan, Shandong, China
| | - Xian Li
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital (H.J., X.L., Y.Z.), and Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine (S.H., X.L., Z.-Y.C), Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital (H.J., X.L., Y.Z.), and Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine (S.H., X.L., Z.-Y.C), Shandong University, Jinan, Shandong, China
| | - Zhe-Yu Chen
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital (H.J., X.L., Y.Z.), and Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine (S.H., X.L., Z.-Y.C), Shandong University, Jinan, Shandong, China
| |
Collapse
|
40
|
T C, Chandran P A, Kurup G M. Omega-3 fatty acid concentrate fromDunaliella salinapossesses anti-inflammatory properties including blockade of NF-κB nuclear translocation. Immunopharmacol Immunotoxicol 2014; 37:81-9. [DOI: 10.3109/08923973.2014.981639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Musumeci G, Coleman R, Imbesi R, Magro G, Parenti R, Szychlinska MA, Scuderi R, Cinà CS, Castorina S, Castrogiovanni P. ADAM-10 could mediate cleavage of N-cadherin promoting apoptosis in human atherosclerotic lesions leading to vulnerable plaque: a morphological and immunohistochemical study. Acta Histochem 2014; 116:1148-58. [PMID: 24985126 DOI: 10.1016/j.acthis.2014.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 01/03/2023]
Abstract
Atherosclerosis remains a major cause of mortality. Whereas the histopathological progression of atherosclerotic lesions is well documented, much less is known about the development of unstable or vulnerable plaque, which can rupture leading to thrombus, luminal occlusion and infarct. Apoptosis in the fibrous cap, which is rich in vascular smooth muscle cells (VSMCs) and macrophages, and its subsequent weakening or erosion seems to be an important regulator of plaque stability. The aim of our study was to improve our knowledge on the biological mechanisms that cause plaque instability in order to develop new therapies to maintain atherosclerotic plaque stability and avoid its rupture. In our study, we collected surgical specimens from atherosclerotic plaques in the right or left internal carotid artery of 62 patients with evident clinical symptoms. Histopathology and histochemistry were performed on wax-embedded sections. Immunohistochemical localization of caspase-3, N-cadherin and ADAM-10 was undertaken in order to highlight links between apoptosis, as expressed by caspase-3 immunostaining, and possible roles of N-cadherin, a cell-cell junction protein in VSMCs and macrophages that provides a pro-survival signal reducing apoptosis, and ADAM-10, a "disintegrin and metalloproteases" that is able to cleave N-cadherin in glioblastomas. Our results showed that when apoptosis, expressed by caspase-3 immunostaining, increased in the fibrous cap, rich in VSMCs and macrophages, the expression of N-cadherin decreased. The decreased N-cadherin expression, in turn, was linked to increased ADAM-10 expression. This study shows that apoptotic events are probably involved in the vulnerability of atherosclerotic plaque.
Collapse
|
42
|
Jin H, Eun SY, Lee JS, Park SW, Lee JH, Chang KC, Kim HJ. P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res 2014; 16:R77. [PMID: 25156554 PMCID: PMC4406012 DOI: 10.1186/bcr3694] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Extracellular nucleotides are released and detectable in a high concentration within the tumor microenvironment. G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is activated equipotently by adenosine triphosphate (ATP) and uridine 5'-triphosphate (UTP), which mediate proinflammatory responses such as cell migration and proliferation. However, the role of P2Y2R in the process of cancer metastasis remains unclear. This study aimed to determine the role of P2Y2R in the proliferation, migration and invasion of highly metastatic MDA-MB-231 breast cancer cells through crosstalk with endothelial cells (ECs). METHODS ATP release and P2Y2R activity between high metastatic breast cancer cell MDA-MB-231 and low metastatic breast cancer cell MCF-7 were compared. Then, the role of P2Y2R on tumor growth and invasion via crosstalk with ECs was examined in vitro, using MDA-MB-231 cells and ECs transfected with control- or P2Y2R-siRNA, and in vivo, using an animal model injected with control-shRNA- or P2Y2R-shRNA-transfected MDA-MB-231 cells. RESULTS We found that this highly metastatic breast cancer cell line released higher levels of ATP and showed a higher P2Y2R activity in comparison to a low metastatic breast cancer cell line, MCF-7. In MDA-MB-231 cells, P2Y2R activation by ATP or UTP increased proliferation at 24 or 72 hours, which was abolished by P2Y2R knock-down. In addition, the adhesion of MDA-MB-231 cells to ECs and cell migration were both significantly increased by ATP or UTP through the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in MDA-MB-231 or ECs but not in cells where P2Y2R was knocked down. Furthermore, ATP- or UTP-mediated activation of P2Y2R induced MDA-MB-231 invasion through ECs, increased matrix metalloproteinase-9 (MMP-9) activity and vascular endothelial growth factor (VEGF) production in MDA-MB-231 and induced the phosphorylation of vascular endothelial (VE)-cadherin in ECs. Tumor growth and metastasis to other tissues were dramatically reduced, and body weight was increased in mice injected with P2Y2R-shRNA-transfected MDA-MB-231 cells compared to mice injected with control shRNA-transfected MDA-MB-231 cells. CONCLUSION This study suggests that P2Y2R may play an important role in cancer metastasis via modulation of the crosstalk between cancer cells and ECs.
Collapse
Affiliation(s)
- Hana Jin
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - So Young Eun
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Jong Sil Lee
- Department of Pathology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 660-751, Korea.
| | - Sang Won Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Jae Heun Lee
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| |
Collapse
|
43
|
Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants. World J Biol Chem 2014; 5:355-376. [PMID: 25225603 PMCID: PMC4160529 DOI: 10.4331/wjbc.v5.i3.355] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases (MMPs). Degradation of extracellular matrix (ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK (reversion including cysteine-rich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2, -9 and -14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species (ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is associated with a lower cancer incidence. Evidence indicates that some antioxidants inhibit the growth of malignant cells by inducing apoptosis and inhibiting the activity of MMPs. This review is discussed in six subchapters, as follows.
Collapse
|
44
|
Kuriyama H, Jinnin M, Kanemaru H, Ichihara A, Fujisawa A, Moriya C, Fukushima S, Ihn H. Clinical significance of serum vascular endothelial-cadherin levels in inflammatory skin diseases. Ann Dermatol 2014; 26:536-8. [PMID: 25143693 PMCID: PMC4135119 DOI: 10.5021/ad.2014.26.4.536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 11/21/2022] Open
Affiliation(s)
- Haruka Kuriyama
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Kanemaru
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Asako Ichihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiko Fujisawa
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chikako Moriya
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
45
|
Sakurai T, Woolls MJ, Jin SW, Murakami M, Simons M. Inter-cellular exchange of cellular components via VE-cadherin-dependent trans-endocytosis. PLoS One 2014; 9:e90736. [PMID: 24603875 PMCID: PMC3946293 DOI: 10.1371/journal.pone.0090736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature.
Collapse
Affiliation(s)
- Takashi Sakurai
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Melissa J. Woolls
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Suk-Won Jin
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Masahiro Murakami
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Simons
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
46
|
Increased serum levels of soluble vascular endothelial-cadherin in patients with systemic vasculitis. Rheumatol Int 2014; 34:1139-43. [DOI: 10.1007/s00296-014-2949-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
47
|
Habibagahi Z, Habibagahi M, Heidari M. Raised concentration of soluble form of vascular endothelial cadherin and IL-23 in sera of patients with Behçet’s disease. Mod Rheumatol 2014. [DOI: 10.3109/s10165-009-0246-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Inhibition of Angiogenesis In Vitro by Chebulagic Acid: A COX-LOX Dual Inhibitor. Int J Vasc Med 2013; 2013:843897. [PMID: 24288615 PMCID: PMC3833124 DOI: 10.1155/2013/843897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis is a crucial step in the growth of cancer and its metastasis. It is regulated by several endogenous factors which may stimulate or inhibit the new blood vessel growth. Besides these endogenous factors, several exogenous factors including some natural compounds are known to modulate angiogenesis. Angiogenesis being a potential target for drugs against a number of pathological conditions, search for compounds from natural sources that can affect angiogenesis is of great interest. The objective of our present study was to understand the effect of chebulagic acid, a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz., on angiogenesis. The model systems used were rat aortic rings and human umbilical vein endothelial cells. The results showed that chebulagic acid exerts an antiangiogenic effect. This was evidenced from decreased sprouting in rat aortic rings and decrease in biochemical markers in endothelial cells treated with chebulagic acid. It downregulated the production of CD31, E-selectin, and vascular endothelial growth factor in human umbilical vein endothelial cells in culture (HUVEC). Further studies to understand the molecular mechanism of action of chebulagic acid revealed that CA exerts its anti angiogenic effect by modulating VE cadherin-β catenin signalling in human umbilical vein endothelial cells.
Collapse
|
49
|
Beaufort N, Corvazier E, Mlanaoindrou S, de Bentzmann S, Pidard D. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: implication of matrilysis and receptor cleavage. PLoS One 2013; 8:e75708. [PMID: 24069438 PMCID: PMC3777978 DOI: 10.1371/journal.pone.0075708] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/19/2013] [Indexed: 12/19/2022] Open
Abstract
Within the vasculature, uncontrolled pericellular proteolysis can lead to disruption of cell-to-cell and cell-to-matrix interactions and subsequent detachment-induced cell apoptosis, or anoikis, contributing to inflammatory vascular diseases, with the endothelium as the major target. Most studies so far have focused on endogenous proteinases. However, during bloodstream infections, bacterial proteinases may also trigger endothelial anoikis. We thus investigated the potential apoptotic activity of the proteinases secreted by the haematotropic opportunistic pathogen, Pseudomonas aeruginosa, and particularly its predominant metalloproteinase, LasB. For this, we used the secretome of the LasB-expressing pseudomonal strain, PAO1, and compared it with that from the isogenic, LasB-deficient strain (PAO1∆lasB), as well as with purified LasB. Secretomes were tested for apoptotic activity on cultured human endothelial cells derived from the umbilical vein or from the cerebral microvasculature. We found that the PAO1 secretome readily induced endothelial cell anoikis, as did secretomes of LasB-positive clinical pseudomonal isolates, while the PAO1∆lasB secretome had only a limited impact on endothelial adherence and viability. Notably, purified LasB reproduced most of the effects of the LasB-containing secretomes, and these were drastically reduced in the presence of the LasB-selective inhibitor, phosphoramidon. A precocious and extensive LasB-dependent degradation of several proteins associated with the endothelial extracellular matrix, fibronectin and von Willebrand factor, was observed by immunofluorescence and/or immunoblotting analysis of cell cultures. Moreover, the PAO1 secretome, but not that from PAO1∆lasB, specifically induced rapid endoproteolysis of two major interendothelial junction components, VE-cadherin and occludin, as well as of the anti-anoikis, integrin-associated urokinase receptor, uPAR. Taken as a prototype for exogenous haemorrhagic proteinases, pseudomonal LasB thus appears to induce endothelial anoikis not only via matrilysis, as observed for many pro-apoptotic proteinases, but also via cleavage of some essential cell-to-cell and cell-to-matrix adhesion receptors implicated in the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Elisabeth Corvazier
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Saouda Mlanaoindrou
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Sophie de Bentzmann
- CNRS, UMR 7255-LISM, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Dominique Pidard
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
- * E-mail:
| |
Collapse
|
50
|
Flynn KM, Michaud M, Canosa S, Madri JA. CD44 regulates vascular endothelial barrier integrity via a PECAM-1 dependent mechanism. Angiogenesis 2013; 16:689-705. [PMID: 23504212 DOI: 10.1007/s10456-013-9346-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/08/2013] [Indexed: 01/13/2023]
Abstract
Vascular integrity is a critical parameter in normal growth and development. Loss of appropriate vascular barrier function is present in various immune- and injury-mediated pathological conditions. CD44 is an adhesion molecule expressed by multiple cell types, including endothelial cells (EC). The goal of the present study was to examine how loss of CD44 affected vascular permeability. Using C57BL/6 WT and CD44-KO mice, we found no significant permeability to Evan's Blue in either strain at baseline. However, there was significantly increased histamine-induced permeability in CD44-deficient mice compared to WT counterparts. Similar results were observed in vitro, where CD44-deficient endothelial monolayers were also impermeable to 40kD-FITC dextran in the absence of vasoactive challenge, but exhibited enhanced and prolonged permeability following histamine. However, CD44-KO monolayers have reduced baseline barrier strength by electrical resistance, which correlated with increased permeability, at baseline, to smaller molecular weight 4-kD FITC-dextran, suggesting weakly formed endothelial junctions. The CD44-KO EC displayed several characteristics consistent with impaired barrier function/dysfunctional EC junctions, including differential expression, phosphorylation, and localization of endothelial junction proteins, increased matrix metalloprotease expression, and altered cellular morphology. Reduced platelet endothelial cell adhesion molecule-1 (PECAM-1) expression by CD44-KO EC in vivo and in vitro was also observed. Reconstitution of murine CD44 or PECAM-1 restored these defects to near WT status, suggesting CD44 regulates vascular permeability and integrity through a PECAM-1 dependent mechanism.
Collapse
Affiliation(s)
- Kelly M Flynn
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street LH115, P.O. Box 208023, New Haven, CT 06520-8023, USA
| | | | | | | |
Collapse
|